
Sparse Recovery Using
Sparse (Random) Matrices

Piotr Indyk
MIT

Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Martin Strauss and Milan Ruzic

Linear Compression
(learning Fourier coeffs, linear sketching, finite rate of innovation,

compressed sensing...)

• Setup:
– Data/signal in n-dimensional space : x
 E.g., x is an 256x256 image ⇒ n=65536
– Goal: compress x into a “sketch” Ax ,
 where A is a m x n “sketch matrix”, m << n

• Requirements:
– Plan A: want to recover x from Ax

• Impossible: undetermined system of equations
– Plan B: want to recover an “approximation” x* of x

• Sparsity parameter k
• Informally: want to recover largest k<<n coordinates of x
• Formally: want x* such that

||x*-x||p≤ C(k) minx’ ||x’-x||q
 over all x’ that are k-sparse (at most k non-zero entries)

• Want:
– Good compression (small m=m(k,n))
– Efficient algorithms for encoding and recovery

• Why linear compression ?

=A
x

 Ax

k=0.1n

Application I: Monitoring
Network Traffic Data Streams

• Router routs packets
– Where do they come from ?
– Where do they go to ?

• Ideally, would like to maintain a traffic
 matrix x[.,.]

– Easy to update: given a (src,dst) packet, increment
xsrc,dst

– Requires way too much space!
 (232 x 232 entries)
– Need to compress x, increment easily

• Using linear compression we can:
– Maintain sketch Ax under increments to x, since

A(x+Δ) = Ax + AΔ
– Recover x* from Ax

so
ur

ce

destination

x

Applications, ctd.

• Single pixel camera

 [Wakin, Laska, Duarte, Baron, Sarvotham, Takhar,
Kelly, Baraniuk’06]

• Pooling Experiments
[Kainkaryam, Woolf’08], [Hassibi et al’07], [Dai-
Sheikh, Milenkovic, Baraniuk], [Shental-Amir-
Zuk’09]

Constructing matrix A
• “Most” matrices A work

– Sparse matrices:
• Data stream algorithms
• Coding theory (LDPCs)

– Dense matrices:
• Compressed sensing
• Complexity/learning theory
 (Fourier matrices)

• “Traditional” tradeoffs:
– Sparse: computationally more efficient, explicit
– Dense: shorter sketches

• Goal: the “best of both worlds”

Prior and New Results
ApproxRecovery timeColumn

sparsity
Encode
time

Sketch
length

Rand.
/ Det.

Paper

Prior and New Results

l2 / l1ncn1-akn1-ak lognlogloglognD[GLR’08]

l1 / l1nclog(n/k)n log(n/k)k log(n/k)D[BGIKS’08]

l1 / l1k logc nlogc nn logc nk logc nR

l2 / l2n log nlog nn log nk log nR[CCF’02],
[CM’06]

l2 / l1n log n * logk logc nn log nk logc nD

l2 / l1nk log(n/k) * logk log(n/k)nk log(n/k)k log(n/k)D[NV’07], [DM’08], [NT’08],
[BD’08], [GK’09], …

l2 / l1k2 logc nk logc nn logc nk logc nD

l1 / l1k logc nlogc nn logc nk logc nD[GSTV’06]
[GSTV’07]

l2 / l1nck logc nn log nk logc nD

l2 / l1nck log(n/k)nk log(n/k)k log(n/k)D[CRT’04]
[RV’05]

l1 / l1n log nlog nn log nk log nR[CM’04]

l2 / l2k logc nlogc nn logc nk logc nR

ApproxRecovery timeColumn
sparsity

Encode
time

Sketch lengthR/
D

Paper

l1 / l1n log(n/k)* loglog(n/k)n log(n/k)k log(n/k)D[IR’08], [BIR’08],[BI’09]

ExcellentScale: Very Good Good Fair

“state
of art”

Recovery “in principle”
(when is a matrix “good”)

• Restricted Isometry Property (RIP) * - sufficient property of a dense matrix A:
 Δ is k-sparse ⇒ ||Δ||2≤ ||AΔ||2 ≤ C ||Δ||2

• Holds w.h.p. for:
– Random Gaussian/Bernoulli: m=O(k log (n/k))
– Random Fourier: m=O(k logO(1) n)

• Consider m x n 0-1 matrices with d ones per column
• Do they satisfy RIP ?

– No, unless m=Ω(k2) [Chandar’07]

• However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-
Karloff-Strauss’08]:

Δ is k-sparse ⇒ d (1-ε) ||Δ||1≤ ||AΔ||1 ≤ d||Δ||1
• Sufficient (and necessary) condition: the underlying graph is a
 (k, d(1-ε/2))-expander

dense vs. sparse

Expanders
• A bipartite graph is a (k,d(1-ε))-

expander if for any left set S, |S|≤k, we
have |N(S)|≥(1-ε)d |S|

• Objects well-studied in theoretical
computer science and coding theory

• Constructions:
– Probabilistic: m=O(k log (n/k))
– Explicit: m=k quasipolylog n

• High expansion implies RIP-1:
Δ is k-sparse ⇒ d (1-ε) ||Δ||1≤ ||AΔ||1 ≤ d||Δ||1

 [Berinde-Gilbert-Indyk-Karloff-Strauss’08]
n

m

d
S

N(S)

n
m

Proof: d(1-ε/2)-expansion ⇒ RIP-1
• Want to show that for any k-sparse Δ we have

d (1-ε) ||Δ||1≤ ||A Δ||1 ≤ d||Δ||1
• RHS inequality holds for any Δ
• LHS inequality:

– W.l.o.g. assume
|Δ1|≥… ≥|Δk| ≥ |Δk+1|=…= |Δn|=0

– Consider the edges e=(i,j) in a lexicographic
order

– For each edge e=(i,j) define r(e) s.t.
• r(e)=-1 if there exists an edge (i’,j)<(i,j)
• r(e)=1 if there is no such edge

• Claim 1: ||AΔ||1 ≥∑e=(i,j) |Δi|re
• Claim 2: ∑e=(i,j) |Δi|re ≥ (1-ε) d||Δ||1

n

m

d

Recovery: algorithms

Matching Pursuit(s)

• Iterative algorithm: given current approximation x* :
– Find (possibly several) i s. t. Ai “correlates” with Ax-Ax* . This

yields i and z s. t.
||x*+zei-x||p << ||x* - x||p

– Update x*
– Sparsify x* (keep only k largest entries)
– Repeat

• Norms:
– p=2 : CoSaMP, SP, IHT etc (RIP)
– p=1 : SMP, SSMP (RIP-1)
– p=0 : LDPC bit flipping (sparse matrices)

=

i
i

A x*-x Ax-Ax*

Sequential Sparse Matching
Pursuit

• Algorithm:
– x*=0
– Repeat T times

• Repeat S=O(k) times
– Find i and z that minimize* ||A(x*+zei)-Ax||1
– x* = x*+zei

• Sparsify x*
 (set all but k largest entries of x* to 0)

• Similar to SMP, but updates done
sequentially

A

i N(i)

x-x*

Ax-Ax*

* Set z=median[(Ax*-Ax)N(I).Instead, one could first optimize (gradient) i and then z [Fuchs’09]

SSMP: Approximation
guarantee

• Want to find k-sparse x*
that minimizes ||x-x*||1

• By RIP1, this is
approximately the same as
minimizing ||Ax-Ax*||1

• Need to show we can do it
greedily

a1 a2

x

a1

a2

x

Supports of a1 and a2 have small
overlap (typically)

Experiments

256x256

SSMP is ran with S=10000,T=20. SMP is ran for 100 iterations. Matrix sparsity is d=8.

SSMP: Running time
• Algorithm:

– x*=0
– Repeat T times

• For each i=1…n compute* zi that
achieves

Di=minz ||A(x*+zei)-b||1
 and store Di in a heap
• Repeat S=O(k) times

– Pick i,z that yield the best gain
– Update x* = x*+zei
– Recompute and store Di’ for all i’ such that
 N(i) and N(i’) intersect

• Sparsify x*
 (set all but k largest entries of x* to 0)

• Running time:
T [n(d+log n) + k nd/m*d (d+log n)]

= T [n(d+log n) + nd (d+log n)] = T [nd (d+log n)]

A

i

x-x*

Ax-Ax*

