## **Estimating Lp Norms**

#### Piotr Indyk MIT

Lecture 3

## Recap/Today

- Two algorithms for estimating  $L_2$  norm of a stream
  - A stream of updates (i,1) interpreted as

```
x_i = x_i + 1
```

(fractional and negative updates also OK)

- Algorithms maintain a linear sketch Rx, where R is a k\*m (pseudo)-random matrix
- Use  $||\mathbf{R}\mathbf{x}||_2^2$  to estimate  $||\mathbf{x}||_2^2$
- Polylogarithmic space
- Today:
  - Yet another algorithm for  $L_2$  estimation
    - Generalizes to any  $L_p$ ,  $p \in (0,2]$
    - Polylogarithmic space
  - An algorithm for  $L_k$  estimation,  $k \ge 2$ 
    - Works only for positive updates
    - Uses sampling, not sketches
    - Space:  $O(k m^{1-1/k}/\epsilon^2)$  for  $(1\pm\epsilon)$ -approximation with const. probability

#### Median Estimator

- Again we use a linear sketch  $Rx=[Z_1...Z_k]$ , where each entry of R has distribution N(0,1),  $k=O(1/\epsilon^2)$ 
  - Therefore, each of  $Z_i$  has N(0,1) distribution with variance  $\sum_i x_i^2 = ||x||_2^2$
  - Alternatively,  $Z_i = ||\mathbf{x}||_2 G_i$ , where  $G_i$  drawn from N(0,1)
- How to estimate  $||\mathbf{x}||_2$  from  $Z_1...Z_k$ ?
- In Algorithms I, II, we used  $Y = [Z_1^2 + ... + Z_k^2]/k$  to estimate  $||x||_2^2$
- But there are many other estimators out there...
- E.g., we could instead use

Y=median[ |Z<sub>1</sub>|, ..., |Z<sub>k</sub>| ]/ median[|G|]

to estimate  $||\mathbf{x}||_2$  (G drawn from N(0,1))

- The rationale:
  - median  $[|Z_1|, ..., |Z_k|] = ||x||_2$  median  $[|G_1|, ..., |G_k|]$
  - For "large enough" k , median [ |G<sub>1</sub>|, ..., |G<sub>k</sub> | ] is "close to" median[|G|] (next two slides)

\* median of an <u>array</u> A of numbers is the usual number in the middle of the sorted A \*\* M is the median of a <u>random variable</u> U if  $Pr[U \le M] = \frac{1}{2}$ 

## **Closeness in probability**

- Lemma 1: Let  $U_1 \dots U_k$  be i.i.d. real random variables chosen from any distribution having continuous c.d.f. F and median M
  - I.e.,  $F(t)=Pr[U_i < t]$  and F(M)=1/2

Define U=median  $[U_1, ..., U_k]$ . Then, for some absolute const. C>0

 $Pr[F(U)∈(1/2-ε,1/2+ε)]≥1-e^{-Cε^2k}$  (\*)

- Proof:
  - Assume k odd (so that median well defined)
  - Consider events  $E_i$ :  $F(U_i) < 1/2 \epsilon$
  - We have  $p=Pr[E_i]=1/2-\epsilon$
  - $F(U) < 1/2 \epsilon$  iff at least k/2 of these events hold
  - By Chernoff bound, the probability that at least k/2 of the events hold is at most e<sup>-Cε2k</sup>
  - Therefore,  $\Pr[F(U) < 1/2 \varepsilon]$  is at most  $e^{-C\varepsilon^2 k}$
  - The other case can be dealt with in an analogous manner



#### Closeness in value

• Lemma 2: Let F be c.d.f of a random variable |G|, G drawn from N(0,1). For There exists a C'>0 s.t. if for some z we have  $F(z) \in (1/2-\epsilon, 1/2+\epsilon)$ then

 $z = median(g) \pm C' \epsilon$ 

• Proof: Calculus.



## Altogether

Theorem: If we use median estimator
 Y=median[ |Z<sub>1</sub>|, ..., |Z<sub>k</sub>]] / median[|g|]

(where  $Z_j = \sum_i r_{ij} x_i$ ,  $r_{ij}$  chosen i.i.d. from N(0,1)), then we have

- $Y = ||x||_2 [ median(g) \pm C' \epsilon ] / median[|g|] = ||x||_2 (1 \pm C'' \epsilon)$ with probability 1-e<sup>-C\epsilon<sup>2</sup>k</sup>
- How to extend this to  $\|\mathbf{x}\|_{p}$ ?

## Other norms

- Key property of normal distribution:
  - If U<sub>1</sub> ... U<sub>k</sub> indep., U normal
  - Then  $x_1U_1 + \dots + x_mU_m$  is distributed as  $(x_1^{p} + \dots + x_m^{p})^{1/p}U$ , p=2
- Such distributions are called "p-stable"
- Good news: p-stable distributions exist for any p∈(0,2]
- For example, for p=1, we have Cauchy distribution:
  - Density function:  $f(x)=1/[\pi(1+x^2)]$
  - C.d.f.:  $F(z)=\arctan(z)/\pi+1/2$
  - 1-stability:  $x_1U_1 + ... + x_mU_m$  is distributed as  $(|x_1|+...+|x_m|)U$



## Cauchy (from Wiki)



Cauchy density functions



- The median estimator arguments go through
- Can generate random Cauchy by choosing a random u∈[0,1] and computing F<sup>-1</sup>(u)

# p-stability for $p\neq 1, 2, 1/2$

- Basically, it is a mess
  - No closed form formula for density/c.d.f.
  - Not clear where the median is
  - Not clear what the derivative of c.d.f. around the median is
- Nevertheless
  - Can generate random variables
  - Moments are known (more or less)
  - Given samples of a\*|g|, g p-stable, can estimate a up to 1±ε [Indyk, JACM'06; Ping Li, SODA'08]
    - (using various hacks and/or moments)
- For more info on p-stable distributions, see:

V.V. Uchaikin, V.M. Zolotarev,

Chance and Stability. Stable Distributions and their Applications. <u>http://staff.ulsu.ru/uchaikin/uchzol.pdf</u>

## Summary

- Maintaining L<sub>p</sub> norm of x under updates
  - Polylogarithmic space for  $p\leq 2$
- Issues ignored:
  - Randomness
  - Discretization (but everything can be done using O(log (m+n)) bit numbers)

# $L_k$ norm, k≥2

Lecture 3

# $L_k$ norm

- Algorithm for estimating L<sub>k</sub> norm of a stream
  - A stream of elements  $i_1 \dots i_n$
  - Each i can be interpreted as x<sub>i</sub>=x<sub>i</sub>+1 (only positive updates)
  - Space: O(m<sup>1-1/k</sup>/ε<sup>2</sup>) for (1±ε)-approximation with const. probability
  - Sampling, not sketching

# L<sub>k</sub> Norm Estimation: AMS'96

- Useful notion:  $F_k = \sum_{i=1}^{m} x_i^k = ||x||_k^k$ (frequency moment of the stream  $i_1 \dots i_n$ )
- Algorithm A: two passes
  - Pass 1: Pick a stream element i=i<sub>j</sub> uniformly at random
  - Pass 2: Compute x<sub>i</sub>
  - Return Y=n x<sub>i</sub><sup>k-1</sup>
- Alternative view:
  - Little birdy that samples i and returns x<sub>i</sub> (Sublinear-Time Algorithms class)



## Analysis

- Estimator Y=n x<sub>i</sub><sup>k-1</sup>
- Expectation

$$E[Y] = \sum_{i} x_{i}/n * nx_{i}^{k-1} = \sum_{i} x_{i}^{k} = F_{k}$$

- Second moment (≥variance)
  E[Y<sup>2</sup>]= ∑<sub>i</sub> x<sub>i</sub>/n \* n<sup>2</sup>x<sub>i</sub><sup>2k-2</sup> = n ∑<sub>i</sub> x<sub>i</sub><sup>2k-1</sup> = n F<sub>2k-1</sub>
- Claim:

 $n F_{2k-1} \le m^{1-1/k} (F_k)^2$ 

Therefore, averaging over O(m<sup>1-1/k</sup> /ε<sup>2</sup>) samples
 + Chebyshev does the job (Lecture 2)

# Claim

- Claim:  $n F_{2k-1} \le m^{1-1/k} (F_k)^2$
- Proof:

n F<sub>2k-1</sub>

- $= n ||x||_{2k-1}^{2k-1}$
- $\leq n ||x||_{k}^{2k-1}$
- $= ||\mathbf{x}||_1 ||\mathbf{x}||_k^{2k-1}$
- $\leq m^{1-1/k} ||x||_k ||x||_k^{2k-1}$
- $= m^{1-1/k} ||\mathbf{x}||_{k}^{2k}$
- $= m^{1-1/k} F_k^2$

## One Pass

- Cannot compute x<sub>i</sub> exactly
- Instead:
  - Pick i=i, uniformly at random from the stream
  - Compute r=#occurrences of i in i<sub>j</sub>...i<sub>n</sub>
  - Use r instead of x<sub>i</sub>
  - Clearly r≤x<sub>i</sub>
  - ..but E[r]=(x<sub>i</sub>+1)/2, so things should work out up to constant factor (depending on k)
- Even better idea: use estimator

 $Y' = n (r^k - (r-1)^k)$ 

## Analysis

- Expectation:
  - $$\begin{split} \mathsf{E}[\mathsf{Y}'] &= n \; \mathsf{E}[(\mathsf{r}^k (\mathsf{r}\text{-}1)^k)] \\ &= n \;^* \; 1/n \; \sum_i \sum_{j=1}^{x_i} \, [j^k (j\text{-}1)^k] \\ &= \sum_i x_i^{k} \end{split}$$
- Second moment:
  - Observe that Y' = n  $(r^k (r-1)^k) \le n k r^{k-1} \le k Y$
  - Therefore Var[Y']  $\leq E[Y']^2 \leq k^2 E[Y]^2 \leq k^2 m^{1-1/k} F_k^2$ (can improve to k m<sup>1-1/k</sup>  $F_k^2$  for integer k)
- Altogether:
  - One pass algorithm for  $F_k$  (positive updates)
  - Space:  $O(km^{1-1/k}/\epsilon^2)$  for  $(1\pm\epsilon)$ -approximation

## Notes

- The analysis in AMS'96, as is, works only for integer k
  (but is easy to adapt to any k>1)
- The analysis<sup>\*</sup> in these notes is somewhat simpler (but yields k<sup>2</sup> m<sup>1-1/k</sup> space)

<sup>\*</sup> Contributed by David Woodruff

# Summary

- Can (1±ε)-approximate L<sub>k</sub> norm of a stream (insertions-only) in O(m<sup>1-1/k</sup> /ε<sup>2</sup>) space
- Sampling quite general
  - Entropy, i.e., ∑<sub>i</sub> x<sub>i</sub> /n log(x<sub>i</sub> /n) in polylog n space
  - Other stuff