
Facility Location in Sublinear Time

Mihai Bădoiu1, Artur Czumaj2,�, Piotr Indyk1, and Christian Sohler3,��

1 MIT Computer Science and Artificial Intelligence Laboratory,
Stata Center, Cambridge, Massachusetts 02139, USA

{mihai, indyk}@theory.lcs.mit.edu
2 Department of Computer Science,
New Jersey Institute of Technology,

Newark, NJ 07102, USA
czumaj@cis.njit.edu

3 Heinz Nixdorf Institute and Computer Science Department,
University of Paderborn, D-33102 Paderborn, Germany

csohler@uni-paderborn.de

Abstract. In this paper we present a randomized constant factor ap-
proximation algorithm for the problem of computing the optimal cost of
the metric Minimum Facility Location problem, in the case of uniform
costs and uniform demands, and in which every point can open a facil-
ity. By exploiting the fact that we are approximating the optimal cost
without computing an actual solution, we give the first algorithm for this
problem with running time O(n log2 n), where n is the number of metric
space points. Since the size of the representation of an n-point metric
space is Θ(n2), the complexity of our algorithm is sublinear with respect
to the input size.

We consider also the general version of the metric Minimum Facility
Location problem and we show that there is no o(n2)-time algorithm,
even a randomized one, that approximates the optimal solution to within
any factor. This result can be generalized to some related problems,
and in particular, the cost of minimum-cost matching, the cost of bi-
chromatic matching, or the cost of n/2-median cannot be approximated
in o(n2)-time.

1 Introduction

The design of algorithms operating on massive data sets has received a lot of at-
tention in recent years. The practical motivation of this study is that polynomial-
time algorithms that are efficient in relatively small inputs, may become imprac-
tical for input sizes of several gigabytes. For example, when we consider approx-
imation algorithms for clustering problems in metric spaces then they typically
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have Ω(n2) running time where n is the number of input points. Clearly, such a
running time is not feasible for massive data sets. But for many problems — like
the facility location problem considered in this paper — such a running time is
provably unavoidable. Surprisingly, these lower bounds do not necessarily hold
when one wants to estimate the cost of an optimal solution. In this paper we
will indeed show that one can find a constant factor approximation algorithm
for the metric uncapacitated facility location problem with uniform costs and in
which every point can open a facility, that runs in O(n log2 n) time, that is, in
time sublinear in the input size.

Our approach is motivated by the fact that in many applications it suffices
to know an approximate cost of the facility location problem rather than to
find an approximate solution to the facility location problem. Let us consider
the example that a company wants to invest money and it can relate the cost
of the facility location problem to the possible return on investment. Then it
would first solve an instance of the problem for every market to find out the
most profitable one. In such a situation it is sufficient to know the return on
investment before one decides which market to enter. It is not (yet) necessary
to know how to achieve it. Finally, when one knows which market to enter one
only has to compute a solution to a single instance of the problem. Therefore, if
one could approximate the cost of an optimal solution significantly faster than
finding such a particular approximate solution this would significantly speed up
the market analysis.

Similar arguments hold for another popular application of facility location
algorithms, that of clustering data sets. In particular, it is good to know if the
data can be “well-clustered” before actually attempting to find the clustering.

1.1 Our Results

In this paper we consider the metric Minimum Facility Location problem with
uniform opening costs and demands, and in which every point can open a facil-
ity. We give a randomized O(1)-approximation algorithm for this problem that
runs in time O(n log2 n), where n is the number of metric space points. Since the
size of the representation of an n-point metric space is Θ(n2), the complexity of
our algorithm is sublinear with respect to the input size. No o(n2)-time approx-
imation algorithm for this problem was known before. It has been known that
any constant factor approximation algorithm that returns not only the cost, but
also a solution itself, requires the running time of Ω(n2) [14].

Next, we prove that if the set of facilities and the cities (points that are to
be connected to the facilities) are allowed to be disjoint, then any, even random-
ized, approximation algorithm for the cost of the Minimum Facility Location
that guarantees any bounded approximation ratio for the cost, requires time
Ω(n2). This bound holds even when the opening costs and demands are uni-
form. Furthermore, our proof can be extended to the problems of estimating
the cost of minimum-cost matching, the cost of bi-chromatic matching, and the
cost of k-median for k = n/2; all these problems require Ω(n2) to estimate the
cost of their optimal solution to within any factor. We feel that these results
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demonstrate that most optimization problems for metric instances do not have
sublinear-time algorithms even to estimate well the cost of the optimal solution;
results like our sublinear-time algorithm for a O(1)-factor approximation of the
cost of the optimum solution for the metric uniform Minimum Facility Location
problem are rare (see however, [4, 6, 7]).

1.2 Our Techniques

Our analysis of a sublinear-time algorithm consists of two principal steps: we first
prove the existence of an appropriated estimator for the cost of the Minimum
Facility Location problem and then we show how such an estimator can be
approximated in time O(n log2 n). Our estimator is obtained by extending the
primal-dual approach from [12]: for each point we define an approximation of the
contribution of that point to the total cost, and then we prove that the sum of the
contributions for all the points approximates the cost of the Minimum Facility
Location problem. An important property of our estimator is that it can be
efficiently approximated by adaptive sampling. We first prove that the individual
value of an estimator for any single point can be efficiently approximated by
sampling with the running time depending on the value of the estimator, and
then we apply another adaptive sampling scheme to efficiently approximate the
sum of the estimators. A similar approach has been used in recent sublinear-time
algorithms for estimating the cost of the minimum spanning tree problem in [2]
and [4].

1.3 Definition of the Problem

The formal definition of the general form of the (Metric) Minimum Facility
Location problem is as follows: We are given a metric (P,D), and a subset
F ⊆ P of facilities. For each facility v ∈ F , we are given a nonnegative cost f(v),
and for each point u ∈ P , a nonnegative demand d(u). The problem consists of
finding a set F ⊆ F , so as to minimize

∑
v∈F

f(v) +
∑
u∈P

d(u) · D(u, F ) ,

where D(u, F ) = minv∈F D(u, v).
In this paper we focus on the variant of the facility location problem with

F = P and in which the costs as well as the demands are uniform. That is, for
each v ∈ F , f(v) = c for some c > 0, and for each u ∈ P , d(u) = 1. Observe
that we can assume that c = 1, if we re-scale the given metric, by dividing all
the distances by c. In what follows, we will refer to this variant of the facility
location problem as uniform.

The key property of our formulation, is that we are interested in computing
the cost of the optimal solution, without computing a solution itself. Thus, in
what follows, our task is to approximate the value:

min
F⊆P

|F | +
∑
u∈P

D(u, F ) .
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In the final part of the paper we also consider a more general variant of the
problem when P and F do not have to be the same. We prove in Theorem 2
that in that case there is no hope to obtain a sublinear-time algorithm.

1.4 Previous Work

The Minimum Facility Location problem is one of the most extensively studied
problems in combinatorial optimization. The problem is known to be NP-hard
and the first constant factor approximation algorithm was given by Shmoys et
al. [13]. Several other approximation algorithms are given in [1, 3, 8]. The best
approximation ratio of 1.52, is due to Madhian, Ye, and Zhang [10], while the
best lower bound of 1.463 for the approximation ratio is due to Guha and Khuller
[5].

The first constant factor approximation algorithm with almost linear running
time (that is, the running time of O(n2 log n)) was given by Jain and Vazirani
[9]; Mettu and Plaxton [12] gave a simple O(n2)-time constant approximation
ratio algorithm. Thorup [14] considered the facility location problem in metric
spaces defined by a graph. If the underlying graph has m edges, then even though
the metric space is of size Θ(n2), Thorup gives a constant-factor approximation
algorithm running in time Õ(m); this is a sublinear time for sparse graphs. On the
other hand, it has been shown [14] that for general metric spaces, any constant
factor approximation algorithm, even a randomized one, requires running time
of Ω(n2). Notice that this does not exclude the possibility of approximating the
cost of the Minimum Facility Location problem in sublinear time, in particular,
in time O(npolylog(n)).

2 Estimating the Cost of Uniform Minimum Facility
Location

In this section we present an O(n log2 n) time algorithm that approximates the
cost of the Minimum Facility Location in the uniform case, that is, when the
costs as well as the demands are uniform.

2.1 Preliminaries

Let (P,D) be a metric with a point set P = {p1, . . . , pn}. For any point pi ∈ P ,
and for any r ≥ 0, we denote by B(pi, r) the set of points in P which are at
distance at most r from pi. For each i, 1 ≤ i ≤ n, let ri > 0 be the number
satisfying

∑
p∈B(pi,ri)

(ri − D(pi, p)) = 1 .

Observe that the value
∑

p∈B(pi,r)
(r − D(pi, p)) is continuous and strictly

monotonically increasing with r. Thus, there exists a unique value ri satisfying
the above equality. Moreover, for any i, 1 ≤ i ≤ n, we have 1/n ≤ ri ≤ 1.
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We begin with a lemma that establishes the relation between the value of ri

and the size of B(pi, ri).

Lemma 1. For every i, with 1 ≤ i ≤ n, we have 1
|B(pi,ri)| ≤ ri ≤ 2

|B(pi,ri/2)| .

Proof. By the definition of ri, we have
∑

p∈B(pi,ri)
(ri − D(pi, p)) = 1, which

implies
∑

p∈B(pi,ri)
ri ≥ 1, and thus ri ≥ 1/|B(pi, ri)|. The other inequality

follows directly from the following,

1 =
∑

p∈B(pi,ri)

(ri − D(pi, p)) ≥
∑

p∈B(pi,ri/2)

(ri − D(pi, p)) ≥|B(pi, ri/2)| · ri/2. ��

MP algorithm. In our analysis we will use a simple approximation algorithm
for the Minimum Facility Location problem due to Mettu and Plaxton [12]; we
will refer to that algorithm as the MP algorithm.

1. Compute the value of ri for every pi ∈ P .
2. Sort the input such that r1 ≤ r2 ≤ · · · ≤ rn.
3. For i = 1 to n: if there is no open facility in B(pi, 2 ri) then open the facility

at pi.

Mettu and Plaxton [12] proved that this simple algorithm will return a set
of open facilities for which the total cost is at most 3 times the minimum.

2.2 Cost Estimation

In this section, we show that the sum of the radii approximates the optimal
cost of the facility location to within a constant factor. Our analysis uses the
relation between the sum

∑
pi∈P ri and the cost of optimal solution and that of

the solution obtained by the MP algorithm discussed above.
Let COPT be the cost of an optimal solution. Let also FMP be the set of

facilities computed by the MP algorithm. For this solution given by the MP
algorithm, we define CMP , Cc

MP , and Cf
MP to be the total cost, the connection

cost, and the facility cost respectively.
The following lemma shows that the sum of the radii estimates well COPT .

Lemma 2. 1
4 · COPT ≤ ∑

pi∈P ri ≤ 6 · COPT .

Proof. We first prove the lower bound that COPT ≤ 4 · ∑pi∈P ri and then the
upper bound that

∑
pi∈P ri ≤ 6 · COPT .

Lower bound: Since in the MP algorithm for every pi ∈ P there is an open
facility within distance at most 2 ri (for if not, then the algorithm would open
the facility at pi), we get that 2

∑
pi∈P ri ≥ Cc

MP .
It remains to show that

∑
pi∈P ri is an upper bound for Cf

MP . We first observe
that every pi ∈ P is contained in at most one ball B(pj , rj), for some pj ∈ FMP .
Indeed, if pi ∈ B(pj , rj) ∩ B(pk, rk) for some pj , pk ∈ FMP , j < k, then since
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rj ≤ rk, we would have pj ∈ B(pk, 2 rk). But this implies that the MP algorithm
would not open the facility at pk, a contradiction.

This observation yields:
∑
pi∈P

ri ≥
∑

pj∈FMP

∑
pk∈B(pj ,rj)

rk . (1)

Next, we observe that if pj ∈ FMP and pk ∈ B(pj , rj), then we must have
rj ≤ 2 rk. Indeed, for if not, then we would have B(pk, 2 rk) ⊆ B(pk, rj) ⊆
B(pk, rj + D(pj , pk)) ⊆ B(pj , 2 rj), and thus the MP algorithm would not open
the facility at pj , a contradiction. This observation can be now combined with
(1) to conclude:

∑
pi∈P

ri ≥
∑

pj∈FMP

∑
pk∈B(pj ,rj)

rk ≥
∑

pj∈FMP

∑
pk∈B(pj ,rj)

rj/2

= 1
2 ·

∑
pj∈FMP

rj · |B(pj , rj)| ≥ 1
2 ·

∑
pj∈FMP

1 = 1
2 · Cf

MP ,

where the second inequality follows fromthe fact that rj ≥ 1/|B(pj , rj)|(Lemma1).
Thus, we have 2 · ∑pi∈P ri ≥ Cc

MP /2 + Cf
MP /2 ≥ CMP /2 ≥ COPT /2.

Upper bound: Next, we show that the sum of the radii is not much bigger than
the cost of optimal solution. Before we proceed, we introduce one definition from
[12]. For a set X ⊆ P and a point pi ∈ P , we define

charge(pi,X) = D(pi,X) +
∑

pj∈X

max{0, rj − D(pi, pj)} .

Mettu and Plaxton proved [12] that CMP =
∑

pi∈P charge(pi, FMP ).
Now we are ready to prove that

∑
pi∈P ri ≤ 2 · CMP what will imply that∑

pi∈P ri ≤ 6 · COPT . We have,

2 · CMP = 2 ·
∑
pi∈P

charge(pi, FMP )

≥ 2 ·
⎛
⎝ ∑

pi∈FMP

ri +
∑

pj∈P\FMP

max{rδ(j),D(pj , pδ(j))}
⎞
⎠ ,

where δ(j) denotes the index of the facility in FMP that is closest to pj . We
want to show

2 ·
⎛
⎝ ∑

pi∈FMP

ri +
∑

pj∈P\FMP

max{rδ(j),D(pj , pδ(j))}
⎞
⎠ ≥

∑
pi∈P

ri .

We will show that rj ≤ D(pj , pδ(j)) + rδ(j), which immediately implies the
above inequality because then max{rδ(j),D(pj , pδ(j))} ≥ rj/2. Assume rj >
D(pj , pδ(j)) + rδ(j). In this case we have B(pδ(j), rδ(j)) ⊆ B(pj , rj). We get
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∑
p∈B(pj ,rj)

(rj − D(pj , p)) ≥
∑

p∈B(pδ(j),rδ(j))

(rj − D(pj , p))

>
∑

p∈B(pδ(j),rδ(j))

(rδ(j) − D(pδ(j), p)) = 1 .

This is a contradiction because the definition of rj requires
∑

p∈B(pj ,rj)

(rj − D(pj , p)) = 1 .

To summarize, we have proven that 2 · CMP ≥ ∑
pi∈P ri, and now the lower

bound follows from the fact that CMP ≤ 3 · COPT [12]. ��

2.3 Estimating the Cost of the Facility Location Problem

From the previous section we know that to approximate the cost of the facility
location problem it suffices to estimate the sum

∑
i ri of the radii r1, . . . , rn of

the points p1, . . . , pn. A standard approach to this problem would be to sample
a set of s points (for a suitable s), determine (possibly approximately) their
radii, and then output n times their average radius as an approximation for∑

i ri. However, this approach cannot lead to a sublinear-time algorithm for
the following reason. In general, the time to determine the radius of a point in
Ω(n). For example, this might be the case when the radius is constant, because
there is only a constant number of points within the radius. Therefore, to certify
that a point has constant radius the algorithm must be able to certify that
no more than a constant number of points are within the radius. This task
cannot be done in o(n) time (even if one aims at an approximation and uses
randomization). We also note that, in general, s = Ω(n), if we need a constant
factor approximation of

∑
i ri. This follows from standard Chernoff-Hoeffding

bounds (which are essentially tight in this setting) and the fact that the average
radius can be as small as 1/n. Therefore, this standard sampling approach would
not give us a sublinear time algorithm.

In the following we will show that an adaptive sampling algorithm can esti-
mate the size of ri in O(ri n log n) time (recall that ri < 1). We start with a
constant size sample of points and determine their average radius. If our sample
is too small we double it and continue until we have found a sample of sufficient
size. For the analysis we will parameterize the sample size s by the average value
of the ri. Combining this with the running time of the adaptive algorithm leads
to a sublinear algorithm. Details follow in the next two subsections.

2.4 Estimating ri

In this section we present an algorithm that for a given i, in time O(ri n log n)
approximate the value of ri to within a constant factor, with high probability.

Let us fix i. Our approach of estimating the value of ri is by approximating
the value of r for which B(pi, r) contains approximately 1/r points. This is
formalized in the following lemma.
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Lemma 3. Let j0 be the maximum integer j, with 1 ≤ j ≤ log n, such that
|B(pi, 2−j)| ≥ 2j. Then, we have 2−(j0+1) ≤ ri ≤ 2−j0+1.

Proof. Wewill useLemma 1.By ourassumption about j 0, we have |B(pi, 2−(j0+1))|
< 2j0+1 and |B(pi, 2−j0)| ≥ 2j0 . The first inequality implies that for any r <
2−(j0+1), |B(pi, r)| ≤ |B(pi, 2−(j0+1))| < 2j0+1 < 1/r. This bound together with
the lower bound in Lemma 1 yield that ri ≥ 2−(j0+1). On the other hand, the
inequality |B(pi, 2−j0)| ≥ 2j0 implies that for any r > 2−j0+1, |B(pi, r/2)| ≥
|B(pi, 2−j0)| ≥ 2j0 > 2/r. Therefore, by the upper bound in Lemma 1 we must
have ri ≤ 2−j0+1. ��

Lemma 3 implies that in order to estimate ri, it suffices to estimate the
value of j0. Our algorithm to estimate j0 runs as follows: We begin with set-
ting j = log n, and then we are decreasing j by one until for the first time
|B(pi, 2−j)| ≥ 2j . Since computing |B(pi, 2−j)| exactly requires Ω(n) time,
we only approximate |B(pi, 2−j)| by random sampling. This reduces the run-
ning time. At each step, we pick uniformly at random, and with replacement,
Kj = c 2−j n log n sample points to estimate the value of |B(pi, 2−j)|, where
c is a sufficiently large constant. Let Nj be the number of sample points that
are inside the ball B(pi, 2−j). We return βj = nNj/Kj as the estimator of
|B(pi, 2−j)|.

In the following three lemmas we first analyze the quality of the estimator
βj and then discuss the running time of this sampling scheme.

Lemma 4. If j ≥ j0 + 2, then Pr[βj ≥ 2j ] < 1/poly(n).

Proof. Since j ≥ j0 + 2, it follows that B(pi, 2−j) ⊆ B(pi, 2−(j0+1)). Let q be
the probability that a randomly chosen sample point is in B(pi, 2−j). We have
q ≤ |B(pi, 2−(j0+1))|/n. By the choice of j0, we have |B(pi, 2−(j0+1))| < 2j0+1,
and thus q < 2j0+1/n ≤ 2j−1/n.

The expected number of sample points that fall inside B(pi, 2−j) is E[Nj ] =
qKj < c log n

2 . Applying the Chernoff bound, we obtain

Pr[βj ≥ 2j ] = Pr[Nj ≥ c log n] < 1/poly(n) . ��

Lemma 5. If j ≤ j0 − 1, then Pr[βj ≥ 2j ] > 1 − 1/poly(n).

Proof. Since j ≤ j0 − 1, it follows that |B(pi, 2−j)| ≥ |B(pi, 2−j0)| ≥ 2j0 ≥ 2j+1.
Let q be the probability that a randomly chosen sample point is in B(pi, 2−j).
We have that q ≥ 2j+1/n.

The expected number of sample points that fall inside B(pi, 2−j) is E[Nj ] =
q Kj ≥ 2 c log n. Applying the Chernoff bound, we obtain

Pr[βj ≥ 2j ] = Pr[Nj ≥ c log n] > 1 − 1/poly(n) . ��

Lemma 6. The described procedure estimates the value of ri to within a con-
stant factor in time O(ri n log n), with high probability.



874 M. Bădoiu et al.

Proof. Let j′0 be the estimated value of j0. By Lemmas 4 and 5, it follows that
with high probability, j0 ≤ j′0 ≤ j0 + 1. If we use the value r′i = 2−j′

0 as an
estimation of ri, then by Lemma 3 we obtain that ri/2 ≤ r′i ≤ 4 ri.

Moreover, with high probability, the running time of the procedure is at most∑log n
j=j0

O(Kj) = O(ri n log n). ��

2.5 Estimating the Sum of the Radii

In this section we show how to estimate
∑

i ri in time almost linear in n. Let
us first assume that we know the cost of the solution c, and we sample a set of
s points independently and uniformly at random, where s = Θ(n

c log n). Since
by Lemma 6, the running time to estimate a radius ri is O(ri n log n), the total
expected running time of the algorithm is

E[time] = s · E[one step] = s · O( 1
n ·

∑
i

ri n log n) = O(n log2 n) .

Let xi, for i ∈ {1, 2, . . . , s}, be the radii of the sample points taken by the
algorithm. We have

E[xi] =

∑
j rj

n
.

Let S =
∑s

i=1 xi and hence, E[S] = s·∑ i ri

n = Θ( n
c log n)·∑ i ri

n = Θ
(∑

i ri

c · log n
)
=

Θ(log n). Let ε > 0 be arbitrary. Our goal is to use the value of S as the estimator
of n

s

∑
i ri. To show the quality of this estimator we will bound Pr[|S −E[S]| ≥

ε ·E[S]]. By using the fact that 0 ≤ xi ≤ 1 for every i, we apply a variant of the
Hoeffding inequality, see [11, Theorem 2.3], to obtain

Pr[S ≥ (1 + ε) · E[S]] ≤ e−
ε2·E[S]

2(1+ε/3) ,

Pr[S ≤ (1 − ε) · E[S]] ≤ e−
1
2 ·ε2·E[S] .

This immediately implies the following bound for any 0 < ε ≤ 1,

Pr[|S − E[S]| ≥ ε · E[S]] ≤ 2 e−Θ(ε2·E[S]) = 2 e−Θ(ε2·log n) .

We now show how to remove the assumption that we know the cost of the
solution. We run the algorithm in phases: we start in the first phase by “guessing”
c = n, because we know that the cost of the optimal solution is not bigger than
n. If S < s

n · c, then we start a new phase with estimated cost c/2, and so on.
If S ≥ s

n · c, we return S · n/s as the approximation of the cost. The probability
that the algorithm ends in a bad phase (when S far away from s

n · c) is low,
because Pr[S ≥ (1 + ε) · E[S]] < 1/poly(n), as shown above. Since we need to
have at least one facility in a solution, we have c ≥ 1, therefore we have at most
a logarithmic number of phases.

Note that we only get a constant slowdown by running these phases to guess
c, because the last phase, for the smallest c, dominates the running time of all
the other phases. Thus we obtain the following theorem.



Facility Location in Sublinear Time 875

Theorem 1. There exists a constant factor approximation algorithm for the
uniform case of the Minimum Facility Location problem which runs in time
O(n log2 n) with high probability.

3 Lower Bounds: Estimating the Cost in the General
Case of the Uniform Minimum Facility Location
Problem Requires Ω(n2) Time (Even for Randomized
Algorithms)

In this section, we consider a general case of the Minimum Facility Location
problem in which we do not impose the restriction that F = P (that is, we allow
only for a subset of points to be able to open a facility). We focus again on the
uniform case, and the goal is to minimize the following cost:

min
F⊆F

⎛
⎝|F | +

∑
p∈P

d(p, F )

⎞
⎠ .

Our main result is the following theorem.

Theorem 2. For any � ≥ 1, every approximation algorithm (even a randomized
one) with approximation ratio � for the cost of the Minimum Facility Location
problem as defined above requires time Ω(n2).

Proof. We show the existence of two instances of the metric spaces which are
undistinguishable by any o(n2)-time algorithms and such that the cost of the

Fig. 1. Two metric spaces undistinguishable by any o(n2)-time algorithms whose costs
of the Minimum Facility Location differ by factor �. The perfect matching connecting
F with P is selected at random and the edge e is selected as a random edge from the
matching. We set Q = 2 n (� − 1) + 2. The distances not shown are all equal to n3 �
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Minimum Facility Location in one instance is greater than � times than the one
in the other instance (see Fig. 1).

Let us consider the metric space with 2 n points: n points in P and n points
in F . Take a random perfect matching M between the points in P and F , and
choose an edge e ∈ M at random. Now, we define the distances in (P ∪ F ,D)
according to the following:

– for any e∗ ∈ M \ {e}, D(e∗) = 1,
– D(e) is either 1 or Q = 2n (� − 1) + 2, and
– for any pair of points x, y not connected by an edge from M, D(x, y) = n3 �.

It is easy to see that both instances define properly a metric space (P ∪F ,D).
Furthermore, that for such problem instances, the solution to the Minimum
Facility Location will open all facilities and the cost of the Minimum Facility
Location problem will depend on the choice of D(e): if D(e) = Q then the cost
will be 2n − 1 + Q > 2n�, and if D(e) = 1, then the cost will be 2n. Hence,
any �-factor approximation algorithm for the matching problem must distinguish
between these two problem instances. However, this requires to find if there is an
edge of length Q, and this is known to require time Ω(n2), even if a randomized
algorithm is used. ��

3.1 Extensions

It is not difficult to see that almost an identical proof will also work for estimat-
ing the cost of minimum-cost matching, the cost of minimum-cost bi-chromatic
matching, and also the cost of k-median for k = n/2; all these problems require
Ω(n2) to estimate the cost of their optimal solution to within any factor. No
such lower bounds have been previously known.

Theorem 3. For any � ≥ 1, every approximation algorithm (even a randomized
one) with approximation ratio � for each of the following problems requires time
Ω(n2):

– estimating the cost of minimum-cost matching for a set of n points in a
metric space,

– estimating the cost of minimum-cost bi-chromatic matching for a set of n
points in a metric space,

– estimating the cost of metric k-median for k = n/2.
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