Hashing, sketching, and other approximate algorithms for high-dimensional data

Piotr Indyk
MIT
Plan

• Intro
 – High dimensionality
 – Problems

• Technique: randomized projection
 – Intuition
 – Proofoid

• Applications:
 – Sketching/streaming
 – Nearest Neighbor Search

• Conclusions

• Refs
High-Dimensional Data

To be or not to be ...

(..., 1, ..., 4, ..., 2, ..., 2, ...)
(..., 6, ..., 1, ..., 3, ..., 6, ...)
(..., 1, ..., 3, ..., 7, ..., 5, ...)
(..., 2, ..., 2, ..., 1, ..., 1, ...)

to be or not
Problems

• Storage
 – How to represent the data “accurately” using “small” space

• Search
 – How to find “similar” documents

• Learning, etc…

Randomized Dimensionality Reduction
Randomized Dimensionality Reduction (a.k.a. “Flattening Lemma”)

 - Choose the projection plane “at random”
 - The distances are “approximately” preserved with “high” probability
Dimensionality Reduction, Formally

• **JL:** For any set of n points X in \mathbb{R}^d under Euclidean norm, there is a $(1+\epsilon)$-distortion embedding of X into $\mathbb{R}^{d'}$, for $d'=O(\log n / \epsilon^2)$

• **JL':** There is a distribution over random linear mappings $A: \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$, such that for any vector x we have $\|Ax\| = (1\pm\epsilon) \|x\|$ with probability

$$1 - e^{-Cd'\epsilon^2}$$

• Questions:
 - What is the distribution?
 - Why does it work?
Normal Distribution

• Normal distribution:
 – Range: \((-\infty, \infty)\)
 – Density: \(f(x)=e^{-x^2/2}/(2\pi)^{1/2}\)
 – Mean=0, Variance=1

• Basic facts:
 – If \(X\) and \(Y\) independent r.v. with normal distribution, then \(X+Y\) has normal distribution
 – \(\text{Var}(cX)=c^2 \text{Var}(X)\)
 – If \(X,Y\) independent, then \(\text{Var}(X+Y)=\text{Var}(X)+\text{Var}(Y)\)
Back to the Embedding

- We use mapping Ax where each entry of A has normal distribution.
- Let a^1,\ldots,a^d be the rows of A.
- Consider $Z=a^ix = a^x = \sum_i a_i x_i$.
- Each term $a_i x_i$
 - Has normal distribution.
 - With variance x_i^2.
- Thus, Z has normal distribution with variance $\sum_i x_i^2 = \|x\|^2$.
- This holds for each a^j.
What is $||Ax||_2$

- $||Ax||^2 = (a^1 * x)^2 + \ldots + (a^{d'} * x)^2 = Z_1^2 + \ldots + Z_{d'}^2$
 - All Z_i's are independent
 - Each has normal distribution with variance $||x||^2$

- Therefore, $E[||Ax||^2] = d'*E[Z_1^2] = d' ||x||^2$

- By “law of large numbers” (quantitive):
 \[
 \text{Pr}[| ||Ax||^2 - d' ||x||^2 | > \varepsilon d'] < e^{-C d' \varepsilon^2}
 \]
 for some constant C
Streaming/sketching implications

• Can replace \(d\)-dimensional vectors by \(d'\)-dimensional ones
 – Cost: \(O(dd')\) per vector
 – Faster method known [Ailon-Chazelle’06]
• Can avoid storing the original \(d\)-dimensional vectors in the first place (thanks to linearity of the mapping \(A\))
 – Suppose:
 • \(x\) is the histogram of a document
 • We are receiving a stream of document words \(w_1, w_2, w_3, \ldots\)
 – For each word \(w\), we want to update \(Ax\) to \(Ax'\) where \(x'_w = x_w + 1\) (and the rest of \(x\) stays the same)
 – Can be done via \(Ax' = A(x + e_w) = Ax + Ae_w\)
 – Streaming algorithms [Alon-Matias-Szegedy’96]
More Streaming/Sketching

• Generalizes to L_p norms, $p \in [0,2]$
 – Generate matrix A from p-stable distribution
 • E.g., for $p=1$ we have Cauchy distribution
 – Estimate $||x||_p$ using
 • median($|a_1^T x|, ..., |a_d^T x|$) [Indyk’00]
 • geometric mean, harmonic mean [Church-Hastie-Li’05..07]

• Can handle “Jaccard coefficient” [Broder’97]
 – For two sets A, B, define $J(A,B) = |A \cap B|/|A \cup B|$
 – “Min-wise hashes”: functions h such that
 \[\Pr[h(A)=h(B)]=J(A,B) \]
 – Can sketch set A into $<h_1(A), ..., h_k(A)>$

• Can reconstruct approximation of x from Ax
Nearest neighbors
Near(est) neighbor

• Given: a set P of points in \mathbb{R}^d
• Nearest Neighbor: for any query q, returns a point $p \in P$ minimizing $||p-q||$
• r-Near Neighbor: for any query q, returns a point $p \in P$ s.t. $||p-q|| \leq r$ (if it exists)
The case of $d=2$

- Compute Voronoi diagram
- Given q, perform point location
- Performance:
 - Space: $O(n)$
 - Query time: $O(\log n)$
The case of $d>2$

- Voronoi diagram has size $n^{O(d)}$
- We can also perform a linear scan: $O(dn)$ time
- That is pretty much all what known for exact algorithms with theoretical guarantees
- In practice:
 - kd-trees work “well” in “low-medium” dimensions
 - Near-linear query time for high dimensions
Approximate Near Neighbor

- **c-Approximate r-Near Neighbor**: build data structure which, for any query q:
 - If there is a point \(p \in P \), \(||p-q|| \leq r \)
 - it returns \(p' \in P \), \(||p-q|| \leq cr \)

- **Reductions**:
 - c-Approx Nearest Neighbor reduces to c-Approx Near Neighbor
 (log overhead)
 - One can enumerate all approx near neighbors
 → can solve exact near neighbor problem
 - Other apps: c-approximate Minimum Spanning Tree, clustering, etc.
Approximate algorithms

- **Space/time exponential in** \(d \) [Arya-Mount-et al, Kleinberg’97, Har-Peled’02, Arya-Mount-…]

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Comment</th>
<th>Norm</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dn + n^{4/\epsilon^2})</td>
<td>(d \times \log n / \epsilon^2) or 1</td>
<td>(c = 1 + \epsilon)</td>
<td>Hamm, (l_2)</td>
<td>[KOR’98, IM’98]</td>
</tr>
<tr>
<td>(n^{\Omega(1/\epsilon^2)})</td>
<td>(O(1))</td>
<td></td>
<td></td>
<td>[AIP’06]</td>
</tr>
<tr>
<td>(dn + n^{1+p(c)})</td>
<td>(dn^p(c))</td>
<td>(p(c) = 1/c)</td>
<td>Hamm, (l_2)</td>
<td>[IM’98], [Cha’02]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p(c) < 1/c)</td>
<td>(l_2)</td>
<td>[DIIM’04]</td>
</tr>
<tr>
<td>(dn \times \log s)</td>
<td>(dn^{\sigma(c)})</td>
<td>(\sigma(c) = O(\log c/c))</td>
<td>Hamm, (l_2)</td>
<td>[Ind’01]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\sigma(c) = O(1/c))</td>
<td>(l_2)</td>
<td>[Pan’06]</td>
</tr>
<tr>
<td>(dn + n^{1+p(c)})</td>
<td>(dn^p(c))</td>
<td>(p(c) = 1/c^2 + o(1))</td>
<td>(l_2)</td>
<td>[AI’06]</td>
</tr>
<tr>
<td>(dn \times \log s)</td>
<td>(dn^{\sigma(c)})</td>
<td>(\sigma(c) = O(1/c^2))</td>
<td>(l_2)</td>
<td>[AI’06]</td>
</tr>
</tbody>
</table>
Locality-Sensitive Hashing

- Idea: construct hash functions $g: \mathbb{R}^d \rightarrow U$ such that for any points p, q:
 - If $\|p - q\| \leq r$, then $\Pr[g(p) = g(q)]$ is "high" "not-so-small"
 - If $\|p - q\| > cr$, then $\Pr[g(p) = g(q)]$ is "small"

- Then we can solve the problem by hashing
LSH [Indyk-Motwani’98]

- A family H of functions $h: \mathbb{R}^d \rightarrow U$ is called (P_1, P_2, r, cr)-sensitive, if for any p, q:
 - if $||p-q|| < r$ then $\Pr[h(p)=h(q)] > P_1$
 - if $||p-q|| > cr$ then $\Pr[h(p)=h(q)] < P_2$

- Examples:
 - Hamming distance
 - LSH functions: $h(p)=p_i$, i.e., the i-th bit of p
 - Probabilities: $\Pr[h(p)=h(q)] = 1-D(p,q)/d$
 - Jaccard coefficient
 - Min-wise hashing (slide 12)
LSH Algorithm

• We use functions of the form

 \[g(p) = <h_1(p), h_2(p), \ldots, h_k(p)> \]

• Preprocessing:
 – Select \(g_1 \ldots g_L \)
 – For all \(p \in P \), hash \(p \) to buckets \(g_1(p) \ldots g_L(p) \)

• Query:
 – Retrieve the points from buckets \(g_1(q), g_2(q), \ldots \), until
 • Either the points from all \(L \) buckets have been retrieved, or
 • Total number of points retrieved exceeds \(2L \)
 – Answer the query based on the retrieved points
 – Total time: \(O(dL) \)
Analysis

• LSH solves c-approximate NN with:
 – Number of hash functions: $L = n^\rho$
 $\rho = \log(1/P_1)/\log(1/P_2)$
 – E.g., for the Hamming distance we have
 $\rho = 1/c$
 – Constant success probability per query q
Proof by picture

- Hamming distance
- Collision prob. for \(k=1..3, \ L=1..3 \) (recall: \(L=\#\text{indices}, \ k=\#h's \))
- Distance ranges from 0 to 10 (max)

\[
L = n^\rho, \quad \rho = \log_{1/P_2}(1/P_1)
\]

works with constant probability.
Projection-based LSH

[Datar-Immorlica-Indyk-Mirrokni’04]

- Define $h_{X,b}(p) = \lfloor (p^*X + b)/w \rfloor$
 - $w \approx r$
 - $X = (X_1…X_d)$, where X_i is chosen from:
 - Gaussian distribution (for l_2 norm)
 - “s-stable” distribution* (for l_s norm)
 - b is a scalar

- Simple enough
- Code available [Andoni-Indyk’05]
Analysis

• Need to:
 – Compute $\Pr[h(p)=h(q)]$ as a function of $||p-q||$ and w; this defines P_1 and P_2
 – For each c choose w that minimizes
 $$\rho = \log_{1/P_2}(1/P_1)$$

• Method:
 – For l_2: computational
 – For general l_s: analytic
\(\rho(w) \) for various c’s: \(l_1 \)
$\rho(w)$ for various c's: l_2
$\rho(c)$ for l_2
New LSH scheme
[Andoni-Indyk’06]

• Instead of projecting onto R^1, project onto R^t, for constant t
• Intervals \rightarrow lattice of balls
 – Can hit empty space, so hash until a ball is hit
• Analysis:
 – $\rho = 1/c^2 + O(\log t / t^{1/2})$
 – Time to hash is $t^{O(t)}$
 – Total query time: $dn^{1/c^2+o(1)}$
• [Motwani-Naor-Panigrahy’06]: LSH in l_2 must have $\rho \geq 0.45/c^2$
Conclusions

• Overview of randomized approximate algorithms for high-dimensional data
 – Reduce space
 – Reduce time

• Randomized dimensionality reduction plays important role
 – Source of randomization and approximation
If you would like to RTFM

- Random projections: monograph by S. Vempala
- Nearest neighbor in high dimensions:
 - CRC Handbook’03 (my web page)
 - CACM Survey (draft, on request)
- Streaming:
 - Survey: S. Muthu Muthukrishnan (see his web page)
 - Summer school +materials: Google “Madalgo”
- Streaming for CL: [Church-Hastie-Li, ACL’05]
- LSH for CL: [Ravichandran-Pantel-Hovy, ACL’05]
 (use related algorithm by [Charikar’02])
- LSH for web clustering: [Broder et al, WWW’97], [Gionis et al, WebDB’00, WWW’02]
- Code available (see my web page)
Thanks!

• To the organizers
• To Mike and Regina
• To you 😊
PCA vs JL

• Technical differences: average square error (PCA) vs maximum error (JL)

• PCA advantage:
 – Data dependent
 – Can adjust to distribution

• PCA disadvantage:
 – Data dependent
 – Requires linear storage, and linear update time if data set changes
Experiments
LSH Experiments (with ’04 version)

• E²LSH: Exact Euclidean LSH (with Alex Andoni)
 – Near Neighbor
 – User sets r and $P = \text{probability of NOT reporting a point within distance } r$ (=10%)
 – Program finds parameters k, L, w so that:
 • Probability of failure is at most P
 • Expected query time is minimized

• Nearest neighbor: set radius (radiae) to accommodate 90% queries (results for 98% are similar)
 – 1 radius: 90%
 – 2 radiae: 40%, 90%
 – 3 radiae: 40%, 65%, 90%
 – 4 radiae: 25%, 50%, 75%, 90%
Data sets

• MNIST OCR data, normalized (LeCun)
 – d=784
 – n=60,000
• Corel_hist
 – d=64
 – n=20,000
• Corel_uci
 – d=64
 – n=68,040
• Aerial data (Manjunath)
 – d=60
 – n=275,476
Other NN packages

• ANN (by Arya & Mount):
 – Based on kd-tree
 – Supports exact and approximate NN

• Metric trees (by Moore et al):
 – Splits along arbitrary directions (not just x,y,..)
 – Further optimizations
Running times

<table>
<thead>
<tr>
<th></th>
<th>MNIST</th>
<th>Speedup</th>
<th>Corel_hist</th>
<th>Speedup</th>
<th>Corel_uci</th>
<th>Speedup</th>
<th>Aerial</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2LSH-1</td>
<td>0.00960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2LSH-2</td>
<td>0.00851</td>
<td>0.00024</td>
<td></td>
<td>0.00070</td>
<td></td>
<td>0.07400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2LSH-3</td>
<td></td>
<td>0.00018</td>
<td></td>
<td>0.00055</td>
<td></td>
<td>0.00833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2LSH-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00668</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANN</td>
<td>0.25300</td>
<td>29.72274</td>
<td>0.00018</td>
<td>1.011236</td>
<td>0.00274</td>
<td>4.954792</td>
<td>0.00741</td>
<td>1.109281</td>
</tr>
<tr>
<td>MT</td>
<td>0.20900</td>
<td>24.55357</td>
<td>0.00130</td>
<td>7.303371</td>
<td>0.00650</td>
<td>11.75407</td>
<td>0.01700</td>
<td>2.54491</td>
</tr>
</tbody>
</table>
LSH vs kd-tree (MNIST)
Caveats

• For ANN (MNIST), setting $\varepsilon=1000\%$ results in:
 – Query time comparable to LSH
 – Correct NN in about 65% cases, small error otherwise

• However, no guarantees

• LSH eats much more space (for optimal performance):
 – LSH: 1.2 GB
 – Kd-tree: 360 MB