
Helsinki, May 2007

Approximate Proximity Problems
in High Dimensions

via Locality-Sensitive Hashing
Piotr Indyk

Helsinki, May 2007

Recap

• Recap:
• Nearest Neighbor in Rd

– Motivation: learning, retrieval, compression,..
• Exact: curse of dimensionality

– Either O(dn) query time, or nO(d) space
• Approximate (factor c=1+ε)

– Kd-trees: optimal space, O(1/ε)d log n query
time

Helsinki, May 2007

Today

• Algorithms with polynomial dependence
on d
– Locality-Sensitive Hashing

• Experiments etc

Helsinki, May 2007

Approximate Near Neighbor
• c-Approximate r-Near Neighbor: build data

structure which, for any query q:
– If there is a point p∈P, ||p-q|| ≤ r
– it returns p’∈P, ||p-q|| ≤ cr

• Reductions:
– c-Approx r-Close Pair
– c-Approx Nearest Neighbor reduces to c-Approx

Near Neighbor
(log overhead)

– One can enumerate all approx near neighbors
→ can solve exact near neighbor problem

– Other apps: c-approximate Minimum Spanning
Tree, clustering, etc.

q

r

cr

Helsinki, May 2007

Approximate algorithms

• Space/time exponential in d [Arya-Mount-et al],
[Kleinberg’97], [Har-Peled’02], [Arya-Mount-…]

• Space/time polynomial in d [Kushilevitz-Ostrovsky-
Rabani’98], [Indyk-Motwani’98], [Indyk’98], [Gionis-Indyk-Motwani’99],
[Charikar’02], [Datar-Immorlica-Indyk-Mirrokni’04], [Chakrabarti-
Regev’04], [Panigrahy’06], [Ailon-Chazelle’06]…

[AI’06]l2ρ(c)=1/c2 + o(1)dnρ(c)dn+n1+ρ(c)

[Pan’06]l2σ(c)=O(1/c)

Hamm, l2

l2

Hamm, l2

Hamm, l2

Norm

[AIP’06]O(1)nΩ(1/ε2)

[Ind’01]σ(c)=O(log c/c)dnσ(c)dn * logs

[DIIM’04]ρ(c)<1/c

[IM’98], [GIM’98],[Cha’02]ρ(c)=1/cdnρ(c)dn+n1+ρ(c)

[KOR’98, IM’98]c=1+ εd * logn /ε2 or 1dn+n4/ε2

RefCommentTimeSpace

Helsinki, May 2007

Locality-Sensitive Hashing

• Idea: construct hash
functions g: Rd → U such that
for any points p,q:
– If ||p-q|| ≤ r, then Pr[g(p)=g(q)]

is “high”
– If ||p-q|| >cr, then Pr[g(p)=g(q)]

is “small”
• Then we can solve the

problem by hashing

“not-so-small”

q

p

Helsinki, May 2007

LSH [Indyk-Motwani’98]

• A family H of functions h: Rd → U is called
(P1,P2,r,cr)-sensitive, if for any p,q:
– if ||p-q|| <r then Pr[h(p)=h(q)] > P1

– if ||p-q|| >cr then Pr[h(p)=h(q)] < P2

• Example: Hamming distance
– LSH functions: h(p)=pi, i.e., the i-th bit of p
– Probabilities: Pr[h(p)=h(q)] = 1-D(p,q)/d

p=10010010
q=11010110

Helsinki, May 2007

Algorithm
• We use functions of the form

g(p)=<h1(p),h2(p),…,hk(p)>
• Preprocessing:

– Select g1…gL
– For all p∈P, hash p to buckets g1(p)…gL(p)

• Query:
– Retrieve the points from buckets g1(q), g2(q), … , until

• Either the points from all L buckets have been retrieved, or
• Total number of points retrieved exceeds 3L

– Answer the query based on the retrieved points
– Total time: O(dL)

Helsinki, May 2007

Analysis [IM’98, Gionis-Indyk-Motwani’99]

• Lemma1: the algorithm solves c-
approximate NN with:
– Number of hash fun: L=nρ,
ρ=log(1/P1)/log(1/P2)

– Constant success probability per query q
• Lemma 2: for Hamming LSH functions, we

have ρ=1/c

Helsinki, May 2007

Proof of Lemma 1 by picture
• Points in {0,1}d

• Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h’s)

• Distance ranges from 0 to d=10

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11

Distance

C
ol

lis
io

n
pr

ob
ab

ili
ty

k=1

k=2

k=3

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11

Distance

C
ol

lis
io

n
Pr

ob
ab

ili
ty

k=1
k=2

k=3

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Distance

C
ol

lis
io

n
pr

ob
ab

ili
ty

k=1

k=2

k=3

Helsinki, May 2007

Proof

• Define:
– p: a point such that ||p-q|| ≤ r
– FAR(q)={ p’∈P: ||p’-q|| >c r }
– Bi(q)={ p’∈P: gi(p’)=gi(q) }

• Will show that both events occur with >0
probability:
– E1: gi(p)=gi(q) for some i=1…L
– E2: Σi |Bi(q) ∩ FAR(q)| < 3L

Helsinki, May 2007

Proof ctd.

• Set k=log1/P2 n
• For p’∈FAR(q) ,

Pr[gi(p’)=gi(q)] ≤ P2
k =1/n

• E[|Bi(q)∩FAR(q)|] ≤ 1
• E[Σi |Bi(q)∩FAR(q)|] ≤ L
• Pr[Σi |Bi(q)∩FAR(q)|≥3L] ≤ 1/3

Helsinki, May 2007

Proof, ctd.

• Pr[gi(p)=gi(q)] ≥ 1/P1
k = 1/nρ =1/L

• Pr[gi(p)≠gi(q), i=1..L] ≤ (1-1/L)L ≤ 1/e

Helsinki, May 2007

Proof, end

• Pr[E1 not true]+Pr[E2 not true]
≤ 1/3+1/e =0.7012.

• Pr[E1 ∩E2] ≥ 1-(1/3+1/e) ≈0.3

Helsinki, May 2007

Proof of Lemma 2

• Statement: for
– P1=1-r/d
– P2=1-cr/d

we have ρ=log(P1)/log(P2) ≤ 1/c
• Proof:

– Need P1c ≥ P2
– But (1-x)c ≥ (1-cx) for any 1>x>0, c>1

Helsinki, May 2007

Recap
• LSH solves c-approximate NN with:

– Number of hash fun: L=nρ, ρ=log(1/P1)/log(1/P2)
– For Hamming distance we have ρ=1/c

• Questions:
– Can we extend this beyond Hamming distance ?

• Yes:
– embed l2 into l1 (random projections)
– l1 into Hamming (discretization)

– Can we reduce the exponent ρ ?

Helsinki, May 2007

Projection-based LSH
[Datar-Immorlica-Indyk-Mirrokni’04]

• Define hX,b(p)=⎣(p*X+b)/w⎦:
– w ≈ r
– X=(X1…Xd) , where Xi is

chosen from:
• Gaussian distribution

(for l2 norm)*

– b is a scalar

X
w

w

p

* For ls norm use “s-stable” distribution, where p*X has same distribution as
||p||s Z, where Z is s-stable

Helsinki, May 2007

Analysis

• Need to:
– Compute Pr[h(p)=h(q)] as a function of ||p-q||

and w; this defines P1 and P2

– For each c choose w that minimizes
ρ=log1/P2(1/P1)

• Method:
– For l2: computational
– For general ls: analytic

w

w

Helsinki, May 2007

ρ(c) for l2

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Approximation factor c

rho
1/c

Helsinki, May 2007

New LSH scheme
[Andoni-Indyk’06]

• Instead of projecting onto R1,
project onto Rt , for constant t

• Intervals → lattice of balls
– Can hit empty space, so hash until

a ball is hit
• Analysis:

– ρ=1/c2 + O(log t / t1/2)
– Time to hash is tO(t)

– Total query time: dn1/c2+o(1)

• [Motwani-Naor-Panigrahy’06]:
LSH in l2 must have ρ ≥ 0.45/c2

X
w

w

p

p

Helsinki, May 2007

New LSH scheme, ctd.
• How does it work in practice ?
• The time tO(t)dn1/c2+f(t) is not very

practical
– Need t≈30 to see some improvement

• Idea: a different decomposition of Rt

– Replace random balls by Voronoi
diagram of a lattice

– For specific lattices, finding a cell
containing a point can be very fast
→fast hashing

Helsinki, May 2007

Leech Lattice LSH
• Use Leech lattice in R24 , t=24

– Largest kissing number in 24D: 196560
– Conjectured largest packing density in 24D
– 24 is 42 in reverse…

• Very fast (bounded) decoder: about 519
operations [Amrani-Beery’94]

• Performance of that decoder for c=2:
– 1/c2 0.25
– 1/c 0.50
– Leech LSH, any dimension: ρ ≈ 0.36
– Leech LSH, 24D (no projection): ρ ≈ 0.26

Helsinki, May 2007

LSH Zoo

• Hamming metric
• Ls norm, s∈(0,2]
• Vector angle [Charikar’02] based on [GW’94]

• Jaccard coefficient [Broder et al’97]
J(A,B) = |A ∩ B| / |A u B|

Helsinki, May 2007

Experiments

Helsinki, May 2007

Experiments (with ’04 version)
• E2LSH: Exact Euclidean LSH (with Alex Andoni)

– Near Neighbor
– User sets r and P = probability of NOT reporting a point within

distance r (=10%)
– Program finds parameters k,L,w so that:

• Probability of failure is at most P
• Expected query time is minimized

• Nearest neighbor: set radius (radiae) to accommodate
90% queries (results for 98% are similar)
– 1 radius: 90%
– 2 radiae: 40%, 90%
– 3 radiae: 40%, 65%, 90%
– 4 radiae: 25%, 50%, 75%, 90%

Helsinki, May 2007

Data sets
• MNIST OCR data, normalized (LeCun)

– d=784
– n=60,000

• Corel_hist
– d=64
– n=20,000

• Corel_uci
– d=64
– n=68,040

• Aerial data (Manjunath)
– d=60
– n=275,476

Helsinki, May 2007

Other NN packages

• ANN (by Arya & Mount):
– Based on kd-tree
– Supports exact and approximate NN

• Metric trees (by Moore et al):
– Splits along arbitrary directions (not just x,y,..)
– Further optimizations

Helsinki, May 2007

Running times

 MNIST Speedup Corel_hist Speedup Corel_uci Speedup Aerial Speedup
E2LSH-1 0.00960
E2LSH-2 0.00851 0.00024 0.00070 0.07400
E2LSH-3 0.00018 0.00055 0.00833
E2LSH-4 0.00668
ANN 0.25300 29.72274 0.00018 1.011236 0.00274 4.954792 0.00741 1.109281
MT 0.20900 24.55357 0.00130 7.303371 0.00650 11.75407 0.01700 2.54491

Helsinki, May 2007

LSH vs kd-tree (MNIST)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0 10 20 30 40 50 60 70

Helsinki, May 2007

Caveats

• For ANN (MNIST), setting ε=1000% results in:
– Query time comparable to LSH
– Correct NN in about 65% cases, small error otherwise

• However, no guarantees
• LSH eats much more space (for optimal

performance):
– LSH: 1.2 GB
– Kd-tree: 360 MB

Helsinki, May 2007

Conclusions

• Locality-Sensitive Hashing
– Very good option for near neighbor
– Worth trying for nearest neighbor

• E2LSH [DIIM’04] available – check my web
page for more info

Helsinki, May 2007

Refs

• LSH web site (with references):
http://web.mit.edu/andoni/www/LSH/index.html

• M. Charikar, Similarity estimation
techniques from rounding algorithms,
STOC’02.

• A. Broder, On the resemblance and
containment of documents,
SEQUENCES’97.

