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Data Streams

e A data stream is a sequence of data that is too
large to be stored in available memory

(disk, memory, cache, etc.)

e Examples:
— Network traffic
— Database transactions
— Sensor networks
— Satellite data feed



Example application: Monitoring
Network Traffic

Router routs packets
(many packets)
— Where do they come from ?
— Where do they go to ?
|deally, would like to maintain a traffic
matrix x[.,.]
— For each (src,dst) packet, increment x
— Requires way too much space!
(232 x 232 entries)

— Need to maintain a compressed version of the
matrix

src,dst




Data Streams

e A data stream is a (massive) sequence of data
— Too large to store (on disk, memory, cache, etc.)

e Examples:
— Network traffic (source/destination)
— Database transactions
— Sensor networks
— Satellite data feed
e Approaches:
— Ignore it
— Develop algorithms for dealing with such data



This course

« Systematic introduction to the area
— Emphasis on common themes
— Connections between streaming, sketching,

compressed sensing, communication complexity, ...

— First- Second of its kind

(previous edition from Fall'07: see my web page at MIT)

« Style: algorithmic/theoretical...
— Background in linear algebra and probability



Topics

Streaming model. Estimating distinct elements (LO norm)
Estimating L2 norm (AMS), Johnson Lindenstrauss

Lp norm (p<2), other norms, entropy

Heavy hitters: L1 norm, L2 norm, sparse approximations
Sparse recovery via LP decoding

Lower bounds: communication complexity, indexing, L2 norm

Options: MST, bi-chromatic matching, insertions-only streams,
Fourier sampling,



Plan For This Lecture

o Introduce the data stream model(s)

e Basic algorithms

— Estimating number of distinct elements in a
stream

— Into to frequency moments and norms



Basic Data Stream Model

Single pass over the data: i, i5,...,1,
— Typically, we assume n is known
Bounded storage (typically n«or logc n)
— Units of storage: bits, words or ,elements”
(e.g., points, nodes/edges)
Fast processing time per element
— Randomness OK (in fact, almost always necessary)

v
8219192463942342385256 ...



Counting Distinct Elements

Stream elements: numbers from {1...m}

Goal: estimate the number of distinct elements DE in
the stream

— Up to 1x¢

— With probability 1-P

Simpler goal: for a given T>0, provide an algorithm
which, with probability 1-P:

— Answers YES, if DE> (1+¢)T

— Answers NO, if DE< (1-¢)T

Run, in parallel, the algorithm with
T=1, 1+¢, (1+¢)?,..., n
— Total space multiplied by log,,..n = log(n)/ ¢
— Probability of failure multiplied by the same factor



Vector Interpretation

Stream: 82191924494254258525

Vector X: -l = B = B
1234567829

o Initially, x=0
e Insertion of | is interpreted as
X; = X; +1
e Want to estimate DE(x) = ||x]|,



Estimating DE(Xx)

Vector X: -l = B = B
1234567829

Set S: + ++ (T=4)

Choose a random set S of coordinates
— For each i, we have Pr[icS|=1/T
Maintain Sumq(x) = 2 ¢ %
Estimation algorithm A:
— YES, if SUum(x)>0 Pr
— NO, if Sumg(x)=0
Analysis:
— Pr=Pr[Sum¢(x)=0] = (1-1/T)PE
— For T “large enough”: (1-1/T)PE =ebE/T
— Using calculus, for ¢ small enough:
o If DE> (1+4¢)T, then Pr = e(1*9) < 1/e - ¢/3
e if DE< (1-¢)T, thenPr=e(l® > 1/e+¢/3
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Estimating DE(x) ctd.

We have Algorithm A:
— If DE> (1+¢)T, then Pr<1/e-¢/3
— if DE< (1-¢)T, then Pr>1/e+¢/3
Algorithm B:
— Selectsets S, ... S, , k=0(log(1/P)/¢?)
— Let Z = number of Sumg;(x) that are equal to 0

— By Chernoff bound (define), with probability >1-P
o If DE> (1+4¢)T, then Z<k/e
e if DE< (1-¢)T, then Z>k/e

Total space: O( log(n)/e log (1/P)/¢?) numbers
in range 0...n

Can remove the log(n)/¢ factor

Bibliographic note: [Flajolet-Martin’85]



Interlude — Chernoff bound

e Let Z,...Z, be i.i.d. Bernoulli variables, with
PriZ=1]=p

e For any 1>€>0, we have
Pr[ |E[Z]-Z| > €E[Z] ]1<2exp( -e%E[Z]/3 )



Comments

e Implementing S:
— Choose a hash function h: {1..m} -> {1..T}
— Define S={i: h(i)=1}

e Implementing h
— Pseudorandom generators. More later.

e Better algorithms known:
— Theory: O( log(1/¢)/e? +log n) bits
[Bar-Yossef-Jayram-Kumar-Sivakumar-Trevisan’02]

— Practice: need 128 bytes for all works of
Shakespeare , €=10% [Durand-Flajolet’03]



More comments

Vector X: -l = B = B
1234567829

e The algorithm uses "“linear sketches”
SUMg;(X)=Zics; Xi
e Can implement decrements x;=x;-1

— I.e., the stream can contain deletions of elements
(as long as x=0)

— Other names: dynamic model, turnstile model



More General Problem

e What other functions of a vector x can we maintain in small space ?
L, norms:

X[, = (& [x]P )P
— We also have ||x||, =max, x|

— ...and [[x||, = DE(x), since ||x|| P =2, |x|P—DE(x)as p—0
Alternatively: frequency moments F, = p-th power of L, norms
(exception: F, =L, )

How much space do you need to estimate ||x||, (for const. ¢) ?
e Theorem:

— For p<[0,2]: polylog n space suffices
— For p>2: ni-2/p polylog n space suffices and is necessary

[Alon-Matias-Szegedy'96, Feigenbaum-Kannan-Strauss-Viswanathan'99,
Indyk’00, Coppersmlth -Kumar'04, Gangu 31’04 Bar-Yossef-Jayram-
Kumar- Slvakumar’02’03 Saks- Sun’03 Indyk-Woodruff'05]



