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Recap

• Recap:
• Nearest Neighbor in Rd

– Motivation: learning, retrieval, compression,..
• Exact: curse of dimensionality

– Either O(dn) query time, or nO(d) space
• Approximate (factor c=1+ε)

– Kd-trees: optimal space, O(1/ε)d log n query 
time
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Today

• Algorithms with polynomial dependence 
on d
– Locality-Sensitive Hashing 

• Experiments etc
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Approximate Near Neighbor
• c-Approximate r-Near Neighbor: build data 

structure which, for any query q: 
– If there is a point p∈P, ||p-q|| ≤ r
– it returns  p’∈P,  ||p-q|| ≤ cr

• Reductions:
– c-Approx r-Close Pair  
– c-Approx Nearest Neighbor reduces to c-Approx 

Near Neighbor     
(log overhead)

– One can enumerate all approx near neighbors
→ can solve exact near neighbor problem

– Other apps: c-approximate Minimum Spanning 
Tree, clustering, etc.

q

r

cr
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Approximate algorithms

• Space/time exponential in d [Arya-Mount-et al], 
[Kleinberg’97], [Har-Peled’02], [Arya-Mount-…]

• Space/time polynomial in d [Kushilevitz-Ostrovsky-
Rabani’98], [Indyk-Motwani’98], [Indyk’98], [Gionis-Indyk-Motwani’99], 
[Charikar’02], [Datar-Immorlica-Indyk-Mirrokni’04], [Chakrabarti-
Regev’04], [Panigrahy’06], [Ailon-Chazelle’06]…

[AI’06]l2ρ(c)=1/c2 + o(1)dnρ(c)dn+n1+ρ(c)

[Pan’06]l2σ(c)=O(1/c)

Hamm, l2

l2

Hamm, l2

Hamm, l2

Norm

[AIP’06]O(1)nΩ(1/ε2)

[Ind’01]σ(c)=O(log c/c)dnσ(c)dn * logs

[DIIM’04]ρ(c)<1/c

[IM’98], [GIM’98],[Cha’02]ρ(c)=1/cdnρ(c)dn+n1+ρ(c)

[KOR’98, IM’98]c=1+ εd * logn /ε2 or 1dn+n4/ε2

RefCommentTimeSpace
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Locality-Sensitive Hashing         

• Idea: construct hash 
functions g: Rd → U such that 
for any points p,q:
– If ||p-q|| ≤ r,  then Pr[g(p)=g(q)]

is “high”
– If ||p-q|| >cr, then Pr[g(p)=g(q)]

is “small”
• Then we can solve the 

problem by hashing

“not-so-small”

q

p
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LSH [Indyk-Motwani’98]

• A family H of functions h: Rd → U is called 
(P1,P2,r,cr)-sensitive, if for any p,q:
– if ||p-q|| <r   then Pr[ h(p)=h(q) ] > P1

– if ||p-q|| >cr then Pr[ h(p)=h(q) ] < P2

• Example: Hamming distance
– LSH functions: h(p)=pi, i.e., the i-th bit of p
– Probabilities: Pr[ h(p)=h(q) ] = 1-D(p,q)/d

p=10010010
q=11010110
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Algorithm
• We use functions of the form 

g(p)=<h1(p),h2(p),…,hk(p)>
• Preprocessing:

– Select g1…gL
– For all p∈P, hash p to buckets g1(p)…gL(p)

• Query:
– Retrieve the points from buckets g1(q), g2(q), … , until

• Either the points from all L buckets have been retrieved, or
• Total number of points retrieved exceeds 3L

– Answer the query based on the retrieved points
– Total time: O(dL)
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Analysis [IM’98, Gionis-Indyk-Motwani’99]

• Lemma1: the algorithm solves c-
approximate NN with:
– Number of hash fun: L=nρ, 
ρ=log(1/P1)/log(1/P2)

– Constant success probability per query q
• Lemma 2: for Hamming LSH functions, we

have ρ=1/c 
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Proof of Lemma 1 by picture
• Points in {0,1}d

• Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h’s )

• Distance ranges from 0 to d=10  
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Proof

• Define:
– p: a point such that ||p-q|| ≤ r
– FAR(q)={ p’∈P: ||p’-q|| >c r }
– Bi(q)={ p’∈P: gi(p’)=gi(q) }

• Will show that both events occur with >0
probability:
– E1: gi(p)=gi(q) for some i=1…L
– E2: Σi |Bi(q) ∩ FAR(q)| < 3L
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Proof ctd.

• Set k=log1/P2 n
• For p’∈FAR(q) , 

Pr[gi(p’)=gi(q)] ≤ P2
k =1/n

• E[ |Bi(q)∩FAR(q)| ] ≤ 1
• E[Σi |Bi(q)∩FAR(q)| ] ≤ L
• Pr[Σi |Bi(q)∩FAR(q)|≥3L ] ≤ 1/3
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Proof, ctd.

• Pr[ gi(p)=gi(q) ] ≥ 1/P1
k = 1/nρ =1/L

• Pr[ gi(p)≠gi(q), i=1..L] ≤ (1-1/L)L ≤ 1/e
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Proof, end

• Pr[E1 not true]+Pr[E2 not true] 
≤ 1/3+1/e =0.7012.

• Pr[ E1 ∩E2 ] ≥ 1-(1/3+1/e) ≈0.3
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Proof of Lemma 2

• Statement: for 
– P1=1-r/d
– P2=1-cr/d

we have ρ=log(P1)/log(P2) ≤ 1/c
• Proof: 

– Need P1c ≥ P2
– But (1-x)c ≥ (1-cx) for any 1>x>0, c>1
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Recap
• LSH solves c-approximate NN with:

– Number of hash fun: L=nρ, ρ=log(1/P1)/log(1/P2)
– For Hamming distance we have ρ=1/c

• Questions:
– Can we extend this beyond Hamming distance ?

• Yes:
– embed l2 into l1     (random projections)
– l1 into  Hamming (discretization)

– Can we reduce the exponent ρ ?



Helsinki, May 2007

Projection-based LSH
[Datar-Immorlica-Indyk-Mirrokni’04]

• Define hX,b(p)=⎣(p*X+b)/w⎦:
– w ≈ r
– X=(X1…Xd) , where Xi is 

chosen from:
• Gaussian distribution 

(for l2 norm)*

– b is a scalar

X
w

w

p

* For ls norm use “s-stable” distribution, where p*X has same distribution as 
||p||s Z, where Z is s-stable
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Analysis

• Need to:
– Compute Pr[h(p)=h(q)] as a function of ||p-q||

and w; this defines P1 and P2

– For each c choose w that minimizes
ρ=log1/P2(1/P1) 

• Method:
– For l2: computational
– For general ls: analytic

w

w
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ρ(c) for l2
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New LSH scheme 
[Andoni-Indyk’06]

• Instead of projecting onto R1,
project onto Rt , for constant t

• Intervals → lattice of balls
– Can hit empty space, so hash until 

a ball is hit
• Analysis:

– ρ=1/c2 + O( log t / t1/2 )
– Time to hash is tO(t)

– Total query time: dn1/c2+o(1)

• [Motwani-Naor-Panigrahy’06]: 
LSH in l2 must have ρ ≥ 0.45/c2

X
w

w

p

p
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New LSH scheme, ctd.
• How does it work in practice ?
• The time tO(t)dn1/c2+f(t) is not very 

practical
– Need t≈30 to see some improvement

• Idea: a different decomposition of Rt

– Replace random balls by Voronoi
diagram of a lattice

– For specific lattices, finding a cell 
containing a point can be very fast 
→fast hashing
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Leech Lattice LSH
• Use Leech lattice in R24 , t=24

– Largest kissing number in 24D: 196560
– Conjectured largest packing density in 24D
– 24 is 42 in reverse…

• Very fast (bounded) decoder: about 519 
operations [Amrani-Beery’94]

• Performance of that decoder for c=2:
– 1/c2 0.25
– 1/c 0.50
– Leech LSH, any dimension: ρ ≈ 0.36
– Leech LSH, 24D (no projection): ρ ≈ 0.26
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LSH Zoo

• Hamming metric
• Ls norm, s∈(0,2]
• Vector angle [Charikar’02] based on [GW’94]

• Jaccard coefficient [Broder et al’97]
J(A,B) = |A ∩ B| / |A u B|
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Experiments
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Experiments (with ’04 version)
• E2LSH: Exact Euclidean LSH (with Alex Andoni)

– Near Neighbor
– User sets r and P = probability of NOT reporting a point within 

distance r (=10%)
– Program finds parameters k,L,w so that:

• Probability of  failure is at most  P
• Expected query time is minimized

• Nearest neighbor: set radius (radiae) to accommodate 
90% queries (results for 98% are similar)
– 1 radius: 90%
– 2 radiae: 40%, 90%
– 3 radiae: 40%, 65%, 90%
– 4 radiae: 25%, 50%, 75%, 90%
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Data sets
• MNIST OCR data, normalized (LeCun)

– d=784
– n=60,000

• Corel_hist
– d=64
– n=20,000

• Corel_uci
– d=64
– n=68,040

• Aerial data (Manjunath)
– d=60
– n=275,476
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Other NN packages

• ANN (by Arya & Mount):
– Based on kd-tree
– Supports exact and approximate NN

• Metric trees (by Moore et al):
– Splits along arbitrary directions (not just x,y,..)
– Further optimizations
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Running times

 MNIST Speedup Corel_hist Speedup Corel_uci Speedup Aerial Speedup
E2LSH-1 0.00960  
E2LSH-2 0.00851 0.00024 0.00070 0.07400
E2LSH-3 0.00018 0.00055 0.00833
E2LSH-4 0.00668
ANN 0.25300 29.72274 0.00018 1.011236 0.00274 4.954792 0.00741 1.109281
MT 0.20900 24.55357 0.00130 7.303371 0.00650 11.75407 0.01700 2.54491
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LSH vs kd-tree (MNIST)
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Caveats

• For ANN (MNIST), setting ε=1000% results in:
– Query time comparable to LSH
– Correct NN in about 65% cases, small error otherwise

• However, no guarantees
• LSH eats much more space (for optimal 

performance):
– LSH: 1.2 GB
– Kd-tree: 360 MB



Helsinki, May 2007

Conclusions

• Locality-Sensitive Hashing
– Very good option for near neighbor
– Worth trying for nearest neighbor

• E2LSH [DIIM’04] available – check my web 
page for more info
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