Nearest Neighbor via Locality Sensitive Hashing

Piotr Indyk
Set Similarity Business

Set similarity: \(D(A, B) = \frac{|A \cap B|}{|A \cup B|} \)

- \(\mathcal{H} = \{ h_\pi : h_\pi(A) = \max_{a \in A} \pi(a) \} \)

- \(\Pr_{h \in \mathcal{H}}[h(A) = h(B)] = D(A, B) \)

Questions:

- How to deal with \(\pi \)?

- Can we extend \(D(\cdot) \) to multisets?
Permuting The Universe

• Hash all words to $U = \{0 \ldots u\}$
 (u large enough to make collisions unlikely)

• To permute U we can apply:

 – Linear permutation: $\pi(x) = ax + b \mod u$,
 a and b random.
 * Easy to implement
 * Not random enough! E.g.,

 \[
 Pr[h(\{0\}) = h(\{0 \ldots k\})] \approx \frac{\log k}{k}
 \]

 – Polynomials: $\pi(x) = a_0 + a_1 x_1 + \ldots a_k x^k \mod u$
 * Not permutations
 (but can bound the probability of collision)
 * For any $\epsilon > 0$, setting $k = O(\log 1/\epsilon)$ gives

 \[
 Pr[h(A) = h(B)] = D(A, B) \pm \epsilon |A \cup B|
 \]
Extension to Multisets

Fuzzy logic:

- An occurrence of x in A has a multiplicity. I.e., the characteristic function $\mu_A(x)$ is a non-negative integer.

- $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$

- $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$

Can extend similarity measure, and the min hashing to multisets.
Near Neighbor

(Dynamic) Approximate Near Neighbor:

- insertions/deletions

- if there is a point within distance r from q, return some point within distance $(1 + \epsilon)r$ from q (r fixed)
Locality-Sensitive Hashing

A family $\mathcal{H} = \{h : U \to S\}$ is called (r_1, r_2, P_1, P_2)-sensitive for D if for any $q, p \in U$

- if $D(p, q) \leq r_1$ then $\Pr_{\mathcal{H}}[h(q) = h(p)] \geq P_1$,

- if $D(p, q) > r_2$ then $\Pr_{\mathcal{H}}[h(q) = h(p)] \leq P_2$.

We assume $P_1 > P_2$ and $r_1 < r_2$.
Examples

• Hamming metric \(\{0, 1\}^d\):

 - \(\mathcal{H} = \{h(b_1 \ldots b_d) = b_i, i = 1 \ldots d\}\)
 (i.e., sample one bit at random)

 - \(\Pr_{\mathcal{H}}[h(q) = h(p)] = 1 - D(p, q)/d\)

• Set similarity: \(D(A, B) = \frac{|A \cap B|}{|A \cup B|}\)

 - \(\mathcal{H} = \{h_\pi : h_\pi(A) = \max_{a \in A} \pi(a)\}\)

 - \(\Pr_{h \in \mathcal{H}}[h(A) = h(B)] = D(A, B)\)
Multi-index Hashing

To solve NN with parameters ϵ, r: set $r_1 = r$, $r_2 = (1 + \epsilon)r$

Define $G = \{ g \mid g(p) = h_1(p) . h_2(p) \ldots h_k(p) \}$

(for Hamming metric - sample k random bits)

Preprocessing: prepare indices for g_1, \ldots, g_l

Add p: store p in buckets $g_1(p), \ldots, g_l(p)$
Delete p: remove p from buckets $g_1(p), \ldots, g_l(p)$

Query: check $g_1(q) \ldots g_l(q)$ and report the closest among first (say) $3l$ points

Time: $O(dl)$
Storage: $O(dn + nl)$
LSH: analysis

Question: How many indices l do we need?

Theorem: Setting $l = n^\rho$ for $\rho = \frac{\log 1/P_1}{\log 1/P_2}$ is sufficient with constant probability.

(Hamming metric $\Rightarrow \rho = 1/(1 + \epsilon)$)
“Proof”
LSH: Proof

Define:

- p^* - a point s.t. $D(q, p^*) \leq r$
- FAR(q) - all p s.t. $D(q, p) > (1 + \epsilon)r$
- BUCKET$_j(q)$ - all p s.t. $g_j(p) = g_j(q)$

Events:

- E_1: $\sum_{j=1}^{l} |\text{FAR}(q) \cap \text{BUCKET}_j(q)| \leq 3l$
- E_2: $g_j(p^*) = g_j(q)$ for some g_j, $1 \leq j \leq l$

Will show: $\Pr[E_1] < 1/3$ and $\Pr[E_2] < 1/e < 1/2$
Proof: Bad collisions

Let \(p \in \text{FAR}(q) \). Then

\[
\Pr[p \in \text{BUCKET}_j(q)] \leq P_2^k
\]

For \(k = \log_{1/P_2} n \)

\[
\Pr[p \in \text{BUCKET}_j(q)] \leq P_2^{\log_{1/P_2} n} = 1/n
\]

Thus

\[
E[|\text{FAR}(q) \cap \text{BUCKET}_j(q)|] \leq n \cdot 1/n = 1
\]

\[
E[\sum_{j=1}^l |\text{FAR}(q) \cap \text{BUCKET}_j(q)|] \leq l
\]

By Markov inequality

\[
\Pr[\sum_{j=1}^l |\text{FAR}(q) \cap \text{BUCKET}_j(q)| > 3l] = \Pr[E_1] \leq 1/3
\]
Proof: Good collisions

For any g_j:

$$\Pr[g_j(p^*) = g_j(q)] \geq P_1^k = P_1^{\log_1/P_2} n = n^{-\frac{\log_1/P_1 n}{\log_1/P_2}} = n^{-\rho}$$

For $l = n^\rho$ we have

$$\Pr[\overline{E_2}] \leq (1 - \Pr[g_j(p^*) = g_j(q)])^l$$
$$\leq (1 - n^{-\rho}) n^\rho$$
$$\leq 1/e$$
Web clustering

Goal: similarity search/clustering of the Web.

Problem: Huge data set!

Known approaches:

- detecting near-replicas [Broder-Glassman-Manasse-Zweig’97]
- link-based methods [Dean-Henzinger’99, Clever]

Would like to find pages with similar content based on text information (e.g., containing similar words).
Approach

- web page $P \rightarrow$ a set A of tuples of words:

 $P = \text{“This is an example web page”}$

 $A = \{\text{“this is an”}, \text{“is an example”}, \ldots \}$

- compare A and B by using

 $D(A, B) = \frac{|A \cap B|}{|A \cup B|}$

- clustering (\approx S-LINK):
 - take all pairs of similar documents
 - compute connected components
Algorithms

• [BGMZ'97]:
 – consistent sampling of tuples
 – finding all intersecting pairs < A, B >
 – filtering
 – performance (for 30 M pages):
 * 10-tuples: \(\approx 2 \cdot 10^{10} B \)
 * 1-tuples: \(\approx 10^{15} B^* \)

• LSH (for 25 M pages):
 – 67 indices, 300 MB per index
 – essentially same time for 10-tuples
 – most important: same for 1-tuples
Syntactic Approach: Algorithm

• tuple size = 10

• 10-tuples of words

• algorithm:
 – sample (consistently) 1:25 tuples
 – list all

\(< \text{DOC}_1, \text{DOC}_2, \text{TUPLE} > \)

s.t. \text{TUPLE} appears in both \text{DOC}_1 and \text{DOC}_2
 – group \(<, , >\) according to \(< \text{DOC}_1, \text{DOC}_2, \cdot >\)
 – compute the intersections
A bonus “war story”

The aforementioned project did not proceed without problems.

Problem: the home page of colleague’s advisor got clustered with:

- assorted pornography
- web pages on alcohol abuse

Problem II: our algorithm was provably correct, i.e., probability of failure was one in a million (we calculated it exactly).
What happened?

- x a word (really, word’s “signature”, but ignore that)

- We used hash function $h(x) = (ax \mod P) \mod 2^8$
 - $P = 2^{64} - 57$ (more or less)
 - a randomly chosen

- For various reasons, x divisible by 8 always (we were sampling 1 in 8 words)

- **Implementation bug:** forgot to use long long int \Rightarrow
 ax was computed modulo 2^{64} (rounding)

- mod P had almost always no effect, since $P \approx 2^{64}$

- x divisible by 8 $\Rightarrow (ax)$ divisible by 8 $\Rightarrow (ax) \mod 2^8$
 divisible by 8
• 3 lowest bits of $h(x)$ were almost always 0, so the actual range size was 2^5, not 2^8

• Enough for unexpected word collisions to occur...

Moral: do your hashing well, or you might never graduate.
References

