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Fourier Transform -
* Discrete Fourier Transform:
— Given: a signal x[1...n]

— Goal: compute the frequency
vector x" where

) _ =21 tf/n

* Very useful tool:
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Known algorithms

Fast Fourier Transform (FFT) computes the
frequencies in time O(n log n)

But, we can do better if we only care about small
number k of “dominant frequencies”

— E.g., recover assuming it is k-sparse (only k non-zero
entries)
Plenty of algorithms known:

— Boolean cube (Hadamard Transform): [KM’91] (cf. [GL])

— Complex FT: [Mansour’92, GGIMS’02, AGS'03, GMS’05,
Iwen’10, Akavia’10]

Best running time: k log® n for some c=0(1)
[GMSO05]

— Improve over FFT for n/k >> log=! n

*Assuming entries of x are integers with O(log n) bits of precision.




Challenges

* Run-time: : k logt n [GMSO05]
* Problem:
—c=14
— Need k <100 to beat FFTW for
n=4,000,000
* Goal:

— Theory: improve over FFT for all
values of k=o(n)

— Improve in practice




Guarantees

* All algorithms randomized, with constant
probability of success, n is a power of 2

* Approximation guarantees:
— Exactly k-sparse case: report exact answer*

— Approximately k-sparse case: report y’ that
satisfies the |,/I, guarantee:

| |X’_y’| |2 < Cmin k-sparse 7’ | |X’_Z’| |2
— Approximately k-sparse case: |_./l, guarantee:

[1X-Y [ e S CMIN gparse 2 | 1X-Z' ] |5 /KY2

*Assuming entries of x are integers with O(log n) bits of precision.



Results
~ Time  Guarantee Comments  Samples

HIKP’12 (nk)¥2log2n  I_/I, Faster than FFTW if k<2000  (nk)¥2log3/2n
(n=4,000,000)
=» HIKP’12b  klogn Exact Faster than FFTW if k log n
k<100,000*
k log nlog(n/k) I,/1, k log n log(n/k)
GHIKPS’13 klogn Exact Average case, k<n?/2 k
k log? n WiR Average case, k<n/2 klogn
IKP’14 k log?n /1, k log n *log® log n

*Further efficiency improvement by 2-5x was achieved by Pueschel-Schumacher’13



Exact Sparsity

HIKP’12b  klogn Exact Faster than FFTW if
k<100,000



Time Domain Signal

Cut off Time signal

First B samples

First attempt

Frequency Domain

e

Frequency Domain

A

Frequency Domain

n-point DFT : 7zlog(7)

x‘x'

n-point DFT of first B
terms : zzlog(7)

XX Boxcar ‘ X ‘* sinc

B-point DFT of first B
terms: Alog(5)

Alias (XX Boxcar)

!

Subsample (X'*sinc)



Issues

Issues: |

— Two non-zero coefficients l
can be very close

Can permute the spectrum pseudo-randomly
by permuting the signal [GGIMS’02,GMS’05]

— Leakage

Replace Boxcar filter by a nicer function

— Finding the support

Recover the index from the phase

e “OFDM trick”

* Matrix Pencil, Prony method [Chiu-Demanet’13, Potts-Kunis-Heider-
Veit’13]




Close non-zero coefficients



Pseudo-random Spectrum

Permutation

Permute time domain signal =2
permute frequency domain

Let
Z, =X, € -2mit B/n
If o is invertible mod n
Z'f =X’l/c f+B
— If nis a power of 2, any odd o is OK
Pseudo-random permutation: select
— B uniformly at random from {0...n-1}

— o uniformly at random from odd
numbers in {0...n-1}

Each access to a coordinate of z,can

be simulated by accessing x . and

multiplication




Reducing leakage



Filters: boxcar filter
(used in[GGIMS02,GMSO05])
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* Boxcar -> Sinc
— Polynomial decay
— Leaking to many buckets



Filters: Gaussian

Filter (time)

* Gaussian -> Gaussian
— Exponential decay
— Leaking to (log n)¥2 buckets



Filters: Sinc X Gaussian

.21
SN 1 I I I
Bin

* Sinc X Gaussian -> Boxcar*Gaussian
— Still exponential decay
— Leaking to <1 buckets

— Sufficient contribution to the correct bucket
e Actually we use Dolph-Chebyshev filters



Finding the support



Finding the supp

y'= B-point DFT (x x F)
= Subsample(x'*F’)

Assume no collisions:

— At most one large frequency hashes in
each bucket.

ort

to

— Large frequency f, hashes to bucket b,

Y p1=X 11F'a +|,eaka'gé
Let x* be the signal time-shifted by t
l.e. X%=X, .
Recall DFT(x®), = x’; e -2mtf/n
y*’= B-point DFT (x® x F)

yt’blzx’fle -2mitfl/n |:’A +l@-ka‘§e

-




Finding the support, ctd

At most one non-zero frequency f, per
bucket b,

We have
Y p1=X11F s

and

yitbllefle -2mitfl/n F’A
So, for t=1 we have

Y p1/Y lpy = € 2
Can get f1 from the phase
Digression:

— Cannot do this when the noise too large
(approximately k-sparse case)

— Instead, read bit by bit, multiply the
runtime and sample complexity

by log(n/k)

21 f1 / n



Putting it together
* We made this:

... act like this:

random hashing

B v

Now we can apply hashing-like compressive sensing methods
(using sparse matrices)



Applications



Applications

GPS synchronization [Hassanieh-Adib-Katabi-Indyk,
MOBICOM’12]

Spectrum sensing [Hassanieh-Shi-Abari-Hamed-Katabi,
INFOCOM’14]

Magnetic Resonance Spectroscopy [Shi-Andronesi-
Hassanieh-Ghazi-Katabi-Adalsteinsson’ ISMRM'13]

Exploiting Sparseness in Speech for Fast Acoustic

Feature Extraction [Nirjon-Dickerson- Stankovic-Shen-Jiang,
Workshop on Mobile Computing Systems and Applications’13]



GPS locking (simplified)
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Realtime GHz Spectrum Sensing
Cambridge, MA January 15 2013

Occupancy from 2GHz to 3GHz (10 ms FFT window)
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3 ADCs with a combined digital

Bandwidth of 150 MHz can acquire a GHz




Decoding Senders Randomly Hopping in a GHz
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SFFT enables realtime GHz sensing and
decoding for low-power portable devices



Conclusions

* O(k log n) times achievable for the k-sparse case

* O(k log nlog(n/k)) achievable for the L2/L2
guarantee

e Better sample bounds

* Questions:
— Higher dimensions
(recent work with M. Kapralov extends the results to any fixed dimension)
— Uniform (a la compressive sensing)
— Model-based

(see also my talk at 1:30 pm on “Approximation-Tolerant Model-Based)
Compressive Sensing”, with C. Hegde and L. Schmidt)



