Approximation Algorithms for Embedding Problems

Piotr Indyk MIT

Low-Distortion Embeddings

- Consider metrics $\left(X, D_{X}\right)$ and $\left(Y, D_{Y}\right)$
- $\left(X, D_{X}\right)$ c-embeds into $\left(Y, D_{Y}\right)$ if there is a mapping $f: X \rightarrow Y$ such that, for all $p, q \in X$:

$$
D_{X}(p, q) \leq D_{Y}(f(p), f(q)) \leq c D_{X}(p, q)
$$

Examples of Embedding Results

- [Bourgain'85]: Any n-point metric can be embedded into d-dimensional Euclidean space with distortion $O(\log n)$
- d can be made $O\left(\log ^{2} n\right.$)
- [Johnson-Lindenstrauss'84]: Any n-point subset of a d-dimensional Euclidean space can be embedded into $O\left(\log n / \varepsilon^{2}\right)$ dimensional Euclidean space with distortion $1+\varepsilon$

Embeddings I

- Absolute bounds: for a metric M and a class of metrics C, show that for every M' $\in C$, M' c-embeds into M
- Problem: absolute bounds very weak for embedding into, say, R^{2}
- Example: uniform metric: $D(p, q)=1$ for $p \neq q$
- Cannot be embedded into R^{2} with distortion better than $\approx n^{1 / 2}$
($\mathrm{n}^{1 / 2} \times \mathrm{n}^{1 / 2}$ grid is near-optimal)

Embeddings II

- Relative bounds: give an algorithm that, given $\mathrm{M}^{\prime} \in \mathrm{C}$ as an input:
- if M' c-embeds into M,
- then it finds an ($a^{*} c$)-embedding of M^{\prime} into M
for some approximation factor $a>1$.
- MDS-style approach
- But, with guaranteed bounds

Results

Paper	From	Into	Distortion	Comments
[DGRR]+	unweighted graphs	line	$\mathrm{O}\left(\mathrm{c}^{2}\right)$	
[BIRS]=	unweighted graphs	line	>ac, $\mathrm{a}>1$	Hardness
[BDGRRRS'05]	unweighted graphs	line	c	c constant
	unweighted trees	line	$\mathrm{O}\left(\mathrm{c}^{3 / 2} \log \mathrm{c}\right)$	
	sphere	plane	3c	
[BIS'04]	unweighted graphs	trees	O(c)	
[BCIS'05]	general metrics	line	$\Delta^{3 / 4} \mathrm{c}^{\mathrm{O}(1)}$	Δ = spread
	weighted trees	line	c^{O} (1)	
	weighted trees	line	$\Omega\left(\mathrm{c} \mathrm{n}^{1 / 12}\right)$	Hardness
[BCIS'06]	ultrametric	plane	$\mathrm{O}\left(\mathrm{c}^{3}\right)$	

Sphere \rightarrow Plane

- Given $X \subseteq S^{2},|X|=n$, approximate the min distortion of $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}^{2}$
- The distortion could be $\Omega\left(n^{1 / 2}\right)$
- Take X to be an $1 / n^{1 / 2}$ net of S^{2}
(each point in S^{2} has a point in X within dist. $1 / n^{1 / 2}$

Algorithm

- Find largest empty cap $B(p, r)$
- Rotate the sphere to put p at the bottom
- Map sphere \rightarrow plane:
- "Cut the cap"
- "Unwrap the sphere"

- For each point q, the distance $|f(p)-f(q)|$ equal to the geodesic distance from p to q
- Distortion: O(1/r)

Analysis - Lower bound

- The set X is an r-net of S^{2}
- Consider optimal $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}^{2}$, assume nonexpansion
- Extend f to (non-expanding) g: $\mathrm{S}^{2} \rightarrow \mathrm{R}^{2}$
- Borsuk-Ulam: there exist antipodal p,q for which $g(p)=g(q)$
- There exists $p^{\prime}, q^{\prime} \in X$ with $\left|p^{\prime}-p\right| \leq r,\left|q-q^{\prime}\right| \leq r$

Lower bound ctd

- Distortion is at least

$$
\left\|p^{\prime}-q^{\prime}\right\| /\left\|g\left(p^{\prime}\right)-g\left(q^{\prime}\right)\right\| \geq(2-2 r) / 2 r=\Omega(1 / r)
$$

Unweighted graphs into a line

- Intuition:
- Assume we want to embed an "almost line metric" induced by (V,E)
- Metric should be "long and thin"
- Distances from one endpoint should be a good approximation of the embedding

Algorithm

- Assume optimal embedding $f: V \rightarrow R$
- Guess:
- $\mathrm{V}_{0}=$ leftmost node in $f(\mathrm{~V})$
- $\mathrm{V}_{\mathrm{L}}=$ rightmost node in $f(\mathrm{~V})$
- Compute the shortest path $P=v_{0}, v_{1}, \ldots v_{L}$ from v_{0} to v_{L}

- $\mathrm{V}_{\mathrm{i}}=\left\{\mathrm{v} \in \mathrm{V}: \mathrm{D}\left(\mathrm{v}, \mathrm{v}_{\mathrm{i}}\right)=\mathrm{D}(\mathrm{v}, \mathrm{P})\right\}$

Algorithm ctd.

- Compute g:

- Can prove each $\left|\mathrm{V}_{\mathrm{i}}\right|=\mathrm{O}\left(\mathrm{c}^{2}\right)$
- Each $g\left(\mathrm{~V}_{\mathrm{i}}\right)$ has diameter and distortion $\mathrm{O}\left(\left|\mathrm{V}_{\mathrm{i}}\right|\right) \ldots$

MST Embedding

- ... because one always get distortion of $\mathrm{O}(\mathrm{n})$ [Mat'90]:
- Compute an MST T of the metric $\mathrm{M}=(\mathrm{X}, \mathrm{D})$
- Split T into $\mathrm{T}_{1}, \mathrm{~T}_{2}$ by removing longest edge e
- Construct g:

$$
g\left(T_{1}\right), \text { length }(e), g\left(T_{2}\right)
$$

- Distortion:
- $\operatorname{cost}\left(\mathrm{T}_{1}\right), \operatorname{cost}\left(\mathrm{T}_{2}\right) \leq \mathrm{n}$ length (e)
- length $(g(T))=O(\operatorname{cost}(T))$
- For $p \in T_{1}, q \in T_{2}$, distortion of $D(p, q)$ is
 $\leq l e n g t h(g(T)) / l e n g t h(e)=O(n)$

Conclusions

- Approximation algorithms for min distortion embedding
- Guarantees somewhat limited, but provable
- For more info, see
http://publications.csail.mit.edu/abstracts/abstracts05/low/low.html

