Similarity Search in High Dimensions

Piotr Indyk
MIT
Definitions

• Given: a set P of n points in \mathbb{R}^d
• Nearest Neighbor: for any query q, returns a point $p \in P$ minimizing $||p-q||$
• r-Near Neighbor: for any query q, returns a point $p \in P$ s.t. $||p-q|| \leq r$ (if it exists)
The case of d=2

• Compute Voronoi diagram
• Given q, perform point location
• Performance:
 – Space: $O(n)$
 – Query time: $O(\log n)$
High-dimensional near(est) neighbor: applications

- **Machine learning: nearest neighbor rule**
 - Find the closest example with known class
 - Copy the class label
- **Near-duplicate Retrieval**

![Diagram with various data points and a question mark indicating dimension as number of pixels or words.]

Dimension=number of pixels

Dimension=number of words
The case of d>2

- Voronoi diagram has size $n^{[d/2]}
 - [Dobkin-Lipton’78]: $n^{2^{(d+1)}}$ space, $f(d) \log n$
 - [Clarkson’88]: $n^{[d/2](1+\varepsilon)}$ space, $f(d) \log n$ time
 - [Meiser’93]: $n^{O(d)}$ space, $(d+ \log n)^{O(1)}$ time

- We can also perform a linear scan: $O(dn)$ time

- Or parametrize by intrinsic dimension

- In practice:
 - kd-trees work “well” in “low-medium” dimensions
Approximate Nearest Neighbor

- c-Approximate Nearest Neighbor: build data structure which, for any query q
 - returns $p' \in P$, $||p-q|| \leq cr$,
 - where r is the distance to the nearest neighbor of q
Approximate Near Neighbor

• c-Approximate r-Near Neighbor: build data structure which, for any query q:
 – If there is a point \(p \in P, \|p-q\| \leq r \)
 – it returns \(p' \in P, \|p-q\| \leq cr \)

• Most algorithms randomized:
 – For each query q, the probability (over the randomness used to construct the data structure) is at least 90%

• Reductions and variants:
 – c-Approx Nearest Neighbor reduces to c-Approx Near Neighbor (Wednesday)
 – One can enumerate all approx near neighbors
 → solving exact near neighbor via filtering
 – Other apps: c-approximate Minimum Spanning Tree, clustering, etc.
Approximate algorithms

- **Space/time exponential in** d [Arya-Mount’93], [Clarkson’94], [Arya-Mount-Netanyahu-Silverman-Wu’98] [Kleinberg’97], [Har-Peled’02], …

- **Space/time polynomial in** d [Indyk-Motwani’98], [Kushilevitz-Ostrovsky-Rabani’98], [Indyk’98], [Gionis-Indyk-Motwani’99], [Charikar’02], [Datar-Immorlica-Indyk-Mirrokni’04], [Chakrabarti-Regev’04], [Panigrahy’06], [Ailon-Chazelle’06]…

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Comment</th>
<th>Norm</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dn+nO(1/\varepsilon^2)$</td>
<td>$d * \log n /\varepsilon^2$ (or 1)</td>
<td>$c=1+\varepsilon$</td>
<td>Hamm, l_2</td>
<td>[KOR’98, IM’98]</td>
</tr>
<tr>
<td>$n\Omega(1/\varepsilon^2)$</td>
<td>$O(1)$</td>
<td></td>
<td></td>
<td>[AIP’06]</td>
</tr>
<tr>
<td>$dn+n^{1+\rho(c)}$</td>
<td>$dn^{\rho(c)}$</td>
<td>$\rho(c)=1/c$</td>
<td>Hamm, l_2</td>
<td>[IM’98], [GIM’98], [Cha’02]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\rho(c)<1/c$</td>
<td>l_2</td>
<td>[DIIM’04]</td>
</tr>
<tr>
<td>$dn * \log n$</td>
<td>$dn^{\sigma(c)}$</td>
<td>$\sigma(c)=O(\log c/c)$</td>
<td>Hamm, l_2</td>
<td>[Ind’01]</td>
</tr>
<tr>
<td>$dn+n^{1+\rho(c)}$</td>
<td>$dn^{\rho(c)}$</td>
<td>$\rho(c)=1/c^2 + o(1)$</td>
<td>l_2</td>
<td>[Al’06]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\sigma(c)=O(1/c)$</td>
<td>l_2</td>
<td>[Pan’06]</td>
</tr>
</tbody>
</table>
$n^{O(1/\epsilon^2)}$ space, $d \cdot \log n / \epsilon^2$ query time, Hamming distance
Hamming distance sketches
[Kushilevitz-Ostrovsky-Rabani’98]

• Let $x, y \in \{0,1\}^d$, $r>1$, $\varepsilon>0$, $0<\delta<1$

• Want: $sk: \{0,1\}^d \rightarrow \{0,1\}^t$ such that given $sk(x)$, $sk(y)$:
 – If $H(x,y) > (1+\varepsilon)r$, we report YES
 – If $H(x,y) < (1-\varepsilon)r$, we report NO

 with probability $>1-\delta$

• In fact, we test if $H(sk(x),sk(y)) > R$ for some R

• How low t can we get?

• Will see $t=O(\log(1/\delta)/\varepsilon^2)$ suffices
Sketch

- Setup:
 - Choose a random set S of coordinates
 - For each i, we have $\Pr[i \in S] = 1/r$
 - Choose a random vector u in $\{0,1\}^d$
- Sketch: $\text{Sum}_S(x) = \sum_{i \in S} x_i u_i \mod 2$
- Estimation algorithm:
 - $B = \text{Sum}_S(x) + \text{Sum}_S(y) \mod 2$
 - YES, if $B = 1$
 - NO, if $B = 0$
- Analysis:
 - We have $B = \text{Sum}_S(z)$ where $z = x \ XOR \ y$
 - Let $D = ||z||_0$
 - $\Pr[B = 1] = \frac{1}{2} \times \Pr[z \neq 0]$
 - $= \frac{1}{2} \times [1 - \Pr[z = 0]]$
 - $= \frac{1}{2} \times [1 - (1 - 1/r)^D]$
 - For r large enough: $(1 - 1/r)^D \approx e^{-D/r}$, so
 - If $D > (1 + \epsilon)r$, then $e^{-(1+\epsilon)} < 1/e - \epsilon/3$ and $\Pr > 1/2(1 - 1/e + \epsilon/3)$
 - If $D < (1 - \epsilon)r$, then $e^{-(1-\epsilon)} > 1/e + \epsilon/3$ and $\Pr < 1/2(1 - 1/e - \epsilon/3)$
 - Using $O(\log(1/\delta)/\epsilon^2)$ sums does the job (Chernoff bound)
Sketch is good

• Data structure (for \mathbf{P}, $r>1$, $\varepsilon>0$)
 – Compute $\text{sk}: \{0,1\}^d \rightarrow \{0,1\}^t$, $t=O(\log(1/\delta)/\varepsilon^2)$ for $\delta=1/n^{O(1)}$
 • Sketch works (with high probability) for fixed query q and all points p in \mathbf{P}
 – Exhaustive storage trick:
 • Compute
 \[S=\{ u \in \{0,1\}^t : H(u,p)>R \text{ for some } p \in \mathbf{P} \} \]
 • Store S (space: $2^t=n^{O(1/\varepsilon^2)}$)
 • Query: check whether $\text{sk}(q)$ in S
Beyond $\{0,1\}^d$: l_1 norm

- l_1 norm over $\{0\ldots M\}^d$
 - Embed into Hamming space with dimension dM [Linial-London-Rabinovich’94]
 - Compute $\text{Unary}((x_1, \ldots, x_d)) = \text{Unary}(x_1) \ldots \text{Unary}(x_d)$
 - We have $||p-q||_1 = H(\text{Unary}(p), \text{Unary}(q))$
- Need to deal with large values of M

- l_1 norm over $[0\ldots s]^d$
 - Round each coordinate to the nearest multiple of $r \varepsilon/d$
 - Introduces additive error of $r \varepsilon$, or multiplicative $(1+\varepsilon)$ factor
 - Now we have $M=s^* \frac{d}{r \varepsilon}$
Beyond $\{0,1\}^d : l_1$ norm ctd

- l_1 norm over \mathbb{R}^d
 - Partition \mathbb{R}^d using a randomly shifted grid of side length $s=10r$ [Bern’93]
 - For any two points p and q, the probability that p and q fall into different grid cells is at most
 $$\frac{|p_1-q_1|}{s} + \frac{|p_2-q_2|}{s} + \ldots + \frac{|p_d-q_d|}{s} = \frac{||p-q||_1}{s}$$
 - If $||p-q||_1 \leq r$, then probability is at most 10%
- Build a separate data structure for each grid cell
- To answer a query q, use the data structure for the cell containing q
Beyond \(\{0,1\}^d\): \(l_2\) norm

- Embed \(l_2^d\) into \(l_1^t\) with \(t = O(d/\varepsilon^2)\) with distortion \(1 + \varepsilon\) [Figiel-Lindenstrauss-Milman’76]
 - Use random projections

- Or, use Johnson-Lindenstrauss lemma to reduce the dimension to \(t = O(\log n/\varepsilon^2)\) and apply exhaustive storage trick directly in \(l_2^t\) [Indyk-Motwani’98]
Next two lectures

• Wednesday: reducing nearest to near neighbor

• Thursday: other algorithms for near neighbor (less space, more query time)
 – Locality Sensitive Hashing