Hashing, sketching, and other approximate algorithms for high-dimensional data

> Piotr Indyk MIT

Plan

- Intro
 - High dimensionality
 - Problems
- Technique: randomized projection
 - Intuition
 - Proofoid
- Applications:
 - Sketching/streaming
 - Nearest Neighbor Search
- Conclusions
- Refs

High-Dimensional Data

Problems

- Storage
 - How to represent the data "accurately" using "small" space

• Search

- How to find "similar" documents

• Learning, etc...

Randomized Dimensionality Reduction

Randomized Dimensionality Reduction (a.k.a. "Flattening Lemma")

- Johnson-Lindenstrauss lemma (1984)
 - Choose the projection plane "at random"
 - The distances are "approximately" preserved with "high" probability

Dimensionality Reduction, Formally

- JL: For any set of n points X in R^d under Euclidean norm, there is a (1+ε)-distortion embedding of X into R^d, for d'=O(log n /ε²)
- JL': There is a distribution over random linear mappings A: R^d → R^d', such that for any vector x we have ||Ax|| = (1±ε) ||x|| with probability

1 - e^{-Cd'ε^2}

- Questions:
 - What is the distribution ?
 - Why does it work ?

Normal Distribution

- Normal distribution:
 - Range: (-∞, ∞)
 - Density: $f(x)=e^{-x^{2/2}}/(2\pi)^{1/2}$
 - Mean=0, Variance=1
- Basic facts:
 - If X and Y independent r.v. with normal distribution, then X+Y has normal distribution
 - Var(cX)=c² Var(X)
 - If X,Y independent, then Var(X+Y)=Var(X)+Var(Y)

Back to the Embedding

- We use mapping Ax where each entry of A has normal distribution
- Let a¹,...,a^{d'} be the rows of A
- Consider $Z=a^{i*}x = a^{*}x = \sum_{i} a_{i} x_{i}$
- Each term a_i x_i
 - Has normal distribution
 - With variance x_i^2
- Thus, Z has normal distribution with variance $\sum_{i} x_{i}^{2} = ||x||^{2}$
- This holds for each a^j

What is $||Ax||_2$

- $||Ax||^2 = (a^1 * x)^2 + ... + (a^{d'} * x)^2 = Z_1^2 + ... + Z_{d'}^2$ where:
 - All Z_i 's are independent
 - Each has normal distribution with variance ||x||²
- Therefore, E[||Ax||²]=d'*E[Z₁²]=d' ||x||²
- By "law of large numbers" (quantitive): Pr[| ||Ax||² –d' ||x||² |>εd']<e^{-C d' ε^2} for some constant C

Streaming/sketching implications

- Can replace d-dimensional vectors by d'dimensional ones
 - Cost: O(dd') per vector
 - Faster method known [Ailon-Chazelle'06]
- Can avoid storing the original d-dimensional vectors in the first place

(thanks to linearity of the mapping A)

- Suppose:
 - x is the histogram of a document
 - We are receiving a stream of document words w1, w2, w3,...
- For each word w, we want to update Ax to Ax' where x'_w=x_w+1 (and the rest of x stays the same)
- Can be done via $Ax'=A(x+e_w) = Ax+Ae_w$
- Streaming algorithms [Alon-Matias-Szegedy'96]

 $(\dots, 2, \dots, 2, \dots, 1, \dots, 1, \dots)$

to be or not

More Streaming/Sketching

- Generalizes to L_p norms, $p \in [0,2]$
 - Generate matrix A from p-stable distribution
 - E.g., for p=1 we have Cauchy distribution
 - Estimate ||x||_p using
 - median(|a¹ x|,...,|a^{d'} x|) [Indyk'00]
 - geometric mean, harmonic mean [Church-Hastie-Li'05..07]
- Can handle "Jaccard coefficient" [Broder'97]
 - For two sets A, B, define $J(A,B)=|A \cap B|/|AuB|$
 - "Min-wise hashes": functions h such that

Pr[h(A)=h(B)]=J(A,B)

- Can sketch set A into $<h_1(A),...,h_k(A)>$
- Can reconstruct approximation of x from Ax

Nearest neighbors

Near(est) neighbor

- Given: a set P of points in R^d
- Nearest Neighbor: for any query q, returns a point p∈P minimizing ||p-q||
- r-Near Neighbor: for any query q, returns a point p∈P s.t. ||p-q|| ≤ r (if it exists)

 \bigcirc

The case of d=2

- Compute Voronoi diagram
- Given q, perform point location
- Performance:
 - Space: O(n)
 - Query time: O(log n)

The case of d>2

- Voronoi diagram has size n^{O(d)}
- We can also perform a linear scan: O(dn) time
- That is pretty much all what known for exact algorithms with theoretical guarantees
- In practice:
 - kd-trees work "well" in "low-medium" dimensions
 - Near-linear query time for high dimensions

Approximate Near Neighbor

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point $p \in P$, $||p-q|| \le r$
 - it returns $p' \in P$, $||p-q|| \leq cr$
- Reductions:
 - c-Approx Nearest Neighbor reduces to c-Approx
 Near Neighbor

(log overhead)

- One can enumerate all approx near neighbors
- \rightarrow can solve exact near neighbor problem
- Other apps: c-approximate Minimum Spanning Tree, clustering, etc.

 \bigcirc

Approximate algorithms

- Space/time exponential in d [Arya-Mount-et al], [Kleinberg'97], [Har-Peled'02], [Arya-Mount-...]
- Space/time polynomial in d [Kushilevitz-Ostrovsky-Rabani'98], [Indyk-Motwani'98], [Indyk'98], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06]...

Space	Time	Comment	Norm	Ref
dn+n ^{4/ε²}	d * logn / ϵ^2 or 1	c=1+ ε	Hamm, I ₂	[KOR'98, IM'98]
$n^{\Omega(1/\epsilon^2)}$	O(1)			[AIP'06]
 dn+n ^{1+p(c)}	dn ^{ρ(c)}	ρ(c)=1/c	Hamm, I ₂	[IM'98], [Cha'02]
		ρ(c)<1/c	l ₂	[DIIM'04]
dn * logs	dn ^{σ(c)}	$\sigma(c)=O(\log c/c)$	Hamm, I ₂	[Ind'01]
		σ(c)=O(1/c)	I ₂	[Pan'06]
 dn+n ^{1+p(c)}	dn ^{p(c)}	$\rho(c)=1/c^2 + o(1)$	I ₂	[Al'06]
dn * logs	dn ^{σ(c)}	$\sigma(c)=O(1/c^2)$	I ₂	[Al'06]

Locality-Sensitive Hashing

- Idea: construct hash functions g: $\mathbb{R}^{d} \rightarrow \mathbb{U}$ such that $^{\circ_{p}}$ • for any points p,q:
 - If ||p-q|| ≤ r, then Pr[g(p)=g(q)] is <u>"high</u>" "not-so-small"
 - If ||p-q|| >cr, then Pr[g(p)=g(q)] is "small"

• Then we can solve the problem by hashing

LSH [Indyk-Motwani'98]

- A family H of functions h: R^d → U is called (P₁,P₂,r,cr)-sensitive, if for any p,q:
 - if ||p-q|| < r then $Pr[h(p)=h(q)] > P_1$
 - if ||p-q|| > cr then $Pr[h(p)=h(q)] < P_2$
- Examples:
 - Hamming distance
 - LSH functions: h(p)=p_i, i.e., the i-th bit of p
 - Probabilities: Pr[h(p)=h(q)] = 1-D(p,q)/d

p=10010010 q=11010110

- Jaccard coefficient
 - Min-wise hashing (slide 12)

LSH Algorithm

• We use functions of the form

 $g(p) = \langle h_1(p), h_2(p), ..., h_k(p) \rangle$

- Preprocessing:
 - Select $g_1 \dots g_L$
 - For all $p \in P$, hash p to buckets $g_1(p) \dots g_L(p)$
- Query:
 - Retrieve the points from buckets $g_1(q)$, $g_2(q)$, ..., until
 - Either the points from all L buckets have been retrieved, or
 - Total number of points retrieved exceeds 2L
 - Answer the query based on the retrieved points
 - Total time: O(dL)

Analysis

- LSH solves c-approximate NN with:
 - Number of hash fun: L=n $^{\rho}$, ρ =log(1/P1)/log(1/P2)
 - E.g., for the Hamming distance we have $\rho=1/c$
 - Constant success probability per query q

Proof by picture

- Hamming distance
- Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h's)
- Distance ranges from 0 to 10 (max)

The argument can be massaged to show that

```
L=n<sup>\rho</sup>, \rho = \log_{1/P2}(1/P_1)
```

works with constant probability.

Projection-based LSH

[Datar-Immorlica-Indyk-Mirrokni'04]

- Define $h_{X,b}(p) = \lfloor (p^*X+b)/w \rfloor$:
 - w ≈ r
 - $X=(X_1...X_d)$, where X_i is chosen from:
 - Gaussian distribution (for l₂ norm)
 - "s-stable" distribution^{*} (for I_s norm)
 - b is a scalar
- Simple enough
- Code available [Andoni-Indyk'05]

Analysis

- Need to:
 - Compute Pr[h(p)=h(q)] as a function of ||p-q|| and w; this defines P₁ and P₂
 - For each c choose w that minimizes

 $\rho = \log_{1/P2}(1/P_1)$

- Method:
 - For I₂: computational
 - For general I_s: analytic

W

New LSH scheme

[Andoni-Indyk'06]

- Instead of projecting onto R¹, project onto R^t, for constant t
- Intervals \rightarrow lattice of balls
 - Can hit empty space, so hash until a ball is hit
- Analysis:
 - $-\rho = 1/c^2 + O(\log t / t^{1/2})$
 - Time to hash is t^{O(t)}
 - Total query time: dn^{1/c²+o(1)}
- [Motwani-Naor-Panigrahy'06]: LSH in I_2 must have $\rho \ge 0.45/c^2$

Conclusions

- Overview of randomized approximate approximate algorithms for highdimensional data
 - Reduce space
 - Reduce time
- Randomized dimensionality reduction plays important role
 - Source of randomization and approximation

If you would like to RTFM

- Random projections: monograph by S. Vempala
- Nearest neighbor in high dimensions:
 - CRC Handbook'03 (my web page)
 - CACM Survey (draft, on request)
- Streaming:
 - Survey: S. Muthu Muthukrishnan (see his web page)
 - Summer school +materials: Google "Madalgo"
- Streaming for CL: [Church-Hastie-Li, ACL'05]
- LSH for CL: [Ravichandran-Pantel-Hovy, ACL'05] (use related algorithm by [Charikar'02])
- LSH for web clustering: [Broder et al, WWW'97], [Gionis et al, WebDB'00, WWW'02]
- Code available (see my web page)

Thanks!

- To the organizers
- To Mike and Regina
- To you 😳

PCA vs JL

- Technical differences: average square error (PCA) vs maximum error (JL)
- PCA advantage:
 - Data dependent
 - Can adjust to distribution
- PCA disadvantage:
 - Data dependent
 - Requires linear storage, and linear update time if data set changes

Experiments

LSH Experiments (with '04 version)

- E²LSH: Exact Euclidean LSH (with Alex Andoni)
 - Near Neighbor
 - User sets r and P = probability of NOT reporting a point within distance r (=10%)
 - Program finds parameters k,L,w so that:
 - Probability of failure is at most P
 - Expected query time is minimized
- Nearest neighbor: set radius (radiae) to accommodate 90% queries (results for 98% are similar)
 - 1 radius: 90%
 - 2 radiae: 40%, 90%
 - 3 radiae: 40%, 65%, 90%
 - 4 radiae: 25%, 50%, 75%, 90%

Data sets

- MNIST OCR data, normalized (LeCun)
 - d=784
 - n=60,000
- Corel_hist
 - d=64
 - n=20,000
- Corel_uci
 - d=64
 - n=68,040
- Aerial data (Manjunath)
 - d=60
 - n=275,476

Other NN packages

- ANN (by Arya & Mount):
 - Based on kd-tree
 - Supports exact and approximate NN
- Metric trees (by Moore et al):
 - Splits along arbitrary directions (not just x,y,..)
 - Further optimizations

Running times

	MNIST	Speedup	Corel_hist	Speedup	Corel_uci	Speedup	Aerial	Speedup
E2LSH-1	0.00960							
E2LSH-2	0.00851		0.00024		0.00070		0.07400	
E2LSH-3			0.00018		0.00055		0.00833	
E2LSH-4							0.00668	
ANN	0.25300	29.72274	0.00018	1.011236	0.00274	4.954792	0.00741	1.109281
MT	0.20900	24.55357	0.00130	7.303371	0.00650	11.75407	0.01700	2.54491

LSH vs kd-tree (MNIST)

Caveats

- For ANN (MNIST), setting $\varepsilon = 1000\%$ results in:
 - Query time comparable to LSH
 - Correct NN in about 65% cases, small error otherwise
- However, no guarantees
- LSH eats much more space (for optimal performance):
 - LSH: 1.2 GB
 - Kd-tree: 360 MB