Heavy Hitters

Piotr Indyk
MIT

Lecture 4

Last Few Lectures

* Recap (last few lectures)
— Update a vector x
— Maintain a linear sketch
— Can compute L, norm of x
(in zillion different ways)

* Questions:
— Can we do anything else ?7?

— Can we do something about linear space
bound for L ?7?

Lecture 4

Heavy Hitters

Also called frequent elements and elephants
Define

HHP, (x) = { iz [xi| =2 @ [|x]], }
L, Heavy Hitter Problem:
— Parameters: ¢ and ¢’ (often @' = @-¢)
— Goal: return a set S of coordinates s.t.
* S contains HHP (x)
* Sisincluded in HHP . (x)
L, Point Query Problem:
— Parameter: a
— Goal: at the end of the stream, given i, report
X=X = o |[X]],

Lecture 4

Which norm is better ?

« Since [[x||, = ||x||,=... = ||x]||.., we get that
the higher Lp norms are better

* For example, for Zipfian distributions
x=1/i, we have
— ||x||, : constant for 3>1/2
— ||x|; : constant only for 3>1

* However, estimating higher Lp norms
tends to require higher dependence on «

Lecture 4

A Few Facts

 Fact 1: The size of HHP (x) is at most 1/¢

* Fact 2: Given an algorlthm for the L, point query

problem, with:

— parameter o

— probability of failure <1/(2m)
one can obtain an algorithm for L, heavy hitters problem
with:

— parameters @ and ©’ = ©-2a. (any @)

— same space (plus output)

— probability of failure <1/2

Proof:
— Compute all x (note: this takes time O(m))
— Report i such that x.* = ¢-a

Lecture 4

L, point query

Point query

* We start from L,

* A few observations:
- X =X"e
— For any u, v we have
[lu-v[[= = [[uf[* + [|v][* -2u™v
 Algorithm [Gilbert-Kotidis-Muthukrishnan-Strauss’01]
— Maintain a sketch Rx, with failure probability P
— Assume s = ||Rx||, = (1=¢€)||x]],
— Estimator:
Y=(1-]||Rx/s—=Re||?/2)s

Lecture 4

Intuition

* Ignoring the sketching
function R, we have

(1-[|x/s-€;||2/2)s v/ s
= (1-|[x/s|[*/2 -||e||[* 12 +x/s €;) s \
= (/ _ /2-1/2+X/S ei)S = Xei N >

 Now we just need to deal
with epsilons

Lecture 4

Analysis of Y=(1-||Rx/s — Re||?/2)s

|| Rx/s — Re, ||?/2

|| R(x/s-€)) ||?/2

(1£€)|| x/s — €, ||?/2 Holds with prob. 1-P
(1=e)|| x/(|[x[|(1=€)) - & [|?/2

(1e)[1/(1£€)? + 1 — 2x*e/(||x||»(1£€))])/2

(1xce)(1 - x"ef|[x|[,)

Y
= [1- (1=ce)(1 - x*e/|IxI,) T [IX]lo(12€)
= [1- (1xce) + (1zce)x*e/|Ix|l,] [Ix]|,(1€)
= [=ce |[x]]|, + (1xce)x™e;] (1x¢€)
- +C'e ||X], + X"¢,

Lecture 4

Altogether

Can solve L, point query problem, with parameter . and
failure probability P by storing O(1/a? log(1/P)) numbers

Pros:

— General reduction to L, estimation

— Intuitive approach (modulo epsilons)

— In fact e, can be an arbitrary unit vector
Cons:

— Constants in the analysis are large

There is a more direct approach using AMS sketches [A-
Gibbons-M-S'99], with better constants

Lecture 4

L, Point Queries/Heavy Hitters

L, Point Queries/Heavy Hitters

* For starters, assume x=0 X
(not crucial, but then the X,
algorithm is really nice) \ié/
* Point queries: algorithm A: \
— Set w=2/a X

— Prepare a random hash
function h: {1..m}—{1..w}

— Maintain an array
/=[Z,,...Z,] such that

4720 hiys %
— To estimate x; return
X% = Ly

Lecture 4

Analysis

Facts: X

— X2 X X.

— E[x* - x;1= 2 Prih(l)=h(i)]x, = o/2 ||X]] :
= PrlIx™x| 2 a|[x][{]=1/2 W

Algorithm B: X
— Maintain d vectors Z'...Z9 and functions h,...h, 7 7
— Estimator: 1 2/ot

X = ming Zi,

Analysis:

— Pr{|x*-x| =2 o ||x]|;] < 1/24

— Setting d=0(log m) sufficient for L, Heavy Hitters
Altogether, we use space O(1/a log m)
For general x:

— replace “min” by “median”

— adjust parameters (by a constant)

Lecture 4

Comments

« Can reduce the recovery time to about O(log m)
« Other goodies as well

* For detalls, see
[Cormode-Muthukrishnan’04]: “The Count-Min Sketch...”
» Also:
— [Charikar-Chen-FarachColton’02]
(variant for the L, norm)
— [Estan-Varghese’'02]
— Bloom filters

Lecture 4

Sparse Approximations

Sparse approximations (w.r.t. L, norm):
— For a vector x, find x” such that
* X has “complexity” k
o x|l = (T+a) Err, where Err=ErrP, =min,. |[x-x7[|,
for x” ranging over all vectors with “complexity” k
— Sparsity (i.e., L,) is a very natural measure of complexity

 In this case, best x’ consists of k coordinates of x that are largest in
magnitude, i.e., “heavy hitters”

* Then the error is the L, norm of the “non-heavy hitters”, a.k.a. “mice”

Question: can we modify the previous algorithm to solve the sparse
approximation problem ?

Answer: YES
[Charikar-Chen-FarachColton’02, Cormode-Muthukrishnan’05] (for L, norm))

Just set w=(4/a)k
We will see it for the L, norm

Lecture 4

Point Query

We show how to get an estimate

X" =X = o Err/k
Assume
Xi| 2 .. 2 X
Prl |x*-x|z a Err/k] is at most
Pr[h(i)eh({i1..ik})]

1/(2/c) + 1/4
1/2 (if <1/2)

AN IN +

Applying min/median to d=0(log m) copies of

Prl 2 1ok nin=nqy X1 = o Err/K]

the algorithm ensures that w.h.p

IX*-xi|< aErr/k

Lecture 4

Sparse Approximations

* Algorithm:

— Return a vector x’ consisting of largest (in magnitude) elements
of x*

* Analysis (new proof)
— Let S (or S*) be the set of k largest in magnitude coordinates of

x (or x*)
— Note that |[x*s|| < |x"<]|,
— We have
IX-X[1 = {IX[]4 - 1Xeell4 + [XgeX*]
1 1 s*ll1 s sl
< |IX 1° X*S*||1 + 2||XS*_X*S*||1
< |Ix[ly - [IX*s|l; + 2][Xg=X"s:||4
< Xl - [Ixslly + [IXTsxs|l4 + 2[|Xg=X"g:|4
< Err + 3a/k * k *Err
<

(1+3a)Err

Lecture 4

Altogether

« Can compute k-sparse approximation to x
with error (1+a)Err!, using O(k/a log m)
space (hnumbers)

* This also gives an estimate

X, =x = o Err /k

Lecture 4

