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1 Introduction

Over the recent years, a new approach for obtaining a succinct approximate representation of n-
dimensional vectors (or signals) has been discovered. For any signal x, the succinct representation
of x is equal to Ax, where A is a carefully chosen R × n real matrix, R << n. Often, A is chosen
at random from some distribution over R × n matrices. The vector Ax is often refered to as the
measurement vector or a sketch of x. Although the dimension of Ax is much shorter than of x, it
contains plenty of useful information about x (see next page).

Why is linear compression/sketching useful ? There are several reasons.
Sketch maintenance. A linear sketch Ax can be easily maintained under linear updates of the

signal x. For example, updating the sketch after incrementing the i-th coordinate xi can be easily
done, since A(x+ei) = Ax+Aei. Similarly, one easily obtains a sketch of a sum of two signals given
the sketches for individual signals x and y, since A(x + y) = Ax + Ay. Both properties are very
useful in several areas, notably network measurement and databases. For example, we can define xi

to be the number of packets sent through a network with destination address i ∈ {0 . . . 232−1}. The
knowledge of such ”state vector” is useful for the purpose of detecting unusual behavior in networks.
Although the whole vector x is too large to be maintained, its sketch Ax is much shorter and easier
to store. From the linearity of the mapping A, it follows that we can easily update the sketch of
a state vector given a new packet with destination i. Finally, if the measurements performed by
two different routers of the network yield state vectors x and y, one can easily compute a sketch
of x + y. See e.g., [GKMS01b, EV03] for more on applications of sketching to network monitoring,
and [AMS96, GGR02] for more on applications to databases.

Compressed sensing. Another scenario where linear compression is of key importance is
compressed sensing [Don06, CT06], a rapidly developing area in digital signal processing. Here, x
is a signal one wishes to sense, e.g., an image obtained from a digital camera. A camera “senses”
the vector by computing a dot product with a number of pre-specified measurement vectors. A
typical camera senses the whole vector x (consisting of, say, several megapixels), and then stores
the compressed version (say, in a JPEG format). However, it may be much less costly to sense
the compressed version directly, since then one needs much fewer sensors. This is a premise of
”compressed sensing”. See [WLD+06] for a prototype camera built using this framework.

∗Most of this work has been done in October 2005. However, the current version of this document has been
greatly influenced (and simplified) thanks to the recent developments in the area, notably the notion of row tensor
product [CM06, GSTV06] and the explicit construction of [CM06].
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How much information about signal x can be retrieved from its sketch Ax ? As it turns out,
quite a lot. In [AMS96] (cf. [JL84]) it was shown that one can retrieve the approximation to ‖x‖2

from a very short sketch Ax. Further developments [GGI+02a] resulted in algorithms which, given
a sketch of length R = (k + log n)O(1), could recover a piece-wise constant approximation h of x,
consisting of k pieces, such that ‖x−h‖2 ≤ (1+ǫ)‖x−h∗‖2, where h∗ is the best such approximation
to x; the recovery time was polynomial in R. Similarly, one can find approximations of the signal
using other representations, such as a linear combination of at most k vectors from some basis, e.g..
Fourier or wavelet1; see [GKMS01a, TGIK02, CCFC02, EV03, CM03, CM04] for some of the work
along these lines 2. These early results were randomized (or non-uniform), in the following sense:
the matrix A was chosen from some distribution, and the reconstruction algorithm was guaranteed
to be correct for a given x with ”high” probability.

Recently, matrices with significantly stronger uniform recovery properties (and resulting in
much shorter sketches!) have been discovered. Specifically, it was shown [Don06, CT06, CRT06]
that one can select one matrix A which is “good” (in the above sense) for all signals x. Moreover,
the vector x can be recovered from Ax via linear-programming, using a well-investigated method
of Basis Pursuit. Faster (in fact, sublinear-time) algorithms for uniform recovery were discovered
in [CM06, GSTV06, GSTV07]. Many other papers are devoted to this topic [Gro06].

Several of the aforementioned algorithms address a particularly simple class of pure signals,
where the signal x is r-sparse, that is, it contains only r non-zero entries. In this case the afore-
mentioned algorithms recover the signal x exactly, from a sketch as small as O(r log(n/r)) [Don06,
CT06, CRT06, CRTV05].

In this paper, we focus on this simple type of signals, and address the following drawbacks
of the aforementioned algorithms: (i) the matrices A are generated at random, and (ii) there is
no efficient method for verifying if a given matrix A does indeed have the strong reconstruction
properties. For this and other reasons, it is interesting to have an explicit construction of a good
matrix A. Unfortunately, the only results of this type suffer from the following problems: (i) either
they require sketches of size at least quadratic in r [CM06, Mut06, DeV07], or (ii) representing
matrix entries requires Ω(n) bits per entry (when van der Monde matrices are used, see [DeV06],
p. 20). See [Tao07] for a discussion on explicit construction for compressed sensing.

Result. In this paper we provide an explicit construction of a binary R×n matrix A, such that
one can recover an r-sparse signal x from Ax for R near-linear in r. Specifically, for some constant
E > 1, R = r2O(log log n)E

= rno(1) measurements suffice. 3 The reconstruction is performed in time
O(R logO(1) n). Note that if r << n, the reconstruction time is sub-linear in n.

Techniques. The basic block in our construction is as follows. We use a small family of hash
functions mapping {1 . . . n} into roughly {1 . . . O(r)} “buckets”. A bucket is defined as overflowing
if the number of non-zero elements of x mapped to it is greater than some threshold t. We
show that if the hash functions are constructed using extractor graphs, then the hash functions

1Note that due to the linearity of sketching, it suffices to have an algorithm that recovers the best k-term approx-
imation using the standard basis e1 . . . en; the sketching matrix A can be adapted to any other basis by multiplying
it by the change-of-basis matrix.

2The origin of these results can be traced even further in the past, to [Man92] (cf. [GGI+02b, GMS05]). In [Man92,
GGI+02a], it was shown how to estimate the largest k Fourier coefficients of a given signal vector by accessing only
(k + log n)O(1) entries of the vector. By change-of-basis, this implies that one can estimate the k largest coefficients
of a signal x by using only (k + log n)O(1) dot products of (inverse) Fourier matrix rows with the signal. Amazingly
enough, this implication has not been explicitly stated until the recent work of [CT06].

3The constant E depends on the best-known construction of an extractor.
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distributes the non-zero elements of the vector x in such a way that “most” elements are mapped
to non-overflowing buckets (this part of the construction resembles the use of extractors in a recent
paper [Ind07] by the author). The elements in non-overflowing buckets are then recovered using
group testing techniques.

Unfortunately, the recovery process is not complete, due to the elements in the overflowing
buckets. The group testing procedure, applied to those buckets, can result in misidentification of
the elements of x (both false positives and negatives are possible). Therefore, the whole procedure
must be applied recursively, to the difference between the original vector x and the recovered vector.
Since the sparsity of the difference vector is much lower than the sparsity of x, the whole process
converges in O(log n) steps. Summing up all the difference vectors constructed during this process
recovers the original vector x.

2 Preliminaries

Consider x ∈ R
n. Define ‖x‖0 to be the number of non-zero entries of x.

We use notation [n] = {1 . . . n}. For any graph G with vertex set V , and v ∈ V , we use ΓG(v)
to denote the set of neighbors of v in G. The subscript G is skipped if it is clear from the context.
We also define Γ(v, X), v ∈ V, X ⊂ V , to be the set of all edges from v to X.

3 Proof

We start by selecting a bipartite graph G = (A, B, E), where A = [n] and B = [k]. The nodes in
A have degree dA.

The graph is chosen so that it is an ǫ-extractor (see [Sha04] for an overview) for some ǫ > 0
specified later. That is, G has the following property. For any X ⊂ A, |X| ≥ k, consider the
distribution D over B obtained by choosing a ∈ X uniformly at random, and then choosing b ∈ Γ(a)
uniformly at random. Then D should satisfy

∑

b∈B

|Pr
D

(b) −
1

|B|
| ≤ ǫ (1)

It is known (e.g., see [Sha04]) that, for any absolute constant ǫ > 0, ǫ-extractors can be explicitly

constructed, with dA = 2O(log log n)E

, for a constant E > 1. It appears that the best known extractor
construction guarantees E = 2 (see [Vad07], Lecture 12, Table 1).

For an integer t > 0, define

Overflowt(X) = {b ∈ B : |Γ(b, X)| > t}

In the following we set t = 2dA. Observe that, for any b ∈ Overflowt(X), we have PrD[b] ≥
2/|B|. It follows that

|Overflowt(X)| ≤ ǫ|B| (2)

In the following, we present the construction of the matrix A in parallel with the procedure for
recovering x from Ax.
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Let H be the adjacency matrix of the graph G. Let X = {i ∈ [n] : xi 6= 0}, |X| ≤ r. From the
properties of G, for any i /∈ Overflowt(X), the value (Hx)i is a sum of at most t different non-zero
entries of x. Denote the indices of those entries by {ji

1 . . . ji
t}. In the following, we show that by

using slightly more measurements, we can recover exactly those indices as well as the corresponding
values; specifically, we recover the set Ji = {ji

1, . . . , j
i
t} and the sequence Ui = xji

1
, . . . , xji

t
. We then

use the information in sets Ji to partially recover the vector x. The recovery will be incomplete,
since in general we do not know if a given i belongs to Overflowt(X) at this stage.

We now show how to augment measurements H to a larger set of measurements H ′, so that
given H ′x we can recover Ji for any i /∈ Overflowt(X). The augmentation uses the notion of row
tensor product [CM06, GSTV06], defined as follows.

Definition 1. Given a v × n matrix V , and a w × n matrix W , the row tensor product V ⊗ W is
a vw × n matrix such that (V ⊗ W )iv+l,j = Vi,j ∗ Wl,j.

In words, the matrix (V ⊗ W ) is obtained by copying each row of V w times, and performing
a coordinate-wise multiplication of each copy with a respective row of W .

In [CM06], the authors provided an explicit construction of an n × R′ matrix B, R′ = (t +

log n)O(1) = 2O(log2 log n), such that for any t-sparse vector x ∈ R
n, one can recover x given Bx

in time R′O(1). We now define H ′ = H ⊗ B. Observe that, given H ′x, we can recover, for each
i /∈ Overflowt(X), the sets Ji and Ui, by applying the reconstruction algorithm of [CM06] to each
such i. Of course, for each i ∈ Overflowt(X), the reconstruction algorithm will report some sets
Ji and Ui as well. To “reduce the damage”, we check for each i if the cardinality of a reported set
Ji exceeds t. If this is the case, we set Ji = ∅; otherwise we leave Ji intact.

We now show how to use the information in Ji to recover x. The recovery process will consist
of two stages. First, we show how to use Ji’s to construct a vector y which is very close to x, in
the sense that ‖x − y‖0 = O(ǫk). We call this procedue Reduce. Second, we show how apply
reduction recursively to completely recover x.

The reduction procedure is as follows. It receives as input the sparsity parameter k, the mea-
surement matrix H ′, and a vector b = Fx for some vector x such that ‖x‖0 ≤ k.

The procedure maintains a vector votes[·] of multisets. Initially, all entries are set to ∅.

Reduce(H ′, b, k)
for l = 1 . . . k

compute Jl and Ul (as described earlier)
for each j ∈ Jl

votes[j] = votes[j] ∪ {uj}
y = 0
for j = 1 . . . n

if votes[j] contains > dA/2 copies of val then yj = val
return y

Lemma 1. The procedure Reduce outputs a vector y such that ‖y − x‖0 = O(ǫk).
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Proof. By equation (2) we know that

∑

i∈Overflowt(X)

|Ji| ≤ ǫ|B|t

Thus, at most ǫ|B|t “correct votes” have been replaced by at most ǫ|B|t “incorrect votes”. Since
dA/2 vote changes are needed to make any entry yj to have an incorrect value, it follows that at
most

2ǫ|B|t

dA/2
= 8ǫ|B| = 8ǫk

entries of y are incorrect.

In the following we set ǫ < 1/16; this implies that ‖x − y‖0 < k/2. Now, it suffices to recover
the difference vector ∆ = x − y. Since ‖∆‖0 < k/2, we can perform this task recursively.

The formal description of the final algorithm is as follows. We prepare the matrices H ′ for
k = r, r/2, . . . , 1; denote them by H ′(r), . . . , H ′(1). The compressed sensing matrix A is equal to
a vertical concatenation of matrices H ′(k), . . . , H ′(1). Then we invoke a function Recover(b, r),
described as follows.

Recover(b, k)
y = Reduce(H ′(k), k, b)
{ We now need to recover x − y}
z = 0
if k > 1 then z =Recover(b − H ′(k)y, k/2)
return y + z
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