Recent Developments in the Sparse Fourier Transform

Piotr Indyk MIT

Joint work with Fadel Adib, Badih Ghazi, Haitham Hassanieh, Michael Kapralov, Dina Katabi, Eric Price, Lixin Shi

Fourier Transform

- **Discrete Fourier Transform:** ullet
 - Given: a signal x[1...n]
 - Goal: compute the frequency vector x' where

 $x'_{f} = \Sigma_{t} x_{t} e^{-2\pi i t f/n}$

MHz: 000.00 0.00%

100

40

20

1000

1500

2000

Communications

2500

Very useful tool: •

Video / Audio

Known algorithms

- Fast Fourier Transform (FFT) computes the frequencies in time O(n log n)
- But, we can do better if we only care about small number k of "dominant frequencies"
 - E.g., recover assuming it is k-sparse (only k non-zero entries)
- Plenty of algorithms known:
 - Boolean cube (Hadamard Transform): [KM'91] (cf. [GL])
 - Complex FT: [Mansour'92, GGIMS'02, AGS'03, GMS'05, Iwen'10, Akavia'10]
- Best running time: k log^c n for some c=O(1) [GMS05]
 - Improve over FFT for $n/k >> \log^{c-1} n$

*Assuming entries of x are integers with O(log n) bits of precision.

Challenges

- Run-time: : k log^c n [GMS05]
- Problem:

 $-c \approx 4$

- Need k <100 to beat FFTW for n=4,000,000
- Goal:
 - Theory: improve over FFT for all values of k=o(n)
 - Improve in practice

Guarantees

- All algorithms randomized, with constant probability of success, n is a power of 2
- Approximation guarantees:
 - Exactly k-sparse case: report exact answer*
 - Approximately k-sparse case: report y' that satisfies the I_2/I_2 guarantee:

 $||x'-y'||_{2} \leq C \min_{k-sparse z'} ||x'-z'||_{2}$

– Approximately k-sparse case: I_{∞}/I_2 guarantee:

 $||x'-y'||_{\infty} \leq C \min_{k-\text{sparse } z'} ||x'-z'||_{2}/k^{1/2}$

*Assuming entries of x are integers with O(log n) bits of precision.

Results

		Time	Guarantee	Comments	Samples
→	HIKP'12	(nk) ^{1/2} log ^{3/2} n	$ _{\infty}/ _{2}$	Faster than FFTW if k<2000 (n=4,000,000)	(nk) ^{1/2} log ^{3/2} n
	HIKP'12b	k log n	Exact	Faster than FFTW if k<100,000*	k log n
		k log n log(n/k)	₂ / ₂		k log n log(n/k)
	GHIKPS'13	k log n	Exact	Average case, k <n<sup>1/2</n<sup>	k
		k log² n	$ _{2}/ _{2}$	Average case, k <n<sup>1/2</n<sup>	k log n
	IKP'14	k log² n	₂ / ₂		k log n *log ^c log n

*Further efficiency improvement by 2-5x was achieved by Pueschel-Schumacher'13

Exact Sparsity

	Time	Guarantee	Comments
HIKP'12b	k log n	Exact	Faster than FFTW if k<100,000

Issues

- Issues:
 - Two non-zero coefficients
 - can be very close
 - Can permute the spectrum pseudo-randomly by permuting the signal [GGIMS'02,GMS'05]
 - Leakage

Replace Boxcar filter by a nicer function

- Finding the support
 - Recover the index from the phase
 - "OFDM trick"
 - Matrix Pencil, Prony method [Chiu-Demanet'13, Potts-Kunis-Heider-Veit'13]

Close non-zero coefficients

Pseudo-random Spectrum Permutation

- Permute time domain signal → permute frequency domain
- Let

 $z_t = x_{\sigma t} e^{-2\pi i t \beta/n}$

- If σ is invertible mod n
 - $z'_{f} = x'_{1/\sigma f+\beta}$
 - If n is a power of 2, any odd σ is OK
- Pseudo-random permutation: select
 - $-\beta$ uniformly at random from {0...n-1}
 - σ uniformly at random from odd numbers in {0...n-1}
- Each access to a coordinate of z_t can be simulated by accessing x_{σt} and multiplication

Reducing leakage

- Boxcar -> Sinc
 - Polynomial decay
 - Leaking to many buckets

- Gaussian -> Gaussian
 - Exponential decay
 - Leaking to (log n)^{1/2} buckets

Filters: Sinc × Gaussian

- Sinc × Gaussian -> Boxcar*Gaussian
 - Still exponential decay
 - Leaking to <1 buckets
 - Sufficient contribution to the correct bucket
- Actually we use Dolph-Chebyshev filters

Finding the support

Finding the support

- y'= B-point DFT (x × F)
 = Subsample(x'*F')
- Assume no collisions:
 - At most one large frequency hashes into each bucket.
 - Large frequency f_1 hashes to bucket b_1

 $y'_{b1} = x'_{f1}F'_{\Delta} + leakage$

- Let x^τ be the signal time-shifted by τ,
 i.e. x^τ_t=x_{t-τ}
- Recall DFT(x^{τ})_f = $x'_{f} e^{-2\pi i \tau f/n}$
- $y^{\tau} = B$ -point DFT $(x^{\tau} \times F)$ $y^{\tau'}_{b1} = x'_{f1} e^{-2\pi i \tau f1/n} F'_{\Delta} + leakage$

Finding the support, ctd

- At most one non-zero frequency ${\rm f_1}$ per bucket ${\rm b_1}$
- We have

$$y'_{b1} = x'_{f1} F'_{\Delta}$$

and

$$y'_{b1} = x'_{f1} e^{-2\pi i \tau f1/n} F'_{\Delta}$$

• So, for τ=1 we have

$$y'_{b1}/y'_{b1}^{1} = e^{-2\pi i f1/n}$$

- Can get f1 from the phase
- Digression:
 - Cannot do this when the noise too large (approximately k-sparse case)
 - Instead, read bit by bit, multiply the runtime and sample complexity by log(n/k)

Putting it together

• We made this:

Now we can apply hashing-like compressive sensing methods (using sparse matrices)

Applications

Applications

- GPS synchronization [Hassanieh-Adib-Katabi-Indyk, MOBICOM'12]
- Spectrum sensing [Hassanieh-Shi-Abari-Hamed-Katabi, INFOCOM'14]
- Magnetic Resonance Spectroscopy [Shi-Andronesi-Hassanieh-Ghazi-Katabi-Adalsteinsson' ISMRM'13]
- Exploiting Sparseness in Speech for Fast Acoustic Feature Extraction [Nirjon-Dickerson- Stankovic-Shen-Jiang, Workshop on Mobile Computing Systems and Applications'13]

Realtime GHz Spectrum Sensing

Cambridge, MA January 15 2013

Occupancy from 2GHz to 3GHz (10 ms FFT window)

3 ADCs with a combined digital Bandwidth of 150 MHz can acquire a GHz

sFFT enables realtime GHz sensing and decoding for low-power portable devices

Conclusions

- O(k log n) times achievable for the k-sparse case
- O(k log n log(n/k)) achievable for the L2/L2 guarantee
- Better sample bounds
- Questions:

– Higher dimensions

(recent work with M. Kapralov extends the results to any fixed dimension)

- Uniform (a la compressive sensing)

Model-based

(see also my talk at 1:30 pm on "Approximation-Tolerant Model-Based) Compressive Sensing", with C. Hegde and L. Schmidt)