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Lecture 2

L2 Norm Estimation

• A stream is a sequence of updates (i,a)
xi=xi+a

• Want to estimate ||x||2 up to 1±ε
• Last week, we have seen how to do that for ||x||0 :

– Space: (1/ε + log m)O(1)

– Technique:
• Linear sketches SumS(x)=∑i∈S xi for “random” sets S
• (Somewhat messy) estimator

• Today: two methods for estimating ||x||2 +applications
– Alon-Matias-Szegedy
– Johnson-Lindenstrauss

• First: two digressions

Vector x: 
1  2 ………………………m 

- Really cute and simple
- Need in future lectures
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Digression 1

• Our algorithm computes a linear sketch of
the vector x:
– Linear sketches SumS(x)=∑i∈S xi for “random”

sets S
• log(m)/ε values of  T=1,1+ε, …, m
• k sets Sj such that Pr[i ∈Sj ]=1/T

– Can represent as a product of Ax, for a
(log(m)/ε * k) x m 0-1 matrix A
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Digression 2

• Our setup:
– World: provides a stream, defining x
– We: choose a random A
– The method works with “high probability”

• Comments:
– Do not need to assume that a “source” generates x
– Useful for composing algorithms, i.e., when x is itself

an output of another algorithm (later in the course)
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L2 norm
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Why L2 norm ?
• Database join (on A):

– All triples (Rel1.A, Rel1.B, Rel2.B)

    s.t. Rel1.A=Rel2.A

• Self-join: if Rel1=Rel2
• Size of self-join:

∑val of A Rows(val)2

• Updates to the relation
increment/decrement
Rows(val)
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Algorithm I: AMS
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Alon-Matias-Szegedy’96
• Choose r1 … rm to be i.i.d. r.v., with

Pr[ri=1]=Pr[ri=-1]=1/2
• Maintain

Z=∑i ri xi
   under increments/decrements to xi
• Algorithm A:

Y=Z2

• “Claim”: Y “approximates” ||x||22 with “good”
probability
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Analysis

• The expectation of Z2 = (∑i ri xi )2 is equal to
E[Z2] = E[∑i,j rixirjxj] = ∑i,j xi x j E[rirj]

• We have
– For i≠j, E[rirj] = E[ri] E[rj] =0 – term disappears
– For i=j, E[rirj] =1

• Therefore
E[Z2] = ∑i xi

2 =||x||22

   (unbiased estimator)
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Analysis, ctd.
• The second moment of Z2 = (∑i ri xi )2 is equal to the expectation of

Z4 = (∑i ri xi ) (∑i ri xi ) (∑i ri xi ) (∑i ri xi )
• This can be decomposed into a sum of

– ∑i  (ri xi )4 →expectation= ∑i  xi 
4

– 6 ∑i<j  (ri rj xixj  )2 →expectation= 6∑i<j  xi
2

 xj
2

– Terms involving single multiplier ri xi (e.g., r1x1r2x2r3x3r4x4)
   →expectation=0

Total: ∑i  xi 
4 + 6∑i<j  xi

2
 xj

2

• The variance of Z2 is equal to
E[Z4]-E2[Z2] = ∑i  xi 

4 + 6∑i<j  xi
2
 xj

2 – (∑i xi
2 )2

= ∑i  xi 
4 + 6∑i<j  xi

2
 xj

2 – ∑i xi
4 -2 ∑i<j  xi

2
 xj

2

= 4∑i<j  xi
2
 xj

2

≤ 2 (∑i  xi 
2 )2
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Analysis, ctd.
• We have an estimator Y=Z2

– E[Y] = ∑i xi
2

– σ2 =Var[Y] ≤ 2 (∑i  xi 
2 )2

• Chebyshev inequality :
Pr[  |E[Y]-Y| ≥ cσ ] ≤ 1/c2

• Algorithm B:
– Maintain Z1 … Zk (and thus Y1 … Yk ), define Y’ = ∑i  Yi /k
– E[Y’]    = k ∑i xi

2 /k = ∑i x i
2

– σ’2 = Var[Y’] ≤ 2k(∑i  xi 
2 )2 /k2 = 2 (∑i  xi 

2 )2 /k
• Guarantee:

Pr[ |Y’ - ∑i xi
2 | ≥c (2/k)1/2 ∑i  xi

2 ] ≤ 1/c2

• Setting c to a constant and k=O(1/ε2) gives (1± ε)-
approximation with const. probability
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Digression 3
• Only needed that r1…rm are 4-wise independent
• Definition: identically distributed random

variables r1…rm, with each ri chosen uniformly at
random from {0…P-1}, are     t-wise independent
if for any S⊆{1…m} , |S|=t, and u∈{0…P-1}t, we
have

Pr[rS=u] = 1/Pt

• Can generate such random variables using only
O(t log(Pm)) truly random bits
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Digression 3 ctd
• Example I: k=2, for m=P, P prime

– Choose  a,b independently uniformly at random from
{0…P-1}

– Define ri =ai+b mod P
– For S={i,j}, i≠j and u=(u1,u2)∈{0…P-1}2, there exists

exactly one pair (a,b) such that
ai+b mod P = u1
aj+b mod P = u2

– Therefore, Pr[r{i,j}=(u1,u2)] = 1/P2

• Example II: any k, for m=P, P prime
– Use polynomials of degree k-1
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Recap
• What we did:

– Maintain a “linear sketch” vector Z=[Z1...Zk] = R x
– Estimator for ||x||22 :  (Z1

2 +... + Zk
2)/k = ||Rx||22 /k

– “Dimensionality reduction”: x→ Rx
    … but the tail somewhat “heavy”
– Reason: only used second moment of the estimator
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Algorithm II: Dim. Reduction (JL)
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Interlude: Normal Distribution

• Normal distribution N(0,1):
– Range: (-∞, ∞)
– Density: f(x)=e-x^2/2 / (2π)1/2

– Mean=0, Variance=1
• Basic facts:

– If X and Y independent r.v. with normal distribution,
then X+Y has normal distribution

– Var(cX)=c2 Var(X)
– If X,Y independent, then Var(X+Y)=Var(X)+Var(Y)
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A different linear sketch
• Instead of ±1, let ri be i.i.d. random variables from N(0,1)
• Consider

Z=∑i ri xi
• We still have that E[Z2] = ∑i xi

2 =||x||22, since:
– E[ri] E[rj] = 0
– E[ri

2] = variance of ri , i.e., 1
• As before we maintain Z=[Z1 … Zk ] and define

Y = ||Z||22= ∑j  Zj
2
        (so that E[Y]=k||x||22 )

• We show that there exists C>0 s.t. for small enough ε>0

Pr[ | Y - k||x||22 |> εk||x||22] ≤ exp(-C ε2 k)
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Proof

• See the attached notes,
   by Ben Rossman and Michel Goemans


