Recent Developments in the
Sparse Fourier Transform

B |

Piotr Indyk
MIT

Fourier Transform

 Discrete Fourier Transform:

— Given: a signal a[1...n] DFT

oMl {l
— Goal: compute the "M

; 1o
s
oL *\’U\.m_
T T T
0 1000 2000
e

frequency vector a where
A _ —2T[| tf n 0.5 0.6 0.7 0.8 0.9
a;=2,a,e 2t

* Very useful tool

MHz: 000.00

UAEC DUTE i o
: delayi
o g
Video / Audio ; - _
compression denoising Communication Convolutions

Known algorithms

Fast Fourier Transform (FFT) computes the
frequencies in time O(n log n)

Not known if the bound can be improved
But, we can do better if we only care about

small number k of “dominant frequencies” .

— E.g., recover assuming DFT is k-sparse _
(only k non-zero entries) Signal spectrum
Plenty of algorithms known:

— Boolean cube (Hadamard Transform): [KM’91]
(cf. [GL])

— Complex FT: [Mansour’92, GGIMS’02, AGS’03,
GMS’05, Iwen’10, Akavia’10]
Best running time: k log®n for some
c=0(1) [Gilbert-Muthukrishnan-
Strauss’05]

— Improve over FFT for k << n/log“* n
*Assuming entries of x are integers with O(log n) bits of precision.

Challenges

* Run-time: : k logt n [GMSO05]
* Problem:
—c=14
— Need k <100 to beat FFTW for
n=4,000,000
 Recent line of research:

— Theory: improve over FFT for all
values of k=o(n)

— Improve in practice, applications

L

Plan

Introduction

Results overview

Techniques

Applications

Future directions/open problems

Guarantees

* All algorithms randomized, with constant
probability of success, n is a power of 2

* Recovery guarantees:
— Exactly k-sparse case: report exact answer*

— Approximately k-sparse case: report k-sparse €
that satisfies the |,/l, guarantee:

| |a-€] |2S C min k-sparse (| |a-0] |2

*Assuming entries of x are integers with O(log n) bits of precision.

Recent results
 Tme sparsity Comments Samples

HIKP’12, klogn Exact Faster than FFTW if | klogn
HIKP’12b k<100,000*
(n=4,000,000)

k log nlog(n/k) Approximate Faster than FFTW if klog nlog(n/k)

k<2000
GHIKPS’13, klogn Exact Average case,k<n1®* k
PR’13
klog? n Approximate Average case,k<nt® k108N
IKP’14 k logZn Approximate k log n *log®log n
IK’14 nlogn Approximate k log n

*Further efficiency improvement by 2-5x was achieved by Pueschel-Schumacher’13

**GHIKPS proved it for 6=1/2

Exact Sparsity

HIKP’12b klogn Exact Faster than FFTW if
k<100,000

Intuition I: Signal Processing

Time Domain Signal

Cut off Time signal

First B samples

Frequency Domain

/\.
A

|

&W\/\/\/\/\"‘) .‘V\/\/\/ l\\/\/\/ \/\J\/\/‘

Frequency Domain

A

Frequency Domain

n-point DFT : 7zlog(7)

a mmp i

n-point DFT of first B
terms : zlog(n)

Rectxa EEP Sinc*3

B-point DFT of first B
terms: Alog(5)

Alias(Rect x a)

Subsample(Sinc * a)

Intuition Il: Computer Science
* Make this:

previous slide

... more like this:

| balls into random bins
| (hashing)

Issues

Issues: ,

— Where is hashing ? Need some l
random rearrangement

Show how to permute the spectrum pseudo-random
by permuting the signal
(or just assume randomness)

— Leakage

Replace Boxcar filter by a nicer function

— |dentify the isolated coefficients
Recover the index from the phase
* “OFDM trick” (see also [A. K. Paul’72])

e Special case of Matrix Pencil, Prony method [Chiu-Demanet’13, Potts-
Kunis-Heider-Veit'13]

Spectral hashing

Pseudo-random Spectrum Permutation

[Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02, Gilbert-
Muthukrishnan-Strauss’05]

Permute time domain signal =2
permute frequency domain ;
Let a |

alt =a_ e -2mi t B/n ‘ ’

If ois invertible mod n

't =154 l
— If nis a power of 2, any odd o is OK

Pseudo-random permutation: select
— B uniformly at random from {0...n-1}

— o uniformly at random from odd |
numbers in {0...n-1} | ‘

Each access to a coordinate of a’, can
be simulated by accessing a_, and
multiplication

Reducing leakage

Filters: boxcar filter
(used in[GGIMS02,GMSO05])

|||||||||||

20
1.5
15
1.0 1
10
0.5F 1
5
0'GO 20 40 60 80 100 0

* Rect -> Sinc
— Polynomial decay
— Leaking to many buckets

Filters: Gaussian

Filter (time)

* Gaussian -> Gaussian
— Exponential decay
— Leaking to (log n)¥2 buckets

Filters: Sinc X Gaussian

.21
SN 1 I I I
Bin

* Sinc Gaussian -> Rect*Gaussian
— Still exponential decay
— Leaking to <1 buckets

— Sufficient contribution to the correct bucket
e Actually we use Dolph-Chebyshev filters

Finding the support

Finding the support

C= B-point DFT (a x G)
= Subsample(3*G)

Assume no collisions:

— At most one large frequency hashes into
each bucket.

— Large frequency f, hashes to bucket b,

Cp1 =81 Gy + %
Let a® be the signal time-shifted by T,
l.e. a%=a, .
Recall DFT(aY); = &; e “2Mit/n
¢'= B-point DFT (a® x G)

AT —A L -2mitfi/n
Cpy=8pe 20T G, + lgpkeage

Finding the support, ctd

At most one non-zero frequency f, per
bucket b,

We have
Cp1=d11 Gy

and

etblzéfle 2mitfl/n GA
So, for t=1 we have

~ 1l — 4 -2mifl/n

Cpy/Cy = /
Can get f1 from the phase
Digression:

— Cannot do this when the noise too large
(approximately k-sparse case)

— Instead, read bit by bit, multiply the
runtime and sample complexity

by log(n/k)

21 f1 / n

Applications

A p p | | Cdad t| ons JUI WU RN

GPS synchronization [Hassanieh-Adib-Katabi-
Indyk, MOBICOM’12]

Spectrum sensing [Hassanieh-Shi-Abari-Hamed-
Katabi, INFOCOM’14]

Magnetic Resonance Spectroscopy [Shi-
Andronesi-Hassanieh-Ghazi-Katabi-
Adalsteinsson’ ISMRM'13]

Exploiting Sparseness in Speech for Fast

Acoustic Feature Extraction [Nirjon-Dickerson-
Stankovic-Shen-Jiang, Workshop on Mobile Computing
Systems and Applications’13]

Occupancy %

Convolution

100
80
60
40
20

0
2 21 22 28 24 25 26 27 28 29 3

delay

@

Occupancy from 2GHz to 3GHz (10 ms FFT window)

g

Frequency (GHz)

I

How Does GPS Work?

Compute the distance to
the GPS satellites - 2

distance = propagation delay speed of light

How to Compute the Propagation Delay?

Code S

¢ [inrumuniomrmunrnmuny

>

How to Compute the Propagation Delay?

Code

3@ Jinrmmumimrm

|| AT O A ey

I
>

delay

Code arrives shifted by propagation delay

How to Compute the Propagation Delay?

VA TR e

A
\‘\
l >

. delay

WWWWWWWWM
o

~ Spike

Correlation |

\

Spike determines the delay

Our GPS Design

Received FET

Signal

Peak at delay

FFT Stage

>

|

FFT of
Code

>

/
IFFT—

Output

IFFT Stage

Our GPS Design

Peak at delay

/
o IFFT —

I Output

FFT of
Code

IFFT Stage

Our GPS Design

Peak at delay

@— IFFT

IFFT Stage

Sparse Fourier

Transform

Our GPS Design

Peak at delay

/
o IFFT —_|

I Output

FFT of
Code

Sparse IFFT

Our GPS Design

Received

Signal

FFT

FFT Stage

Output is not sparse

4

Cannot Use the Sparse
Fourier Transform

>

|

FFT of
Code

rq

IFFT

Pea?t delay

Output

Sparse IFFT

Our GPS Design

Received FET

Signal

Peak at delay

FFT Stage

>

|

FFT of
Code

rq

/
FFT—_

Output

Sparse IFFT

/

Input to next stage

Our GPS Design

Peak at delay

/
eceived
RSignal — FFT X ’lFFT—)L“l_“_‘J

I Output
FFT of
Code
Subsampled FFT Sparse IFFT

Need only few gm) Sub-samples its
samples of FFT output input

Our GPS Design

Peak at delay

/
eceived
RSignal — FFT X ’lFFT—)L“L_“_J

I Output
FFT of
Code
Subsampled FFT Sparse IFFT

Aliasing input FFT Subsampling IFFT Aliasing output

Lowest complexity GPS algorithm that maintains

performa nce guarantees

Experiments

* Run over real satellite signals from various
locations in the Boston area.

14 15 17 18 22 30

Results

12

o) < ™ o\ ~— o

(suolfiw u1) suoneladQ Jo JaquinN

Satellite ID

Number of Operations (in millions)

Results

- FFT Baseline

5 9 12 14 15 17 18

Satellite ID

22 30

Number of Operations (in millions)

Results

BN Our GPS Design
~ FFT Baseline

5 9 12 14 15 17 18 22 30
Satellite ID

* Reduce computations for all the satellites
* Min reduction is 35% and can go all the way to 75%

Realtime GHz Spectrum Sensing
Cambridge, MA January 15 2013

Occupancy from 2GHz to 3GHz (10 ms FFT window)
100
X80 |
>
8 60 t-——>r Al Q1L 1
4y}
g— 40 t+-——t+4 - 1
O I
S 20 G T

3 ADCs with a combined digital

Bandwidth of 150 MHz can acquire a GHz

SFFT Chlp [O. Abari, E. Hamed, H. Hassanieh, A. Agarwal,

D. Katabi, A. P. Chandrakasan, and V. Stojanovic, ISSCC’14]

= ‘ T .
ey
I I

D R LF L oL T

Handles n=3%210= 746946 and sparsity up to 750

Conclusions

O(k log n) times achievable for the k-sparse
case

O(k log n log(n/k)) achievable for the L2/L2
guarantee

Better sample bounds, especially for average
case

Applications

Further directions

Higher dimensions

— Algorithms extend to higher dimensions, but
* HIKP’12 has (log n)dterm [GHIKPS’13, Rauh-Arce’13)
* IKP’14 has ddterm

— Better dependence on the dimension ?
Uniform (as opposed to randomized) guarantee
— Possible in compressive sensing (RIP property)

— Analogs for Sparse Fourier Transform ?
* Best known result: O(k?log® n) [lwen’10]

Model-based. E.g., what if coefficients cluster in blocks ?

— In compressive sensing one can reduce number of measurements
[Eldar-Mishali’09, Baraniuk-Cevher-Duarte’Hegde’09]

— Improving Sparse Fourier Transform ?
* One block case: [Plonka-Wannenwetsch’15]

Off-grid frequencies
— ~k log3k [Boufounos-Cevher-Gilbert-Li-Strauss’12]

References

* Bibliography:
— http://groups.csail.mit.edu/netmit/sFFT/paper.html
* Course: Algorithms and Signal Processing,
Lectures 1..6

https://stellar.mit.edu/S/course/6/fal4/6.893/
materials.html

* Survey: Recent developments in the sparse
Fourier transform: A compressed Fourier
transform for big data, Signal Processing
Magazine, 2014.

