Algorithms for Finding Nearest Neighbors (and Relatives)

Piotr Indyk

Helsinki, May 2007

Definition

- Given: a set P of n points in R^{d}
- Nearest Neighbor: for any query q, returns a point $p \in P$ minimizing ||p-q\|
- r-Near Neighbor: for any query q, returns a point $p \in P$ s.t. $\|p-q\| \leq r$ (if it exists)

Nearest Neighbor: Motivation

- Learning: nearest neighbor rule

Helsinki, May 2007

MNIST data set "2"

Helsinki, May 2007

Nearest Neighbor: Motivation

- Learning: nearest neighbor rule
- Database retrieval
- Vector quantization, compression/clustering

Brief History of NN

Helsinki, May 2007

The case of $d=2$

- Compute Voronoi diagram
- Given q, perform point location
- Performance:
- Space: O(n)
- Query time: O(log n)

The case of $d>2$

- Voronoi diagram has size $n^{0(d)}$
- We can also perform a linear scan: O(dn) time
- That is pretty much all what known for exact algorithms with theoretical guarantees
- In practice:
- kd-trees work "well" in "low-medium" dimensions

Approximate Near Neighbor

- c-Approximate Nearest Neighbor: build data structure which, for any query q
- returns $p^{\prime} \in P,\|p-q\| \leq c r$,
- where r is the distance to the nearest neighbor of q

Plan

- Intro
- (Main memory) data structures:
- Today: Kd-trees
- Low-medium dimensions
- A proud member of a (huge) family of tree-based data structures
- Tomorrow: Locality Sensitive Hashing (LSH)
- Dimensionality does not really matter (but other things do)

Kd-tree

Kd-trees [Bentley'75]

- Not the most efficient solution in theory
- Everyone uses it in practice
- Algorithm:
- Choose x or y coordinate (alternate)
- Choose the median of the coordinate; this defines a horizontal or vertical line
- Recurse on both sides
- We get a binary tree:
- Size: O(N)
- Depth: O(log N)
- Construction time: O(N log N)

Kd-tree: Example

Each tree node v corresponds to a region Reg(v).

Helsinki, May 2007

Searching in kd-trees

- Range Searching in 2D
-Given a set of n points, build a data structure that
 for any query rectangle R, reports all points in R

Kd-tree: Range Queries

1. Recursive procedure, starting from $v=r o o t$
2. Search (v, R):
a) If v is a leaf, then report the point stored in v if it lies in R
b) Otherwise, if $\operatorname{Reg}(\mathrm{v})$ is contained in R, report all points in the subtree of v
c) Otherwise:

- If Reg(left(v)) intersects R, then Search(left(v),R)
- If Reg(right(v)) intersects R , then Search(right(v),R)

Query demo

Helsinki, May 2007

Query Tinne Analysis

- We will show that Search takes at most $O\left(n^{1 / 2}+P\right)$ time, where P is the number of reported points
- The total time needed to report all points in all sub-trees (i.e., taken by step b) is $O(P)$
- We just need to bound the number of nodes v such that Reg(v) intersects R but is not contained in R. In other words, the boundary of R intersects the boundary of Reg(v)
- Will make a gross overestimation: will bound the number of Reg(v) which are crossed by any of the 4 horizontal/vertical lines

Query Time Continued

- What is the max number $\mathrm{Q}(\mathrm{n})$ of regions in an n-point kd-tree intersecting (say, vertical) line ?
-If we split on $x, Q(n)=1+Q(n / 2)$
-If we split on $y, Q(n)=2^{*} Q(n / 2)+2$
-Since we alternate, we can write $Q(n)=3+2 Q(n / 4)$
- This solves to $O\left(n^{1 / 2}\right)$

Analysis demo

Helsinki, May 2007

Exercises

- Construct a set of n points, and a range query R such that:
$-R$ does not contain any of the points
- The search procedure takes $\Omega\left(n^{1 / 2}\right)$ time
- What happens if the query range is a circle, not a square?

Back to $(1+\varepsilon)$-Nearest Neighbor

- We will solve the problem using kd-trees
- "Analysis"...under the assumption that all leaf cells of the kd-tree for P have bounded aspect ratio
- Assumption somewhat strict, but satisfied in practice for most of the leaf cells
- We will show
$-O\left(\log n * O(1 / \varepsilon)^{d}\right)$ query time
- O(n) space (inherited from kd-tree)

ANN Query Procedure

- Locate the leaf cell containing q
- Enumerate all leaf cells C in the increasing order of distance from q (denote it by r)
- Keep updating p' so that it is the closest point seen so far

- Note: r increases, dist(q,p') decreases
- Stop if $\operatorname{dist}\left(\mathrm{q}, \mathrm{p}^{\prime}\right)<(1+\varepsilon)^{*} r$

Analysis

- Let R be the value of r before the last cell was examined
- Each cell C seen (except maybe for the last one) has diameter > ε R
- ...Because if not, then the point p in C would have been a (1+ $)$-approximate nearest neighbor (by now), so we would have stopped earlier

$$
\operatorname{dist}(\mathrm{q}, \mathrm{p}) \leq \operatorname{dist}(\mathrm{q}, \mathrm{C})+\operatorname{diameter}(\mathrm{C}) \leq \mathrm{R}+\varepsilon \mathrm{R}=(1+\varepsilon) \mathrm{R}
$$

- The number of cells with diameter εR, bounded aspect ratio, and touching a ball of radius R is at most $O(1 / \varepsilon)^{d}$
- Ball of radius R has volume $\mathrm{O}(\mathrm{R})^{\mathrm{d}}$
- Each cell has volume $\Omega(\varepsilon R / \text { sqrt }\{d\})^{\text {d }}$

Refs

- JL Bentley, Binary Search Trees Used for Associative Searching, Communications of the ACM, 1975.
- S Arya, DM Mount, NS Netanyahu, R Silverman, AY Wu , An optimal algorithm for approximate nearest neighbor searching fixed dimensions, Journal of the ACM (JACM), 1998.
- D Lowe, 1992.

