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Last Few Lectures

• Recap (last few lectures)
– Update a vector x
– Maintain a linear sketch
– Can compute Lp norm of x
   (in zillion different ways)

• Questions:
– Can we do anything else ??
– Can we do something about linear space

bound for L∞ ??
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Heavy Hitters
• Also called frequent elements and elephants
• Define

HHp
φ (x) = { i: |xi| ≥ φ ||x||p }

• Lp Heavy Hitter Problem:
– Parameters: φ and φ’ (often φ’ = φ-ε)
– Goal: return a set S of coordinates s.t.

• S contains HHp
φ (x)

• S is included in HHp
φ’ (x)

• Lp Point Query Problem:
– Parameter: α
– Goal: at the end of the stream, given i, report

x*i=xi ± α ||x||p
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Which norm is better ?

• Since ||x||1 ≥ ||x||2 ≥ … ≥ ||x||∞, we get that
the higher Lp norms are better

• For example, for Zipfian distributions
xi=1/iβ, we have
– ||x||2 : constant for β>1/2
– ||x||1 : constant only for β>1

• However, estimating higher Lp norms
tends to require higher dependence on α
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A Few Facts
• Fact 1: The size of HHp

φ (x) is at most 1/φ
• Fact 2: Given an algorithm for the Lp point query

problem, with:
– parameter α
– probability of failure <1/(2m)

   one can obtain an algorithm for Lp heavy hitters problem
with:
– parameters φ and φ’ = φ-2α (any φ)
– same space (plus output)
– probability of failure <1/2

Proof:
– Compute all xi

* (note: this takes time O(m) )
– Report i such that xi* ≥ φ-α
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L2 point query
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Point query
• We start from L2
• A few observations:

– xi = x * ei
– For any u, v we have

 ||u-v||2 = ||u||2 + ||v||2 -2u*v
• Algorithm [Gilbert-Kotidis-Muthukrishnan-Strauss’01]

– Maintain a sketch Rx, with failure probability P
– Assume  s = ||Rx||2 = (1±ε)||x||2
– Estimator:

Y=( 1 - || Rx/s – Rei ||2/2 ) s
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Intuition
• Ignoring the sketching

function R, we have
   (1-||x/s-ei||2/2)s
= (1-||x/s||2 /2 -||ei||2 /2 +x/s ei) s
= (1-1/2-1/2+x/s ei)s = xei

• Now we just need to deal
with epsilons

x/s

ei

x/s-ei
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Analysis of Y=(1-||Rx/s – Rei||2/2 )s
|| Rx/s – Rei ||2/2

= || R(x/s-ei) ||2/2
= (1±ε)|| x/s – ei ||2/2  Holds with prob. 1-P
= (1±ε)|| x/(||x||2(1±ε)) - ei ||2/2
= (1±ε)[ 1/(1±ε)2 + 1 – 2x*ei/( ||x||2(1±ε))]/2
= (1±cε)(1 - x*ei/||x||2 )

Y
= [ 1 - (1±cε)(1 - x*ei/||x||2) ]   ||x||2(1±ε)
= [ 1 - (1±cε) + (1±cε)x*ei/||x||2 ]   ||x||2(1±ε)
= [ ±cε ||x||2 + (1±cε)x*ei ] (1±ε)
= ±c’ε ||x||2  + x*ei
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Altogether
• Can solve L2 point query problem, with parameter α and

failure probability P by storing O(1/α2 log(1/P)) numbers
• Pros:

– General reduction to L2 estimation
– Intuitive approach (modulo epsilons)
– In fact ei can be an arbitrary unit vector

• Cons:
– Constants in the analysis are large

• There is a more direct approach using AMS sketches [A-
Gibbons-M-S’99], with better constants
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L1 Point Queries/Heavy Hitters
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L1 Point Queries/Heavy Hitters
• For starters, assume x≥0
   (not crucial, but then the

algorithm is really nice)
• Point queries: algorithm A:

– Set w=2/α
– Prepare a random hash

function h: {1..m}→{1..w}
– Maintain an array

Z=[Z1,…Zw] such that
Zj=∑i: h(i)=j xi

– To estimate xi return
x*i = Zh(i)

xi

x*
i

Z1 …  Zw

x
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Analysis
• Facts:

– x*
i ≥ xi

– E[ xi* - xi ] = ∑l≠i  Pr[h(l)=h(i)]xl ≤ α/2 ||x||1
– Pr[ |xi*-xi| ≥  α ||x||1 ] ≤ 1/2

• Algorithm B:
– Maintain d vectors Z1…Zd and functions h1…hd
– Estimator:

xi
* = mint Zt

ht(i)
• Analysis:

– Pr[ |xi*-xi| ≥  α ||x||1 ] ≤ 1/2d

– Setting d=O(log m) sufficient for L1 Heavy Hitters
• Altogether, we use space O(1/α  log m)
• For general x:

– replace “min” by “median”
– adjust parameters (by a constant)

xi

x*
i

Z1 …  Z2/α

x
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Comments

• Can reduce the recovery time to about O(log m)
• Other goodies as well
• For details, see
[Cormode-Muthukrishnan’04]: “The Count-Min Sketch…”
• Also:

– [Charikar-Chen-FarachColton’02]
    (variant for the L2 norm)
– [Estan-Varghese’02]
– Bloom filters
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Sparse Approximations
• Sparse approximations (w.r.t. Lp norm):

– For a vector x, find x’ such that
• x’ has “complexity” k
• ||x-x’||p ≤ (1+α) Err , where Err=Errp

k =minx” ||x-x”||p,
   for x” ranging over all vectors with “complexity” k

– Sparsity (i.e., L0 ) is a very natural measure of complexity
• In this case, best x’ consists of k coordinates of x that are largest in

magnitude, i.e., “heavy hitters”
• Then the error is the Lp norm of the “non-heavy hitters”, a.k.a. “mice”

• Question: can we modify the previous algorithm to solve the sparse
approximation problem ?

• Answer: YES
[Charikar-Chen-FarachColton’02, Cormode-Muthukrishnan’05] (for L2 norm))

• Just set w=(4/α)k
• We will see it for the L1 norm
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Point Query
• We show how to get an estimate

xi
* = xi ± α Err/k

• Assume
 |xi1| ≥ … ≥ |xim|

• Pr[ |x*i-xi|≥ α Err/k] is at most
Pr[ h(i)∈h({i1..ik}) ]

+ Pr[ ∑l>k: h(il)=h(i) xl ≥ α Err/k ]
≤ 1/(2/α) + 1/4
< 1/2 (if α<1/2)

• Applying min/median to  d=O(log m) copies of
the algorithm ensures that w.h.p

|x*i-xi|< αErr/k

xi2

Z1 ………..Z(4/α)k

x
xikxi1 … xi
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Sparse Approximations
• Algorithm:

– Return a vector x’ consisting of largest (in magnitude) elements
of  x*

• Analysis (new proof)
– Let S (or S* ) be the set of k largest in magnitude coordinates of

x (or x* )
– Note that ||x*S||  ≤ ||x*S*||1
– We have

||x-x’||1 ≤ ||x||1 - ||xS*||1 + ||xS*-x*S*||1
≤ ||x||1 - ||x*S*||1 + 2||xS*-x*S*||1
≤ ||x||1 - ||x*S||1 + 2||xS*-x*S*||1
≤ ||x||1 - ||xS||1 + ||x*S-xS||1 + 2||xS*-x*S*||1
≤ Err + 3α/k * k *Err
≤ (1+3α)Err
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Altogether

• Can compute k-sparse approximation to x
with error (1+α)Err1

k using O(k/α log m)
space (numbers)

• This also gives an estimate
xi

* = xi ± α Err1
k/k


