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Data Streams

• A data stream is a sequence of data that is too
large to be stored in available memory

  (disk, memory, cache, etc.)
• Examples:

– Network traffic
– Database transactions
– Sensor networks
– Satellite data feed



Example application: Monitoring
Network Traffic

• Router routs packets
     (many packets)

– Where do they come from ?
– Where do they go to ?

• Ideally, would like to maintain a traffic
     matrix x[.,.]

– For each (src,dst) packet, increment xsrc,dst
– Requires way too much space!
    (232 x 232 entries)
– Need to maintain a compressed version of the

matrix
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Data Streams

• A data stream is a (massive) sequence of data
– Too large to store (on disk, memory, cache, etc.)

• Examples:
– Network traffic (source/destination)
– Database transactions
– Sensor networks
– Satellite data feed
– …

• Approaches:
– Ignore it
– Develop algorithms for dealing with such data



This course
•  Systematic introduction to the area

– Emphasis on common themes
– Connections between streaming, sketching,

compressed sensing, communication complexity, …
– First  Second of its kind
   (previous edition from Fall’07: see my web page at MIT)

• Style: algorithmic/theoretical…
– Background in linear algebra and probability



Topics
• Streaming model. Estimating distinct elements (L0 norm)

• Estimating L2 norm (AMS),  Johnson Lindenstrauss 

• Lp norm (p<2), other norms, entropy

• Heavy hitters: L1 norm, L2 norm, sparse approximations

• Sparse recovery via LP decoding

• Lower bounds: communication complexity, indexing, L2 norm

• Options: MST, bi-chromatic matching, insertions-only streams,
Fourier sampling,



Plan For This Lecture

• Introduce the data stream model(s)
• Basic algorithms

– Estimating number of distinct elements in a
stream

– Into to frequency moments and norms



Basic Data Stream Model

• Single pass over the data: i1, i2,…,in
– Typically, we assume n is known

• Bounded storage (typically nα or logc n)
– Units of storage: bits, words or „elements”
   (e.g., points, nodes/edges)

• Fast processing time per element
– Randomness OK (in fact, almost always necessary)

8 2 1 9 1 9 2 4 6 3 9 4 2 3 4 2 3 8 5 2 5 6  ...



Counting Distinct Elements

• Stream elements: numbers from {1...m}
• Goal: estimate the number of distinct elements DE in

the stream
– Up to 1±ε
– With probability  1-P

• Simpler goal: for a given T>0, provide an algorithm
which, with probability 1-P:
– Answers YES, if DE> (1+ε)T
– Answers NO, if DE< (1-ε)T

• Run, in parallel, the algorithm with
           T=1, 1+ε, (1+ε)2,..., n

– Total space multiplied by log1+εn  ≈ log(n)/ ε
– Probability of failure multiplied by the same factor



Vector Interpretation

• Initially, x=0
• Insertion of i is interpreted as

xi = xi +1
• Want to estimate DE(x) = ||x||0

Stream: 8 2 1 9 1 9 2 4 4 9 4 2 5 4 2 5 8 5 2 5

Vector X: 
1  2  3  4  5  6  7  8  9 



Estimating DE(x)

• Choose a random set S of coordinates
– For each i, we have Pr[i∈S]=1/T

• Maintain SumS(x) = Σi∈S xi
• Estimation algorithm A:

– YES, if SumS(x)>0
– NO, if SumS(x)=0

• Analysis:
– Pr=Pr[SumS(x)=0] = (1-1/T)DE

– For T “large enough”: (1-1/T)DE ≈e-DE/T

– Using calculus, for ε small enough:
• If DE> (1+ε)T, then Pr ≈ e-(1+ε) < 1/e -  ε/3
• if DE< (1-ε)T,   then Pr ≈ e-( 1-ε)  > 1/e + ε/3

Vector X: 
1  2  3  4  5  6  7  8  9 
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Estimating DE(x) ctd.
• We have Algorithm A:

– If DE> (1+ε)T, then Pr<1/e-ε/3
– if DE< (1-ε)T,  then Pr>1/e+ε/3

• Algorithm B:
– Select sets S1 … Sk , k=O(log(1/P)/ε2)
– Let Z = number of SumSj(x) that are equal to 0
– By Chernoff bound (define), with probability >1-P

• If DE> (1+ε)T, then Z<k/e
• if DE< (1-ε)T,  then Z>k/e

• Total space: O( log(n)/ε  log (1/P)/ε2 ) numbers
    in range 0…n
• Can remove the log(n)/ε factor
• Bibliographic note: [Flajolet-Martin’85]



Interlude – Chernoff bound

• Let Z1…Zk be i.i.d. Bernoulli variables, with
Pr[Zj=1]=p

• Let Z=∑j Zj

• For any 1>ε>0, we have
Pr[ |E[Z]-Z| > εE[Z] ]≤2exp( -ε2E[Z]/3 )



Comments

• Implementing S:
– Choose a hash function h: {1..m} -> {1..T}
– Define S={i: h(i)=1}

• Implementing h
– Pseudorandom generators. More later.

• Better algorithms known:
– Theory: O( log(1/ε)/ε2 +log n) bits

   [Bar-Yossef-Jayram-Kumar-Sivakumar-Trevisan’02]

– Practice:  need 128 bytes for all works of
Shakespeare , ε≈10% [Durand-Flajolet’03]



More comments

• The algorithm uses “linear sketches”
SumSj(x)=Σi∈Sj xi

• Can implement decrements xi=xi-1
– I.e., the stream can contain deletions of elements

(as long as x≥0)
– Other names: dynamic model, turnstile model

Vector X: 
1  2  3  4  5  6  7  8  9 



• What other functions of a vector x can we maintain in small space ?
• Lp norms:

||x||p = ( ∑i |xi|p )1/p

– We also have ||x||∞ =maxi |xi|
– … and ||x||0 = DE(x), since ||x||p

p =∑i |xi|p→DE(x) as p→0
• Alternatively: frequency moments Fp  = p-th power of Lp norms
     (exception: F0 = L0 )
• How much space do you need to estimate ||x||p (for const. ε) ?
• Theorem:

– For p∈[0,2]:          polylog n  space suffices
– For p>2:       n1-2/p polylog n  space suffices and is necessary

[Alon-Matias-Szegedy’96, Feigenbaum-Kannan-Strauss-Viswanathan’99,
Indyk’00, Coppersmith-Kumar’04, Ganguly’04,  Bar-Yossef-Jayram-
Kumar-Sivakumar’02’03, Saks-Sun’03, Indyk-Woodruff’05]

More General Problem


