Arrangements and Duality

Motivation: Ray-Tracing

Slides mostly by Darius Jazayeri
Ray-Tracing

• Render a scene by shooting a ray from the viewer through each pixel in the scene, and determining what object it hits.
• Straight lines will have visible distortion
• We need to super-sample
Super-sampling

• We shoot many rays through each pixel and average the results.
• How should we distribute the rays over the pixel? Regularly?
• Distributing rays regularly isn’t such a good idea. Small per-pixel error, but regularity in error across rows and columns. (Human vision is sensitive to this.)
Super-sampling

• We need to choose our sample points in a somewhat random fashion.
• Finding the ideal distribution of \(n \) sample points in the pixel is a very difficult mathematical problem.
• Instead we’ll generate several random samplings and measure which one is best.
• How do we measure how good a distribution is?
Discrepancy

• We want to calculate the discrepancy of a distribution of sample points relative to possible scenes.
• Assume all objects project onto our screen as polygons.
• We’re really only interested in the simplest case: more complex cases don’t exhibit regularity of error.
Discrepancy

- Pixel: Unit square $U = [0:1] \times [0:1]$
Discrepancy

- Pixel: Unit square $U = [0:1] \times [0:1]$
- Scene: $H = \text{(infinite) set of all possible half-planes}$ h.
Discrepancy

- Pixel: Unit square $U = [0:1] \times [0:1]
- Scene: $H =$ set of all possible half-planes h
- Distribution of sample points: set S
Discrepancy

- Pixel: Unit square $U = [0:1] \times [0:1]$
- Scene: $H = \text{set of all possible half-planes } h$
- Distribution of sample points: set S
- Continuous Measure: $\mu(h) = \text{area of } h \cap U$
Discrepancy

- Pixel: Unit square $U = [0:1] \times [0:1]$
- Scene: $H = \text{set of all possible half-planes } h$.
- Distribution of sample points: set S
- Continuous Measure: $\mu(h) = \text{area of } h \cap U$
- Discrete Measure:
 $$\mu_S(h) = \frac{\text{card}(S \cap h)}{\text{card}(S)}$$
Discrepancy

- Pixel: Unit square $U = [0:1] \times [0:1]$
- Scene: H = set of all possible half-planes h.
- Distribution of sample points: set S
- Continuous Measure: $\mu(h) =$ area of $h \cap U$
- Discrete Measure: $\mu_S(h) = \frac{\text{card}(S \cap h)}{\text{card}(S)}$
- Discrepancy of h with respect to S: $\Delta_S(h) = | \mu(h) - \mu_S(h) |$
- Half-plane discrepancy of S: $\Delta_H(S) = \max_h \Delta_S(h)$
How to Compute $\Delta_H(S)$?

- $\Delta_H(S) = \max_h \Delta_S(h)$
- There is an infinite number of possible half-planes... We can’t just loop over all of them
- Need to discretize them somehow
Idea

• The half-plane of maximum discrepancy must pass through one of the sample points
Computing the Discrepancy

- The half-plane of maximum discrepancy must pass through at least one sample point.
- It may pass through exactly one point.
- … Or two points.
The one point case

• The half-plane has one degree of freedom, i.e., slope.
• The worst-case h must maximize or minimize $\mu(h)$
• Constant number of extrema to check
• Algorithm:
 – Enumerate all points p through which h passes
 – Enumerate all extrema of $\mu(h)$
 – Report the largest discrepancy found
• Running time: $O(n^2)$
The two point case

- There are $O(n^2)$ possible point pairs, each defining h
- Need to compute $\mu_S(h)$ and $\mu(h)$ in a $O(1)$ time per h
- $\mu(h)$ is easy
- We need some new techniques for $\mu_S(h)$
New Concept: Duality

• The concept: we can map between different ways of interpreting 2D values.
• Points \((x,y)\) can be mapped in a one-to-one manner to lines \((\text{slope,intercept})\) in a different space.
• There are different ways to do this, called *duality transforms*.
Duality Transforms

• One possible duality transform:
 – point p: (p_x, p_y) \Leftrightarrow line p^*: $y = p_x x - p_y$
 – line l: $y = mx + b$ \Leftrightarrow point l^*: $(m, -b)$
Duality Transforms

- This duality transform preserves order
 - Point p lies above line l \iff point l^* lies above line p^*
Back to the Discrepancy problem

To determine our discrete measure, we need to:

Determine how many sample points lie below a given line (in the primal plane).
Back to the Discrepancy problem

To determine our discrete measure, we need to:
Determine how many sample points lie below a given line (in the primal plane).

\[\uparrow \uparrow \text{ dualizes to } \uparrow \uparrow \]

Given a point in the dual plane we want to determine how many sample lines lie above it.

Is this easier to compute?
Duality

• The dualized version of a problem is no easier or harder to compute than the original problem.

• But the dualized version may be easier to think about.
Arrangements of Lines

- L is a set of n lines in the plane.
- L induces a subdivision of the plane that consists of vertices, edges, and faces.
- This is called the *arrangement* induced by L, denoted $A(L)$.
- The *complexity* of an arrangement is the total number of vertices, edges, and faces.
Combinatorics of Arrangements

• Number of vertices of $A(L) \leq \binom{n}{2}$
 – Vertices of $A(L)$ are intersections of $l_i, l_j \in L$

• Number of edges of $A(L) \leq n^2$
 – Number of edges on a single line in $A(L)$ is one more than number of vertices on that line.

• Number of faces of $A(L) \leq \frac{n^2}{2} + \frac{n}{2} + 1$

• Inductive reasoning: add lines one by one
 Each edge of new line splits a face. $\Rightarrow 1 + \sum_{i=1}^{n} i$

• Total complexity of an arrangement is $O(n^2)$
How Do We Store an Arrangement?

- **Data Type:** doubly-connected edge-list (DCEL)
 - **Vertex:**
 - Coordinates, Incident Edge
 - **Face:**
 - an Edge
 - **Half-Edges**
 - Origin Vertex
 - Twin Edge
 - Incident Face
 - Next Edge, Prev Edge
Constructing the Arrangement

- Iterative algorithm: put one line in at a time.
- Start with the first edge e that l_i intersects.
- Split that edge, and move to $Twin(e)$
Constructing Arrangement

Input: A set L of n lines in the plane
Output: DCEL for the subdivision induced by the part of $A(L)$ inside a bounding box

1. Compute a bounding box $B(L)$ that contains all vertices of $A(L)$ in its interior
2. Construct the DCEL for the subdivision induced by $B(L)$
3. for $i=1$ to n do
4. Find the edge e on $B(L)$ that contains the leftmost intersection point of l_i and A_i
5. $f =$ the bounded face incident to e
6. while f is not the face outside $B(L)$ do
7. Split f, and set f to be the next intersected face
Running Time

- We need to insert n lines.
- Each line splits $O(n)$ edges.
- We may need to traverse $O(n)$ Next(e) pointers to find the next edge to split.
Zones

• The zone of a line l in an arrangement $A(L)$ is the set of faces of $A(L)$ whose closure intersects l.

• Note how this relates to the complexity of inserting a line into a DCEL…
Zone Complexity

• The complexity of a zone is defined as the total complexity of all the faces it consists of, i.e. the sum of the number of edges and vertices of those faces.

• The time it takes to insert line \(l_i \) into a DCEL is linear in the complexity of the zone of \(l_i \) in \(A(\{l_1, \ldots, l_{i-1}\}) \).
Zone Theorem

• The complexity of the zone of a line in an arrangement of m lines on the plane is $O(m)$
• Therefore:
 – We can insert a line into an arrangement in linear time
 – We can compute the arrangement in $O(n^2)$ time
Proof of Zone Theorem

• Given an arrangement of \(m \) lines, \(A(L) \), and a line \(l \).
• Change coordinate system so \(l \) is the x-axis.
• Assume (for now) no horizontal lines
Proof of Zone Theorem

- Each edge in the zone of l is a left bounding edge and a right bounding edge.

- Claim: number of left bounding edges $\leq 5m$
- Same for number of right bounding edges
 \Rightarrow Total complexity of $\text{zone}(l)$ is linear
Proof of Zone Theorem
-Base Case-

• When $m=1$, this is trivially true.
 (1 left bounding edge ≤ 5)
Proof of Zone Theorem
-Inductive Case-

• Assume true for all but the rightmost line \(l_r \): i.e. Zone of \(l \) in \(A(L-\{l_r\}) \) has at most \(5(m-1) \) left bounding edges

• Assuming no other line intersects \(l \) at the same point as \(l_r \), add \(l_r \)
Proof of Zone Theorem
-Inductive Case-

• Assume true for all but the rightmost line \(l_r \):
i.e. Zone of \(l \) in \(A(L-\{l_r\}) \) has at most \(5(m-1) \) left bounding edges

• Assuming no other line intersects \(l \) at the same point as \(l_r \), add \(l_r \).
Proof of Zone Theorem
-Inductive Case-

• Assume true for all but the rightmost line l_r: i.e. Zone of l in $A(L-\{l_r\})$ has at most $5(m-1)$ left bounding edges

• Assuming no other line intersects l at the same point as l_r, add l_r
 – l_r has one left bounding edge with $l (+1)$
Proof of Zone Theorem
-Inductive Case-

• Assume true for all but the rightmost line \(l_r \):
i.e. Zone of \(l \) in \(A(L-\{l_r\}) \) has at most \(5(m-1) \) left bounding edges

• Assuming no other line intersects \(l \) at the same point as \(l_r \), add \(l_r \)
 – \(l_r \) has one left bounding edge with \(l \) (+1)
 – \(l_r \) splits at most two left bounding edges (+2)
Proof of Zone Theorem
Loosening Assumptions

• What if l_r intersects l at the same point as another line, l_i does?
 – l_r has two left bounding edges (+2)
 – l_i is split into two left bounding edges (+1)
 – As in simpler case, l_r splits two other left bounding edges (+2)
Proof of Zone Theorem
Loosening Assumptions

• What if l_r intersects l at the same point as another line, l_i does? (+5)

• What if >2 lines (l_i, l_j, \ldots) intersect l at the same point?
 – Like above, but l_i, l_j, \ldots are already split in two (+4)
Proof of Zone Theorem
-Loosening Assumptions-

• What if there are horizontal lines in L?
• A horizontal line introduces \textit{not more} complexity into $A(L)$ than a non-horizontal line.
Back to Discrepancy (Again)

• For every line between two sample points, we want to determine how many sample points lie below that line.
 -or-

• For every vertex in the dual plane, we want to determine how many sample lines lie above it.

• We build the arrangement $A(S^*)$ and use that to determine, for each vertex, how many lines lie above it. Call this the level of a vertex.
Levels and Discrepancy

• For each line l in S^*
 – Compute the level of the leftmost vertex. $O(n)$
 • Check, for all other lines l_i, whether l_i is above that vertex
 – Walk along l from left to right to visit the other vertices on l, using the DCEL.
 • Walk along l, maintaining the level as we go (by inspecting the edges incident to each vertex we encounter).
 – $O(n)$ per line
What did we just do?

- Given the level of a vertex in the (dualized) arrangement, we can compute the discrete measure of S wrt the h that vertex corresponds to in $O(1)$ time.
- We can compute all the interesting discrete measures in $O(n^2)$ time.
- Thus we can compute all $\Delta_S(h)$, and hence $\Delta_H(S)$, in $O(n^2)$ time.
Summary

• Problem regarding points S in ray-tracing
• Dualize to a problem of lines L.
• Compute arrangement of lines $A(L)$.
• Compute level of each vertex in $A(L)$.
• Use this to compute discrete measures in primal space.
• We can determine how good a distribution of sample points is in $O(n^2)$ time.
Extensions

• Zone Theorem has an analog in higher dimensions
 – Zone of a hyperplane in an arrangement of n hyperplanes in d-dimensional space has complexity $O(n^{d-1})$