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Recap/Today
• Two algorithms for estimating L2 norm of a stream

– A stream of updates (i,1) interpreted as
xi=xi+1

(fractional and negative updates also OK)
– Algorithms maintain a linear sketch Rx, where R is a k*m (pseudo)-random

matrix
– Use ||Rx||22 to estimate ||x||22

– Polylogarithmic space
• Today:

– Yet another algorithm for L2 estimation
• Generalizes to any Lp, p∈(0,2]
• Polylogarithmic space

– An algorithm for Lk estimation, k≥2
• Works only for positive updates
• Uses sampling, not sketches
• Space: O(k m1-1/k /ε2) for (1±ε)-approximation with const. probability
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Median Estimator
• Again we use a linear sketch Rx=[Z1…Zk], where each entry of R has distribution

N(0,1), k=O(1/ε2)
– Therefore, each of  Zi  has N(0,1) distribution with variance  ∑i xi 

2=||x||22

– Alternatively, Zi = ||x||2 Gi , where Gi drawn from N(0,1)
• How to estimate ||x||2 from Z1…Zk  ?
• In Algorithms I, II, we used Y=[Z1

2 + … +Zk
2]/k to estimate ||x||22

• But there are many other estimators out there…
• E.g., we could instead use

Y=median[ |Z1|, … , |Zk| ]/ median[|G|]

     to estimate ||x||2  (G drawn from N(0,1))
• The rationale:

– median [ |Z1|, … , |Zk| ] = ||x||2 median [ |G1|, … , |Gk | ]
– For “large enough” k , median [ |G1|, … , |Gk | ]  is “close to” median[|G|]
     (next two slides)

* median of an array A of numbers is the usual number in the middle of the sorted A
** M is the median of a random variable U if Pr[U≤M]=½
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Closeness in probability
• Lemma 1: Let U1 … Uk be i.i.d. real random variables

chosen from  any distribution having continuous c.d.f. F
and median M

– I.e., F(t)=Pr[Ui <t] and F(M)=1/2

     Define U=median [U1,…,Uk]. Then, for some absolute
const. C>0

Pr[F(U)∈(1/2-ε,1/2+ε)]≥1-e-Cε2k  (*)

• Proof:
– Assume k odd (so that median well defined)
– Consider events Ei: F(Ui)<1/2-ε
– We have p=Pr[Ei]=1/2-ε
– F(U)<1/2-ε iff at least k/2 of these events hold
– By Chernoff bound, the probability that at least k/2 of

the events hold is at most e-Cε2k

– Therefore, Pr[F(U)< 1/2-ε] is at most e-Cε2k

– The other case can be dealt with in an analogous
manner
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Closeness in value
• Lemma 2: Let F be c.d.f of a

random variable |G|, G drawn
from N(0,1).

   There exists a C’>0 s.t. if for
some z we have

 F(z)∈(1/2-ε,1/2+ε)
   then

z = median(g) ± C’ ε
• Proof: Calculus.
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Altogether
• Theorem: If we use median estimator

Y=median[ |Z1|, … , |Zk|] / median[|g|]

    (where Zj=∑i rij xi , rij chosen i.i.d. from N(0,1) ),
    then we have

Y = ||x||2 [ median(g) ± C’ ε ] / median[|g|] = ||x||2 (1 ± C” ε)
    with probability 1-e-Cε2k

• How to extend this to ||x||p  ?
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Other norms
• Key property of normal distribution:

– If U1 … Uk indep., U normal
– Then x1U1 + …+xmUm is distributed as

 (x1
p+…+xm

p)1/pU  , p=2
• Such distributions are called “p-stable”
• Good news: p-stable distributions exist for

any p∈(0,2]
• For example, for p=1, we have Cauchy

distribution:
– Density function: f(x)=1/[π(1+x2)]
– C.d.f.: F(z)=arctan(z)/π+1/2
– 1-stability:  x1U1 + …+xmUm is distributed as

(|x1|+…+|xm|)U
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Cauchy (from Wiki)

Cauchy density functions Cauchy  c.d.f.’s

• The median estimator arguments go through
• Can generate random Cauchy by choosing a random u∈[0,1] and

computing F-1(u)
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p-stability for p≠1, 2 , 1/2
• Basically, it is a mess

– No closed form formula for density/c.d.f.
– Not clear where the median is
– Not clear what the derivative of c.d.f. around the median is

• Nevertheless
– Can generate random variables
– Moments are known (more or less)
– Given samples of a*|g| , g p-stable, can estimate a up to 1±ε [Indyk,

JACM’06; Ping Li, SODA’08]
    (using various hacks and/or moments)

• For more info on p-stable distributions, see:

V.V. Uchaikin, V.M. Zolotarev,
Chance and Stability. Stable Distributions and their Applications.
http://staff.ulsu.ru/uchaikin/uchzol.pdf
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Summary

• Maintaining Lp norm of x under updates
– Polylogarithmic space for p≤2

• Issues ignored:
– Randomness
– Discretization (but everything can be done

using O(log (m+n)) bit numbers)
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Lk norm, k≥2
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Lk norm

• Algorithm for estimating Lk norm of a
stream
– A stream of elements i1…in
– Each i can be interpreted as xi=xi+1
   (only positive updates)
– Space: O(m1-1/k /ε2) for (1±ε)-approximation

with const. probability
– Sampling, not sketching
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Lk Norm Estimation: AMS’96
• Useful notion: Fk = ∑i=1

m 
 xi

k = ||x||kk

   (frequency moment of the stream i1…in )
• Algorithm A: two passes

– Pass 1: Pick a stream element i=ij uniformly at
random

– Pass 2: Compute xi
– Return Y=n xi

k-1

• Alternative view:
– Little birdy that samples i and returns xi
      (Sublinear-Time Algorithms class)

xi
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Analysis
• Estimator Y=n xi

k-1

• Expectation
E[Y]= ∑i xi/n * nxi

k-1 = ∑i xi
k  =Fk

• Second moment (≥variance)
E[Y2]= ∑i xi/n * n2xi

2k-2 = n ∑i xi
2k-1 = n F2k-1

• Claim:
n F2k-1 ≤ m1-1/k (Fk)2

• Therefore, averaging  over O(m1-1/k /ε2) samples
+ Chebyshev does the job (Lecture 2)



Lecture 3

Claim
• Claim:  n F2k-1 ≤ m1-1/k (Fk)2

• Proof:
n F2k-1

= n ||x||2k-1
2k-1

≤ n ||x||k2k-1

= ||x||1 ||x||k2k-1

≤  m1-1/k ||x||k ||x||k2k-1

= m1-1/k ||x||k2k

= m1-1/k Fk
2
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One Pass
• Cannot compute xi exactly
• Instead:

– Pick i=ij uniformly at random from the stream
– Compute r=#occurrences of i in ij…in
– Use r instead of xi
– Clearly r≤xi
– ..but E[r]=(xi+1)/2, so things should work out up to

constant factor (depending on k)
• Even better idea: use estimator

Y’ = n (rk – (r-1)k)
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Analysis
• Expectation:

E[Y’] = n E[(rk – (r-1)k)]
= n * 1/n ∑i ∑j=1

xi [jk – (j-1)k]
= ∑i xi

k

• Second moment:
– Observe that Y’ = n (rk – (r-1)k) ≤ n k rk-1 ≤ k Y
– Therefore Var[Y’] ≤ E[Y’]2 ≤ k2 E[Y]2 ≤ k2 m1-1/k Fk

2

    (can improve to k m1-1/k Fk
2  for integer k)

• Altogether:
– One pass algorithm for Fk (positive updates)
– Space: O(km1-1/k /ε2) for (1±ε)-approximation
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Notes

• The analysis in AMS’96, as is,  works only for
integer k

    (but is easy to adapt to any  k>1)
• The analysis* in these notes is somewhat

simpler (but yields k2 m1-1/k  space)

* Contributed by David Woodruff
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Summary

• Can (1±ε)-approximate Lk norm of a
stream (insertions-only) in O(m1-1/k /ε2)
space

• Sampling - quite general
– Entropy, i.e., ∑i xi /n log(xi /n) in polylog n

space
– Other stuff


