Heavy Hitters

Piotr Indyk MIT

Last Few Lectures

- Recap (last few lectures)
- Update a vector x
- Maintain a linear sketch
- Can compute L_{p} norm of x
(in zillion different ways)
- Questions:
- Can we do anything else ??
- Can we do something about linear space bound for L_{∞} ??

Heavy Hitters

- Also called frequent elements and elephants
- Define

$$
H^{p}{ }_{\varphi}(x)=\left\{\mathrm{i}:\left|\mathrm{x}_{\mathrm{i}}\right| \geq \varphi\|\mathrm{x}\|_{p}\right\}
$$

- L_{p} Heavy Hitter Problem:
- Parameters: φ and φ^{\prime} (often $\varphi^{\prime}=\varphi-\varepsilon$)
- Goal: return a set S of coordinates s.t.
- S contains $H H^{p}(x)$
- S is included in $\mathrm{HH}^{\mathrm{p}}{ }_{\varphi^{\prime}}(\mathrm{x})$
- L_{p} Point Query Problem:
- Parameter: α
- Goal: at the end of the stream, given i, report

$$
x_{i}^{*}=x_{i} \pm \alpha\|x\|_{p}
$$

Which norm is better ?

- Since $\|x\|_{1} \geq\|x\|_{2} \geq \ldots \geq\|x\|_{\infty}$, we get that the higher Lp norms are better
- For example, for Zipfian distributions
$x_{i}=1 / i^{\beta}$, we have
$-\|x\|_{2}$: constant for $\beta>1 / 2$
$-\|x\|_{1}$: constant only for $\beta>1$
- However, estimating higher Lp norms tends to require higher dependence on α

A Few Facts

- Fact 1: The size of $H H^{p}{ }_{\varphi}(x)$ is at most $1 / \varphi$
- Fact 2: Given an algorithm for the L_{p} point query problem, with:
- parameter α
- probability of failure $<1 /(2 \mathrm{~m})$
one can obtain an algorithm for L_{p} heavy hitters problem with:
- parameters φ and $\varphi^{\prime}=\varphi-2 \alpha($ any $\varphi)$
- same space (plus output)
- probability of failure $<1 / 2$

Proof:

- Compute all $\mathrm{x}_{\mathrm{i}}^{*}$ (note: this takes time $\mathrm{O}(\mathrm{m})$)
- Report i such that $x_{i}^{*} \geq \varphi-\alpha$

L_{2} point query

Point query

- We start from L_{2}
- A few observations:
$-x_{i}=x^{*} e_{i}$
- For any u, v we have

$$
\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2 u^{*} v
$$

- Algorithm [Gilbert-Kotidis-Muthukrishnan-Strauss'01]
- Maintain a sketch $R x$, with failure probability P
- Assume $s=\|R x\|_{2}=(1 \pm \varepsilon)\|x\|_{2}$
- Estimator:

$$
Y=\left(1-\left\|R x / s-R e_{i}\right\|^{2} / 2\right) s
$$

Intuition

- Ignoring the sketching function R, we have

$$
\begin{aligned}
& \left(1-\left\|x / s-e_{i}\right\|^{2} / 2\right) s \\
= & \left(1-\|x / s\|^{2} / 2-\left\|e_{i}\right\|^{2} / 2+x / s e_{i}\right) s \\
= & \left(1-1 / 2-1 / 2+x / s e_{i}\right) s=x e_{i}
\end{aligned}
$$

- Now we just need to deal with epsilons

Analysis of $Y=\left(1-| | R x / s-R e_{i} \|^{2} / 2\right) s$

```
    | Rx/s - Rei||/\mp@code{2}
= |R R(x/s-ei) || |
= (1\pm\varepsilon)| x/s - e i| |}\mp@subsup{|}{}{2/2
= (1\pm\varepsilon)| |/(|x|| (1 1 & )) - e ei||
= (1 1 &)[ 1/(1\pm\varepsilon\mp@subsup{)}{}{2}+1-2\mp@subsup{x}{}{*}\mp@subsup{\textrm{e}}{\textrm{j}}{l}/(|x\mp@subsup{|}{2}{}(1\pm\varepsilon))]/2
= (1\pmc\varepsilon)(1-x**e/||x\mp@subsup{|}{2}{})
```



```
= [1-(1\pmc\varepsilon)+(1\pmc\varepsilon)x*e/||x||
= [\pmc\varepsilon|x|\mp@subsup{|}{2}{}+(1\pmc\varepsilon)x* (e ] ] (1\pm\varepsilon)
= \pmc'\varepsilon|x| | + x* (ei
```


Altogether

- Can solve L_{2} point query problem, with parameter α and failure probability P by storing $O\left(1 / \alpha^{2} \log (1 / P)\right)$ numbers
- Pros:
- General reduction to L_{2} estimation
- Intuitive approach (modulo epsilons)
- In fact e_{i} can be an arbitrary unit vector
- Cons:
- Constants in the analysis are large
- There is a more direct approach using AMS sketches [A-Gibbons-M-S'99], with better constants

L_{1} Point Queries/Heavy Hitters

L_{1} Point Queries/Heavy Hitters

- For starters, assume $x \geq 0$ (not crucial, but then the algorithm is really nice)
- Point queries: algorithm A:
- Set w=2/ α
- Prepare a random hash
 function h: $\{1 . . \mathrm{m}\} \rightarrow\{1$..w $\}$
- Maintain an array
$\mathrm{Z}=\left[\mathrm{Z}_{1}, \ldots \mathrm{Z}_{\mathrm{w}}\right]$ such that
$z_{j}=\sum_{i: h(i)=j} x_{i}$
- To estimate x_{i} return

$$
x_{i}^{*}=z_{h(i)}
$$

Analysis

- Facts:
$-x_{i}^{*} \geq x_{i}$
$-E\left[x_{i}^{*}-x_{i}\right]=\sum_{\mid \neq i} \operatorname{Pr}[h(1)=h(i)] x_{1} \leq \alpha / 2\|x\|_{1}$
$-\operatorname{Pr}\left[\left|x_{i}^{*}-x_{i}\right| \geq \alpha\|x\|_{1}\right] \leq 1 / 2$
- Algorithm B:
- Maintain d vectors $\mathrm{Z}^{1} \ldots \mathrm{Z}^{d}$ and functions $\mathrm{h}_{1} \ldots \mathrm{~h}_{\mathrm{d}}$
- Estimator:

$$
x_{i}^{*}=\min _{t} Z_{h t(i)}^{t}
$$

- Analysis:
$-\operatorname{Pr}\left[\left|x_{i}^{*}-x_{i}\right| \geq \alpha\|x\|_{1}\right] \leq 1 / 2^{d}$
- Setting $d=O(\log m)$ sufficient for L_{1} Heavy Hitters
- Altogether, we use space $O(1 / \alpha$ log $m)$
- For general x :
- replace "min" by "median"
- adjust parameters (by a constant)

Comments

- Can reduce the recovery time to about O(log m)
- Other goodies as well
- For details, see
[Cormode-Muthukrishnan'04]: "The Count-Min Sketch..."
- Also:
- [Charikar-Chen-FarachColton’02] (variant for the L_{2} norm)
- [Estan-Varghese'02]
- Bloom filters

Sparse Approximations

- Sparse approximations (w.r.t. L_{p} norm):
- For a vector x, find x ' such that
- x^{\prime} has "complexity" k
- $\left\|x-x^{\prime}\right\|_{p} \leq(1+\alpha)$ Err , where Err=Errp ${ }_{k}=\min _{x^{\prime \prime}}\left\|x-x^{x}\right\|_{p}$, for x " ranging over all vectors with "complexity" k
- Sparsity (i.e., L_{0}) is a very natural measure of complexity
- In this case, best x^{\prime} consists of k coordinates of x that are largest in magnitude, i.e., "heavy hitters"
- Then the error is the L_{p} norm of the "non-heavy hitters", a.k.a. "mice"
- Question: can we modify the previous algorithm to solve the sparse approximation problem ?
- Answer: YES
[Charikar-Chen-FarachColton'02, Cormode-Muthukrishnan'05] (for L_{2} norm))
- Just set w=(4/ α)k
- We will see it for the L_{1} norm

Point Query

- We show how to get an estimate

$$
x_{i}^{*}=x_{i} \pm \alpha \mathrm{Err} / \mathrm{k}
$$

- Assume

$$
\left|x_{i 1}\right| \geq \ldots \geq\left|x_{i m}\right|
$$

- $\operatorname{Pr}\left[\left|x_{i}^{*}-x_{i}\right| \geq \alpha\right.$ Err/k] is at most
$\operatorname{Pr}[\mathrm{h}(\mathrm{i}) \in \mathrm{h}(\{i 1 . . \mathrm{i} k\})$]
$+\operatorname{Pr}\left[\sum_{\mid>k: ~ h(i)}=h(i) x_{l} \geq \alpha E r r / k\right]$

$\leq \quad 1 /(2 / \alpha)+1 / 4$
$<\quad 1 / 2$ (if $\alpha<1 / 2$)
- Applying min/median to $\mathrm{d}=\mathrm{O}(\log \mathrm{m})$ copies of the algorithm ensures that w.h.p

$$
\left|x_{i}^{*}-\mathrm{x}_{\mathrm{i}}\right|<\alpha E \mathrm{rr} / \mathrm{k}
$$

Sparse Approximations

- Algorithm:
- Return a vector x^{\prime} consisting of largest (in magnitude) elements of x^{*}
- Analysis (new proof)
- Let S (or S^{*}) be the set of k largest in magnitude coordinates of x (or x^{*})
- Note that $\left\|\mathrm{x}^{*}{ }^{\mathrm{s}}\right\| \leq\left\|\mathrm{x}^{*}{ }^{*}\right\|_{1}$
- We have

$$
\begin{aligned}
& \left\|x-x^{\prime}\right\|_{1} \leq\|x\|_{1}-\left\|x_{\mathrm{S}^{*}}\right\|_{1}+\left\|x_{\mathrm{s}^{*}}-x^{*}{ }_{\mathrm{s}^{*}}\right\|_{1} \\
& \leq\|x\|_{1}-\left\|x_{s^{*}}^{*}\right\|_{1}+2\left\|x_{S^{*}}-x^{*}{ }_{s^{*}}\right\|_{1} \\
& \leq\|x\|_{1}-\left\|x^{*}\right\|_{1}+2\left\|x_{S^{*}}-x^{*}{ }_{S^{*}}\right\|_{1} \\
& \leq\|x\|_{1}-\left\|x_{s}\right\|_{1}+\left\|x_{s^{*}}-x_{s}\right\|_{1}+2\left\|x_{s^{*}}-x_{s^{*}}\right\|_{1} \\
& \leq \operatorname{Err}+3 \alpha / \mathrm{k} * \mathrm{k} \text { *Err } \\
& \leq(1+3 \alpha) \text { Err }
\end{aligned}
$$

Altogether

- Can compute k-sparse approximation to x with error $(1+\alpha) \operatorname{Err}^{1}{ }_{k}$ using $\mathrm{O}(\mathrm{k} / \alpha \log m)$ space (numbers)
- This also gives an estimate

$$
x_{i}^{*}=x_{i} \pm \alpha E r r_{k}^{1} / k
$$

