## **Heavy Hitters**

#### Piotr Indyk MIT

Lecture 4

#### Last Few Lectures

- Recap (last few lectures)
  - Update a vector x
  - Maintain a linear sketch
  - Can compute L<sub>p</sub> norm of x (in zillion different ways)
- Questions:
  - Can we do anything else ??
  - Can we do something about linear space bound for  $L_{\infty}$  ??

## Heavy Hitters

- Also called frequent elements and elephants
- Define

 $HH^{p}_{\phi}(x) = \{ i: |x_{i}| \geq \phi ||x||_{p} \}$ 

- L<sub>p</sub> Heavy Hitter Problem:
  - Parameters:  $\phi$  and  $\phi'$  (often  $\phi' = \phi \epsilon$ )
  - Goal: return a set S of coordinates s.t.
    - S contains  $HH^{p}_{\phi}(x)$
    - S is included in  $HH^{p}_{\phi}$ , (x)
- L<sub>p</sub> Point Query Problem:
  - Parameter:  $\alpha$
  - Goal: at the end of the stream, given i, report

 $\mathbf{x}_{i}^{*} = \mathbf{x}_{i} \pm \alpha ||\mathbf{x}||_{p}$ 



## Which norm is better ?

- Since ||x||<sub>1</sub> ≥ ||x||<sub>2</sub> ≥ ... ≥ ||x||<sub>∞</sub>, we get that the higher Lp norms are better
- For example, for Zipfian distributions x<sub>i</sub>=1/i<sup>β</sup>, we have
  - $||\mathbf{x}||_2$ : constant for  $\beta > 1/2$
  - $||\mathbf{x}||_1$ : constant only for  $\beta > 1$
- However, estimating higher Lp norms tends to require higher dependence on  $\boldsymbol{\alpha}$

#### A Few Facts

- Fact 1: The size of  $HH^{p}_{\phi}(x)$  is at most  $1/\phi$
- Fact 2: Given an algorithm for the L<sub>p</sub> point query problem, with:
  - parameter  $\alpha$
  - probability of failure <1/(2m)</li>

one can obtain an algorithm for  $L_{\rm p}$  heavy hitters problem with:

- parameters  $\phi$  and  $\phi' = \phi 2\alpha$  (any  $\phi$ )
- same space (plus output)
- probability of failure <1/2</li>

Proof:

- Compute all  $x_i^*$  (note: this takes time O(m))
- Report i such that  $x_i^* \ge \phi \alpha$

# L<sub>2</sub> point query

Lecture 4

# Point query

- We start from L<sub>2</sub>
- A few observations:
  - $-x_{i} = x * e_{i}$
  - For any u, v we have

 $||u-v||^2 = ||u||^2 + ||v||^2 - 2u^*v$ 

- Algorithm [Gilbert-Kotidis-Muthukrishnan-Strauss'01]
  - Maintain a sketch Rx, with failure probability P
  - Assume  $s = ||Rx||_2 = (1 \pm \epsilon)||x||_2$
  - Estimator:

Y=( 1 - 
$$|| Rx/s - Re_i ||^2/2$$
 ) s

# Intuition

 Ignoring the sketching function R, we have

 $(1-||x/s-e_i||^2/2)s$ 

=  $(1-||x/s||^2/2 - ||e_i||^2/2 + x/s e_i) s$ 

 $= (1-1/2-1/2+x/s e_i)s = xe_i$ 

 Now we just need to deal with epsilons



#### Analysis of $Y=(1-||Rx/s - Re_i||^2/2)s$

```
|| Rx/s - Re_i ||^2/2
           || R(x/s-e_i) ||^2/2
= (1\pm\epsilon)||x/s - e_i||^2/2
                                                                              Holds with prob. 1-P
= (1\pm\epsilon)||x/(||x||_2(1\pm\epsilon)) - e_i||^2/2
           (1\pm\epsilon)[1/(1\pm\epsilon)^2 + 1 - 2x^*e_i/(||x||_2(1\pm\epsilon))]/2
=
            (1\pm c\epsilon)(1 - x^*e_i/||x||_2)
Y
            [1 - (1 \pm c\epsilon)(1 - x^*e_i/||x||_2)] ||x||_2(1 \pm \epsilon)
= [1 - (1 \pm c\epsilon) + (1 \pm c\epsilon)x^*e_i/||x||_2] ||x||_2(1 \pm \epsilon)
           [\pm c\epsilon ||x||_2 + (1\pm c\epsilon)x^*e_i] (1\pm \epsilon)
=
            \pm C' \epsilon ||x||_2 + x^* e_i
```

## Altogether

- Can solve L<sub>2</sub> point query problem, with parameter α and failure probability P by storing O(1/α<sup>2</sup> log(1/P)) numbers
- Pros:
  - General reduction to  $L_2$  estimation
  - Intuitive approach (modulo epsilons)
  - In fact  $e_i$  can be an arbitrary unit vector
- Cons:
  - Constants in the analysis are large
- There is a more direct approach using AMS sketches [A-Gibbons-M-S'99], with better constants

# L<sub>1</sub> Point Queries/Heavy Hitters

Lecture 4

# L<sub>1</sub> Point Queries/Heavy Hitters

- For starters, assume x≥0 (not crucial, but then the algorithm is really nice)
- Point queries: algorithm A:
  - Set w= $2/\alpha$
  - Prepare a random hash function h: {1..m}→{1..w}
  - Maintain an array  $Z=[Z_1,...,Z_w]$  such that  $Z_j=\sum_{i: h(i)=j} x_i$ - To estimate  $x_i$  return  $x_i^* = Z_{h(i)}$



# Analysis

- Facts:
  - $-\mathbf{x}_{i}^{*} \geq \mathbf{x}_{i}$
  - $E[x_i^* x_i] = \sum_{l \neq i} Pr[h(l) = h(i)]x_l \le \alpha/2 ||x||_1$
  - $\Pr[|x_i^* x_i| \ge \alpha ||x||_1] \le 1/2$
- Algorithm B:
  - Maintain d vectors  $Z^1...Z^d$  and functions  $h_1...h_d$
  - Estimator:

$$x_i^* = \min_t Z_{ht(i)}^t$$

- Analysis:
  - $\Pr[|x_i^* x_i| \ge \alpha ||x||_1] \le 1/2^d$
  - Setting  $d=O(\log m)$  sufficient for L<sub>1</sub> Heavy Hitters
- Altogether, we use space  $O(1/\alpha \log m)$
- For general x:
  - replace "min" by "median"
  - adjust parameters (by a constant)



## Comments

- Can reduce the recovery time to about O(log m)
- Other goodies as well
- For details, see

[Cormode-Muthukrishnan'04]: "The Count-Min Sketch..."

- Also:
  - [Charikar-Chen-FarachColton'02]
    - (variant for the  $L_2$  norm)
  - [Estan-Varghese'02]
  - Bloom filters

# **Sparse Approximations**

- Sparse approximations (w.r.t. L<sub>p</sub> norm):
  - For a vector x, find x' such that
    - x' has "complexity" k
    - $||x-x'||_p \le (1+\alpha) \text{ Err}$ , where  $\text{Err}=\text{Err}_k^p=\min_{x''} ||x-x''||_p$ , for x'' ranging over all vectors with "complexity" k
  - Sparsity (i.e.,  $L_0$ ) is a very natural measure of complexity
    - In this case, best x' consists of k coordinates of x that are largest in magnitude, i.e., "heavy hitters"
    - Then the error is the  $L_p$  norm of the "non-heavy hitters", a.k.a. "mice"
- Question: can we modify the previous algorithm to solve the sparse approximation problem ?
- Answer: YES

[Charikar-Chen-FarachColton'02, Cormode-Muthukrishnan'05] (for L<sub>2</sub> norm))

- Just set  $w=(4/\alpha)k$
- We will see it for the L<sub>1</sub> norm

#### **Point Query**

- We show how to get an estimate
  - $\mathbf{x}_{i}^{*} = \mathbf{x}_{i} \pm \alpha \text{ Err/k}$
- Assume
- $|\mathbf{x}_{i1}| \ge \dots \ge |\mathbf{x}_{im}|$
- Pr[ |x<sup>\*</sup><sub>i</sub>-x<sub>i</sub>|≥ α Err/k] is at most Pr[ h(i)∈h({i1..ik}) ]

+ 
$$\Pr[\sum_{l>k: h(il)=h(i)} x_l \ge \alpha Err/k]$$

- $\leq 1/(2/\alpha) + 1/4$
- < 1/2 (if α<1/2)
- Applying min/median to d=O(log m) copies of the algorithm ensures that w.h.p

 $|\mathbf{x}_{i}^{*}-\mathbf{x}_{i}| < \alpha \text{Err/k}$ 



# Sparse Approximations

- Algorithm:
  - Return a vector x' consisting of largest (in magnitude) elements of x\*
- Analysis (new proof)
  - Let S (or S\*) be the set of k largest in magnitude coordinates of x (or x\*)
  - Note that  $||x_{S}^{*}|| \leq ||x_{S^{*}}^{*}||_{1}$
  - We have

$$\begin{aligned} ||\mathbf{x}-\mathbf{x}'||_{1} &\leq ||\mathbf{x}||_{1} - ||\mathbf{x}_{S^{*}}||_{1} + ||\mathbf{x}_{S^{*}}-\mathbf{x}^{*}_{S^{*}}||_{1} \\ &\leq ||\mathbf{x}||_{1} - ||\mathbf{x}^{*}_{S^{*}}||_{1} + 2||\mathbf{x}_{S^{*}}-\mathbf{x}^{*}_{S^{*}}||_{1} \\ &\leq ||\mathbf{x}||_{1} - ||\mathbf{x}^{*}_{S}||_{1} + 2||\mathbf{x}_{S^{*}}-\mathbf{x}^{*}_{S^{*}}||_{1} \\ &\leq ||\mathbf{x}||_{1} - ||\mathbf{x}_{S}||_{1} + ||\mathbf{x}^{*}_{S}-\mathbf{x}_{S}||_{1} + 2||\mathbf{x}_{S^{*}}-\mathbf{x}^{*}_{S^{*}}||_{1} \\ &\leq \operatorname{Err} + 3\alpha/k * k \operatorname{*Err} \\ &\leq (1+3\alpha)\operatorname{Err} \end{aligned}$$

#### Altogether

- Can compute k-sparse approximation to x with error (1+α)Err<sup>1</sup><sub>k</sub> using O(k/α log m) space (numbers)
- This also gives an estimate

 $x_i^* = x_i \pm \alpha \operatorname{Err}_k^1/k$