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Approximate Near(est) Neighbor 
•  c-Approximate Nearest 

Neighbor: build data structure 
which, for any query q 
–  returns  p’∈P,  ||p-q|| ≤ cr,  
– where r is the distance to the 

nearest neighbor of  q  
•  c-Approximate r-Near Neighbor: 

build data structure which, for 
any query q:  
–  If there is a point p∈P, ||p-q|| ≤ r 
–  it returns  p’∈P,  ||p-q|| ≤ cr 
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Algorithms for c-Approximate 
Near Neighbor 

Space Time Comment Norm Ref 

dn+nO(1/ε2) d * logn /ε2  

(or 1) 

c=1+ ε Hamm, l2 [KOR’98, IM’98] 

nΩ(1/ε2)                   O(1) [AIP’06] 

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c Hamm, l2 [IM’98], [GIM’98],[Cha’02] 

ρ(c)<1/c l2 [DIIM’04] 

dn * logs dnσ(c) σ(c)=O(log c/c) Hamm, l2 [Ind’01] 

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c2 + o(1) l2 [AI’06] 

σ(c)=O(1/c) l2 [Pan’06] 



Reductions 

•  c(1+γ)-Approx Nearest Neighbor reduces to c-Approx 
Near Neighbor 

•  Easy:  
–  Space multiplied by (log Δ)/γ, where Δ is the spread, i.e., all 

distances in P are in [1…Δ] 
–  Query time multiplied by log((log Δ)/γ) 
–  Probability of failure multiplied by (log Δ)/γ 
–  Idea: 

•  Build data structures with r= ½  , ½ (1+γ), ½ (1+γ)2,… , O(Δ) 
•  To answer query, do binary search on values of r 

•  Hard: replace log Δ by log n  



General reduction  
[Har Peled-Indyk-Motwani’11] 

•  Assume we have a data structure for dynamic c-Near 
Neighbor in under a metric D which, for parameters n,f has: 
–  T(n,c,f) construction time 
–  S(n,c,f) space bound 
–  Q(n,c,f) query time 
–  U(n,c,f) update time 

•  Then we get a data structure for c(1+O(γ))-Nearest Neighbor 
with: 
–  O(T(n,c,f)/γ·log2 n+nlogn[Q(n,c,f)+U(n,c,f)]) expected 

construction time 
–  O(S(n,c,f)/γ · log2 n) space bound 
–  Q(n,c,f) O(logn) query time 
–  O(f logn) failure probability 

•  Generalizes, improves, simplifies and merges [Indyk-
Motwani’98] and [Har Peled’01] 



Intro 
•  Basic idea: use different scales 

(i.e., radiuses r) for different 
clouds of points 
–  At most n2 total 
–  Would like (log n)2 per point, on the 

average 
•  We will see a simplified reduction: 

–  From approximate nearest 
neighbor to exact near neighbor 

–  Simplifying assumption 
•  Actual reduction a little more 

complex, but follows the same 
idea 



Example 



Notation 
•  UBP (r) = ∪p∈P B(p, r) 
•  CCP(r) is a partitioning of P 

induced by the connected 
components of UBP(r) 

•  rmed is the smallest value of r such 
that UBP(r) has a component of 
size at least  n/2 + 1 

•  UBmed=UBP(rmed) 
•  CCmed=CCP(rmed) 
•  Simplifying assumption: UBP(rmed) 

has a component of size exactly  
    n/2+1  



A simplified reduction 
•  Set rtop = Θ(nrmed log(n)/γ) 
•  Exact  near neighbor data 

structures NN: 
–  For i=0…log1+γ (2rtop/rmed),  

    create NN(P, rmed(1+γ)i/2) 

–  For each component C∈CCmed 
recurse on C 

–  Recurse on P′⊂P that contains one 
point per each component 
C∈CCmed (at most n/2 points) 

•  Note that the recursion has depth  
O(log n) 

Inner radius =rmed/2 

Outer radius =rtop 



Search 
1.  Use NN(P, rmed/2) to check whether  

D(q,P)<rmed/2  
•  If yes, recurse on the component C 

containing q 
2.  Else use NN(P, rtop) to check whether  

D(q,P)>rtop  
•  If yes, recurse on P’ 

3.  Else perform binary search on  
 NN(P, rmed(1+γ)i/2)  

•  Correctness for Cases 1 and 3 follows 
from  the procedure  

•  Case 2 need a little work: 
–  Each “contraction” introduces an additive 

error up to n rmed 
–  But the distance to nearest neighbor 

lower-bounded by  rtop = Θ(nrmed log(n)/γ) 
–  Accumulated relative error at most  

(1+n rmed/rtop )O(log n) =(1+γ/log(n)) O(log n) 



Space 

•  Let B(n) be the maximum number of points 
stored by the data structure 
– Space = O(B(n) log1+γ (rtop/rmed)) 

•  We have 
 B(n)= maxk,n1+n2+…+nk=n Σi B(ni)+B(k)+n 

   subject to k≤n/2 ,1≤ni ≤n/2#
•  This solves to O(n log n) 



Construction time 

•  Estimating rmed 
–  Selects a point p uniformly 

at random from P 
–  Return r∗ =median of the set 

D(p,p′) over p′ ∈ P 
–  We have  

rmed ≤ r∗≤ (n − 1)rmed  
   with probability >1/2 

•  Approximating CCP(r*) 
–  n queries and updates to 

NN with r* 



Algorithms for c-Approximate 
Near Neighbor 

Space Time Comment Norm Ref 

dn+nO(1/ε2) d * logn /ε2  

(or 1) 

c=1+ ε Hamm, l2 [KOR’98, IM’98] 

nΩ(1/ε2)                   O(1) [AIP’06] 

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c Hamm, l2 [IM’98], [GIM’98],[Cha’02] 

ρ(c)<1/c l2 [DIIM’04] 

dn * logs dnσ(c) σ(c)=O(log c/c) Hamm, l2 [Ind’01] 

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c2 + o(1) l2 [AI’06] 

σ(c)=O(1/c) l2 [Pan’06] 



Locality-Sensitive Hashing 
[Indyk-Motwani’98]             

•  Idea: construct hash functions 
g: Rd → U such that for any 
points p,q: 
–  If ||p-q|| ≤ r,  then Pr[g(p)=g(q)] is 

“high”  
–  If ||p-q|| >cr, then Pr[g(p)=g(q)] is 

“small” 
•  Then we can solve the problem 

by hashing 
•  Related work: [Paturi-Rajasekaran- 

Reif’95, Greene-Parnas-Yao’94, Karp-
Waarts-Zweig’95, Califano-Rigoutsos’93, 
Broder’97] 

“not-so-small” 

q 

p 



LSH 

•  A family H of functions h: Rd → U is called 
(P1,P2,r,cr)-sensitive, if for any p,q: 
–  if ||p-q|| <r   then Pr[ h(p)=h(q) ] > P1  
–  if ||p-q|| >cr then Pr[ h(p)=h(q) ] < P2 

•  Example: Hamming distance 
– KOR’98: h(p) = Σi∈S pi ui mod 2 

–  IM’98: h(p)=pi, i.e., the i-th bit of p 
•  Probabilities: Pr[ h(p)=h(q) ] = 1-H(p,q)/d 

p=10010010 
q=11010110 



Algorithm 
•  We use functions of the form  

g(p)=<h1(p),h2(p),…,hk(p)>  
•  Preprocessing: 

–  Select g1…gL 
–  For all p∈P, hash p to buckets g1(p)…gL(p) 

•  Query: 
–  Retrieve the points from buckets g1(q), g2(q), … , until 

•  Either the points from all L buckets have been retrieved, or 
•  Total number of points retrieved exceeds 3L 

–  Answer the query based on the retrieved points 
–  Total time: O(dL) 



Analysis [IM’98, Gionis-Indyk-Motwani’99] 

•  Lemma1: the algorithm solves c-
approximate NN with: 
– Number of hash functions: 

 L=nρ, ρ=log(1/P1)/log(1/P2) 
– Constant success probability per query q 

•  Lemma 2: for Hamming LSH functions, we 
have ρ=1/c  



Proof of Lemma 1 by picture 
•  Points in {0,1}d 
•  Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h’s ) 

•  Distance ranges from 0 to d=10   


