L2 Norm Estimation

MIT
Piotr Indyk

Lecture 2

L2 Norm Estimation

- A stream is a sequence of updates (i, a)

$$
x_{i}=x_{i}+a
$$

- Want to estimate $\|x\|_{2}$ up to $1 \pm \varepsilon$
- Last week, we have seen how to do that for $\|x\|_{0}$:
- Space: $(1 / \varepsilon+\log m)^{\text {o(1) }}$
- Technique:
- Linear sketches Sum $_{S}(x)=\sum_{i \in S} x_{i}$ for "random" sets S
- (Somewhat messy) estimator
- Today: two methods for estimating $\|x\|_{2}+$ applications
- Alon-Matias-Szegedy - Really cute and simple
- Johnson-Lindenstrauss - Need in future lectures
- First: two digressions

Digression 1

- Our algorithm computes a linear sketch of the vector x :
- Linear sketches $\operatorname{Sum}_{S}(x)=\sum_{i \in S} X_{i}$ for "random" sets S
- $\log (m) / \varepsilon$ values of $T=1,1+\varepsilon, \ldots, m$
- k sets S_{j} such that $\operatorname{Pr}\left[i \in S_{j}\right]=1 / T$
- Can represent as a product of $A x$, for a $\left(\log (m) / \varepsilon^{*} k\right) \times m$ 0-1 matrix A

Digression 2

- Our setup:
- World: provides a stream, defining x
- We: choose a random A
- The method works with "high probability"
- Comments:
- Do not need to assume that a "source" generates x
- Useful for composing algorithms, i.e., when x is itself an output of another algorithm (later in the course)

L2 norm

Why L_{2} norm ?

- Database join (on A):
- All triples (Rel1.A, Rel1.B, Rel2.B) s.t. Rel1.A=Rel2.A
- Self-join: if Rel1=Rel2
- Size of self-join:

$$
\sum_{\text {val of A }} \operatorname{Rows}(\mathrm{val})^{2}
$$

- Updates to the relation increment/decrement
Rows(val)

\mathbf{A}	Rel1.B	Rel2.B
Lec1	distinct	distinct
Lec1	distinct	elements
Lec1	distinct	norm
Lec1	elements	distinct
Lec1	elements	elements
	\ldots.	

Algorithm I: AMS

Alon-Matias-Szegedy'96

- Choose $r_{1} \ldots r_{m}$ to be i.i.d. r.v., with

$$
\operatorname{Pr}\left[r_{i}=1\right]=\operatorname{Pr}\left[r_{i}=-1\right]=1 / 2
$$

- Maintain

$$
Z=\sum_{i} r_{i} x_{i}
$$

under increments/decrements to x_{i}

- Algorithm A:

$$
\mathrm{Y}=\mathrm{Z}^{2}
$$

- "Claim": Y "approximates" $\|x\|_{2}{ }^{2}$ with "good" probability

Analysis

- The expectation of $Z^{2}=\left(\sum_{i} r_{i} x_{i}\right)^{2}$ is equal to

$$
E\left[Z^{2}\right]=E\left[\sum_{i, j} r_{i} x_{i} r_{j} x_{j}\right]=\sum_{i, j} x_{i} x_{j} E\left[r_{i} r_{j}\right]
$$

- We have
- For $i \neq j, E\left[r_{i j} r_{j}\right]=E\left[r_{i}\right] E\left[r_{j}\right]=0$ - term disappears
- For $i=j, E\left[r_{i} r\right]=1$
- Therefore

$$
E\left[Z^{2}\right]=\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}
$$

(unbiased estimator)

Analysis, ctd.

- The second moment of $Z^{2}=\left(\sum_{i} r_{i} x_{i}\right)^{2}$ is equal to the expectation of

$$
Z^{4}=\left(\sum_{i} r_{i} x_{i}\right)\left(\sum_{i} r_{i} x_{i}\right)\left(\sum_{i} r_{i} x_{i}\right)\left(\sum_{i} r_{i} x_{i}\right)
$$

- This can be decomposed into a sum of
$-\sum_{i}\left(r_{i} x_{i}\right)^{4} \quad \rightarrow$ expectation $=\sum_{i} x_{i}{ }^{4}$
$-6 \sum_{i \mathrm{ij}}\left(r_{i} r_{j} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}\right)^{2} \quad \rightarrow$ expectation $=6 \sum_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}}^{2} \mathrm{x}_{\mathrm{j}}^{2}$
- Terms involving single multiplier $r_{i} x_{i}\left(\right.$ e.g., $\left.r_{1} x_{1} r_{2} x_{2} r_{3} x_{3} r_{4} x_{4}\right)$ \rightarrow expectation $=0$

Total: $\sum_{i} x_{i}{ }^{4}+6 \sum_{i j j} x_{i}{ }^{2} x_{j}^{2}$

- The variance of Z^{2} is equal to

$$
\begin{aligned}
& E\left[Z^{4}\right]-E^{2}\left[Z^{2}\right]=\sum_{i} x_{i}^{4}+6 \sum_{i<j} x_{i}^{2} x_{j}^{2}-\left(\sum_{i} x_{i}^{2}\right)^{2} \\
& =\sum_{i} x_{i}^{4}+6 \sum_{i<j} x_{i}^{2} x_{j}^{2}-\sum_{i} x_{i}^{4}-2 \sum_{i<j} x_{i}^{2} x_{j}^{2} \\
& =4 \sum_{i<j} x_{i}^{2} x_{j}^{2} \\
& \leq 2\left(\sum_{i} x_{i}^{2}\right)^{2}
\end{aligned}
$$

Analysis, ctd.

- We have an estimator $Y=Z^{2}$
- $E[Y]=\sum_{i} x_{i}{ }^{2}$
$-\sigma^{2}=\operatorname{Var}[\mathrm{Y}] \leq 2\left(\sum_{i} \mathrm{x}_{\mathrm{i}}{ }^{2}\right)^{2}$
- Chebyshev inequality:

$$
\operatorname{Pr}[|E[Y]-Y| \geq c \sigma] \leq 1 / c^{2}
$$

- Algorithm B:
- Maintain $Z_{1} \ldots Z_{k}$ (and thus $Y_{1} \ldots Y_{k}$), define $Y^{\prime}=\sum_{i} Y_{i} / k$
- $E\left[Y^{\prime}\right]=k \sum_{i} x_{i}^{2} / k=\sum_{i} x_{i}{ }^{2}$
$-\sigma^{\prime 2}=\operatorname{Var}\left[Y^{\prime}\right] \leq 2 k\left(\sum_{i} x_{i}\right)^{2} / k^{2}=2\left(\sum_{i} x_{i}^{2}\right)^{2} / k$
- Guarantee:

$$
\operatorname{Pr}\left[\left|Y^{\prime}-\sum_{i} x_{i}^{2}\right| \geq c(2 / k)^{1 / 2} \sum_{i} x_{i}^{2}\right] \leq 1 / c^{2}
$$

- Setting c to a constant and $k=O\left(1 / \varepsilon^{2}\right)$ gives $(1 \pm \varepsilon)$ approximation with const. probability

Digression 3

- Only needed that $r_{1} \ldots r_{m}$ are 4 -wise independent
- Definition: identically distributed random variables $r_{1} \ldots r_{m}$, with each r_{i} chosen uniformly at random from $\{0 \ldots \mathrm{P}-1\}$, are t -wise independent if for any $S \subseteq\{1 \ldots \mathrm{~m}\},|S|=t$, and $u \in\{0 \ldots P-1\}^{\dagger}$, we have

$$
\operatorname{Pr}\left[r_{\mathrm{s}}=u\right]=1 / \mathrm{P}^{\mathrm{t}}
$$

- Can generate such random variables using only $\mathrm{O}(\mathrm{t} \log (\mathrm{Pm})$) truly random bits

Digression 3 ctd

- Example I: k=2, for m=P, P prime
- Choose a,b independently uniformly at random from \{0...P-1\}
- Define $r_{i}=a i+b$ mod P
- For $S=\{i, j\}, i \neq j$ and $u=\left(u_{1}, u_{2}\right) \in\{0 \ldots P-1\}^{2}$, there exists exactly one pair (a, b) such that

$$
\begin{aligned}
& \text { ai }+b \bmod P=u_{1} \\
& a j+b \bmod P=u_{2}
\end{aligned}
$$

- Therefore, $\operatorname{Pr}\left[r_{\{i, j\}}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)\right]=1 / \mathrm{P}^{2}$
- Example II: any k, for m=P, P prime
- Use polynomials of degree k-1

Recap

- What we did:
- Maintain a "linear sketch" vector $Z=\left[Z_{1} \ldots Z_{k}\right]=R x$
- Estimator for $\|x\|_{2}{ }^{2}:\left(Z_{1}{ }^{2}+\ldots+Z_{k}{ }^{2}\right) / k=\|R x\|_{2}{ }^{2} / k$
- "Dimensionality reduction": $x \rightarrow R x$
... but the tail somewhat "heavy"
- Reason: only used second moment of the estimator

Algorithm II: Dim. Reduction (JL)

Interlude: Normal Distribution

- Normal distribution N(0,1):
- Range: $(-\infty, \infty)$
- Density: $f(x)=e^{-x^{\wedge} / 2 / 2}(2 \pi)^{1 / 2}$
- Mean=0, Variance=1
- Basic facts:
- If X and Y independent r.v. with normal distribution, then $X+Y$ has normal distribution
$-\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$
- If X, Y independent, then $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

A different linear sketch

- Instead of ± 1, let r_{i} be i.i.d. random variables from $N(0,1)$
- Consider

$$
\mathrm{Z}=\sum_{i} r_{i} x_{i}
$$

- We still have that $E\left[Z^{2}\right]=\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}$, since:
- $E\left[r_{i}\right] E\left[r_{j}\right]=0$
- $E\left[r_{i}^{2}\right]=$ variance of r_{i}, i.e., 1
- As before we maintain $Z=\left[Z_{1} \ldots Z_{k}\right]$ and define

$$
\left.Y=\|Z\|_{2}^{2}=\sum_{j} Z_{j}^{2} \quad \text { (so that } E[Y]=k\|x\|_{2}^{2}\right)
$$

- We show that there exists $\mathrm{C}>0$ s.t. for small enough $\varepsilon>0$

$$
\operatorname{Pr}\left[\left|Y-k\|x\|_{2}^{2}\right|>\varepsilon k\|x\|_{2}^{2}\right] \leq \exp \left(-C \varepsilon^{2} k\right)
$$

Proof

- See the attached notes, by Ben Rossman and Michel Goemans

