

Lower Bounds in Streaming

Piotr Indyk MIT

Streaming Algorithms

- Norm estimation: (1+ε)-approximation of ||x||_p, x∈R^m, under a sequence of n updates
 - $O(log(n+m)/\epsilon^2)$ bits for p \in (0,2] (excluding randomness)
- Heavy hitters/sparse approximations
- Question: are these algorithms (nearly) optimal ?

Lower Bounds in Streaming

- Two techniques:
 - Pigeonhole principle: need enough space to distinguish "different" inputs
 - Communication complexity
- PP is really a special case of CC (but is often easier to apply)
- Today:
 - Randomness and approximation are both necessary for estimating ||x||₀ in polylog (n+m) space (even in the insertions-only case)
 - Need $\Omega(1/\epsilon^2)$ bits to $(1+\epsilon)$ -approximate $||x||_2$
 - Need Ω(k log (m/k)) measurements for the I1/I1 guarantee [Indyk-Khanh-Price'08]

Pigeonhole Principle

Estimating ||x||₀

- Warmup theorem: any deterministic exact algorithm for computing $\|x\|_0$ needs $\Omega(m)$ bits of space
- Proof:
 - Assume there is an algorithm A using M=o(m) bits of space
 - Take any vector $y \in \{0,1\}^m$, $||y||_0 = m/2$
 - Feed the coordinates of y to A
 - Let A[y] be the state of A at the end of this process, and E be the estimation of ||y||₀ (i.e., E= ||y||₀)
 - We can decode y from A[y]:
 - For any $z \in \{0,1\}^m$, $||z||_0 = m/2$, feed z to A in state A[y], obtaining A[y \circ z]
 - The algorithm computes an estimation E' of $||y+z||_0$ (i.e., E'= $||y+z||_0$)
 - We have y=z iff E=E'
 - Therefore

 $2^{M} \ge$ number of y's = exp($\Omega(m)$)

Estimating $||x||_0$, ctd.

- Upgraded theorem: any deterministic c-approximate algorithm for computing ||x||₀ needs Ω(m) bits of space, for c<2
 - Estimation E such that $||\mathbf{x}||_0 \le E \le c||\mathbf{x}||_0$
- Proof:
 - − For any $y \in \{0,1\}^m$, let ECC(y) $\in \{0,1\}^m$, m'=O(m) be such that:
 - ||ECC(y)||₀=m'/a, a=Θ(1)
 - For any y≠z, the distance ||ECC(y)-ECC(z)||₀ ≥ 2m'(c-1)/a (which implies that ||ECC(y+z)||₀ ≥ m'/a + m'(c-1)/a = m'c/a)
 - Take any y
 - Feed the coordinates of ECC(y) to A
 - The remainder of the argument essentially as before (except that y=z iff E' <m'c/a)

Estimating $||x||_0$, ctd.

- Upgraded theorem 2: any randomized exact algorithm for computing ||x||₀ needs Ω(m) bits of space
- Proof:
 - Assume o(m) space, and the probability of error <1/8
 - Take any ECC with minimum distance m'/4
 - Take any y
 - Feed the coordinates of ECC(y) to A
 - With prob. 1/2 we can recover z such that $||z-ECC(y)||_0 < m'/4$
 - \rightarrow can recover y
 - In parallel, for any i=1..m', feed e_i to A with state A[ECC(y)], obtaining estimate E_i
 - Set $z_i=0$ iff $E_i > m/a'$ (works correctly with prob. 1-1/8)
 - Markov inequality implies that the fraction of errors is <1/4 with prob. 1/2
 - There is a choice of random coin tosses which works for half of the vectors y (i.e., for those y's, we can recover y from A[ECC(y)])
 - The rest of the argument as before

Communication Complexity

Communication Complexity

. . .

Bob: y∈{0,1}^m

Alice: $x \in \{0,1\}^m$

- Resources:
 - #bits
 - # rounds
 - Today, we will be only interested in one-round protocols
- Probability of error: some constant δ >0
- See [Kushilevitz-Nisan] for more (and there is much more)

Indexing

- (Balanced) indexing problem:
 - Alice: a vector $x \in \{0,1\}^m$, $||x||_0 = m/2$
 - Bob: an index i=1...m

- Goal: compute $f(x,i)=x_i$

- Theorem: any randomized one-round protocol for indexing has Ω(m) bit complexity
- Proof: pigeonhole principle as applied earlier

Gap Dot Product

- (Gap) parameter Δ
- Alice: a vector $u \in \mathbb{R}^m$, $||u||_2 = 1$ (with O(log m) bits)
- Bob: a vector $v \in \mathbb{R}^m$, $||v||_2 = 1$
- Goal:
 - If u*v=0, return 0
 - − If $u^*v \ge \Delta$, return 1
- Theorem: the randomized one-round CC of GDP with gap $\Delta = 1/(m/2)^{1/2}$ is $\Omega(m)$
- Proof: via reduction from indexing:
 - Alice: computes $u = \Delta x$
 - Bob: computes v=e_i
 - Fact: $u * v = \Delta x_i$

Space complexity of L₂ norm estimation

- Theorem: any streaming algorithm for estimating the L₂ norm of an m-dimensional vector x up to a factor of 1± Δ, Δ=c/m^{1/2}, requires Ω(m) bits for some constant c>0 (even if coordinates of x have O(log m) bits)
- Proof:
 - Assume we have an M-space streaming algorithm that computes $(1 \pm \Delta) \|x\|_2$
 - Then we have an M-space streaming algorithm that, given a stream $u \circ v$, $||u||_2 = ||v||_2 = 1$, computes $u^*v \pm O(\Delta)$ (Lecture 4)
 - Using the equality $||u-v||_2^2 = ||u||_2^2 + ||v||_2^2 2u^*v$
 - Then we have an M-bit one-round protocol that solves GDP with gap 1/(m/2)^{1/2} (assuming c small enough)
 - Ergo, $M = \Omega(m)$

Back to Pigeonhole Principle

Lower bound for I1/I1

- Compressive sensing setup: want an Mxm sketch matrix A such that:
 - Given: Ax for an arbitrary vector x
 - Can obtain: an approximation x^{*} such that

 $||x^*-x||_1 \le C \operatorname{Err}_1^k(x)$

where $\text{Err}_1^k(x) = \min_{x'} ||x'-x||_1$ over all x' that are k-sparse

 Will show that M= Ω(k log(m/k)) (if C is an absolute constant)

Error-correcting code

- Let E⊆ {0,1}^m be a set of k-sparse vectors such that for any distinct y1,y2∈E we have ||y1-y2||₁ >k
- We can have |E|>exp(c k log (m/k)) for some absolute constant c
- Define r=k/(2C+2)
- We consider signals x = y + z where y∈E and ||z||₁≤r

- Clearly, $\operatorname{Err}_1^k(x) \le ||z||_1 \le r$

Distinctness

 Lemma: For any x1=y1+z1 and x2=y2+z2 as in the earlier slide, we have

 $Ax1 \neq Ax2$

- Proof:
 - Suppose we have Ax1 = Ax2
 - We know:
 - Given Ax1, our algorithm decodes x1* s.t. ||x1-x1*||₁ ≤Cr
 - Given Ax2, our algorithm decodes $x^2 \text{ s.t. } ||x^2-x^2||_1 \leq Cr$
 - But if Ax1 = Ax2 then $x1^* = x2^*$
 - This would imply $||x1-x2||_1 \leq 2Cr$
 - Therefore $||y1-y2||_1 \le 2Cr+2r=k$ a contradiction
- Corollary: Let B=B₁(0,r). Then for any distinct y1,y2∈E the "affine balls" A(y1+B) and A(y2+B) are disjoint

Pigeonhole

- All "affine balls" A(y1+B) and A(y2+B) are disjoint
- At the same time, for all $y \in E$ we have

 $y+B \subseteq BB = B_1(0,R),$

where R=k+r = (2C+3)r

- Therefore, $A(y+B) \subseteq A(BB)$, so $vol(A(BB)) \ge |E| vol(A(B))$
- Altogether

 $\exp(c k \log(m/k)) \le |E| \le vol(A(BB)) / vol(A(B)) \le (2C+3)^{M}$

• After applying logarithm on both sides we get

 $M=\Omega(k \log(m/k))$