Similarity Search in High
Dimensions ||

Piotr Indyk
MIT

Approximate Near(est) Neighbor

* c-Approximate Nearest o
Neighbor: build data structure
which, for any query q

O
—returns p’eP, ||p-q|| < cr, g
— where r is the distance to the
nearest neighbor of g :

O
» c-Approximate r-Near Neighbor: :
build data structure which, for

any query Q:
— If there is a point p&P, ||p-q|| =
—itreturns p'eP, ||p-ql| = cr

Algorithms for c-Approximate
Near Neighbor

Space Time Comment Norm Ref
dn+nO(1/&?) d * logn /€2 c=1+¢ Hamm, I, | [KOR'98, IM’'98]
(or 1)

nQ(1/e) o(1) [AIP’06]

dn+n1+e(©) dne© p(c)=1/c Hamm, 1, | [IM'98], [GIM'98],[Cha’02]
p(c)<1/c , [DIIM’04]

dn * logs dno(© o(c)=0(log c/c) Hamm, I, | [Ind’01]

dn+nT+e(c) dne(©) p(c)=1/c? + o(1) l, [AI'06]
o(c)=0(1/c) l, [Pan’06]

Reductions

* c(1+y)-Approx Nearest Neighbor reduces to c-Approx
Near Neighbor

« Easy:
— Space multiplied by (log A)/y, where A is the spread, i.e., all
distances in P are in [1...A]
— Query time multiplied by log((log A)/y)
— Probability of failure multiplied by (log A)/y

— ldea:
Build data structures with r= % | 4 (1+y), /2 (1+y)?,... , O(A)
To answer query, do binary search on values of r

* Hard: replace log A by log n

General reduction
[Har Peled-Indyk-Motwani’11]

« Assume we have a data structure for dynamic c-Near
Neighbor in under a metric D which, for parameters n,f has:

— T(n,c,f) construction time
— S(n,c,f) space bound
— Q(n,c,f) query time
— U(n,c,f) update time
. Thﬁn we get a data structure for c(1+O(y))-Nearest Neighbor
with:
— O(T(n,c,f)/y-log? n+nlogn[Q(n,c,f)+U(n,c,f)]) expected
construction time
— O(S(n,c,fy - log? n) space bound
— Q(n,c,f) O(logn) query time
— O(f logn) failure probability
« Generalizes, improves, simplifies and merges [Indyk-
Motwani’98] and [Har Peled’01]

Intro

« Basic idea: use different scales
(i.e., radiuses r) for different
clouds of points

— At most n? total
— Would like (log n)? per point, on the
average
« We will see a simplified reduction:

— From approximate nearest
neighbor to exact near neighbor

— Simplifying assumption
 Actual reduction a little more

complex, but follows the same
idea

OO
O O
@

Example

Notation

UBp (r) = Upep B(p, 1)

CCp(r) is a partitioning of P @ @
induced by the connected

components of UB,(r) @

.4 IS the smallest value of r such

d
tﬁgt UBk(r) has a component of
size at least n/2 + 1

UB1¢=UBp(rmed)

med
CCmed=CCP(rmed)

Simplifying assumption: UB,(r,,.4)
has a component of size exactly
n/2+1

Set rp = O(Nrpeq l0g(N)/Y)
Exact near neighbor data

structures NN:

— For i:O...Iog1+v (2r’[op/rmed)’
create NN(P, r .(1+y)/2)

— For each component CECC,,

recurse on C -."
— Recurse on P'CP that contains one

point per each component
CeCC,, .4 (at most n/2 points)

Note that the recursion has depth
O(log n)

\
A

A
Ny

\
\ N

——e el -

Inner radius =r,,.4/2

Outer radius =r,,,

Search o

1. Use NN(P, r,.4/2) to check whether
D(an)<rmed/2

. If yes, recurse on the component C
containing q

2. Else use NN(P, r,) to check whether
D(an)>rtop
. If yes, recurse on P’

3. Else perform binary search on
NN(P, req(1+Y)72)

« Correctness for Cases 1 and 3 follows
from the procedure

« (Case 2 need a little work:

— Each “contraction” introduces an additive
errorup tonr, 4

— But the distance to nearest neighbor
lower-bounded by r,,, = O(nr, .4 log(n)/y)

— Accumulated relative error at most
(14N 1 g0)19 M =(1+y/log(n)) Cleg M)

Space

* Let B(n) be the maximum number of points
stored by the data structure

— Space = O(B(N) 1091+, (Fiop/Tmea))
* We have
B(n)= maxy n14nz+...+nk=n Zi B(N)+B(k)+n
subject to k=n/2 ,1=n=n/2
» This solves to O(n log n)

Construction time

« Estimatingr, .,
— Selects a point p uniformly @ @

at random from P
— Return r =median of the set @
D(p,p')overp' € P

— We have @
g Srs<(n-"1r

med — med

with probability >1/2
* Approximating CCy(r")

— n queries and updates to
NN with r*

Algorithms for c-Approximate
Near Neighbor

Space Time Comment Norm Ref
dn+nO(1/&?) d * logn /€2 c=1+¢ Hamm, I, | [KOR'98, IM’'98]
(or 1)

nQ(1/e) o(1) [AIP’06]

dn+n1+e(©) dne© p(c)=1/c Hamm, 1, | [IM'98], [GIM'98],[Cha’02]
p(c)<1/c , [DIIM’04]

dn * logs dno(© o(c)=0(log c/c) Hamm, I, | [Ind’01]

dn+nT+e(c) dne(©) p(c)=1/c? + o(1) l, [AI'06]
o(c)=0(1/c) l, [Pan’06]

Locality-Sensitive Hashing

[Indyk-Motwani'98]

» |dea: construct hash functions &
g: RY — U such that for any O, e
points p,q:
— It [p-gl| =, then Pr[g(p)=g(q)] is

“high” “not-so-small” o O
— It [|[p-g|| >cr, then Pr[g(p)=g(q)] is
“small” © 1@
« Then we can solve the problem L2212
by hashing O

 Related work: [Paturi-Rajasekaran-
Reif'95, Greene-Parnas-Yao'94, Karp-

Waarts-Zweig'95, Califano-Rigoutsos’93,
Broder'97]

LSH

« A family H of functions h: R? — U is called
(P4,P,,r.cr)-sensitive, if for any p,q:
—if ||p-q|| <r then Pr[h(p)=h(q) 1> P,
—if ||p-g|| >cr then Pr[h(p)=h(q)] < P,

« Example: Hamming distance
— KOR’98: h(p) = . p;u;mod 2
— IM’98: h(p)=p, i.e., the i-th bit of p
» Probabilities: Pr[h(p)=h(q)] = 1-H(p,q)/d

p=10010010
q=11010110

Algorithm

 We use functions of the form

g(p)=<h4(p).hx(p),....h(p)>
* Preprocessing:
— Selectg,...g,
— For all peP, hash p to buckets g,(p)...g,(p)

* Query:
— Retrieve the points from buckets g.(q), 9,(q), ..., until

 Either the points from all L buckets have been retrieved, or
» Total number of points retrieved exceeds 3L

— Answer the query based on the retrieved points
— Total time: O(dL)

Analysis [IM’98, Gionis-Indyk-Motwani’99]

 Lemma1: the algorithm solves c-
approximate NN with:

— Number of hash functions:
L=n°, p=log(1/P1)/log(1/P2)
— Constant success probability per query q

e Lemma 2: for
have p=1/c

lamming LS|

functions, we

Proof of Lemma 1 by picture
* Points in {0,1}°
» Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h’s)
» Distance ranges from O to d=10

Collision probability

1.2 1.2 1.2
1 1 11
D : TR 2
08 S 08 208
\\ —]| | 3 \\ —=t]|| 8 \ \ I
06 k=2 2 06 k=2 g 06
= c
k=3 = \ \ k=3 =) \ \
0.4 2 0.4 3 0.4
S NN S NI
0.2 0.2 0.2
0 1 1 1 1 1 |\\ D IIIIIIIII O |||||||||
1 2 345 6 7 8 910 1 3 5 7 9 11 1 3 5 7 9 1

Distance Distance Distance

