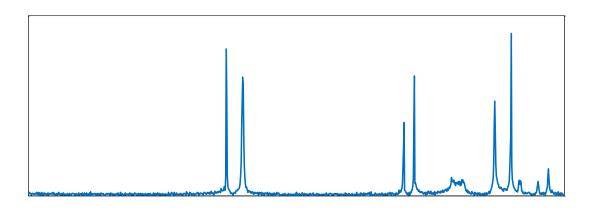
Recent Developments in the Sparse Fourier Transform

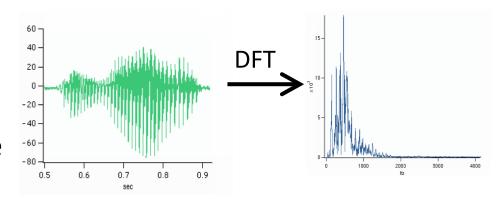


Piotr Indyk MIT

Fourier Transform

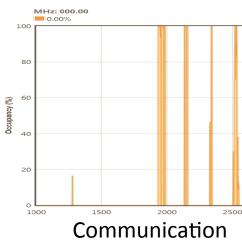
- Discrete Fourier Transform:
 - Given: a signal a[1...n]
 - Goal: compute the frequency vector â where

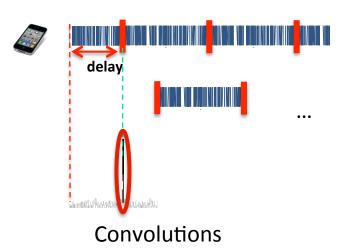
$$\hat{a}_f = \Sigma_t a_t e^{-2\pi i tf/n}$$



Very useful tool

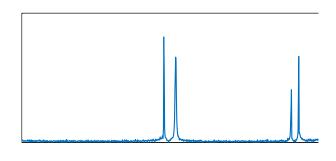
Video / Audio compression denoising





Known algorithms

- Fast Fourier Transform (FFT) computes the frequencies in time O(n log n)
- Not known if the bound can be improved
- But, we can do better if we only care about small number k of "dominant frequencies"
 - E.g., recover assuming DFT is k-sparse (only k non-zero entries)
- Plenty of algorithms known:
 - Boolean cube (Hadamard Transform): [KM'91] (cf. [GL])
 - Complex FT: [Mansour'92, GGIMS'02, AGS'03, GMS'05, Iwen'10, Akavia'10]
- Best running time: k log^c n for some c=O(1) [Gilbert-Muthukrishnan-Strauss'05]
 - Improve over FFT for $k \ll n/\log^{c-1} n$

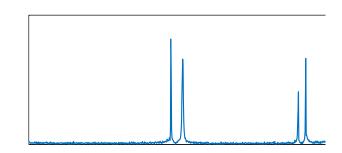


Signal spectrum

^{*}Assuming entries of x are integers with O(log n) bits of precision.

Challenges

- Run-time: : k log^c n [GMS05]
- Problem:
 - $-c \approx 4$
 - Need k < 100 to beat FFTW for n=4,000,000
- Recent line of research:
 - Theory: improve over FFT for all values of k=o(n)
 - Improve in practice, applications



Plan

- Introduction
- Results overview
- Techniques
- Applications
- Future directions/open problems

Guarantees

- All algorithms randomized, with constant probability of success, n is a power of 2
- Recovery guarantees:
 - Exactly k-sparse case: report exact answer*
 - Approximately k-sparse case: report k-sparse \hat{c} that satisfies the I_2/I_2 guarantee:

$$||\hat{a}-\hat{c}||_2 \le C \min_{k-\text{sparse } \hat{u}} ||\hat{a}-\hat{u}||_2$$

^{*}Assuming entries of x are integers with $O(\log n)$ bits of precision.

Recent results

	Time	Sparsity	Comments	Samples
HIKP'12, HIKP'12b	k log n	Exact	Faster than FFTW if k<100,000* (n=4,000,000)	k log n
	k log n log(n/k)	Approximate	Faster than FFTW if k<2000	k log n log(n/k)
GHIKPS'13, PR'13	k log n	Exact	Average case,k <n<sup>1-δ**</n<sup>	k
	k log² n	Approximate	Average case,k <n<sup>1-δ</n<sup>	k log n
IKP'14	k log² n	Approximate		k log n *logc log n
IK'14	n log ^c n	Approximate		k log n

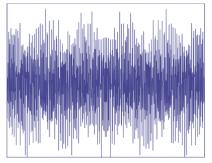
^{*}Further efficiency improvement by 2-5x was achieved by Pueschel-Schumacher'13

^{**}GHIKPS proved it for δ =1/2

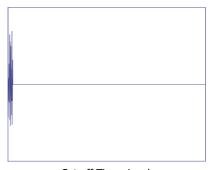
Exact Sparsity

	Time	Sparsity	Comments
HIKP'12b	k log n	Exact	Faster than FFTW if k<100,000

Intuition I: Signal Processing

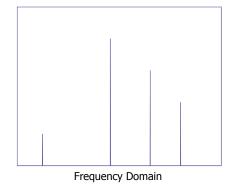


Time Domain Signal

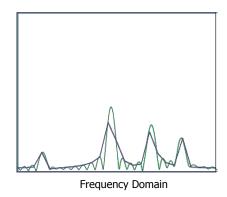


Cut off Time signal

First B samples



Frequency Domain



n-point DFT : $n\log(n)$

n-point DFT of first B terms : $n\log(n)$

Rect × a

Sinc * â

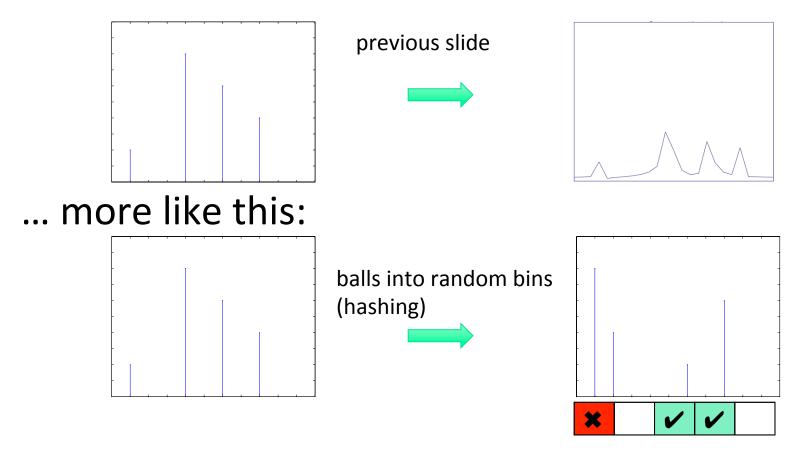
B-point DFT of first B terms: $B\log(B)$

Alias(Rect \times a)

Subsample(Sinc * â)

Intuition II: Computer Science

Make this:



Issues

Issues:

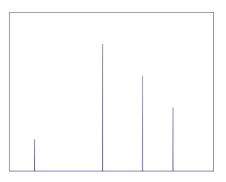
Where is hashing? Need some random rearrangement

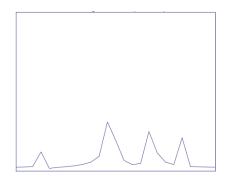
Show how to permute the spectrum pseudo-random by permuting the signal (or just assume randomness)

Replace Boxcar filter by a nicer function

Recover the index from the phase

- "OFDM trick" (see also [A. K. Paul'72])
- Special case of Matrix Pencil, Prony method [Chiu-Demanet'13, Potts-Kunis-Heider-Veit'13]





Spectral hashing

Pseudo-random Spectrum Permutation

[Gilbert-Guha-Indyk-Muthukrishnan-Strauss'02, Gilbert-Muthukrishnan-Strauss'05]

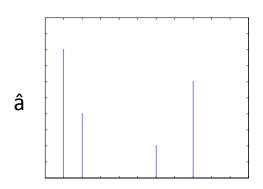
- Permute time domain signal -> permute frequency domain
- Let

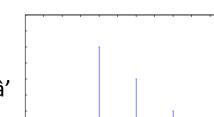
$$a'_t = a_{\sigma t} e^{-2\pi i t \beta/n}$$

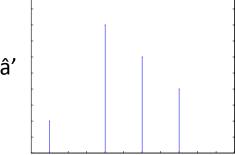
If σ is invertible mod n

$$\hat{a}'_f = \hat{a}_{1/\sigma f + \beta}$$

- If n is a power of 2, any odd σ is OK
- Pseudo-random permutation: select
 - β uniformly at random from {0...n-1}
 - σ uniformly at random from odd numbers in {0...n-1}
- Each access to a coordinate of a', can be simulated by accessing a_{ot} and multiplication

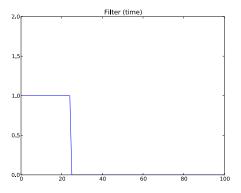


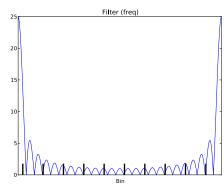




Reducing leakage

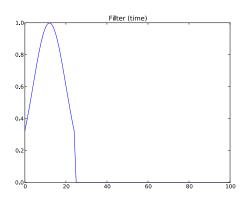
Filters: boxcar filter (used in[GGIMS02,GMS05])

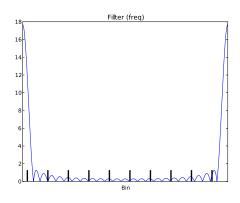




- Rect -> Sinc
 - Polynomial decay
 - Leaking to many buckets

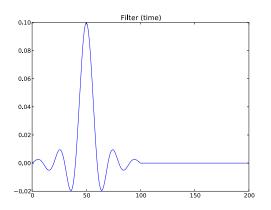
Filters: Gaussian

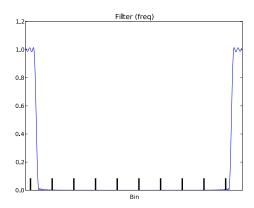




- Gaussian -> Gaussian
 - Exponential decay
 - Leaking to $(\log n)^{1/2}$ buckets

Filters: Sinc × Gaussian





- Sinc Gaussian -> Rect*Gaussian
 - Still exponential decay
 - Leaking to <1 buckets</p>
 - Sufficient contribution to the correct bucket
- Actually we use Dolph-Chebyshev filters

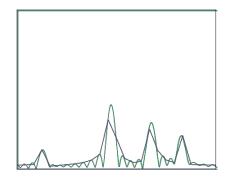
Finding the support

Finding the support

- ĉ= B-point DFT (a × G)
 - = Subsample(â*Ĝ)

- At most one large frequency hashes into each bucket.
- Large frequency f_1 hashes to bucket b_1 $\hat{c}_{b1} = \hat{a}_{f1} \hat{G}_{\Delta} + leakage$
- Let a^{τ} be the signal time-shifted by τ , i.e. $a^{\tau}_{t}=a_{t-\tau}$
- Recall DFT(a^{τ})_f = $\hat{a}_f e^{-2\pi i \tau f/n}$
- $\hat{c}^{\tau} = B$ -point DFT ($a^{\tau} \times G$)

$$\hat{c}_{b1}^{\tau} = \hat{a}_{f1} e^{-2\pi i \tau f1/n} \hat{G}_{\Delta} + leakage$$



Finding the support, ctd

- At most one non-zero frequency f₁ per bucket b₁
- We have

$$\hat{c}_{b1} = \hat{a}_{f1} \hat{G}_{\Delta}$$

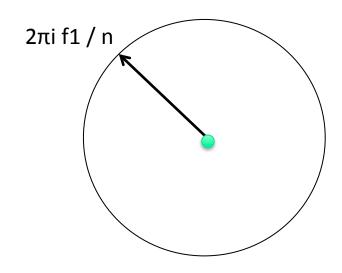
and

$$\hat{c}_{b1}^{\tau} = \hat{a}_{f1} e^{-2\pi i \tau f1/n} \hat{G}_{\Delta}$$

• So, for $\tau=1$ we have

$$\hat{c}_{h1}/\hat{c}_{h1}^1 = e^{-2\pi i f 1/n}$$

- Can get f1 from the phase
- Digression:
 - Cannot do this when the noise too large (approximately k-sparse case)
 - Instead, read bit by bit, multiply the runtime and sample complexity by log(n/k)

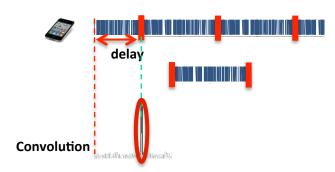


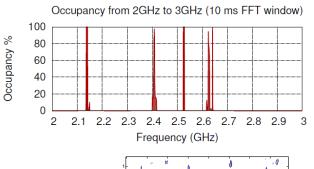
Applications

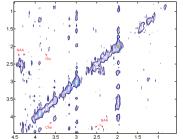
Applications

- GPS synchronization [Hassanieh-Adib-Katabi-Indyk, MOBICOM'12]
- Spectrum sensing [Hassanieh-Shi-Abari-Hamed-Katabi, INFOCOM'14]

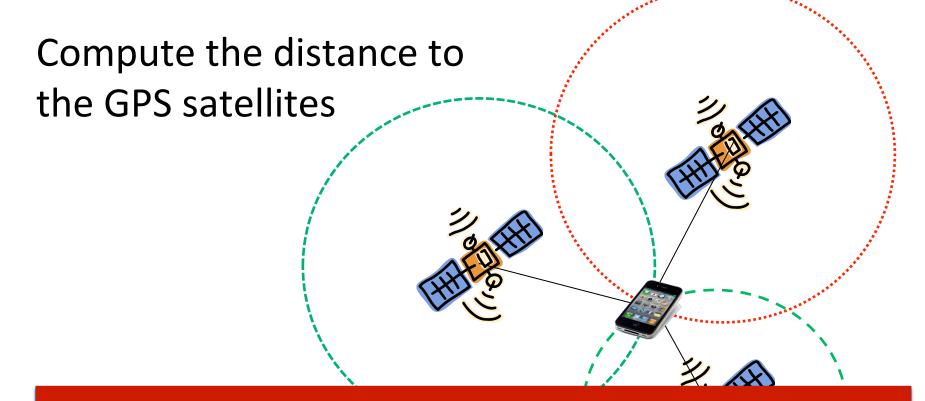
- Magnetic Resonance Spectroscopy [Shi-Andronesi-Hassanieh-Ghazi-Katabi-Adalsteinsson' ISMRM'13]
- Exploiting Sparseness in Speech for Fast Acoustic Feature Extraction [Nirjon-Dickerson-Stankovic-Shen-Jiang, Workshop on Mobile Computing Systems and Applications'13]
- •





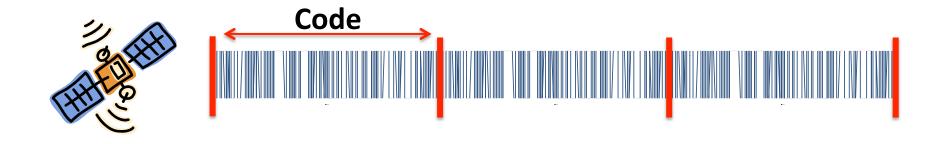


How Does GPS Work?



distance = propagation delay × speed of light

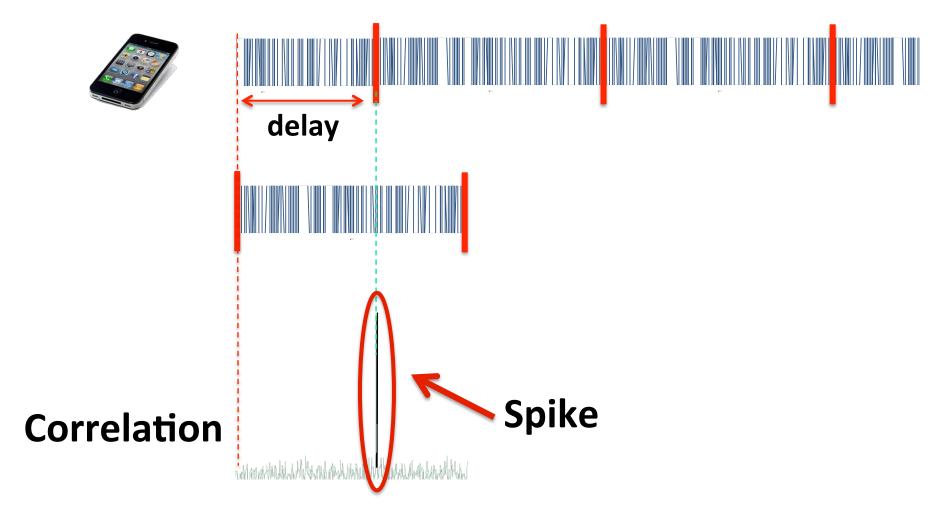
How to Compute the Propagation Delay?



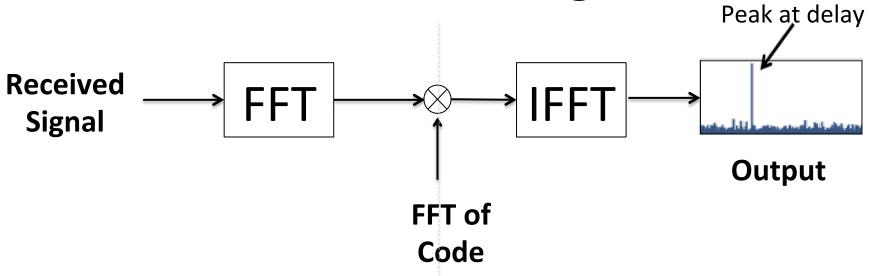
How to Compute the Propagation Delay?

Code arrives shifted by propagation delay

How to Compute the Propagation Delay?

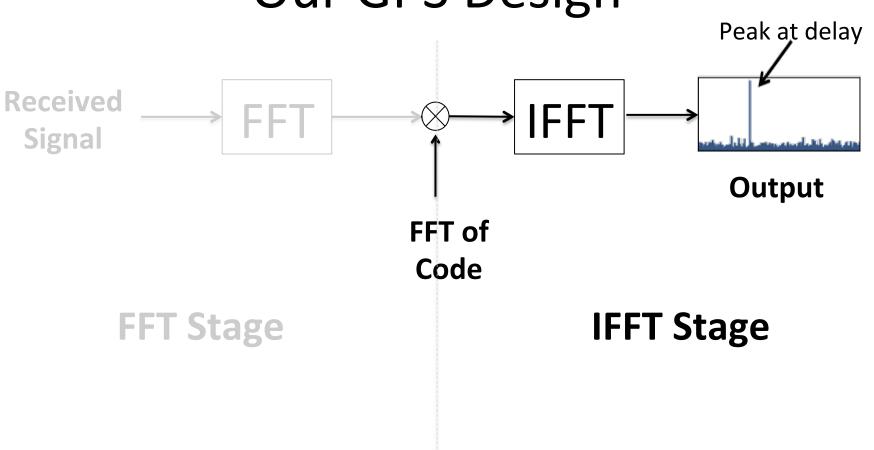


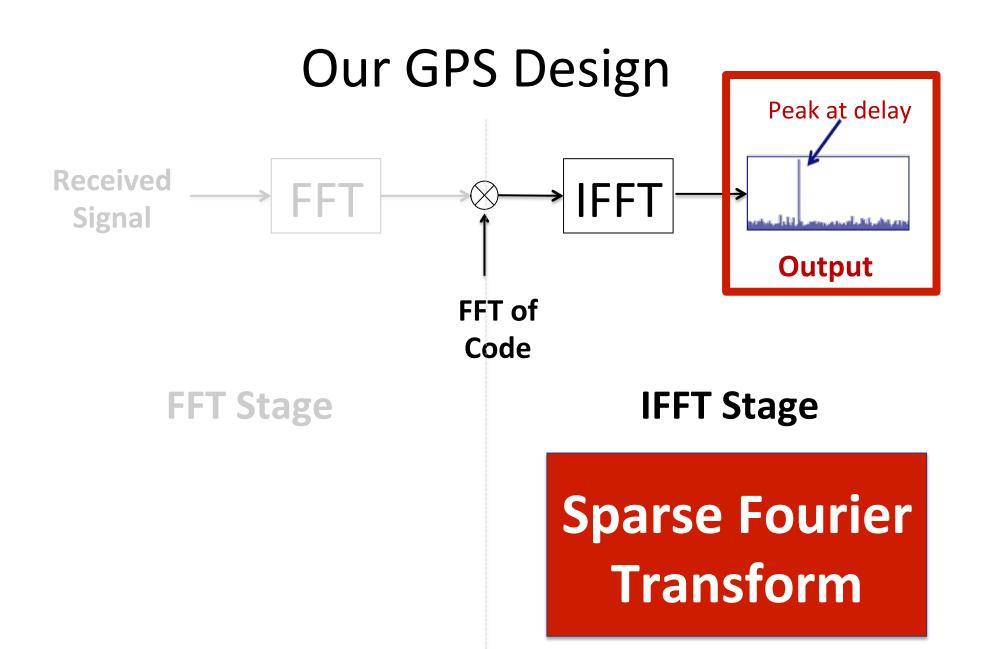
Spike determines the delay

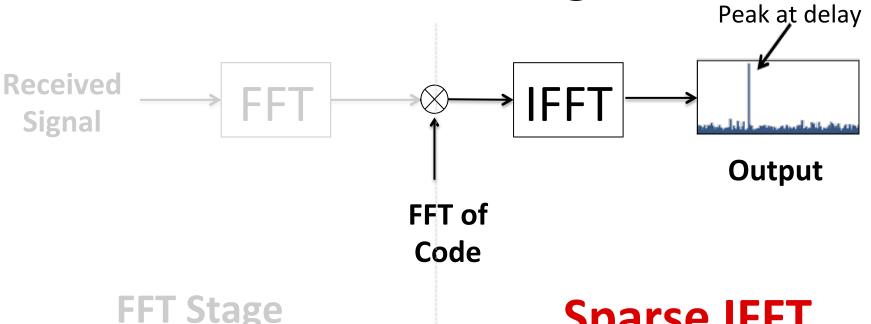


FFT Stage

IFFT Stage

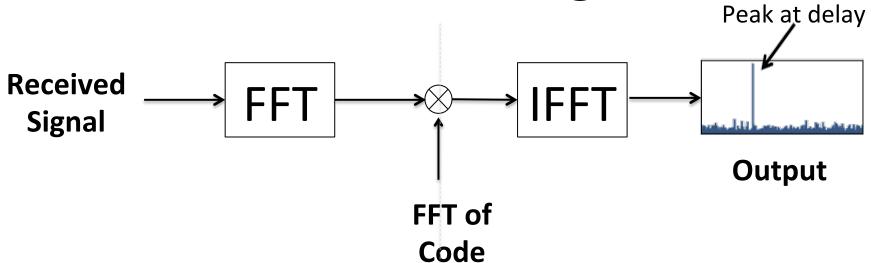






FFT Stage

Sparse IFFT

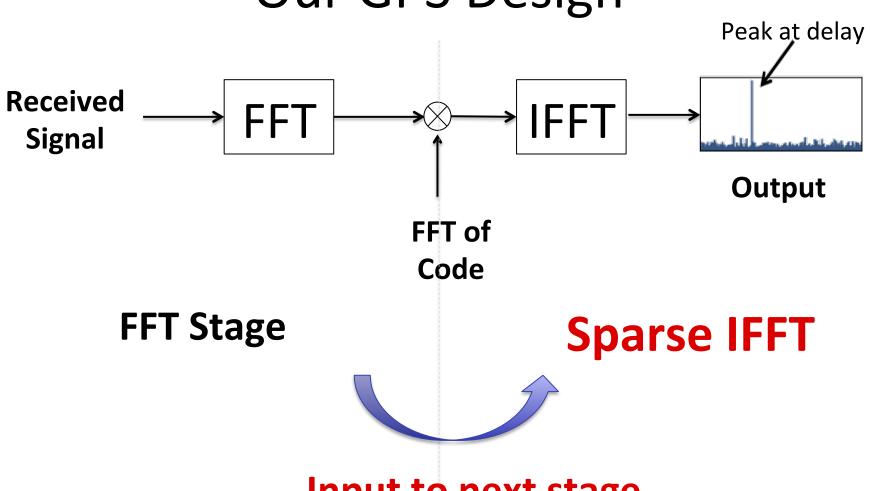


FFT Stage

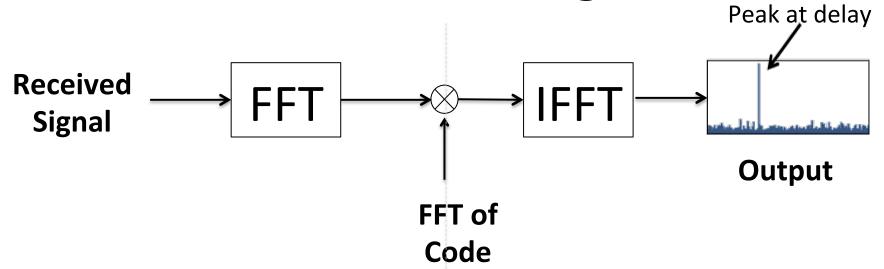
Sparse IFFT

Output is not sparse

Cannot Use the Sparse Fourier Transform



Input to next stage

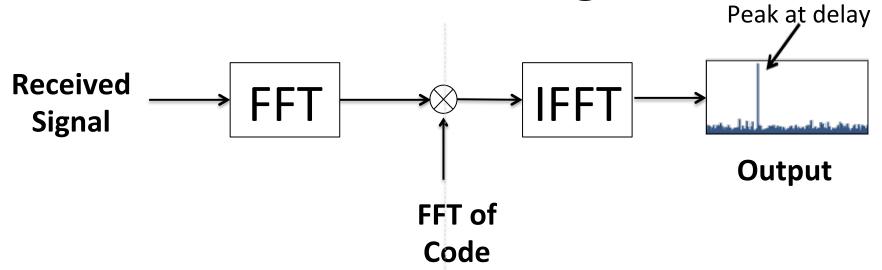


Subsampled FFT

Need only few samples of FFT output

Sparse IFFT

Sub-samples its input



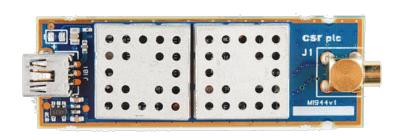
Subsampled FFT

Sparse IFFT

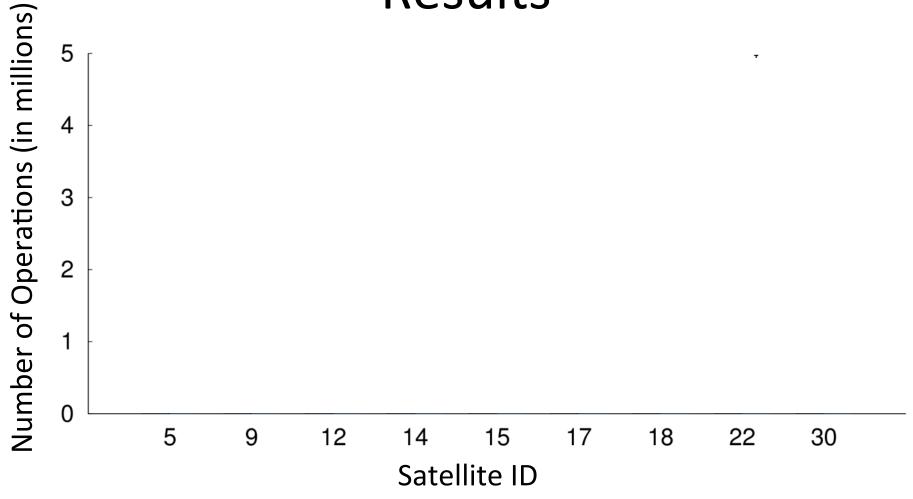
Aliasing input FFT Subsampling IFFT Aliasing output

Lowest complexity GPS algorithm that maintains performance guarantees

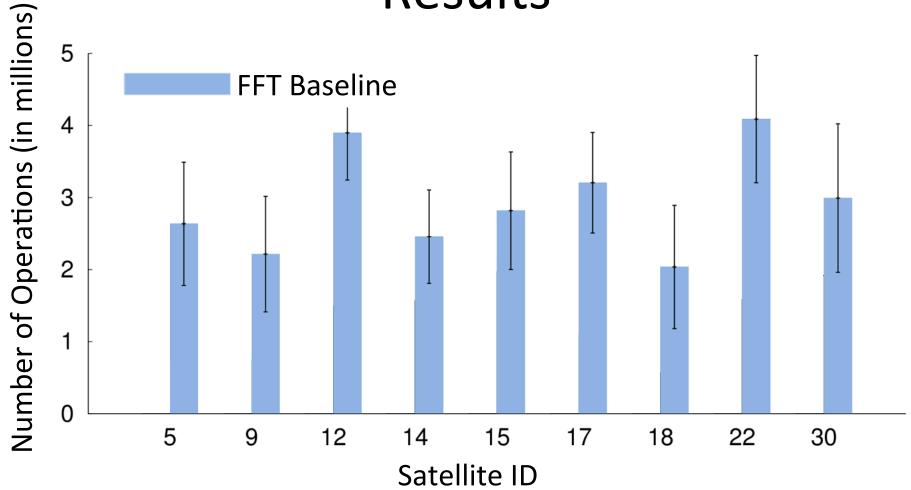
Experiments



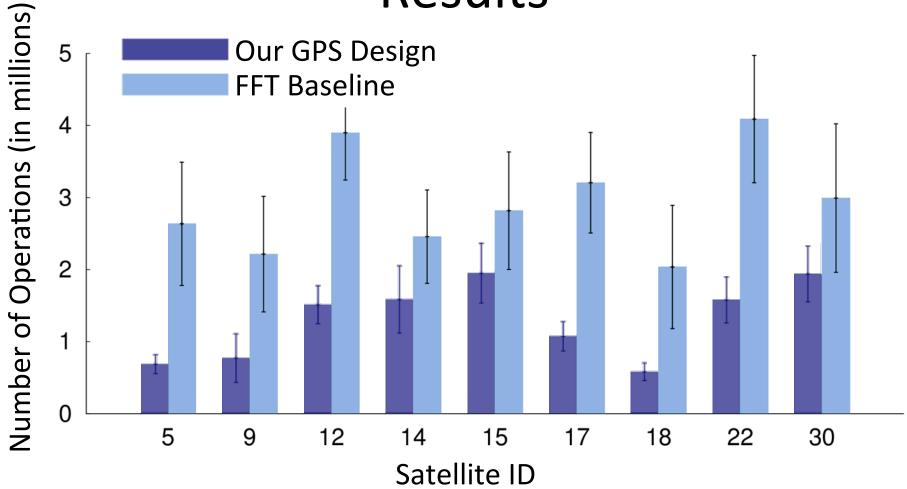
• Run over real satellite signals from various locations in the Boston area.



Results



Results

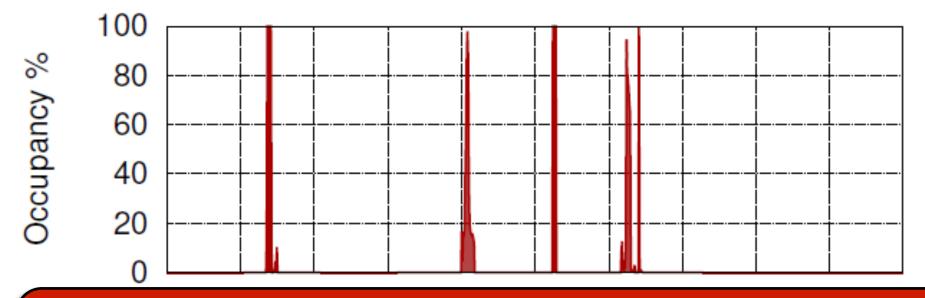


- Reduce computations for all the satellites
- Min reduction is 35% and can go all the way to 75%

Realtime GHz Spectrum Sensing

Cambridge, MA January 15 2013

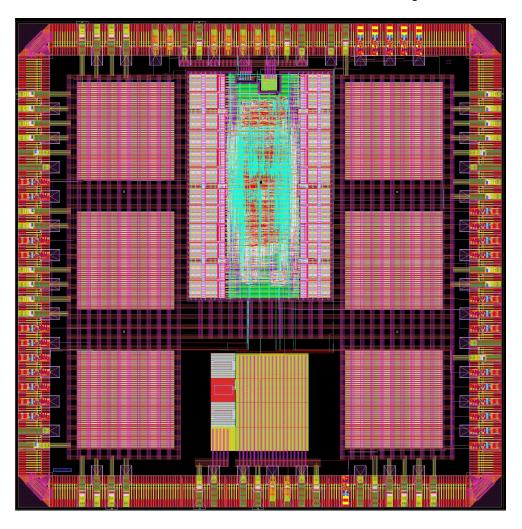
Occupancy from 2GHz to 3GHz (10 ms FFT window)



3 ADCs with a combined digital Bandwidth of 150 MHz can acquire a GHz

SFFT chip [O. Abari, E. Hamed, H. Hassanieh, A. Agarwal,

D. Katabi, A. P. Chandrakasan, and V. Stojanovic, ISSCC'14]



Handles $n=3^62^{10} = 746946$ and sparsity up to 750

Conclusions

- O(k log n) times achievable for the k-sparse case
- O(k log n log(n/k)) achievable for the L2/L2 guarantee
- Better sample bounds, especially for average case
- Applications

Further directions

- Higher dimensions
 - Algorithms extend to higher dimensions, but
 - HIKP'12 has (log n)^d term [GHIKPS'13, Rauh-Arce'13)
 - IKP'14 has dd term
 - Better dependence on the dimension ?
- Uniform (as opposed to randomized) guarantee
 - Possible in compressive sensing (RIP property)
 - Analogs for Sparse Fourier Transform ?
 - Best known result: O(k² logc n) [lwen'10]
- Model-based. E.g., what if coefficients cluster in blocks?
 - In compressive sensing one can reduce number of measurements [Eldar-Mishali'09, Baraniuk-Cevher-Duarte'Hegde'09]
 - Improving Sparse Fourier Transform ?
 - One block case: [Plonka-Wannenwetsch'15]
- Off-grid frequencies
 - − ~ k log³k [Boufounos-Cevher-Gilbert-Li-Strauss'12]

References

- Bibliography:
 - http://groups.csail.mit.edu/netmit/sFFT/paper.html
- Course: Algorithms and Signal Processing, Lectures 1..6

https://stellar.mit.edu/S/course/6/fa14/6.893/materials.html

 Survey: Recent developments in the sparse Fourier transform: A compressed Fourier transform for big data, Signal Processing Magazine, 2014.