Similarity Search in High Dimensions

Piotr Indyk MIT

Definitions

- Given: a set P of n points in Rd
- Nearest Neighbor: for any query q, returns a point p∈P minimizing ||p-q||
- r-Near Neighbor: for any query q, returns a point p∈P s.t.
 ||p-q|| ≤ r (if it exists)

The case of d=2

Compute Voronoi diagram

Given q, perform point location

Performance:

– Space: O(n)

– Query time: O(log n)

High-dimensional near(est) neighbor: applications

- Machine learning: nearest neighbor rule
 - Find the closest example with known class
 - Copy the class label
- Near-duplicate Retrieval

Dimension=number of pixels

$$(\ldots, 2, \ldots, 2, \ldots, 1, \ldots, 1, \ldots)$$

Dimension=number of words

The case of d>2

- Voronoi diagram has size n^[d/2]
 - [Dobkin-Lipton'78]: n^{2^(d+1)} space, f(d) log n
 - [Clarkson'88]: $n^{[d/2](1+\epsilon)}$ space, f(d) log n time
 - [Meiser'93]: n^{O(d)} space, (d+ log n)^{O(1)} time
- We can also perform a linear scan: O(dn) time
- Or parametrize by intrinsic dimension
- In practice:
 - kd-trees work "well" in "low-medium" dimensions

Approximate Nearest Neighbor

- c-Approximate Nearest
 Neighbor: build data structure
 which, for any query q
 - returns $p' \in P$, $||p-q|| \le cr$,
 - where r is the distance to the nearest neighbor of q

Approximate Near Neighbor

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point p∈P, ||p-q|| ≤ r
 - it returns p'∈P, ||p-q|| ≤ cr
- Most algorithms randomized:
 - For each query q, the probability (over the randomness used to construct the data structure) is at least 90%
- Reductions and variants:
 - c-Approx Nearest Neighbor reduces to c-Approx Near Neighbor (Wednesday)
 - One can enumerate all approx near neighbors
 - → solving exact near neighbor via filtering
 - Other apps: c-approximate Minimum Spanning Tree, clustering, etc.

Approximate algorithms

- Space/time exponential in d [Arya-Mount'93], [Clarkson'94], [Arya-Mount-Netanyahu-Silverman-Wu'98] [Kleinberg'97], [Har-Peled'02],
- Space/time polynomial in d [Indyk-Motwani'98], [Kushilevitz-Ostrovsky-Rabani'98], [Indyk'98], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06]...

Space	Time	Comment	Norm	Ref
dn+n ^{O(1/ε²)}	d * logn /ε²	c=1+ ε	Hamm, I ₂	[KOR'98, IM'98]
	(or 1)			
$n^{\Omega(1/\epsilon^2)}$	O(1)			[AIP'06]
dn+n ^{1+p(c)}	dn ^{p(c)}	ρ(c)=1/c	Hamm, I ₂	[IM'98], [GIM'98],[Cha'02]
		ρ(c)<1/c		[DIIM'04]
dn * logs	dn ^{σ(c)}	$\sigma(c)=O(\log c/c)$	Hamm, I ₂	[Ind'01]
dn+n ^{1+p(c)}	dn ^{p(c)}	$\rho(c)=1/c^2+o(1)$	l ₂	[Al'06]
		σ(c)=O(1/c)	l ₂	[Pan'06]

n^{O(1/ε²)} space, d * logn /ε² query time, Hamming distance

Hamming distance sketches

[Kushilevitz-Ostrovsky-Rabani'98]

- Let x,y in $\{0,1\}^d$, r>1, ϵ >0, $0<\delta<1$
- Want: sk: {0,1}^d -> {0,1}^t such that
 given sk(x), sk(y):
 - If $H(x,y) > (1+\varepsilon)r$, we report YES
 - If $H(x,y) < (1-\epsilon)r$, we report NO
 - with probability $>1-\delta$
- In fact, we test if H(sk(x),sk(y))>R for some R
- How low t can we get ?
- Will see $t=O(\log(1/\delta)/\epsilon^2)$ suffices

Sketch

```
Setup:

    Choose a random set S of coordinates

 For each i, we have Pr[i∈S]=1/r

      - Choose a random vector u in \{0,1\}^d
    Sketch: Sum_S(x) = \sum_{i \in S} x_i u_i \mod 2
• Estimation algorithm:
      - B= Sum<sub>S</sub>(x) + Sum<sub>S</sub>(y) mod 2
      - YES, if B=1
      - NO, if B=0
Analysis:
      - We have B=Sum_S(z) where z=x XOR y
      - Let D = ||z||_0
      - Pr[B=1] = \frac{1}{2} * Pr[z_s \neq 0]
                          = \frac{1}{2} * [1-Pr[z_S=0]]
                           = \frac{1}{2} * [1-(1-1/r)^{D}]
      - For r large enough: (1-1/r)^{D} \approx e^{-D/r}, so
             • If D> (1+\epsilon)r, then e^{-(1+\epsilon)} < 1/e - \epsilon/3 and Pr>1/2(1-1/e + \epsilon/3)
• If D< (1-\epsilon)r, then e^{-(1-\epsilon)} > 1/e + \epsilon/3 and Pr<1/2(1-1/e - \epsilon/3)
```

- Using $O(\log(1/\delta)/\epsilon^2)$ sums does the job (Chernoff bound)

Sketch is good

- Data structure (for P, r>1, ε>0)
 - Compute sk: $\{0,1\}^d -> \{0,1\}^t$, $t=O(\log(1/\delta)/\epsilon^2)$ for $\delta=1/n^{O(1)}$
 - Sketch works (with high probability) for fixed query q and all points p in P
 - Exhaustive storage trick:
 - Compute

```
S = \{u \text{ in } \{0,1\}^t: H(u,p) > R \text{ for some p in P} \}
```

- Store S (space: 2^t=n^{O(1/ε^2)})
- Query: check whether sk(q) in S

Beyond {0,1}^d: I₁ norm

- I₁ norm over {0...M}^d
 - Embed into Hamming space with dimension dM [Linial-London-Rabinovich'94]
 - Compute

Unary
$$((x_1, ..., x_d)) = Unary(x_1) ... Unary(x_d)$$

We have

$$\|p-q\|_1 = H(Unary(p), Unary(q))$$

- Need to deal with large values of M
- I₁ norm over [0...s]^d
 - Round each coordinate to the nearest multiple of r ε/d
 - Introduces additive error of $r \varepsilon$, or multiplicative (1+ ε) factor
 - Now we have $M=s^* d/(r \epsilon)$

Beyond {0,1}^d: I₁ norm ctd

- I₁ norm over R^d
 - Partition R^d using a randomly shifted grid of side length s=10r [Bern'93]
 - For any two points p and q, the probability that p and q fall into different grid cells is at most

$$|p_1-q_1|/s + |p_2-q_2|/s + ... + |p_d-q_d|/s = ||p-q||_1 /s$$

- If $\|p-q\|_1 \le r$, then probability is at most 10%
- Build a separate data structure for each grid cell
- To answer a query q, use the data structure for the cell containing q

Beyond {0,1}^d: I₂ norm

- Embed I₂^d into I₁^t with t=O(d/ε²) with distortion 1+ε [Figiel-Lindenstrauss-Milman'76]
 - Use random projections
- Or, use Johnson-Lindenstrauss lemma to reduce the dimension to t=O(log n/ε²) and apply exhaustive storage trick directly in I₂^t [Indyk-Motwani'98]

Next two lectures

- Wednesday: reducing nearest to near neighbor
- Thursday: other algorithms for near neighbor (less space, more query time)
 - Locality Sensitive Hashing