
Euclidean Spanners in High Dimensions

Sariel Har-Peled∗ Piotr Indyk† Anastasios Sidiropoulos‡

Abstract

A classical result in metric geometry asserts that any
n-point metric admits a linear-size spanner of dilation
O(log n) [PS89]. More generally, for any c > 1, any
metric space admits a spanner of size O(n1+1/c), and
dilation at most c. This bound is tight assuming the
well-known girth conjecture of Erdős [Erd63].

We show that for a metric induced by a set of
n points in high-dimensional Euclidean space, it is
possible to obtain improved dilation/size trade-offs.
More specifically, we show that any n-point Euclidean
metric admits a near-linear size spanner of dilation
O(
√

log n). Using the LSH scheme of Andoni and Indyk
[AI06] we further show that for any c > 1, there exist

spanners of size roughly O(n1+1/c2) and dilation O(c).
Finally, we also exhibit super-linear lower bounds on the
size of spanners with constant dilation.

1 Introduction

Given a metric M = (X, ρ), a graph G = (X,E)
is a c-spanner for M if every for pair p, q ∈ X the
shortest path distance ρG in the graph G approximates
the original distance ρ(p, q) up to a factor of c, i.e.,
ρ(p, q) ≤ ρG(p, q) ≤ c · ρ(p, q). Of particular interest
are spanners that are sparse, i.e., that contain a sub-
quadratic (ideally linear) number of edges. Spanners are
natural and useful representations of a metric, and as
such they have been a subject of extensive research (see
surveys [Epp00, Zwi01]). In particular, it is known that
any metric admits a (2k− 1)-spanner of size O(n1+1/k)
for any integer k > 0 [PS89]; assuming the girth
conjecture of Erdős [Erd63], this bound is tight. For
simpler metrics that are induced by a set of n points
in a low-dimensional Euclidean space (say, of dimension
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d), the distortion bound can be improved considerably:
there exists a (1 + ε)-spanner with only O(n(1/ε)O(d))
edges [Sal91, Vai91]. For a constant dimension d, this
gives a bound that is linear in n. In particular, there
is quite a bit of work on spanners in low dimensional
Euclidean space (see the book by Narasimhan and Smid
[NS07]). Extension of these techniques implies spanners
for metric with low doubling dimension [HM06].

In this paper we focus on a class of metrics that
lie in between the above two extrema. Specifically, we
consider metrics induced by a set of n points in the
Euclidean space with unbounded dimension, and ask
what is the best sparsity of a t-spanner achievable for
such metrics. Perhaps surprisingly, to the best of our
knowledge, no non-trivial results for such metrics were
known.

Our results. Our first result is a construction of
an O(c)-spanner with O(n1+1/c2 log2 n) edges. For large
values of c, this improves over the n1+O(1/c) bound for
general metric spaces. In particular, this shows that
any Euclidean metric admits a O(

√
log n)-spanner of

near-linear size. We also give a (simpler) construction

that achieves sparsity O(n1+1/c2 log n log ∆), where ∆
is the spread of the metric M , i.e., the ratio between
the largest and the smallest non-zero distances in M .
The latter spanners use only two hops, i.e., for any two
points p, q ∈ X, there is a path in G of length ≤ c·ρ(p, q)
that uses only two edges.

We complement the result by showing that any
2-hop c-spanner for such metrics must use at least
n1+Ω(1/c2) edges. Thus, the exponent in our sparsity
upper bound is asymptotically tight, at least for 2-hop
spanners.

Our techniques. Our upper bound uses locality-
sensitive hashing for the Euclidean metric due to An-
doni and Indyk [AI06]; for c =

√
log n, one can alter-

natively use the Lipschitz partitions of Charikar et al.
[CCG+98]. Both techniques are used to cover the in-
put point set with clusters of a specified diameter δ · c,
such that any pair of points within a distance δ from
each other are included in one of the clusters. By con-
structing such partitions for O(log ∆) values of δ and
connecting them into a graph, the bound follows.

Our lower bound proceeds by analyzing the isoperi-
metric properties of the Euclidean space. In particu-
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lar, we use the tools from the work of Motwani et al.
[MNP07], which showed that the parameters of the
locality-sensitive hash functions of Andoni and Indyk
[AI06] are asymptotically tight. Note that we do not
prove that sparse spanners imply good LSH families, as
such a reduction is not likely to exist. E.g., metrics in-
duced by bounded-degree expander graphs have sparse
spanners by definition, but it can be easily seen that
good LSH families for such metrics do not exist.

2 Near-linear spanners with dilation O(
√

log n)

The basic idea behind our construction is to randomly
partition the point-set into clusters of low diameter,
connect every cluster into a star, and do it repeatedly
to guarantee that all points in certain resolution are
connected. Repeating this in all relevant resolutions
results in the desired spanner.

Definition 2.1. (Lipschitz partition) Let (X, ρ)
be a metric space, and let F be a distribution over
partitions of X. We say that F is (β, δ)-Lipschitz if
the following conditions are satisfied:

(i) For any partition P ∈ supp(F ), for any cluster
C ∈ P , we have diam(C) ≤ δ.

(ii) For every x, y ∈ X,

Pr
P∈F

[P (x) 6= P (y)] ≤ β ρ(x, y)

δ
,

where for every z ∈ X, P (z) denotes the cluster of
P containing x.

Lemma 2.1. ([CCG+98]) For every δ > 0, and d ≥ 1,
there exists a (O(

√
d), δ)-Lipschitz partition of (IRd, ‖ ·

‖2).

Lemma 2.2. (JL lemma [JL84]) For any ε > 0, ev-
ery set of n points in Euclidean space admits an embed-

ding into (IRO(logn/ε2), ‖ · ‖2), with distortion 1 + ε.

2.1 2-Hop spanners We first show how to obtain a
2-hop spanner, with density depending on the spread of
the input metric. The spread of a point set X, is the
ratio between the diameter of X and the closest pair
distance of X.

Theorem 2.1. Let X be a set of n points in Euclidean
space, with spread ∆. Then, there exists a 2-hop
spanner for (X, ‖·‖2) with dilation O(

√
log n), and with

O(n log n log ∆) edges.

Proof. By Lemma 2.2 we may assume, up to a constant
loss in the final dilation, that X ⊂ IRd, where d =

c1 log n, for some fixed c1 > 0. We can further assume
w.l.o.g. that the minimum distance between points in X
is 1.

By Lemma 2.1, we have that there exists some
constant c2 > 0, such that for every δ > 0,
there exists a (c2

√
c1 log n, δ)-Lipschitz partition of

(X, ‖ · ‖2). For every i = {0, . . . , log ∆}, fix a
(c2
√
c1 log n, 2i+1c2

√
c1 log n)-Lipschitz partition Fi of

(X, ‖ · ‖2).
We can now construct a spanner G = (X,E) as

follows. We begin with a graph containing no edges.
For every i ∈ {0, . . . , log ∆} we sample from Fi, k
partitions independently, Pi,1, . . . , Pi,k of X, for some
k = O(log n). For every Pi,j in the resulting family of
partitions, for every cluster C ∈ Pi,j , we pick a vertex
r(C) ∈ C and we connect r(C) to every vertex z ∈ C
with an edge of length ‖r(C)− z‖2. This concludes the
construction of G.

We now analyze the resulting dilation. Fix a pair
of points x, y ∈ X. Suppose ‖x − y‖2 = h ∈ [2i, 2i+1).
Observe that

Pr
P∈Fi

[P (x) 6= P (y)] ≤ 1/2.

Since we sample k = O(log n) partitions from Fi, it
follows that with high probability there exists some
j ∈ {1, . . . , k}, such that Pi,j(x) = Pi,j(y). Conditioned
on this event, we have

ρG(x, y) ≤ O
(√

log n · diam(Pi,j(x))
)

≤ O
(√

log n · ‖x− y‖2
)
.

By taking a union bound over all pairs of points we see
that G has dilation O

(√
log n

)
with positive probability,

which concludes the proof.
The bound on the number of edges of G follows,

since for every random partition Pi,j , we add a forest in
G. Each such forest has at most n− 1 edges, and there
are O(log n log ∆) partitions in total.

2.2 Removing the dependence on the spread
We now show how to remove the dependence on the
spread, by increasing the number of hops. We recall the
following standard definition.

Definition 2.2. (Net) Let (X, ρ) be a metric space,
and let δ > 0. A maximal set Y ⊆ X, such that for any
x, y ∈ Y , ρ(x, y) > δ, is called a δ-net for (X, ρ).

Theorem 2.2. Let X be a set of n points in Euclidean
space. Then, there exists a spanner for (X, ‖ · ‖2) with
dilation O

(√
log n

)
, and with O(n log n log log n) edges.



Proof. By Lemma 2.2 we may assume, up to a constant
loss in the final dilation, that X ⊂ IRd, where d =
c1 log n, for some fixed c1 > 0. We may further assume
w.l.o.g. that the minimum distance between pairs in X
is 1, and the diameter of X is ∆.

By Lemma 2.1, we have that there exists some
constant c2 > 0, such that for every δ > 0,
there exists a (c2

√
c1 log n, δ)-Lipschitz partition of

(X, ‖ · ‖2). For every i = {0, . . . , dlog ∆e}, fix a
(c2
√
c1 log n, 2i+1c2

√
c1 log n)-Lipschitz partition Fi of

(X, ‖ · ‖2).
We can now construct a spanner G = (X,E) as

follows. We begin with a graph containing no edges.
For every i ∈ {0, . . . , dlog ∆e + 2}, let Ni ⊆ X be a
2i−2-net for (X, ‖ · ‖2). Since a net is defined to be a
maximal subset of X satisfying a certain property, we
can pick each Ni so that

X = N0 ⊇ N1 ⊇ . . . ⊇ Ndlog ∆e+2.

We sample from Fi, and independently, k partitions
Pi,1, . . . , Pi,k of Ni, for some k = O(log n). For every
Pi,j in the resulting family of partitions, for every cluster
C ∈ Pi,j , we pick a vertex r(C) ∈ C and we connect
r(C) to every vertex z ∈ C with an edge of length
‖r(C)− z‖2. This concludes the construction of G.

We now analyze the resulting dilation. Let α =
25c2
√
c1. We prove that the dilation is at most α

√
log n

for all pairs x, y ∈ X, by performing induction on
‖x−y‖2. Fix a pair of points x, y ∈ X. By the inductive
hypothesis, for any z, w ∈ X, with ‖z−w‖2 < ‖x−y‖2,
we have ‖z − w‖2 ≤ α

√
log n. Suppose that ‖x− y‖2 ∈

[2i, 2i+1). Pick x′, y′ ∈ Ni, such that ‖x − x′‖2 ≤ 2i−2,
and ‖y − y′‖2 ≤ 2i−2. Observe that

‖x− x′‖ ≤ 2i−2 < 2i ≤ ‖x− y‖2

Therefore, by the induction hypothesis, we have

ρG(x, x′) ≤ α
√

log n‖x− x′‖2(2.1)

Similarly, we obtain that

ρG(y, y′) ≤ α
√

log n‖y − y′‖2(2.2)

By the triangle inequality, we have

‖x′ − y′‖2 ≤ ‖x− y‖2 + ‖x− x′‖2 + ‖y − y′‖2
< 2i+1 + 2i−2 + 2i−2 < 2i+2

It follows that

Pr
P∈Fi+2

[P (x′) 6= P (y′)] < 1/2.

Since we sample k = O(log n) partitions from Fi+2,
it follows that with high probability there exists some

t ∈ {1, . . . , k}, such that Pi+2,t(x
′) = Pi+2,t(y

′). Let
C = Pi+2,t(x

′) = Pi+2,t(y
′) be the cluster containing

both x′, and y′. Conditioned on this event, we have

ρG(x′, y′) ≤ ρG(x′, r(C)) + ρG(y′, r(C))

≤ 2diam(C)

≤ 2i+4c2
√
c1 log n(2.3)

Combining (2.1), (2.2), and (2.3), we obtain

ρG(x, y) ≤ ρG(x′, y′) + ρG(x, x′) + ρG(y′, y)

≤ 2i+4c2
√
c1 log n+ α

√
log n‖x− x′‖2

+ α
√

log n‖y − y′‖2
< 2i+4c2

√
c1 log n+ α

√
log n2i−1

≤ α
√

log n‖x− y‖2.

By taking a union bound over all pairs of points we see
that G has dilation at most α

√
log n = O(

√
log n) with

positive probability.
It remains to bound the number of edges in G.

Let δ = c2
√
c1 log n. Let h = dlog ∆e + 2, and let

I = {0, . . . , h}. We define an auxiliary tree T with
V (T ) =

⋃
i∈I({i} × Ni). For every i ∈ I \ {0}, for

every x ∈ Ni, we have an edge in T between (i, x), and
(i− 1, x). For every i ∈ I \ {0}, for every y ∈ Ni−1 \Ni,
there exists y′ ∈ Ni, with ‖y − y′‖2 ≤ 2i−2. We add an
edge in T between (i− 1, y), and (i, y′). We consider T
as being rooted at the vertex (h, x∗), where Nh = {x∗}.
Consider a branch B = (s, x), (s − 1, x), . . . , (s − l, x)
in T , such that all vertices in B have exactly one
child in T , with l > log δ. This means that for any
i ∈ {s − log δ − 2, . . . , s − l}, the ball of radius 2i+2δ
around x in Ni, contains only x. Recall that Fi is
supported on partitions of Ni into clusters of diameter
at most 2i+1δ. Therefore, for every partition Pi,j chosen
by the algorithm, we have Pi,j(x) = {x}, i.e. the cluster
containing x does not contain any other points. Let
U be the set of vertices v ∈ V (T ) such that either v
has at least two children, or there exists an ancestor
u ∈ V (T ) of v with at least two children, such that the
distance between u and v in T is at most log δ. We have
|U | = O(n log δ). When we pick a random partition
Pi,j ∈ Fi, the total number of edges added to G due to
Pi,j is

∑
C∈Pi,j |C|− 1. This quantity is upper-bounded

by the total number of points that are contained in non-
singleton clusters. By the above discussion, all such
points are contained in U . Therefore, the total number
of edges added in G, that correspond to a partition
Pi,j , is O(|U ∩ ({i} × Ni)|). Since we sample O(log n)
partitions at every level i, it follows that the total
number of edges added to G due to partitions at level
i, is O(|U ∩ ({i} ×Ni)| · log n). Summing over all levels



i ∈ I, we obtain

|E(G)| ≤
∑
i∈I

O(|U ∩ ({i} ×Ni)| · log n)

= O(|U | · log n)

= O(n log n log δ)

= O(n log n log log n),

concluding the proof.

3 General dilation

Our construction for the general dilation uses the notion
of locality-sensitive hashing [HIM12].

Definition 3.1. (Locality-sensitive hashing)
Let H be a family of hash functions mapping IRd to
some universe U . We say that H is (δ, cδ, p1, p2)-
sensitive if for any x, y ∈ IRd it satisfies the following
properties:

(i) If ‖x− y‖2 ≤ δ then Prh∈H [h(x) = h(y)] ≥ p1.

(ii) If ‖x− y‖2 ≥ cδ then Prh∈H [h(x) = h(y)] ≤ p2.

Lemma 3.1. (Andoni & Indyk [AI06]) For any
“scale” δ > 0, dimension d > 0, and c > 1, there exists

a
(
δ, O(c)δ, 1/n1/c2 , 1/n3

)
-sensitive family of hash

functions for IRd.

Theorem 3.1. Let X be a set of n points in Euclidean
space, with spread ∆, and let c > 1. Then, there exists
a 2-hop spanner for (X, ‖ · ‖2) with dilation O(c), and

with O(n1+1/c2 log n log ∆) edges.

Proof. We perform the same construction as in Theo-
rem 2.1, but instead of Lipschitz partitions we use the
family of hash functions given by Lemma 3.1. Specifi-
cally, a random hash function h chosen fromH induces a
partitioning that, by the property (ii) of the LSH func-
tions, guarantees that the diameter of each cluster in
the partition is at most O(cδ) with probability 1− 1/n.

By selecting k = n1/c2 log n partitions for each of the
O(log ∆) scales, and proceeding exactly as in the proof
of Theorem 2.2, the theorem follows.

Theorem 3.2. Let X be a set of n points in Eu-
clidean space, and let c > 1. Then, there exists a
spanner for (X, ‖ · ‖2) with dilation O(c), and with

O(n1+1/c2 log n log c) edges.

Proof. Similarly to the proof of Theorem 3.1, we per-
form the same construction as in Theorem 2.2, but in-
stead of Lipschitz partitions we use the family of hash
functions given by Lemma 3.1. We select k = n1/c2 log n

partitions for each of the O(log ∆) scales, and we pro-
ceed as in the proof of Theorem 2.2. The only modi-
fication needed is that before performing LSH at each
scale δ, we place into singleton clusters all points x,
such that the ball of radius O(cδ) around x contains
only x. We remove all these points that end up in sin-
gleton clusters, and we perform LSH on the remaining
subset. Taking the union of the LSH partition, together
with all singleton clusters, gives the desired partition.
This modification guarantees that in the auxiliary tree
T (as in the proof of Theorem 2.2), for every branch B
of length L, with all vertices having a single child, in
all but the O(log c) top levels, the point x that corre-
sponds to B appears in a singleton cluster; therefore, it
does not contribute any edges to the spanner at these
levels. The rest of the analysis is exactly the same.

4 Lower bound for 2-hop spanners

We will show a dilation/size trade-off for 2-hop Eu-
clidean spanners (i.e. such that for every pair of points
x, y, there exists a low-dilation path in the spanner be-
tween x and y, that contains at most two edges).

We will use the point set X = {0, 1}d, so n = |X| =
2d.

Let 0 < α < β < 1/2, be parameters that can be
optimized later. Let r = αd, and R = βd. Assume
w.l.o.g. that r is an odd integer.

LetG be a 2-hop spanner for the metric ({0, 1}d, `2).
Suppose that G has dilation at most

√
β/α. As usual,

we may assume that every edge {x, y} ∈ E(G) has
length ‖x− y‖2.

For every x ∈ X, let

Sx = {x}∪{y ∈ X : ‖x− y‖1 ≤ R, and {x, y} ∈ E(G)} .

Lemma 4.1. For any x ∈ X, we have |Sx| ≤
ne−d(

1
2−β)

2

.

Proof. Following Motwani et al. [MNP07] we have

|Sx| ≤
R∑
i=0

(
d

i

)
=

βd∑
i=0

(
d

i

)
≤ 2de−d(

1
2−β)

2

.

For any x ∈ X, let

Nx = {y ∈ X : ‖x− y‖ ≤ r} .

Lemma 4.2. For any x ∈ X, we have Nx ⊆⋃
y∈X:x∈Sy Sy.

Proof. Since G is a 2-hop spanner of dilation at most√
β/α, it follows that for every z ∈ Nx, either z ∈ Sx,

or there exists y ∈ X \ {x}, with {x, y} ∈ E(G), and
{z, y} ∈ E(G), and such that ‖x − y‖1 ≤ R, and
‖z − y‖1 ≤ R. Thus, for every z ∈ Nx, there exists
y ∈ X, with {x, z} ⊆ Sy, which implies the assertion.



Lemma 4.3. ([MNP07]) Let r be an odd integer, and
let B ⊆ {0, 1}d, with B 6= ∅. Consider the random
variable QB defined as follows: Choose z ∈ B uniformly
at random, and perform r steps of the standard random
walk on the Hamming cube starting from z. Let QB be
the final point. Then,

Pr[QB ∈ B] ≤
(
|B|
2d

) e2r/d−1

e2r/d+1

.

Following [MNP07], for a point x ∈ X, we define
Wr(x) to be the following random variable: Start from
x, and perform r steps of the standard random walk on
the Hamming cube. Let Wr(x) be the final vertex.

For a pair of points x, y ∈ X, define

px,y =

{
Pr[Wr(x) ∈ Sy] if x ∈ Sy
0 if x /∈ Sy

Lemma 4.4. For any x ∈ X, we have
∑
y∈X px,y ≥ 1.

Proof. We have∑
y∈X

px,y =
∑

y∈X:x∈Sy

Pr[Wr(x) ∈ Sy]

≥ Pr

Wr(x) ∈
⋃

y∈X:x∈Sy

Sy


= Pr

Wr(x) ∈ Nx ∩

 ⋃
y∈X:x∈Sy

Sy

(4.4)

= Pr [Wr(x) ∈ Nx](4.5)

= 1,(4.6)

where (4.4) & (4.6) follow as Pr[Wr(x) ∈ Nx] = 1, and
(4.5) by Lemma 4.2

Theorem 4.1. Let G be a 2-hop spanner
for ({0, 1}d, `2), with no Steiner nodes. Let
0 < α < β < 1/2, such that αd is an odd inte-
ger. Suppose that the dilation of G is at most

√
β/α.

Then,

|E(G)| ≥ 1

2
ne

d( 1
2−β)

2 e2α−1

e2α+1 .

Proof. Let λ = e2α−1
e2α+1 , and let M = ne−d(

1
2−β)

2

. We
have that for any y ∈ X,

Ex∈Sy [px,y] = Pr
x∈Sy

[Wr(x) ∈ Sy]

= Pr[QSy ∈ Sy]

≤
(
|Sy|
n

)λ
(4.7)

≤
(
M

n

)λ
.(4.8)

where (4.7) follows by Lemma 4.3, and (4.8) by Lemma
4.1. We have

n ≤
∑
y∈X

∑
x∈X

px,y(4.9)

=
∑
y∈X
|Sy| · Ex∈Sy [px,y]

≤
∑
y∈X
|Sy|

Mλ

nλ
,(4.10)

where (4.9) follows by Lemma 4.4, and (4.10) by (4.8).
By (4.10) we have

∑
y∈X
|Sy| ≥

n1+λ

Mλ

= ned(
1
2−β)

2
λ

= ne
d( 1

2−β)
2 e2α−1

e2α+1 .

Since |E(G)| ≥ 1
2

∑
y∈X |Sy|, the result follows.

Corollary 4.1. For any c ≥ 1, there exists γ =
γ(c) = Ω(1/c2) satisfying the following. Let d ≥ 1,
and let G be a 2-hop spanner for ({0, 1}d, `2), with
no Steiner nodes, and with dilation at most c. Then,
|E(G)| = Ω(n1+γ).

Proof. Set β = 1/4, α = 1/(4c2). Theorem 4.1 yields
the dilation

√
β/α = c, and the lower bound of

|E(G)| ≥ ned(
1
2−β)

2 e2α−1

e2α+1

> n
1+log2 e(1/4−1/2)2 1+2α−1

e2+1

= n1+Ω(1/c2).

References

[AI06] A. Andoni and P. Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high
dimensions. In Proc. 47th Annu. IEEE Sympos. Found.
Comput. Sci., pages 459–468, 2006.

[CCG+98] M. Charikar, C. Chekuri, A. Goel, S. Guha, and
S. A. Plotkin. Approximating a finite metric by a small
number of tree metrics. In Proc. 39th Annu. IEEE
Sympos. Found. Comput. Sci., pages 379–388, 1998.

[Epp00] D. Eppstein. Spanning trees and spanners. In J.-R.
Sack and Jorge Urrutia, editors, Handbook of Compu-
tational Geometry, pages 425–461. Elsevier, 2000.

[Erd63] P. Erdös. Extremal problems in graph theory. In
Theory Graphs Appl., Proc. Symp. Smolenice, pages
29–36, 1963.



[HIM12] S. Har-Peled, P. Indyk, and R. Motwani. Approx-
imate nearest neighbors: Towards removing the curse
of dimensionality. Theory Comput., page to appear,
2012.

[HM06] S. Har-Peled and M. Mendel. Fast construction of
nets in low dimensional metrics, and their applications.
SIAM J. Comput., 35(5):1148–1184, 2006.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of
lipschitz mapping into hilbert space. Contemporary
Mathematics, 26:189–206, 1984.

[MNP07] R. Motwani, A. Naor, and R. Panigrahy. Lower
bounds on locality sensitive hashing. SIAM J. Discrete
Math., 21(4):930–935, 2007.

[NS07] G. Narasimhan and M. Smid. Geometric spanner
networks. Cambridge University Press, 2007.
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