Approximate Proximity Problems in High Dimensions via Locality-Sensitive Hashing Piotr Indyk

Recap

- Recap:
- Nearest Neighbor in R^d

- Motivation: learning, retrieval, compression,...

- Exact: curse of dimensionality
 - Either O(dn) query time, or $n^{O(d)}$ space
- Approximate (factor $c=1+\epsilon$)
 - Kd-trees: optimal space, O(1/ε)^d log n query time

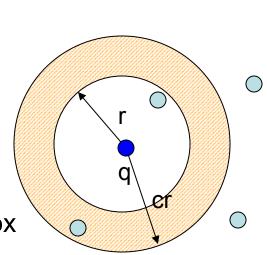
Today

- Algorithms with polynomial dependence on d
 - Locality-Sensitive Hashing
- Experiments etc

Approximate Near Neighbor

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point $p \in P$, $||p-q|| \le r$
 - it returns $p' \in P$, $||p-q|| \leq cr$
- Reductions:
 - c-Approx r-Close Pair
 - c-Approx Nearest Neighbor reduces to c-Approx Near Neighbor
 - (log overhead)
 - One can enumerate all approx near neighbors
 - \rightarrow can solve exact near neighbor problem
 - Other apps: c-approximate Minimum Spanning Tree, clustering, etc.

Helsinki, May 2007



 \bigcirc

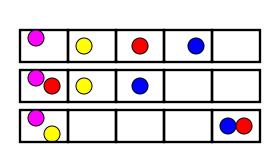
Approximate algorithms

- Space/time exponential in d [Arya-Mount-et al], [Kleinberg'97], [Har-Peled'02], [Arya-Mount-...]
- Space/time polynomial in d [Kushilevitz-Ostrovsky-Rabani'98], [Indyk-Motwani'98], [Indyk'98], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06]...

	Space	Time	Comment	Norm	Ref		
	dn+n ^{4/ε²}	d * logn / ϵ^2 or 1	c=1+ε Hamm,		[KOR'98, IM'98]		
	$n^{\Omega(1/\epsilon^2)}$	O(1)			[AIP'06]		
	dn+n ^{1+p(c)}	dn ^{ρ(c)}	ρ(c)=1/c	Hamm, I ₂	[IM'98], [GIM'98],[Cha'02]		
→			ρ(c)<1/c	I ₂	[DIIM'04]		
	dn * logs	dn ^{σ(c)}	$\sigma(c)=O(\log c/c)$	Hamm, I ₂	[Ind'01]		
→	dn+n ^{1+p(c)}	dn ^{ρ(c)}	$\rho(c)=1/c^2 + o(1)$	I ₂	[AI'06]		
			σ(c)=O(1/c)	I ₂	[Pan'06]		

Locality-Sensitive Hashing

- Idea: construct hash functions g: $\mathbb{R}^{d} \rightarrow U$ such that $^{\circ_{p}}$ • for any points p,q:
 - If ||p-q|| ≤ r, then Pr[g(p)=g(q)] is <u>"high</u>" "not-so-small"
 - If ||p-q|| >cr, then Pr[g(p)=g(q)] is "small"



• Then we can solve the problem by hashing

LSH [Indyk-Motwani'98]

- A family H of functions h: R^d → U is called (P₁,P₂,r,cr)-sensitive, if for any p,q:
 – if ||p-q|| <r then Pr[h(p)=h(q)] > P₁
 – if ||p-q|| >cr then Pr[h(p)=h(q)] < P₂
- Example: Hamming distance
 - LSH functions: $h(p)=p_i$, i.e., the i-th bit of p
 - Probabilities: Pr[h(p)=h(q)] = 1-D(p,q)/d

p=10010010 q=1<mark>1</mark>010110 Helsinki, May 2007

Algorithm

• We use functions of the form

 $g(p) = \langle h_1(p), h_2(p), ..., h_k(p) \rangle$

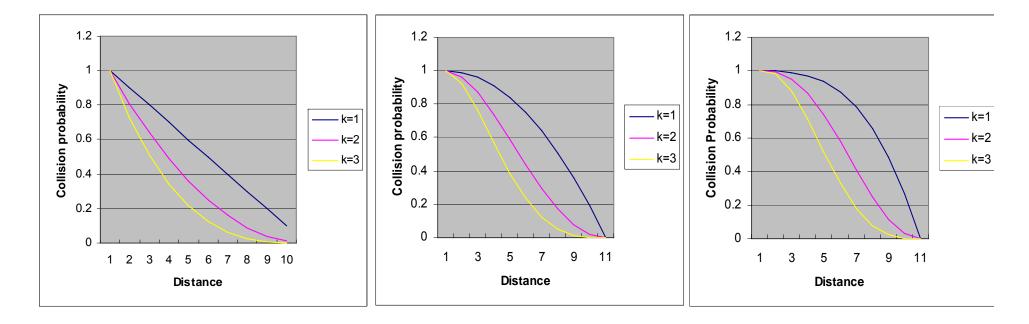
- Preprocessing:
 - Select $g_1 \dots g_L$
 - For all $p \in P$, hash p to buckets $g_1(p) \dots g_L(p)$
- Query:
 - Retrieve the points from buckets $g_1(q), g_2(q), ..., until$
 - Either the points from all L buckets have been retrieved, or
 - Total number of points retrieved exceeds 3L
 - Answer the query based on the retrieved points
 - Total time: O(dL)

Analysis [IM'98, Gionis-Indyk-Motwani'99]

- Lemma1: the algorithm solves capproximate NN with:
 - Number of hash fun: L=n $^{\rho}$, ρ =log(1/P1)/log(1/P2)
 - Constant success probability per query q
- Lemma 2: for Hamming LSH functions, we have $\rho=1/c$

Proof of Lemma 1 by picture

- Points in {0,1}^d
- Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h's)
- Distance ranges from 0 to d=10



Proof

- Define:
 - p: a point such that $||p-q|| \le r$
 - FAR(q)={ p'∈P: ||p'-q|| >c r }
 - $B_i(q) = \{ p' \in P: g_i(p') = g_i(q) \}$
- Will show that both events occur with >0 probability:
 - $-E_1: g_i(p)=g_i(q)$ for some i=1...L
 - $-\operatorname{\mathsf{E}}_2: \Sigma_i \left| \mathsf{B}_i(q) \cap \operatorname{\mathsf{FAR}}(q) \right| < 3L$

Proof ctd.

- Set k=log_{1/P2} n
- For $p' \in FAR(q)$,

 $Pr[g_i(p')=g_i(q)] \le P_2^{k} = 1/n$

- E[$|B_i(q) \cap FAR(q)|$] ≤ 1
- $E[\Sigma_i | B_i(q) \cap FAR(q) |] \le L$
- $Pr[\Sigma_i |B_i(q) \cap FAR(q)| \ge 3L] \le 1/3$

Proof, ctd.

- $\Pr[g_i(p)=g_i(q)] \ge 1/P_1^k = 1/n^{\rho} = 1/L$
- $\Pr[g_i(p) \neq g_i(q), i=1..L] \le (1-1/L)^L \le 1/e$

Proof, end

- Pr[E₁ not true]+Pr[E₂ not true]
 ≤ 1/3+1/e =0.7012.
- Pr[E₁ ∩ E₂] ≥ 1-(1/3+1/e) ≈0.3

Proof of Lemma 2

- Statement: for
 - P1=1-r/d
 - P2=1-cr/d

we have $\rho = \log(P1)/\log(P2) \le 1/c$

- Proof:
 - Need $P1^c \ge P2$
 - $-But (1-x)^{c} \ge (1-cx)$ for any 1>x>0, c>1

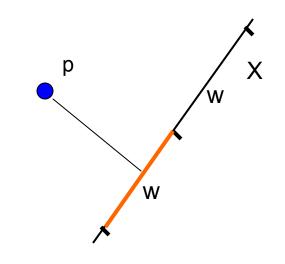
Recap

- LSH solves c-approximate NN with:
 - Number of hash fun: L=n^{ρ}, ρ =log(1/P1)/log(1/P2)
 - For Hamming distance we have $\rho = 1/c$
- Questions:
 - Can we extend this beyond Hamming distance ?
 - Yes:
 - embed I_2 into I_1 (random projections)
 - $-I_1$ into Hamming (discretization)
 - Can we reduce the exponent ρ ?

Projection-based LSH

[Datar-Immorlica-Indyk-Mirrokni'04]

- Define $h_{X,b}(p) = \lfloor (p^*X+b)/w \rfloor$:
 - w ≈ r
 - $X=(X_1...X_d)$, where X_i is chosen from:
 - Gaussian distribution (for l₂ norm)*
 - b is a scalar



* For I_s norm use "s-stable" distribution, where p^*X has same distribution as $||p||_s Z$, where Z is s-stable Helsinki, May 2007

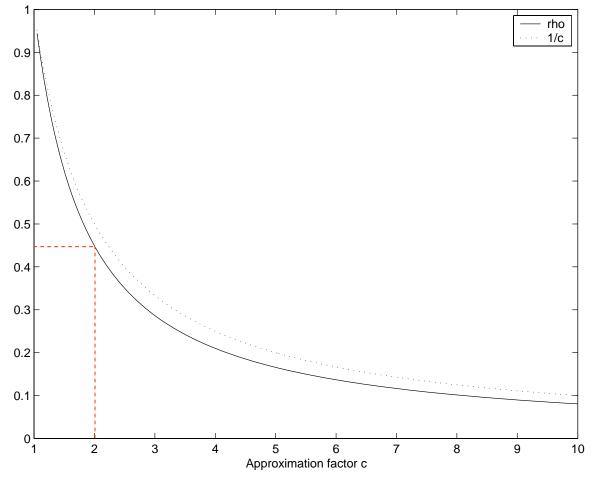
Analysis

- Need to:
 - Compute Pr[h(p)=h(q)] as a function of ||p-q|| and w; this defines P₁ and P₂
 - For each c choose w that minimizes

 $\rho = \log_{1/P2}(1/P_1)$

W

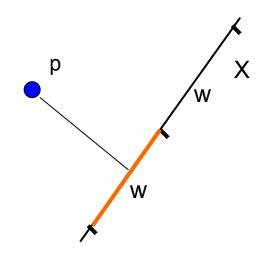
- Method:
 - For I₂: computational
 - For general I_s: analytic

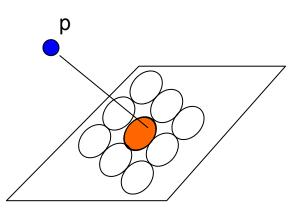


New LSH scheme

[Andoni-Indyk'06]

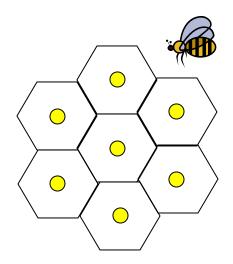
- Instead of projecting onto R¹, project onto R^t, for constant t
- Intervals \rightarrow lattice of balls
 - Can hit empty space, so hash until a ball is hit
- Analysis:
 - $-\rho = 1/c^2 + O(\log t / t^{1/2})$
 - Time to hash is t^{O(t)}
 - Total query time: dn^{1/c²+o(1)}
- [Motwani-Naor-Panigrahy'06]: LSH in I_2 must have $\rho \ge 0.45/c^2$





New LSH scheme, ctd.

- How does it work in practice ?
- The time t^{O(t)}dn^{1/c²+f(t)} is not very practical
 - Need $t \approx 30$ to see some improvement
- Idea: a different decomposition of R^t
 - Replace random balls by Voronoi diagram of a lattice
 - For specific lattices, finding a cell containing a point can be very fast
 →fast hashing



Leech Lattice LSH

- Use Leech lattice in R²⁴, t=24
 - Largest kissing number in 24D: 196560
 - Conjectured largest packing density in 24D
 - 24 is 42 in reverse...
- Very fast (bounded) decoder: about 519 operations [Amrani-Beery'94]
- Performance of that decoder for c=2:
 - $1/c^2$ 0.25
 - 1/c 0.50
 - Leech LSH, any dimension: $\rho \approx 0.36$
 - Leech LSH, 24D (no projection): $\rho \approx 0.26$

LSH Zoo

- Hamming metric
- L_s norm, $s \in (0,2]$
- Vector angle [Charikar'02] based on [GW'94]
- Jaccard coefficient [Broder et al'97] $J(A,B) = |A \cap B| / |A u B|$

Experiments

Experiments (with '04 version)

- E²LSH: Exact Euclidean LSH (with Alex Andoni)
 - Near Neighbor
 - User sets r and P = probability of NOT reporting a point within distance r (=10%)
 - Program finds parameters k,L,w so that:
 - Probability of failure is at most P
 - Expected query time is minimized
- Nearest neighbor: set radius (radiae) to accommodate 90% queries (results for 98% are similar)
 - 1 radius: 90%
 - 2 radiae: 40%, 90%
 - 3 radiae: 40%, 65%, 90%
 - 4 radiae: 25%, 50%, 75%, 90%

Data sets

- MNIST OCR data, normalized (LeCun)
 - d=784
 - n=60,000
- Corel_hist
 - d=64
 - n=20,000
- Corel_uci
 - d=64
 - n=68,040
- Aerial data (Manjunath)
 - d=60
 - n=275,476

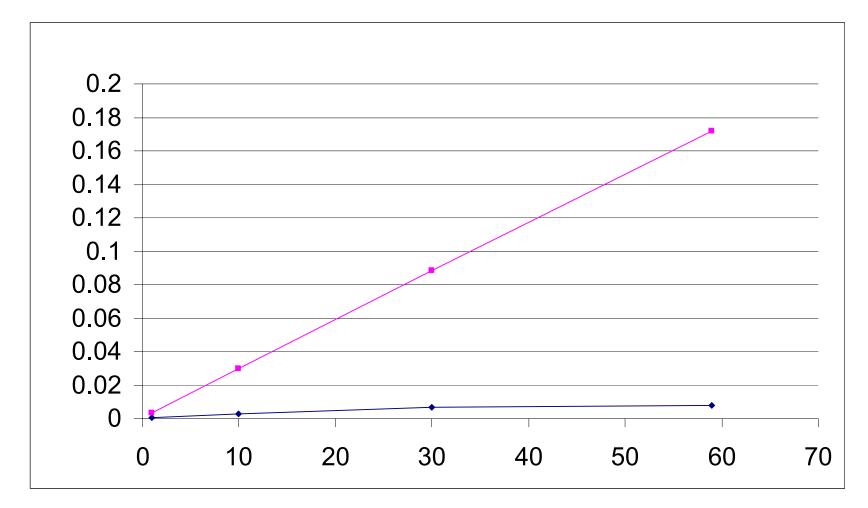
Other NN packages

- ANN (by Arya & Mount):
 - Based on kd-tree
 - Supports exact and approximate NN
- Metric trees (by Moore et al):
 - Splits along arbitrary directions (not just x,y,..)
 - Further optimizations

Running times

	MNIST	Speedup	Corel_hist	Speedup	Corel_uci	Speedup	Aerial	Speedup
E2LSH-1	0.00960							
E2LSH-2	0.00851		0.00024		0.00070		0.07400	
E2LSH-3			0.00018		0.00055		0.00833	
E2LSH-4							0.00668	
ANN	0.25300	29.72274	0.00018	1.011236	0.00274	4.954792	0.00741	1.109281
MT	0.20900	24.55357	0.00130	7.303371	0.00650	11.75407	0.01700	2.54491

LSH vs kd-tree (MNIST)



Caveats

- For ANN (MNIST), setting $\varepsilon = 1000\%$ results in:
 - Query time comparable to LSH
 - Correct NN in about 65% cases, small error otherwise
- However, no guarantees
- LSH eats much more space (for optimal performance):
 - LSH: 1.2 GB
 - Kd-tree: 360 MB

Conclusions

- Locality-Sensitive Hashing
 - Very good option for near neighbor
 - Worth trying for nearest neighbor
- E²LSH [DIIM'04] available check my web page for more info

Refs

• LSH web site (with references):

http://web.mit.edu/andoni/www/LSH/index.html

- M. Charikar, Similarity estimation techniques from rounding algorithms, STOC'02.
- A. Broder, On the resemblance and containment of documents, SEQUENCES'97.