Approximation Algorithms for Embedding Problems

Piotr Indyk
MIT
Low-Distortion Embeddings

• Consider metrics \((X, D_X)\) and \((Y, D_Y)\)

• \((X, D_X)\) c-embeds into \((Y, D_Y)\) if there is a mapping \(f : X \rightarrow Y\) such that, for all \(p, q \in X:\)

\[
D_X(p, q) \leq D_Y(f(p), f(q)) \leq c \cdot D_X(p, q)
\]
Examples of Embedding Results

• [Bourgain’85]: Any n-point metric can be embedded into d-dimensional Euclidean space with distortion $O(\log n)$
 – d can be made $O(\log^2 n)$

• [Johnson-Lindenstrauss’84]: Any n-point subset of a d-dimensional Euclidean space can be embedded into $O(\log n/\varepsilon^2)$ - dimensional Euclidean space with distortion $1+\varepsilon$
Embeddings I

- **Absolute bounds:** for a metric M and a class of metrics C, show that for every $M' \in C$, M' c-embeds into M

- **Problem:** absolute bounds very weak for embedding into, say, \mathbb{R}^2
 - Example: uniform metric: $D(p,q)=1$ for $p \neq q$
 - Cannot be embedded into \mathbb{R}^2 with distortion better than $\approx n^{1/2}$
 ($n^{1/2} \times n^{1/2}$ grid is near-optimal)
Embeddings II

- **Relative bounds**: give an algorithm that, given $M' \in C$ as an input:
 - if M' c-embeds into M,
 - then it finds an $(a*c)$-embedding of M' into M
 for some approximation factor $a>1$.

- MDS-style approach

- But, with **guaranteed** bounds
Results

<table>
<thead>
<tr>
<th>Paper</th>
<th>From</th>
<th>Into</th>
<th>Distortion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DGRR]+</td>
<td>unweighted graphs</td>
<td>line</td>
<td>$O(c^2)$</td>
<td></td>
</tr>
<tr>
<td>[BIRS]=</td>
<td>unweighted graphs</td>
<td>line</td>
<td>$>ac, a>1$</td>
<td>Hardness</td>
</tr>
<tr>
<td>[BDGRRRS’05]</td>
<td>unweighted graphs</td>
<td>line</td>
<td>c</td>
<td>c constant</td>
</tr>
<tr>
<td></td>
<td>unweighted trees</td>
<td>line</td>
<td>$O(c^{3/2} \log c)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sphere</td>
<td>plane</td>
<td>$3c$</td>
<td></td>
</tr>
<tr>
<td>[BIS’04]</td>
<td>unweighted graphs</td>
<td>trees</td>
<td>$O(c)$</td>
<td></td>
</tr>
<tr>
<td>[BCIS’05]</td>
<td>general metrics</td>
<td>line</td>
<td>$\Delta^{3/4} c^{O(1)}$</td>
<td>$\Delta = \text{spread}$</td>
</tr>
<tr>
<td></td>
<td>weighted trees</td>
<td>line</td>
<td>$c^{O(1)}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weighted trees</td>
<td>line</td>
<td>$\Omega(c n^{1/12})$</td>
<td>Hardness</td>
</tr>
<tr>
<td>[BCIS’06]</td>
<td>ultrametric</td>
<td>plane</td>
<td>$O(c^3)$</td>
<td></td>
</tr>
</tbody>
</table>
Sphere \rightarrow Plane

- Given $X \subseteq S^2$, $|X|=n$, approximate the min distortion of $f: X \rightarrow \mathbb{R}^2$
- The distortion could be $\Omega(n^{1/2})$
 - Take X to be an $1/n^{1/2}$-net of S^2
 (each point in S^2 has a point in X within dist. $1/n^{1/2}$)
Algorithm

• Find largest empty cap $B(p,r)$
• Rotate the sphere to put p at the bottom
• Map sphere → plane:
 – “Cut the cap”
 – “Unwrap the sphere”
 – For each point q, the distance $|f(p) - f(q)|$ equal to the geodesic distance from p to q
• Distortion: $O(1/r)$
Analysis – Lower bound

• The set X is an r-net of S^2
• Consider optimal $f: X \rightarrow R^2$, assume non-expansion
• Extend f to (non-expanding) $g: S^2 \rightarrow R^2$
• Borsuk-Ulam: there exist antipodal p,q for which $g(p)=g(q)$
• There exists $p’,q’ \in X$ with $|p’-p| \leq r$, $|q-q’| \leq r$
Lower bound ctd

- Distortion is at least
\[\frac{||p' - q'||}{||g(p') - g(q')||} \geq \frac{(2-2r)}{2r} = \Omega(1/r) \]
Unweighted graphs into a line

• Intuition:
 – Assume we want to embed an “almost line metric” induced by \((V,E)\)
 – Metric should be “long and thin”
 – Distances from one endpoint should be a good approximation of the embedding
Algorithm

• Assume optimal embedding $f: V \rightarrow \mathbb{R}$

• Guess:
 – $v_0 =$ leftmost node in $f(V)$
 – $v_L =$ rightmost node in $f(V)$

• Compute the shortest path $P = v_0, v_1, \ldots v_L$ from v_0 to v_L

• $V_i = \{ v \in V : D(v, v_i) = D(v, P) \}$
Algorithm ctd.

- Compute g:

\[
\begin{array}{cccc}
g(V_1) & c+1 & g(V_2) & c+1 \\
\end{array}
\]

- Can prove each $|V_i| = O(c^2)$
- Each $g(V_i)$ has diameter and distortion $O(|V_i|)$...
MST Embedding

• … because one always get distortion of \(O(n)\) [Mat’90]:
 – Compute an MST \(T\) of the metric \(M=(X,D)\)
 – Split \(T\) into \(T_1, T_2\) by removing longest edge \(e\)
 – Construct \(g:\)
 \[g(T_1), \text{length}(e), g(T_2)\]
 – Distortion:
 • \(\text{cost}(T_1), \text{cost}(T_2) \leq n \text{length}(e)\)
 • \(\text{length}(g(T)) = O(\text{cost}(T))\)
 • For \(p \in T_1, q \in T_2\), distortion of \(D(p, q)\) is
 \(\leq \text{length}(g(T))/\text{length}(e) = O(n)\)
Conclusions

• Approximation algorithms for min distortion embedding
• Guarantees somewhat limited, but provable
• For more info, see
 http://publications.csail.mit.edu/abstracts/abstracts05/low/low.html