
1

Hashing, sketching, and other
approximate algorithms for

high-dimensional data

Piotr Indyk
MIT

2

Plan
• Intro

– High dimensionality
– Problems

• Technique: randomized projection
– Intuition
– Proofoid

• Applications:
– Sketching/streaming
– Nearest Neighbor Search

• Conclusions
• Refs

3

High-Dimensional Data

To be or not to be …To be or not to be …

(... , 2, …, 2, … , 1 , …, 1, …)

to be or not

(... , 1, …, 4, … , 2 , …, 2, …)

(... , 6, …, 1, … , 3 , …, 6, …)

(... , 1, …, 3, … , 7 , …, 5, …)

4

Problems
• Storage

– How to represent the data
“accurately” using “small”
space

• Search
– How to find “similar” documents

• Learning, etc… ??

5

Randomized Dimensionality Reduction

6

Randomized Dimensionality Reduction
(a.k.a. “Flattening Lemma”)

• Johnson-Lindenstrauss lemma (1984)
– Choose the projection plane “at random”
– The distances are “approximately” preserved

with “high” probability

7

Dimensionality Reduction, Formally
• JL: For any set of n points X in Rd under

Euclidean norm, there is a (1+ε)-distortion
embedding of X into Rd’, for d’=O(log n /ε2)

• JL’: There is a distribution over random
linear mappings A: Rd →Rd’, such that for
any vector x we have ||Ax|| = (1±ε) ||x|| with
probability

1 - e-Cd’ε^2

• Questions:
– What is the distribution ?
– Why does it work ?

8

Normal Distribution

• Normal distribution:
– Range: (-∞, ∞)
– Density: f(x)=e-x^2/2 / (2π)1/2

– Mean=0, Variance=1
• Basic facts:

– If X and Y independent r.v. with normal distribution,
then X+Y has normal distribution

– Var(cX)=c2 Var(X)
– If X,Y independent, then Var(X+Y)=Var(X)+Var(Y)

9

Back to the Embedding
• We use mapping Ax where each entry of A has

normal distribution
• Let a1,…,ad’ be the rows of A
• Consider Z=ai*x = a*x=∑i ai xi
• Each term ai xi

– Has normal distribution
– With variance xi

2

• Thus, Z has normal distribution with variance ∑i
xi

2 =||x||2
• This holds for each aj

10

What is ||Ax||2
• ||Ax||2 = (a1 * x)2+…+(ad’ * x)2 = Z1

2+…+Zd’
2

where:
– All Zi’s are independent
– Each has normal distribution with variance ||x||2

• Therefore, E[||Ax||2]=d’*E[Z1
2]=d’ ||x||2

• By “law of large numbers” (quantitive):
Pr[| ||Ax||2 –d’ ||x||2 |>εd’]<e-C d’ ε^2

for some constant C

11

Streaming/sketching implications
• Can replace d-dimensional vectors by d’-

dimensional ones
– Cost: O(dd’) per vector
– Faster method known [Ailon-Chazelle’06]

• Can avoid storing the original d-dimensional
vectors in the first place

(thanks to linearity of the mapping A)
– Suppose:

• x is the histogram of a document
• We are receiving a stream of document words

w1, w2, w3,..
– For each word w, we want to update Ax to Ax’

where x’w=xw+1 (and the rest of x stays the
same)

– Can be done via Ax’=A(x+ew) = Ax+Aew
– Streaming algorithms [Alon-Matias-Szegedy’96]

(... , 2, …, 2, … , 1 , …, 1, …)

to be or not

12

More Streaming/Sketching
• Generalizes to Lp norms, p∈[0,2]

– Generate matrix A from p-stable distribution
• E.g., for p=1 we have Cauchy distribution

– Estimate ||x||p using
• median(|a1 x|,…,|ad’ x|) [Indyk’00]
• geometric mean, harmonic mean [Church-Hastie-Li’05..07]

• Can handle “Jaccard coefficient” [Broder’97]
– For two sets A, B, define J(A,B)=|A∩B|/|AuB|
– “Min-wise hashes”: functions h such that

Pr[h(A)=h(B)]=J(A,B)
– Can sketch set A into <h1(A),…,hk(A)>

• Can reconstruct approximation of x from Ax

13

Nearest neighbors

14

Near(est) neighbor

• Given: a set P of points in Rd

• Nearest Neighbor: for any
query q, returns a point p∈P
minimizing ||p-q||

• r-Near Neighbor: for any
query q, returns a point p∈P
s.t. ||p-q|| ≤ r (if it exists)

q

r

15

The case of d=2
• Compute Voronoi diagram
• Given q, perform point

location
• Performance:

– Space: O(n)
– Query time: O(log n)

16

The case of d>2

• Voronoi diagram has size nO(d)

• We can also perform a linear scan: O(dn) time
• That is pretty much all what known for exact

algorithms with theoretical guarantees
• In practice:

– kd-trees work “well” in “low-medium” dimensions
– Near-linear query time for high dimensions

17

Approximate Near Neighbor
• c-Approximate r-Near Neighbor: build data

structure which, for any query q:
– If there is a point p∈P, ||p-q|| ≤ r
– it returns p’∈P, ||p-q|| ≤ cr

• Reductions:
– c-Approx Nearest Neighbor reduces to c-Approx

Near Neighbor
(log overhead)

– One can enumerate all approx near neighbors
→ can solve exact near neighbor problem

– Other apps: c-approximate Minimum Spanning
Tree, clustering, etc.

q

r

cr

18

Approximate algorithms

• Space/time exponential in d [Arya-Mount-et al],
[Kleinberg’97], [Har-Peled’02], [Arya-Mount-…]

• Space/time polynomial in d [Kushilevitz-Ostrovsky-
Rabani’98], [Indyk-Motwani’98], [Indyk’98], [Gionis-Indyk-Motwani’99],
[Charikar’02], [Datar-Immorlica-Indyk-Mirrokni’04], [Chakrabarti-
Regev’04], [Panigrahy’06], [Ailon-Chazelle’06]…

[Pan’06]l2σ(c)=O(1/c)

Hamm, l2

l2

Hamm, l2

Hamm, l2

Norm

[AIP’06]O(1)nΩ(1/ε2)

[Ind’01]σ(c)=O(log c/c)dnσ(c)dn * logs

[DIIM’04]ρ(c)<1/c

[IM’98], [Cha’02]ρ(c)=1/cdnρ(c)dn+n1+ρ(c)

[KOR’98, IM’98]c=1+ εd * logn /ε2 or 1dn+n4/ε2

RefCommentTimeSpace

[AI’06]l2ρ(c)=1/c2 + o(1)dnρ(c)dn+n1+ρ(c)

[AI’06]l2σ(c)=O(1/c2)dnσ(c)dn * logs

19

Locality-Sensitive Hashing

• Idea: construct hash
functions g: Rd → U such that
for any points p,q:
– If ||p-q|| ≤ r, then Pr[g(p)=g(q)]

is “high”
– If ||p-q|| >cr, then Pr[g(p)=g(q)]

is “small”
• Then we can solve the

problem by hashing

“not-so-small”

q

p

20

LSH [Indyk-Motwani’98]

• A family H of functions h: Rd → U is called
(P1,P2,r,cr)-sensitive, if for any p,q:
– if ||p-q|| <r then Pr[h(p)=h(q)] > P1
– if ||p-q|| >cr then Pr[h(p)=h(q)] < P2

• Examples:
– Hamming distance

• LSH functions: h(p)=pi, i.e., the i-th bit of p
• Probabilities: Pr[h(p)=h(q)] = 1-D(p,q)/d

– Jaccard coefficient
• Min-wise hashing (slide 12)

p=10010010
q=11010110

21

LSH Algorithm
• We use functions of the form

g(p)=<h1(p),h2(p),…,hk(p)>
• Preprocessing:

– Select g1…gL
– For all p∈P, hash p to buckets g1(p)…gL(p)

• Query:
– Retrieve the points from buckets g1(q), g2(q), … , until

• Either the points from all L buckets have been retrieved, or
• Total number of points retrieved exceeds 2L

– Answer the query based on the retrieved points
– Total time: O(dL)

22

Analysis

• LSH solves c-approximate NN with:
– Number of hash fun: L=nρ,
ρ=log(1/P1)/log(1/P2)

– E.g., for the Hamming distance we have
ρ=1/c

– Constant success probability per query q

23

Proof by picture
• Hamming distance
• Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h’s)
• Distance ranges from 0 to 10 (max)

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11

Distance

C
ol

lis
io

n
pr

ob
ab

ili
ty

k=1

k=2

k=3

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11

Distance

C
ol

lis
io

n
Pr

ob
ab

ili
ty

k=1
k=2

k=3

• The argument can be massaged to show that
L=nρ , ρ =log1/P2(1/P1)

works with constant probability.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Distance

C
ol

lis
io

n
pr

ob
ab

ili
ty

k=1

k=2

k=3

24

Projection-based LSH
[Datar-Immorlica-Indyk-Mirrokni’04]

• Define hX,b(p)=⎣(p*X+b)/w⎦:
– w ≈ r
– X=(X1…Xd) , where Xi is

chosen from:
• Gaussian distribution (for l2 norm)
• “s-stable” distribution* (for ls norm)

– b is a scalar

• Simple enough
• Code available [Andoni-Indyk’05]

X
w

w

p

25

Analysis

• Need to:
– Compute Pr[h(p)=h(q)] as a function of ||p-q||

and w; this defines P1 and P2

– For each c choose w that minimizes
ρ=log1/P2(1/P1)

• Method:
– For l2: computational
– For general ls: analytic

w

w

26

ρ(w) for various c’s: l1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

px
e

r

c=1.1
c=1.5
c=2.5

c=5
c=10

w

w

w

27

ρ(w) for various c’s: l2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

px
e

r

c=1.1
c=1.5
c=2.5

c=5
c=10

w

w

w

28

ρ(c) for l2

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Approximation factor c

rho
1/c

29

New LSH scheme
[Andoni-Indyk’06]

• Instead of projecting onto R1,
project onto Rt , for constant t

• Intervals → lattice of balls
– Can hit empty space, so hash until

a ball is hit
• Analysis:

– ρ=1/c2 + O(log t / t1/2)
– Time to hash is tO(t)

– Total query time: dn1/c2+o(1)

• [Motwani-Naor-Panigrahy’06]:
LSH in l2 must have ρ ≥ 0.45/c2

X
w

w

p

p

30

Conclusions

• Overview of randomized approximate
approximate algorithms for high-
dimensional data
– Reduce space
– Reduce time

• Randomized dimensionality reduction
plays important role
– Source of randomization and approximation

31

If you would like to RTFM
• Random projections: monograph by S. Vempala
• Nearest neighbor in high dimensions:

– CRC Handbook’03 (my web page)
– CACM Survey (draft, on request)

• Streaming:
– Survey: S. Muthu Muthukrishnan (see his web page)
– Summer school +materials: Google “Madalgo”

• Streaming for CL: [Church-Hastie-Li, ACL’05]
• LSH for CL: [Ravichandran-Pantel-Hovy, ACL’05]

(use related algorithm by [Charikar’02])
• LSH for web clustering: [Broder et al, WWW’97], [Gionis et al,

WebDB’00, WWW’02]
• Code available (see my web page)

32

Thanks!

• To the organizers
• To Mike and Regina
• To you ☺

33

PCA vs JL

• Technical differences: average square
error (PCA) vs maximum error (JL)

• PCA advantage:
– Data dependent
– Can adjust to distribution

• PCA disadvantage:
– Data dependent
– Requires linear storage, and linear update

time if data set changes

34

Experiments

35

LSH Experiments (with ’04 version)
• E2LSH: Exact Euclidean LSH (with Alex Andoni)

– Near Neighbor
– User sets r and P = probability of NOT reporting a point within

distance r (=10%)
– Program finds parameters k,L,w so that:

• Probability of failure is at most P
• Expected query time is minimized

• Nearest neighbor: set radius (radiae) to accommodate
90% queries (results for 98% are similar)
– 1 radius: 90%
– 2 radiae: 40%, 90%
– 3 radiae: 40%, 65%, 90%
– 4 radiae: 25%, 50%, 75%, 90%

36

Data sets
• MNIST OCR data, normalized (LeCun)

– d=784
– n=60,000

• Corel_hist
– d=64
– n=20,000

• Corel_uci
– d=64
– n=68,040

• Aerial data (Manjunath)
– d=60
– n=275,476

37

Other NN packages

• ANN (by Arya & Mount):
– Based on kd-tree
– Supports exact and approximate NN

• Metric trees (by Moore et al):
– Splits along arbitrary directions (not just x,y,..)
– Further optimizations

38

Running times

 MNIST Speedup Corel_hist Speedup Corel_uci Speedup Aerial Speedup
E2LSH-1 0.00960
E2LSH-2 0.00851 0.00024 0.00070 0.07400
E2LSH-3 0.00018 0.00055 0.00833
E2LSH-4 0.00668
ANN 0.25300 29.72274 0.00018 1.011236 0.00274 4.954792 0.00741 1.109281
MT 0.20900 24.55357 0.00130 7.303371 0.00650 11.75407 0.01700 2.54491

39

LSH vs kd-tree (MNIST)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0 10 20 30 40 50 60 70

40

Caveats

• For ANN (MNIST), setting ε=1000% results in:
– Query time comparable to LSH
– Correct NN in about 65% cases, small error otherwise

• However, no guarantees
• LSH eats much more space (for optimal

performance):
– LSH: 1.2 GB
– Kd-tree: 360 MB

