Orthogonal Range Queries

Piotr Indyk
Range Searching in 2D

- Given a set of n points, build a data structure that for any query rectangle R, reports all points in R.
Kd-trees [Bentley]

• Not the most efficient solution in theory
• Everyone uses it in practice
• Algorithm:
 – Choose x or y coordinate (alternate)
 – Choose the median of the coordinate; this defines a horizontal or vertical line
 – Recurse on both sides
• We get a binary tree:
 – Size: $O(N)$
 – Depth: $O(\log N)$
 – Construction time: $O(N \log N)$
Kd-tree: Example

Each tree node v corresponds to a region $\text{Reg}(v)$.
Kd-tree: Range Queries

1. Recursive procedure, starting from \(v = \text{root} \)

2. Search \((v, R)\):
 a) If \(v \) is a leaf, then report the point stored in \(v \) if it lies in \(R \)
 b) Otherwise, if \(\text{Reg}(v) \) is contained in \(R \), report all points in the subtree of \(v \)
 c) Otherwise:
 • If \(\text{Reg(left}(v)) \) intersects \(R \), then Search(left(v),R)
 • If \(\text{Reg(right}(v)) \) intersects \(R \), then Search(right(v),R)
Query demo
Query Time Analysis

- We will show that Search takes at most $O(n^{1/2} + P)$ time, where P is the number of reported points.
 - The total time needed to report all points in all sub-trees (i.e., taken by step b) is $O(P)$.
 - We just need to bound the number of nodes v such that $\text{Reg}(v)$ intersects R but is not contained in R. In other words, the boundary of R intersects the boundary of $\text{Reg}(v)$.
 - Will make a gross overestimation: will bound the number of $\text{Reg}(v)$ which are crossed by any of the 4 horizontal/vertical lines.
Query Time Continued

• What is the max number $Q(n)$ of regions in an n-point kd-tree intersecting (say, vertical) line?
 – If we split on x, $Q(n)=1+Q(n/2)$
 – If we split on y, $Q(n)=1+2Q(n/2)$
 – Since we alternate, we can write $Q(n)=2+2Q(n/4)$

• This solves to $O(n^{1/2})$
Analysis demo
A Faster Solution

• Query time: $O(\log^2 n + P)$
• Space: $O(n \log n)$
Idea 1: Ranks

- Sort x and y coordinates of input points
- For a rectangle $R = [x_1, x_2] \times [y_1, y_2]$, we have point $(u, v) \in R$ iff
 - $succ_x(x_1) \leq rank_x(u) \leq pred_x(x_2)$
 - $succ_y(y_1) \leq rank_y(v) \leq pred_y(y_2)$
- Thus we can replace
 - Point coordinates by their rank
 - Query boundaries by succ/pred; this adds $O(\log n)$ to the query time
Dyadic intervals

• Assume n is a power of 2. Dyadic intervals are:
 – $[1,1]$, $[2,2]$... $[n,n]
 – [1,2], [3,4] ... [n-1,n]
 – [1,4], [5,8] ... [n-3,n]
 –
 – $[1...n]

• Any interval $\{a...b\}$ can be decomposed into $O(\log n)$ dyadic intervals:
 – Imagine a full binary tree over $\{1...n\}$
 – Each node corresponds to a dyadic interval
 – Any interval $\{a...b\}$ can be “covered” using $O(\log n)$ sub-trees
Range Trees

- For each level \(l = 1 \ldots \log n \), partition x-ranks using level-\(l \) dyadic intervals
- This induces vertical strips
- Within each strip, construct a BST on y-coordinates
Range Trees
Range Trees
Analysis

• Each point occurs in $\log n$ different levels
• Space: $O(n \log n)$
• How do we implement the query?
Query procedure

- Consider query \(R = X \times Y \)
- Partition \(X \) into dyadic intervals
- For each interval, query the corresponding strip BST using \(Y \)
Query procedure
Query procedure
Analysis ctd.

• Query time:
 – $O(\log n + \text{output})$ time per strip
 – $O(\log n)$ strips
 – Total: $O(\log^2 n + P)$

• Faster than kd-tree, but space $O(n \log n)$

• Recursive application of the idea gives
 – $O(\log^d n)$ query time
 – $O(n \log^{d-1} n)$ space

for the d-dimensional problem
Approximate Nearest Neighbor (ANN)

- Given: a set of points \(P \) in the plane
- Goal: given a query point \(q \), and \(\varepsilon > 0 \), find a point \(p' \) whose distance to \(q \) is at most \((1+\varepsilon)\) times the distance from \(q \) to its nearest neighbor
Our “solution”

• We will “solve” the problem using kd-trees…
• …under the assumption that all leaf cells of the
 kd-tree for P have bounded aspect ratio
• Assumption somewhat strict, but satisfied in
 practice for most of the leaf cells
• We will show
 – $O(\log n/\varepsilon^2)$ query time
 – $O(n)$ space (inherited from kd-tree)
ANN Query Procedure

• Locate the leaf cell containing q

• Enumerate all leaf cells C in the increasing order of distance from q (denote it by r)
 – Update p' so that it is the closest point seen so far
 – Note: r increases, $\text{dist}(q,p')$ decreases

• Stop if $\text{dist}(q,p') < (1+\varepsilon)r$
Analysis

• Running time:
 – All cells C seen so far (except maybe for the last one) have diameter $> \epsilon^* r$
 – …Because if not, then $p(C)$ would have been a $(1+\epsilon)$-approximate nearest neighbor, and we would have stopped
 – The number of cells with diameter $\epsilon^* r$, bounded aspect ratio, and touching a ball of radius r is at most $O(1/\epsilon^2)$