L2 Norm Estimation

MIT Piotr Indyk

L2 Norm Estimation

A stream is a sequence of updates (i,a)

 $x_i = x_i + a$

- Want to estimate $||\mathbf{x}||_2$ up to $1\pm\epsilon$
- Last week, we have seen how to do that for $\|\mathbf{x}\|_{0}$: •
 - Space: $(1/\epsilon + \log m)^{O(1)}$
 - Technique:
 - Linear sketches Sum_S(x)=∑_{i∈S} x_i for "random" sets S
 - (Somewhat messy) estimator
- Today: two methods for estimating **||x||**₂ +applications
 - Alon-Matias-Szegedy
 Really cute and simple
- - Johnson-Lindenstrauss
 Need in future lectures

First: two digressions

Digression 1

- Our algorithm computes a linear sketch of the vector x:
 - Linear sketches Sum_S(x)=∑_{i∈S} x_i for "random" sets S
 - $\log(m)/\epsilon$ values of T=1,1+ ϵ , ..., m
 - k sets S_i such that $Pr[i \in S_i] = 1/T$
 - Can represent as a product of Ax, for a (log(m)/ε * k) x m 0-1 matrix A

Digression 2

- Our setup:
 - World: provides a stream, defining x
 - We: choose a random A
 - The method works with "high probability"
- Comments:
 - Do not need to assume that a "source" generates x
 - Useful for composing algorithms, i.e., when x is itself an output of another algorithm (later in the course)

L2 norm

Why L₂ norm ?

Rel1

• Database join (on A):

- All triples (Rel1.A, Rel1.B, Rel2.B) S.t. Rel1.A=Rel2.A

- Self-join: if Rel1=Rel2
- Size of self-join: ∑_{val of A} Rows(val)²
- Updates to the relation increment/decrement Rows(val)

	Α	В		Α	В
)	Lec1	distinct		Lec1	distinct
	Lec1	elements		Lec1	elements
	Lec1	norm		Lec1	norm
	Lec2	L2		Lec2	L2
	Lec2	norm		Lec2	norm

Rel2

Algorithm I: AMS

Alon-Matias-Szegedy'96

- Choose $r_1 \dots r_m$ to be i.i.d. r.v., with $Pr[r_i=1]=Pr[r_i=-1]=1/2$
- Maintain

 $Z=\sum_{i} r_{i} x_{i}$

under increments/decrements to x_i

• Algorithm A:

 $Y=Z^2$

 "Claim": Y "approximates" ||x||₂² with "good" probability

Analysis

- The expectation of $Z^2 = (\sum_i r_i x_i)^2$ is equal to $E[Z^2] = E[\sum_{i,j} r_i x_i r_j x_j] = \sum_{i,j} x_i x_j E[r_i r_j]$
- We have
 - For $i \neq j$, $E[r_i r_j] = E[r_i] E[r_j] = 0$ term disappears
 - For i=j, $E[r_ir_j] = 1$
- Therefore

$$E[Z^2] = \sum_{i} x_i^2 = ||x||_2^2$$

(unbiased estimator)

Analysis, ctd.

- The second moment of $Z^2 = (\sum_i r_i x_i)^2$ is equal to the expectation of ٠ $Z^{4} = (\sum_{i} r_{i} x_{i}) (\sum_{i} r_{i} x_{i}) (\sum_{i} r_{i} x_{i}) (\sum_{i} r_{i} x_{i}) (\sum_{i} r_{i} x_{i})$
- This can be decomposed into a sum of
 - $\begin{array}{ll} & \sum_{i} (r_{i} x_{i})^{4} & \rightarrow expectation = \sum_{i} x_{i}^{4} \\ & 6 & \sum_{i < j} (r_{i} r_{j} x_{i} x_{j})^{2} & \rightarrow expectation = 6 & \sum_{i < j} x_{i}^{2} x_{j}^{2} \end{array}$

 - Terms involving single multiplier $r_i x_i$ (e.g., $r_1 x_1 r_2 x_2 r_3 x_3 r_4 x_4$) \rightarrow expectation=0

Total: $\sum_{i} x_{i}^{4} + 6 \sum_{i < i} x_{i}^{2} x_{i}^{2}$

The variance of Z^2 is equal to ۲

 $E[Z^4]-E^2[Z^2] = \sum_i x_i^4 + 6\sum_{i < i} x_i^2 x_i^2 - (\sum_i x_i^2)^2$ $= \sum_{i} x_{i}^{4} + 6 \sum_{i < i} x_{i}^{2} x_{i}^{2} - \sum_{i} x_{i}^{4} - 2 \sum_{i < i} x_{i}^{2} x_{i}^{2}$ $= 4 \sum_{i < i} x_i^2 x_i^2$ $\leq 2 (\sum_{i}^{2} X_{i}^{2})^{2}$

Analysis, ctd.

- We have an estimator Y=Z²
 - $E[Y] = \sum_{i} x_{i}^{2}$ - σ² =Var[Y] ≤ 2 (Σ_i x_i²)²
- Chebyshev inequality :

 $\Pr[||E[Y]-Y| \ge c\sigma] \le 1/c^2$

- Algorithm B:
 - Maintain $Z_1 \dots Z_k$ (and thus $Y_1 \dots Y_k$), define $Y' = \sum_i Y_i/k$
 - $E[Y'] = k \sum_{i} x_{i}^{2} / k = \sum_{i} x_{i}^{2}$
 - $\sigma'^{2} = \text{Var}[Y'] \le 2k(\sum_{i} x_{i}^{2})^{2}/k^{2} = 2(\sum_{i} x_{i}^{2})^{2}/k$
- Guarantee:

Pr[|Y' - $\sum_{i} x_i^2$ | ≥c (2/k)^{1/2} $\sum_{i} x_i^2$] ≤ 1/c²

• Setting c to a constant and $k=O(1/\epsilon^2)$ gives $(1 \pm \epsilon)$ -approximation with const. probability

Digression 3

- Only needed that $r_1 \dots r_m$ are 4-wise independent
- Definition: identically distributed random variables r₁...r_m, with each r_i chosen uniformly at random from {0...P-1}, are t-wise independent if for any S⊆{1...m}, |S|=t, and u∈{0...P-1}^t, we have

$Pr[r_S=u] = 1/P^t$

 Can generate such random variables using only O(t log(Pm)) truly random bits

Digression 3 ctd

- Example I: k=2, for m=P, P prime
 - Choose a,b independently uniformly at random from {0...P-1}
 - Define r_i =ai+b mod P
 - For S={i,j}, i≠j and u=(u₁,u₂)∈{0...P-1}², there exists exactly one pair (a,b) such that

ai+b mod $P = u_1$

aj+b mod $P = u_2$

- Therefore, $\Pr[r_{\{i,j\}}=(u_1,u_2)] = 1/P^2$
- Example II: any k, for m=P, P prime
 - Use polynomials of degree k-1

Recap

- What we did:
 - Maintain a "linear sketch" vector $Z = [Z_1...Z_k] = R x$
 - Estimator for $||\mathbf{x}||_2^2$: $(Z_1^2 + ... + Z_k^2)/k = ||\mathbf{R}\mathbf{x}||_2^2/k$
 - "Dimensionality reduction": $x \rightarrow Rx$

... but the tail somewhat "heavy"

- Reason: only used second moment of the estimator

Algorithm II: Dim. Reduction (JL)

Interlude: Normal Distribution

- Normal distribution N(0,1):
 - Range: (-∞, ∞)
 - Density: $f(x)=e^{-x^{2/2}}/(2\pi)^{1/2}$
 - Mean=0, Variance=1
- Basic facts:
 - If X and Y independent r.v. with normal distribution, then X+Y has normal distribution
 - Var(cX)=c² Var(X)
 - If X,Y independent, then Var(X+Y)=Var(X)+Var(Y)

A different linear sketch

- Instead of ± 1 , let r_i be i.i.d. random variables from N(0,1)
- Consider

$$Z = \sum_{i} r_i x_i$$

- We still have that $E[Z^2] = \sum_i x_i^2 = ||x||_2^2$, since:
 - $E[r_i] E[r_j] = 0$
 - $E[r_i^2]$ = variance of r_i , i.e., 1
- As before we maintain $Z=[Z_1 \dots Z_k]$ and define
 - $Y = ||Z||_2^2 = \sum_j Z_j^2$ (so that $E[Y] = k||x||_2^2$)
- We show that there exists C>0 s.t. for small enough ϵ >0

 $\Pr[|Y - k||x||_{2}^{2}| > \epsilon k ||x||_{2}^{2}] \le \exp(-C \epsilon^{2} k)$

Proof

See the attached notes,
 by Ben Rossman and Michel Goemans