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Abstract

We consider the following k-sparse recovery problem:
design an m × n matrix A, such that for any signal
x, given Ax we can efficiently recover x̂ satisfying
‖x− x̂‖1 ≤ C mink-sparse x′ ‖x− x′‖1. It is known
that there exist matrices A with this property that
have only O(k log(n/k)) rows.

In this paper we show that this bound is tight.
Our bound holds even for the more general random-
ized version of the problem, where A is a random
variable, and the recovery algorithm is required to
work for any fixed x with constant probability (over
A).

1 Introduction

In recent years, a new “linear” approach for ob-
taining a succinct approximate representation of n-
dimensional vectors (or signals) has been discovered.
For any signal x, the representation is equal to Ax,
where A is an m × n matrix. The vector Ax is of-
ten referred to as the measurement vector or sketch of
x. Although m is typically much smaller than n, the
sketch Ax contains plenty of useful information about
the signal x. A particularly useful and well-studied
problem is that of stable sparse recovery: given Ax,
recover a k-sparse vector x̂ (i.e., having at most k
non-zero components) such that

(1.1) ‖x− x̂‖p ≤ C min
k-sparse x′

‖x− x′‖q

for some norm parameters p and q and an approxima-
tion factor C = C(k). Sparse recovery has applica-
tions to numerous areas such as data stream comput-
ing [Mut03, Ind07] and compressed sensing [CRT06,
Don06, DDT+08].

It is known that there exist matrices A and as-
sociated recovery algorithms that produce approxi-
mations x̂ satisfying Equation (1.1) with p = q = 1
(i.e., the ”`1/`1 guarantee”), constant C and sketch
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length m = O(k log(n/k)). In particular, a random
Gaussian matrix [CRT06]1 or a random sparse binary
matrix ([BGI+08], building on [CCFC04, CM05]) has
this property with overwhelming probability. In com-
parison, using a non-linear approach, one can obtain
a shorter sketch of length O(k): it suffices to store
the k coefficients with the largest absolute values, to-
gether with their indices.

Surprisingly, it was not known if the
O(k log(n/k)) bound for linear sketching could
be improved upon2 , although O(k) sketch length
was known to suffice if the signal vectors x are
required to be exactly k-sparse. This raised hope
that the O(k) bound might be achievable even for
general vectors x. Such a scheme would have been
of major practical interest, since the sketch length
determines the compression ratio, and for large n
any extra log n factor worsens that ratio tenfold.

In this paper we show that, unfortunately, such
an improvement is not possible. We address two
types of recovery schemes:

• A deterministic one, which involves a fixed ma-
trix A and a recovery algorithm which work
for all signals x. The aforementioned results
of [CRT06] and others are examples of such
schemes.

• A randomized one, where the matrix A is cho-
sen at random from some distribution, and for
each signal x the recovery procedure is correct
with constant probability. Some of the early
schemes proposed in the data stream literature
(e.g., [CCFC04, CM05]) belong to this category.

Our main result is that, even in the ran-
domized case, the sketch length m must be at
least Ω(k log(n/k)). By the aforementioned result
of [CRT06] this bound is tight.

1In fact, they even achieve a somewhat stronger `2/`1
guarantee, see Section 1.2.

2The lower bound of Ω(k log(n/k)) was known to hold for
specific recovery algorithms, specific matrix types, or other

recovery scenarios. See Section 1.2 for an overview.



Thus, our results show that the linear compres-
sion is inherently more costly than the simple non-
linear approach.

1.1 Our techniques On a high level, our ap-
proach is simple and natural, and utilizes the pack-
ing approach: we show that any two “sufficiently”
different vectors x and x′ are mapped to images Ax
and Ax′ that are “sufficiently” different themselves,
which requires that the image space is “sufficiently”
high-dimensional. However, the actual arguments are
somewhat subtle.

Consider first the (simpler) deterministic case.
We focus on signals x = y+z, where y can be thought
of as the “head” of the signal and z as the “tail”. The
“head” vectors y come from a set Y that is a binary
error-correcting code, with a minimum distance Ω(k),
where each codeword has weight k. On the other
hand, the “tail” vectors z come from an `1 ball (say
B) with a radius that is a small fraction of k. It
can be seen that for any two elements y, y′ ∈ Y , the
balls y+B and y′ +B, as well as their images, must
be disjoint. At the same time, since all vectors x
live in a “large” `1 ball B′ of radius O(k), all images
Ax must live in a set AB′. The key observation is
that the set AB′ is a scaled version of A(y +B) and
therefore the ratios of their volumes can be bounded
by the scaling factor to the power of the dimension
m. Since the number of elements of Y is large, this
gives a lower bound on m.

Unfortunately, the aforementioned approach
does not seem to extend to the randomized case. A
natural approach would be to use Yao’s principle, and
focus on showing a lower bound for a scenario where
the matrix A is fixed while the vectors x = y + z are
“random”. However, this approach fails, in a very
strong sense. Specifically, we are able to show that
there is a distribution over matrices A with only O(k)
rows so that for a fixed y ∈ Y and z chosen uniformly
at random from the small ball B, we can recover y
from A(y + z) with high probability. In a nutshell,
the reason is that a random vector from B has an
`2 norm that is much smaller than the `2 norm of
elements of Y (even though the `1 norms are com-
parable). This means that the vector x is “almost”
k-sparse (in the `2 norm), which enables us to achieve
the O(k) measurement bound.

Instead, we resort to an altogether different ap-
proach, via communication complexity [KN97]. We
start by considering a “discrete” scenario where both
the matrix A and the vectors x have entries re-
stricted to the polynomial range {−nc . . . nc} for
some c = O(1). In other words, we assume that the
matrix and vector entries can be represented using

O(log n) bits. In this setting we show the follow-
ing: there is a method for encoding a sequence of
d = O(k log(n/k) log n) bits into a vector x, so that
any sparse recovery algorithm can recover that se-
quence given Ax. Since each entry of Ax conveys
only O(log n) bits, it follows that the number m of
rows of A must be Ω(k log(n/k)).

The encoding is performed by taking

x =
logn∑
j=1

Djxj ,

where D = O(1) and the xj ’s are chosen from the
error-correcting code Y defined as in the determinis-
tic case. The intuition behind this approach is that
a good `1/`1 approximation to x reveals most of the
bits of xlogn. This enables us to identify xlogn ex-
actly using error correction. We could then com-
pute Ax − Axlogn = A(

∑logn−1
j=1 Djxj), and identify

xlogn−1 . . . x1 in a recursive manner. The only ob-
stacle to completing this argument is that we would
need the recovery algorithm to work for all xi, which
would require lower probability of algorithm failure
(roughly 1/ log n). To overcome this problem, we
replace the encoding argument by a reduction from
a related communication complexity problem called
Augmented Indexing. This problem has been used in
the data stream literature [CW09, KNW10] to prove
lower bounds for linear algebra and norm estima-
tion problems. Since the problem has communication
complexity of Ω(d), the conclusion follows.

We apply the argument to arbitrary matrices A
by representing them as a sum A′+A′′, where A′ has
O(log n) bits of precision and A′′ has “small” entries.
We then show that A′x = A(x + s) for some s with
‖s‖1 < n−Ω(1) ‖x‖1. In the communication game,
this means we can transmit A′x and recover xlogn

from A′(
∑logn
j=1 Djxj) = A(

∑logn
j=1 Djxj + s). This

means that the Augmented Indexing reduction applies
to arbitrary matrices as well.

1.2 Related Work There have been a number
of earlier works that have, directly or indirectly,
shown lower bounds for various models of sparse
recovery and certain classes of matrices and algo-
rithms. Specifically, one of the most well-known re-
covery algorithms used in compressed sensing is `1-
minimization, where a signal x ∈ Rn measured by
matrix A is reconstructed as

x̂ := arg min
x′:Ax′=Ax

‖x′‖1.

Kashin and Temlyakov [KT07] gave a characteriza-
tion of matrices A for which the above recovery algo-



rithm yields the `2/`1 guarantee, i.e.,

‖x− x̂‖2 ≤ Ck−1/2 min
k-sparse x′

‖x− x′‖1

for some constant C, from which it can be shown that
such an A must have m = Ω(k log(n/k)) rows.

Note that the `2/`1 guarantee is somewhat
stronger than the `1/`1 guarantee investigated in this
paper. Specifically, it is easy to observe that if the
approximation x̂ itself is required to be O(k)-sparse,
then the `2/`1 guarantee implies the `1/`1 guarantee
(with a somewhat higher approximation constant).
For the sake of simplicity, in this paper we focus
mostly on the `1/`1 guarantee. However, our lower
bounds apply to the `2/`1 guarantee as well: see foot-
note on page 7.

On the other hand, instead of assuming a specific
recovery algorithm, Wainwright [Wai07] assumes a
specific (randomized) measurement matrix. More
specifically, the author assumes a k-sparse binary
signal x ∈ {0, α}n, for some α > 0, to which is added
i.i.d. standard Gaussian noise in each component.
The author then shows that with a random Gaussian
matrix A, with each entry also drawn i.i.d. from
the standard Gaussian, we cannot hope to recover
x from Ax with any sub-constant probability of
error unless A has m = Ω( 1

α2 log n
k ) rows. The

author also shows that for α =
√

1/k, this is tight,
i.e., that m = Θ(k log(n/k)) is both necessary and
sufficient. Although this is only a lower bound for a
specific (random) matrix, it is a fairly powerful one
and provides evidence that the often observed upper
bound of O(k log(n/k)) is likely tight.

More recently, Dai and Milenkovic [DM08], ex-
tending on [EG88] and [FR99], showed an upper
bound on superimposed codes that translates to a
lower bound on the number of rows in a compressed
sensing matrix that deals only with k-sparse signals
but can tolerate measurement noise. Specifically, if
we assume a k-sparse signal x ∈ ([−t, t] ∩ Z)n, and
that arbitrary noise µ ∈ Rn with ‖µ‖1 < d is added
to the measurement vector Ax, then if exact recovery
is still possible, A must have had m ≥ Ck log n/ log k
rows, for some constant C = C(t, d) and sufficiently
large n and k.3

2 Preliminaries

In this paper we focus on recovering sparse approx-
imations x̂ that satisfy the following C-approximate
`1/`1 guarantee with sparsity parameter k:

3Here A is assumed to have its columns normalized to have

`1-norm 1. This is natural since otherwise we could simply
scale A up to make the image points Ax arbitrarily far apart,

effectively nullifying the noise.

(2.2) ‖x− x̂‖1 ≤ C min
k-sparse x′

‖x− x′‖1 .

We define a C-approximate deterministic `1/`1
recovery algorithm to be a pair (A,A ) where A is
an m× n observation matrix and A is an algorithm
that, for any x, maps Ax (called the sketch of x) to
some x̂ that satisfies Equation (2.2).

We define a C-approximate randomized `1/`1
recovery algorithm to be a pair (A,A ) where A is a
random variable chosen from some distribution over
m×n measurement matrices, and A is an algorithm
which, for any x, maps a pair (A,Ax) to some x̂ that
satisfies Equation (2.2) with probability at least 3/4.

We use Bnp (r) to denote the `p ball of radius r in
Rn; we skip the superscript n if it is clear from the
context.

For any vector x, we use ‖x‖0 to denote the “`0
norm of x”, i.e., the number of non-zero entries in x.

3 Deterministic Lower Bound

We will prove a lower bound on m for any C-
approximate deterministic recovery algorithm. First
we use a discrete volume bound (Lemma 3.1) to find
a large set Y of points that are at least k apart
from each other. Then we use another volume bound
(Lemma 3.2) on the images of small `1 balls around
each point in Y . If m is too small, some two images
collide. But the recovery algorithm, applied to a
point in the collision, must yield an answer close to
two points in Y . This is impossible, so m must be
large.

Lemma 3.1. (Gilbert-Varshamov) For any q, k ∈
Z+, ε ∈ R+ with ε < 1 − 1/q, there exists a set
Y ⊂ {0, 1}qk of binary vectors with exactly k ones,
such that Y has minimum Hamming distance 2εk and

log |Y | > (1−Hq(ε))k log q

where Hq is the q-ary entropy function Hq(x) =
−x logq

x
q−1 − (1− x) logq(1− x).

See appendix for proof.

Lemma 3.2. Take an m × n real matrix A, positive
reals ε, p, λ, and Y ⊂ Bnp (λ). If |Y | > (1+1/ε)m, then
there exist z, z ∈ Bnp (ελ) and y, y ∈ Y with y 6= y and
A(y + z) = A(y + z).

Proof. If the statement is false, then the images of all
|Y | balls {y+Bnp (ελ) | y ∈ Y } are disjoint. However,
those balls all lie within Bnp ((1+ε)λ), by the bound on
the norm of Y . A volume argument gives the result,
as follows.



Let S = ABnp (1) be the image of the n-
dimensional ball of radius 1 in m-dimensional space.
This is a polytope with some volume V . The image
of Bnp (ελ) is a linearly scaled S with volume (ελ)mV ,
and the volume of the image of Bnp ((1+ε)λ) is similar
with volume ((1 + ε)λ)mV . If the images of the for-
mer are all disjoint and lie inside the latter, we have
|Y | (ελ)mV ≤ ((1 + ε)λ)mV , or |Y | ≤ (1 + 1/ε)m. If
Y has more elements than this, the images of some
two balls y +Bnp (ελ) and y +Bnp (ελ) must intersect,
implying the lemma.

Theorem 3.1. Any C-approximate deterministic re-
covery algorithm must have

m ≥
1−Hbn/kc(1/2)

log(4 + 2C)
k log

⌊n
k

⌋
.

Proof. Let Y be a maximal set of k-sparse n-
dimensional binary vectors with minimum Ham-
ming distance k, and let γ = 1

3+2C . By
Lemma 3.1 with q = bn/kc we have log |Y | > (1 −
Hbn/kc(1/2))k log bn/kc.

Suppose that the theorem is not true; then
m < log |Y | / log(4 + 2C) = log |Y | / log(1 + 1/γ),
or |Y | > (1 + 1

γ )m. Hence Lemma 3.2 gives us some
y, y ∈ Y and z, z ∈ B1(γk) with A(y+ z) = A(y+ z).

Let w be the result of running the recovery
algorithm on A(y + z). By the definition of a
deterministic recovery algorithm, we have

‖y + z − w‖1 ≤ C min
k-sparse y′

‖y + z − y′‖1

‖y − w‖1 − ‖z‖1 ≤ C ‖z‖1
‖y − w‖1 ≤ (1 + C) ‖z‖1 ≤ (1 + C)γk = 1+C

3+2C k,

and similarly ‖y − w‖1 ≤
1+C
3+2C k, so

‖y − y‖1 ≤ ‖y − w‖1 + ‖y − w‖1 =
2 + 2C
3 + 2C

k < k.

But this contradicts the definition of Y , so m must
be large enough for the guarantee to hold.

Corollary 3.1. If C is a constant bounded away
from zero, then m = Ω(k log(n/k)).

4 Randomized Upper Bound for Uniform
Noise

The standard way to prove a randomized lower bound
is to find a distribution of hard inputs, and to
show that any deterministic algorithm is likely to
fail on that distribution. In our context, we would
like to define a “head” random variable y from a
distribution Y and a “tail” random variable z from

a distribution Z, such that any algorithm given the
sketch of y+ z must recover an incorrect y with non-
negligible probability.

Using our deterministic bound as inspiration,
we could take Y to be uniform over a set of k-
sparse binary vectors of minimum Hamming distance
k and Z to be uniform over the ball B1(γk) for some
constant γ > 0. Unfortunately, as the following
theorem shows, one can actually perform a recovery
of such vectors using only O(k) measurements; this is
because ‖z‖2 is very small (namely, Õ(k/

√
n)) with

high probability.

Theorem 4.1. Let Y ⊂ Rn be a set of signals with
the property that for every distinct y1, y2 ∈ Y , ‖y1 −
y2‖2 ≥ r, for some parameter r > 0. Consider “noisy
signals” x = y + z, where y ∈ Y and z is a “noise
vector” chosen uniformly at random from B1(s), for
another parameter s > 0. Then using an m × n
Gaussian measurement matrix A = (1/

√
m)(gij),

where gij’s are i.i.d. standard Gaussians, we can
recover y ∈ Y from A(y + z) with probability 1− 1/n
(where the probability is over both A and z), as long
as

s ≤ O

(
rm1/2n1/2−1/m

|Y |1/m log3/2 n

)
.

To prove the theorem we will need the following
two lemmas.

Lemma 4.1. For any δ > 0, y1, y2 ∈ Y , y1 6= y2, and
z ∈ Rn, each of the following holds with probability
at least 1− δ:

• ‖A(y1 − y2)‖2 ≥ δ1/m

3 ‖y1 − y2‖2, and

• ‖Az‖2 ≤ (
√

(8/m) log(1/δ) + 1)‖z‖2.

See the appendix for the proof.

Lemma 4.2. A random vector z chosen uniformly
from B1(s) satisfies

Pr[‖z‖2 > αs log n/
√
n] < 1/nα−1.

See the appendix for the proof.

Proof of theorem. In words, Lemma 4.1 says that A
cannot bring faraway signal points too close together,
and cannot blow up a small noise vector too much.
Now, we already assumed the signals to be far apart,
and Lemma 4.2 tells us that the noise is indeed small
(in `2 distance). The result is that in the image space,
the noise is not enough to confuse different signals.
Quantitatively, applying the second part of Lemma



4.1 with δ = 1/n2, and Lemma 4.2 with α = 3, gives
us
(4.3)

‖Az‖2 ≤ O

(
log1/2 n

m1/2

)
‖z‖2 ≤ O

(
s log3/2 n

(mn)1/2

)

with probability ≥ 1 − 2/n2. On the other hand,
given signal y1 ∈ Y , we know that every other signal
y2 ∈ Y satisfies ‖y1 − y2‖2 ≥ r, so by the first part
of Lemma 4.1 with δ = 1/(2n|Y |), together with a
union bound over every y2 ∈ Y ,

(4.4) ‖A(y1 − y2)‖2 ≥
‖y1 − y2‖2

3(2n|Y |)1/m
≥ r

3(2n|Y |)1/m

holds for every y2 ∈ Y , y2 6= y1, simultaneously with
probability 1− 1/(2n).

Finally, observe that as long as ‖Az‖2 < ‖A(y1−
y2)‖2/2 for every competing signal y2 ∈ Y , we are
guaranteed that

‖A(y1 + z)−Ay1‖2 = ‖Az‖2
< ‖A(y1 − y2)‖2 − ‖Az‖2
≤ ‖A(y1 + z)−Ay2‖2

for every y2 6= y1, so we can recover y1 by simply
returning the signal whose image is closest to our
measurement point A(y1 + z) in `2 distance. To
achieve this, we can chain Equations (4.3) and (4.4)
together (with a factor of 2), to see that

s ≤ O

(
rm1/2n1/2−1/m

|Y |1/m log3/2 n

)

suffices. Our total probability of failure is at most
2/n2 + 1/(2n) < 1/n.

The main consequence of this theorem is that for
the setup we used in Section 3 to prove a deterministic
lower bound of Ω(k log(n/k)), if we simply draw the
noise uniformly randomly from the same `1 ball (in
fact, even one with a much larger radius, namely,
polynomial in n), this “hard distribution” can be
defeated with just O(k) measurements:

Corollary 4.1. If Y is a set of binary k-sparse vec-
tors, as in Section 3, and noise z is drawn uniformly
at random from B1(s), then for any constant ε > 0,
m = O(k/ε) measurements suffice to recover any sig-
nal in Y with probability 1− 1/n, as long as

s ≤ O
(
k3/2+εn1/2−ε

log3/2 n

)
.

Proof. The parameters in this case are r = k and
|Y | ≤

(
n
k

)
≤ (ne/k)k, so by Theorem 4.1, it suffices

to have

s ≤ O
(
k3/2+k/mn1/2−(k+1)/m

log3/2 n

)
.

Choosing m = (k + 1)/ε yields the corollary.

5 Randomized Lower Bound

Although it is possible to partially circumvent this
obstacle by focusing our noise distribution on “high”
`2 norm, sparse vectors, we are able to obtain stronger
results via a reduction from a communication game
and the corresponding lower bound.

The communication game will show that a mes-
sage Ax must have a large number of bits. To show
that this implies a lower bound on the number of rows
of A, we will need A to be discrete. Hence we first
show that discretizing A does not change its recovery
characteristics by much.

5.1 Discretizing Matrices Before we discretize
by rounding, we need to ensure that the matrix is well
conditioned. We show that without loss of generality,
the rows of A are orthonormal.

We can multiply A on the left by any invertible
matrix to get another measurement matrix with the
same recovery characteristics. If we consider the
singular value decomposition A = UΣV ∗, where U
and V are orthonormal and Σ is 0 off the diagonal,
this means that we can eliminate U and make the
entries of Σ be either 0 or 1. The result is a matrix
consisting of m orthonormal rows. For such matrices,
we prove the following:

Lemma 5.1. Consider any m × n matrix A with
orthonormal rows. Let A′ be the result of rounding
A to b bits per entry. Then for any v ∈ Rn there
exists an s ∈ Rn with A′v = A(v − s) and ‖s‖1 <
n22−b ‖v‖1.

Proof. Let A′′ = A − A′ be the roundoff error when
discretizing A to b bits, so each entry of A′′ is less
than 2−b. Then for any v and s = ATA′′v, we have
As = A′′v and

‖s‖1 =
∥∥ATA′′v∥∥

1
≤
√
n ‖A′′v‖1

≤ m
√
n2−b ‖v‖1 ≤ n

22−b ‖v‖1 .

5.2 Communication Complexity We use a few
definitions and results from two-party communica-
tion complexity. For further background see the book
by Kushilevitz and Nisan [KN97]. Consider the fol-
lowing communication game. There are two par-
ties, Alice and Bob. Alice is given a string y ∈



{0, 1}d. Bob is given an index i ∈ [d], together with
yi+1, yi+2, . . . , yd. The parties also share an arbi-
trarily long common random string r. Alice sends
a single message M(y, r) to Bob, who must output yi
with probability at least 3/4, where the probability is
taken over r. We refer to this problem as Augmented
Indexing. The communication cost of Augmented In-
dexing is the minimum, over all correct protocols, of
the length of the message M(y, r) on the worst-case
choice of r and y.

The next theorem is well-known and follows
from Lemma 13 of [MNSW98] (see also Lemma 2 of
[BYJKK04]).

Theorem 5.1. The communication cost of Aug-
mented Indexing is Ω(d).

Proof. First, consider the private-coin version of the
problem, in which both parties can toss coins, but do
not share a random string r (i.e., there is no public
coin). Consider any correct protocol for this problem.
We can assume the probability of error of the protocol
is an arbitrarily small positive constant by increasing
the length of Alice’s message by a constant factor
(e.g., by independent repetition and a majority vote).
Applying Lemma 13 of [MNSW98] (with, in their
notation, t = 1 and a = c′ · d for a sufficiently
small constant c′ > 0), the communication cost of
such a protocol must be Ω(d). Indeed, otherwise
there would be a protocol in which Bob could output
yi with probability greater than 1/2 without any
interaction with Alice, contradicting that Pr[yi =
1/2] and that Bob has no information about yi. Our
theorem now follows from Newman’s theorem (see,
e.g., Theorem 2.4 of [KNR99]), which shows that the
communication cost of the best public coin protocol
is at least that of the private coin protocol minus
O(log d) (which also holds for one-round protocols).

5.3 Randomized Lower Bound Theorem

Theorem 5.2. For any randomized `1/`1 recovery
algorithm (A,A ), with approximation factor C =
O(1), A must have m = Ω(k log(n/k)) rows.

Proof. We shall assume, without loss of generality,
that n and k are powers of 2, that k divides n, and
that the rows of A are orthonormal. The proof for
the general case follows with minor modifications.

Let (A,A ) be such a recovery algorithm. We will
show how to solve the Augmented Indexing problem
on instances of size d = Ω(k log(n/k) log n) with
communication cost O(m log n). The theorem will
then follow by Theorem 5.1.

Let X be the maximal set of k-sparse n-
dimensional binary vectors with minimum Hamming

distance k. From Lemma 3.1 we have log |X| =
Ω(k log(n/k)). Let d = blog |X|c log n, and define
D = 2C + 3.

Alice is given a string y ∈ {0, 1}d, and Bob is
given i ∈ [d] together with yi+1, yi+2, . . . , yd, as in
the setup for Augmented Indexing.

Alice splits her string y into log n contiguous
chunks y1, y2, . . . , ylogn, each containing blog |X|c
bits. She uses yj as an index into X to choose xj .
Alice defines

x = D1x1 +D2x2 + · · ·+Dlognxlogn.

Alice and Bob use the common randomness r to
agree upon a random matrix A with orthonormal
rows. Both Alice and Bob round A to form A′ with
b = d2(1 + logD) log ne = O(log n) bits per entry.
Alice computes A′x and transmits it to Bob.

From Bob’s input i, he can compute the value
j = j(i) for which the bit yi occurs in yj . Bob’s
input also contains yi+1, . . . , yn, from which he can
reconstruct xj+1, . . . , xlogn, and in particular can
compute

z = Dj+1xj+1 +Dj+2xj+2 + · · ·+Dlognxlogn.

Bob then computes A′z, and using A′x and linearity,
A′(x− z). Then

‖x− z‖1 ≤
j∑
i=1

kDi < k
D1+logn

D − 1
< kD2 logn.

So from Lemma 5.1, there exists some s with A′(x−
z) = A(x− z − s) and

‖s‖1 < n22−2 logn−2 logD logn ‖x− z‖1 < k.

Set w = x− z − s. Bob then runs the estimation
algorithm A on A and Aw, obtaining ŵ with the
property that with probability at least 3/4,

‖w − ŵ‖1 ≤ C min
k-sparse w′

‖w − w′‖1 .

Now,

min
k-sparse w′

‖w − w′‖1 ≤
∥∥w −Djxj

∥∥
1

≤ ‖s‖1 +
j−1∑
i=1

∥∥Dixi
∥∥

1

< k(1 +D +D2 + · · ·+Dj−1)

< k · Dj

D − 1
.



Hence∥∥Djxj − ŵ
∥∥

1
≤
∥∥Djxj − w

∥∥
1

+ ‖w − ŵ‖1
≤ (1 + C)

∥∥Djxj − w
∥∥

1

<
kDj

2
.

And since the minimum Hamming distance in X is
k, this means

∥∥Djxj − ŵ
∥∥

1
<
∥∥Djx′ − ŵ

∥∥
1

for all
x′ ∈ X,x′ 6= xj

4. So Bob can correctly identify xj
with probability at least 3/4. From xj he can recover
yj , and hence the bit yi that occurs in yj .

Hence, Bob solves Augmented Indexing with prob-
ability at least 3/4 given the message A′x. The en-
tries in A′ and x are polynomially bounded integers
(up to scaling of A′), and so each entry of A′x takes
O(log n) bits to describe. Hence, the communication
cost of this protocol is O(m log n). By Theorem 5.1,
m log n = Ω(k log(n/k) log n), or m = Ω(k log(n/k)).
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A Proof of Lemma 3.1

Proof. We will construct a codebook T of block
length k, alphabet q, and minimum Hamming dis-
tance εk. Replacing each character i with the q-
long standard basis vector ei will create a binary
qk-dimensional codebook S with minimum Hamming
distance 2εk of the same size as T , where each ele-
ment of S has exactly k ones.

The Gilbert-Varshamov bound, based on vol-
umes of Hamming balls, states that a codebook of



size L exists for some

L ≥ qk∑εk−1
i=0

(
k
i

)
(q − 1)i

.

Using the claim (analogous to [vL98], p. 21, proven
below) that for ε < 1− 1/q

εk∑
i=0

(
k

i

)
(q − 1)i < qHq(ε)k,

we have that logL > (1−Hq(ε))k log q, as desired.

Claim A.1. For 0 < ε < 1− 1/q,

εk∑
i=0

(
k

i

)
(q − 1)i < qHq(ε)k.

Proof. Note that

q−Hq(ε) =
(

ε

(q − 1)(1− ε)

)ε
(1− ε) < (1− ε).

Then

1 = (ε+ (1− ε))k

>

εk∑
i=0

(
k

i

)
εi(1− ε)k−i

=
εk∑
i=0

(
k

i

)
(q − 1)i

(
ε

(q − 1)(1− ε)

)i
(1− ε)k

>

εk∑
i=0

(
k

i

)
(q − 1)i

(
ε

(q − 1)(1− ε)

)εk
(1− ε)k

= q−Hq(ε)k
εk∑
i=0

(
k

i

)
(q − 1)i

B Proof of Lemma 4.1

Proof. By standard arguments (see, e.g., [IN07]), for
any D > 0 we have

Pr
[
‖A(y1 − y2)‖2 ≤

‖y1 − y2‖2
D

]
≤
(

3
D

)m
and

Pr[‖Az‖2 ≥ D‖z‖2] ≤ e−m(D−1)2/8.

Setting both right-hand sides to δ yields the lemma.

C Proof of Lemma 4.2

Proof. Consider the distribution of a single coordi-
nate of z, say, z1. The probability density of |z1|
taking value t ∈ [0, s] is proportional to the (n − 1)-
dimensional volume of B(n−1)

1 (s− t), which in turn is

proportional to (s− t)n−1. Normalizing to ensure the
probability integrates to 1, we derive this probability
as

p(|z1| = t) =
n

sn
(s− t)n−1.

It follows that, for any D ∈ [0, s],

Pr[|z1| > D] =
∫ s

D

n

sn
(s− t)n−1 dt = (1−D/s)n.

In particular, for any α > 1,

Pr[|z1| > αs log n/n] = (1− α log n/n)n < e−α logn

= 1/nα.

Now, by symmetry this holds for every other coordi-
nate zi of z as well, so by the union bound

Pr[‖z‖∞ > αs log n/n] < 1/nα−1,

and since ‖z‖2 ≤
√
n · ‖z‖∞ for any vector z, the

lemma follows.


