Similarity Search in High
Dimensions

Piotr Indyk
MIT

Definitions

« Given: a set P of n points in R¢

* Nearest Neighbor: for any query
g, returns a point p&P
minimizing ||p-q||

» r-Near Neighbor: for any query
g, returns a point p&P s.t.

llp-ql| = r (if it exists)

~o -

The case of d=2

« Compute Voronoi diagram

* Given g, perform point
location

* Performance:
— Space: O(n)
— Query time: O(log n)

High-dimensional near(est)

neighbor: applications

. . E
* Machine learning: nearest L

neighbor rule B3 2

 Find the closest example | {f)ﬂ
with known class

« Copy the class label

* Near-duplicate Retrieval

Dimension=number of pixels

|
(.., 1,..,4,...,2,...,2,..))
To be or not to be
(...,6,...,1,...,3,...,6,...)
—
(., 1,...,3,...,7,...,5,...)
(., 2,..,2,...,1,...,1,..))

Dimension=number of words

The case of d>2

Voronoi diagram has size nl?l

— [Dobkin-Lipton’78]: n#"(4*1) space, f(d) log n
— [Clarkson’88]: nl@’?l("*¢) space, f(d) log n time
— [Meiser’93]: n®@ space, (d+ log n)°") time
We can also perform a linear scan: O(dn)
time

Or parametrize by intrinsic dimension

In practice:

— kd-trees work “well” in “low-medium”
dimensions

Approximate Nearest Neighbor

* c-Approximate Nearest 0
Neighbor: build data structure
which, for any query q < o
—returns p'eP, ||p-ql| = cr, (’
— where r is the distance to the ,

nearest neighbor of g 0 O

Approximate Near Neighbor

c-Approximate r-Near Neighbor: build data
structure which, for any query q:

— If there is a point p&P, [|p-qg|| =

— itreturns p'eP, ||p-q|| =cr

O

Most algorithms randomized:

— For each query g, the probability (over the
randomness used to construct the data structure) \ 4
is at least 90%

Reductions and variants:

— c-Approx Nearest Neighbor reduces to c-Approx
Near Neighbor (Wednesday)

— One can enumerate all approx near neighbors
— solving exact near neighbor via filtering

— Other apps: c-approximate Minimum Spanning
Tree, clustering, etc.

Approximate algorithms

Space/time exponential in d [Arya-Mount'93],

[Clarkson’94], [Arya-Mount-Netanyahu-Silverman-Wu’98]
[Kleinberg'97], [Har-Peled’'02],

Space/time polynomial in d [Indyk-Motwani’98],
[Kushilevitz-Ostrovsky-Rabani’98], [Indyk’98], [Gionis-Indyk-
Motwani’99], [Charikar'02], [Datar-lImmorlica-Indyk-Mirrokni’'04],
[Chakrabarti-Regev’'04], [Panigrahy’06], [Ailon-Chazelle’06]...

Space Time Comment Norm Ref
dn+nO(1/e?) d * logn /€2 c=1+¢ Hamm, I, | [KOR'98, IM'98]
(or 1)

nQ(1/e2) 0(1) [AIP’06]

dn+n+p(©) dne(© p(c)=1/c Hamm, 1, | [IM'98], [GIM'98],[Cha’02]
p(c)<1/c , [DIIM'04]

dn * logs dnote) o(c)=0(log c/c) Hamm, |, | [Ind’01]

dn+nT+e(©) dne(©) p(c)=1/c? + o(1) l, [AI'06]
o(c)=0(1/c) , [Pan’06]

nO(e%) space, d * logn /€2 query time,
Hamming distance

Hamming distance sketches
[Kushilevitz-Ostrovsky-Rabani'98]

Let x,y in {0,1}9, r>1, ¢>0, 0<6<1
Want: sk: {0,1}9-> {0,1}! such that

given sk(x), sk(y):
— If H(x,y)> (1+¢)r, we report YES
— If H(x,y)< (1-¢)r, we report NO

with probability >1-5
In fact, we test if H(sk(x),sk(y))>R for
some R

How low t can we get ?
Will see t=0(log(1/8)/¢2) suffices

Sketch

Setup:
— Choose a random set S of coordinates
e For each i, we have Pr[ieS]|=1/r
— Choose a random vector u in {0,1}4
Sketch: Sumg(x) = =< %, u;mod 2
Estimation algorithm:
— B= Sum¢(x) + Sum¢(y) mod 2
— YES, if B=1
— NO, if B=0
Analysis:
— We have B=5Sum¢(z) where z=x XOR y
— Let D=||z|,
— Pr[B=1] Y2 * Pr[zs#0]
2 * [1-Pr[zs=0]]
2 * [1-(1-1/r)P]
— For r large enough: (1-1/r)P =e™®/r, so
o IfD> (1+¢)r, then e+ < 1/e - ¢/3 and Pr>1/2(1-1/e + ¢/3)
o IfD< (1-¢)r, thene(l® > 1/e + ¢/3 and Pr<1/2(1-1/e - ¢/3)

— Using O(log(1/8)/¢?) sums does the job (Chernoff bound)

Sketch is good

» Data structure (for P, r=>1, ¢>0)
— Compute sk: {0,1}9-> {0,1}', t=0(log(1/5)/?)
for 5=1/n°)

e Sketch works (with high probability) for fixed
query g and all points p in P

— Exhaustive storage trick:
e Compute
S={u in {0,1} H(u,p)>R for some p in P}
e Store S (space: 2i=n°1/="2))

e Query: check whether sk(qg) in S

Beyond {0,1}9: I, norm

* |, norm over {0...M}¢

— Embed into Hamming space with dimension dM [Linial-
London-Rabinovich’94]

« Compute
Unary((x4, . . ., X4)) = Unary(x,4) . . . Unary(xy)
 We have

|lP-qll4 = H(Unary(p), Unary(q))
— Need to deal with large values of V]
* |, norm over [0...s]¢

— Round each coordinate to the nearest multiple of r €/d
* Introduces additive error of r € , or multiplicative (1+¢) factor

— Now we have M=s”* d/(r g)

Beyond {0,1}9: I, norm ctd

* |, norm over R¢
— Partition RY using a randomly shifted grid of side
ength s=10r [Bern’93]
— For any two points p and g, the probability that p
and g fall into different grid cells is at most

IP1-Q4|/s + [Po-Q,l/s+..+|py-qql/s= ||p-qll; /s
* If ||p-ql|, = r, then probability is at most 10%

— Build a separate data structure for each grid cell

— To answer a query g, use the data structure for
the cell containing ¢

Beyond {0,1}9: |, norm

« Embed |9 into |,'with t=0(d/s?) with
distortion 1+¢ [Figiel-Lindenstrauss-Milman’76]
— Use random projections

e Or, use Johnson-Lindenstrauss lemma to

reduce the dimension to t=0O(log n/¢?) and

apply exhaustive storage trick directly in |}
[Indyk-Motwani'98]

Next two lectures

* Wednesday: reducing nearest to near
neighbor

» Thursday: other algorithms for near
neighbor (less space, more query time)
— Locality Sensitive Hashing

