Streaming Algorithms, etc.

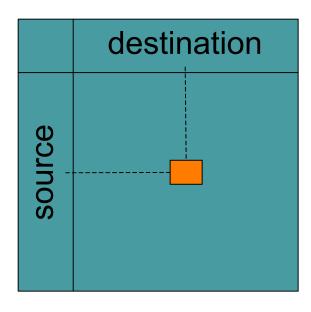
MIT Piotr Indyk

Data Streams

- A data stream is a sequence of data that is too large to be stored in available memory (disk, memory, cache, etc.)
- Examples:
 - Network traffic
 - Database transactions
 - Sensor networks
 - Satellite data feed

Example application: Monitoring Network Traffic

- Router routs packets (many packets)
 - Where do they come from ?
 - Where do they go to ?
- Ideally, would like to maintain a traffic matrix x[.,.]
 - For each (src,dst) packet, increment x_{src,dst}
 - Requires way too much space!
 (2³² x 2³² entries)
 - Need to maintain a compressed version of the matrix



Data Streams

- A data stream is a (massive) sequence of data
 - Too large to store (on disk, memory, cache, etc.)
- Examples:
 - Network traffic (source/destination)
 - Database transactions
 - Sensor networks
 - Satellite data feed
 - **—** ...
- Approaches:
 - Ignore it
 - Develop algorithms for dealing with such data

This course

- Systematic introduction to the area
 - Emphasis on common themes
 - Connections between streaming, sketching, compressed sensing, communication complexity, ...
 - First Second of its kind
 (previous edition from Fall'07: see my web page at MIT)
- Style: algorithmic/theoretical...
 - Background in linear algebra and probability

Topics

- Streaming model. Estimating distinct elements (L0 norm)
- Estimating L2 norm (AMS), Johnson Lindenstrauss
- Lp norm (p<2), other norms, entropy
- Heavy hitters: L1 norm, L2 norm, sparse approximations
- Sparse recovery via LP decoding
- Lower bounds: communication complexity, indexing, L2 norm
- Options: MST, bi-chromatic matching, insertions-only streams, Fourier sampling,

Plan For This Lecture

- Introduce the data stream model(s)
- Basic algorithms
 - Estimating number of distinct elements in a stream
 - Into to frequency moments and norms

Basic Data Stream Model

- Single pass over the data: i₁, i₂,...,i_n
 - Typically, we assume n is known
- Bounded storage (typically n^α or log^c n)
 - Units of storage: bits, words or "elements" (e.g., points, nodes/edges)
- Fast processing time per element
 - Randomness OK (in fact, almost always necessary)

8219192463942342385256 ...

Counting Distinct Elements

- Stream elements: numbers from {1...m}
- Goal: estimate the number of distinct elements DE in the stream
 - Up to $1\pm\epsilon$
 - With probability 1-P
- Simpler goal: for a given T>0, provide an algorithm which, with probability 1-P:
 - Answers YES, if DE> $(1+\epsilon)T$
 - Answers NO, if DE< $(1-\epsilon)T$
- Run, in parallel, the algorithm with

$$T=1, 1+\epsilon, (1+\epsilon)^2, ..., n$$

- − Total space multiplied by $log_{1+ε} n \approx log(n)/ε$
- Probability of failure multiplied by the same factor

Vector Interpretation

Stream: 8 2 1 9 1 9 2 4 4 9 4 2 5 4 2 5 8 5 2 5

- Initially, x=0
- Insertion of i is interpreted as

$$x_i = x_i + 1$$

• Want to estimate $DE(x) = ||x||_0$

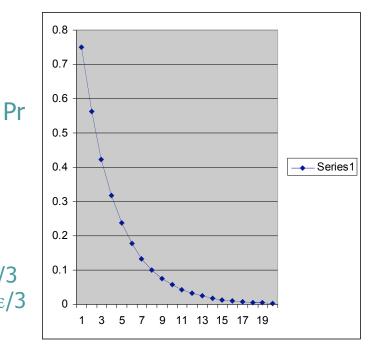
Estimating DE(x)

Vector X:

Set S: + ++

(T=4)

- Choose a random set S of coordinates
 - − For each i, we have $Pr[i \in S] = 1/T$
- Maintain $Sum_S(x) = \Sigma_{i \in S} x_i$
- Estimation algorithm A:
 - YES, if $Sum_S(x)>0$
 - NO, if $Sum_S(x)=0$
- Analysis:
 - $Pr=Pr[Sum_S(x)=0] = (1-1/T)^{DE}$
 - For T "large enough": $(1-1/T)^{DE}$ ≈ $e^{-DE/T}$
 - Using calculus, for ε small enough:
 - If DE> $(1+\epsilon)$ T, then Pr $\approx e^{-(1+\epsilon)} < 1/e \epsilon/3$
 - if DE< $(1-\epsilon)$ T, then Pr $\approx e^{-(1-\epsilon)} > 1/e + \epsilon/3$



Estimating DE(x) ctd.

- We have Algorithm A:
 - If DE> $(1+\epsilon)T$, then $Pr<1/e-\epsilon/3$
 - if DE< $(1-\epsilon)T$, then Pr>1/e+ $\epsilon/3$
- Algorithm B:
 - Select sets $S_1 \dots S_k$, $k=O(\log(1/P)/\epsilon^2)$
 - Let $Z = \text{number of } Sum_{Si}(x)$ that are equal to 0
 - By Chernoff bound (define), with probability >1-P
 - If DE> $(1+\epsilon)T$, then Z<k/e
 - if DE< $(1-\epsilon)T$, then Z>k/e
- Total space: O(log(n)/ε log (1/P)/ε²) numbers in range 0...n
- Can remove the log(n)/ε factor
- Bibliographic note: [Flajolet-Martin'85]

Interlude – Chernoff bound

- Let Z₁...Z_k be i.i.d. Bernoulli variables, with Pr[Z_i=1]=p
- Let $Z = \sum_{j} Z_{j}$
- For any $1>\epsilon>0$, we have $\Pr[|E[Z]-Z|>\epsilon E[Z]]\leq 2\exp(-\epsilon^2 E[Z]/3)$

Comments

- Implementing S:
 - Choose a hash function h: {1..m} -> {1..T}
 - Define $S=\{i: h(i)=1\}$
- Implementing h
 - Pseudorandom generators. More later.
- Better algorithms known:
 - Theory: O($log(1/\epsilon)/\epsilon^2 + log n$) bits [Bar-Yossef-Jayram-Kumar-Sivakumar-Trevisan'02]
 - Practice: need 128 bytes for all works of Shakespeare , ε≈10% [Durand-Flajolet'03]

More comments

The algorithm uses "linear sketches"

$$Sum_{Sj}(x) = \sum_{i \in Sj} x_i$$

- Can implement decrements x_i=x_i-1
 - I.e., the stream can contain deletions of elements (as long as x≥0)
 - Other names: dynamic model, turnstile model

More General Problem

- What other functions of a vector x can we maintain in small space ?
- L_p norms:

$$||\mathbf{x}||_{p} = (\sum_{i} |\mathbf{x}_{i}|^{p})^{1/p}$$

- We also have ||x||_∞ =max_i |x_i|
- ... and $||x||_0 = DE(x)$, since $||x||_p = \sum_i |x_i|^p \rightarrow DE(x)$ as $p \rightarrow 0$
- Alternatively: frequency moments $F_p = p$ -th power of L_p norms (exception: $F_0 = L_0$)
- How much space do you need to estimate $||x||_p$ (for const. ε)?
- Theorem:
 - For p∈[0,2]: polylog n space suffices
 - For p>2: $n^{1-2/p}$ polylog n space suffices and is necessary

[Alon-Matias-Szegedy'96, Feigenbaum-Kannan-Strauss-Viswanathan'99, Indyk'00, Coppersmith-Kumar'04, Ganguly'04, Bar-Yossef-Jayram-Kumar-Sivakumar'02'03, Saks-Sun'03, Indyk-Woodruff'05]