Similarity Search in High Dimensions II

Piotr Indyk MIT

Approximate Near(est) Neighbor

- c-Approximate Nearest Neighbor: build data structure which, for any query q
- returns $p^{\prime} \in P,\|p-q\| \leq c r$,
- where r is the distance to the nearest neighbor of q
- c-Approximate r-Near Neighbor:
 build data structure which, for any query q:
- If there is a point $p \in P,\|p-q\| \leq r$
- it returns $p^{\prime} \in P,\|p-q\| \leq c r$

Algorithms for c-Approximate Near Neighbor

Space	Time	Comment	Norm	Ref
$d n+n^{O\left(1 / \varepsilon^{2}\right)}$	$\begin{aligned} & d^{*} \operatorname{logn} / \varepsilon^{2} \\ & \text { (or } 1 \text {) } \end{aligned}$	$\mathrm{c}=1+\varepsilon$	Hamm, I_{2}	[KOR'98, IM'98]
$\mathrm{n}^{\Omega\left(1 / \varepsilon^{2}\right)}$	O(1)			[AIP'06]
$\mathrm{dn}+\mathrm{n}^{1+\rho(c)}$	dn ${ }^{\text {p(c) }}$	$\rho(\mathrm{c})=1 / \mathrm{c}$	Hamm, I_{2}	[IM'98], [GIM'98],[Cha'02]
		$\rho(\mathrm{c})<1 / \mathrm{c}$	I_{2}	[DIIM'04]
dn * logs	$\mathrm{d} \mathrm{n}^{\sigma(\mathrm{c})}$	$\sigma(\mathrm{c})=\mathrm{O}(\log \mathrm{c} / \mathrm{c})$	Hamm, I_{2}	[Ind'01]
$\mathrm{dn}+\mathrm{n}^{1+\rho(c)}$	dn ${ }^{\text {p(c) }}$	$\rho(\mathrm{c})=1 / \mathrm{c}^{2}+\mathrm{o}(1)$	I_{2}	[Al'06]
		$\sigma(\mathrm{c})=\mathrm{O}(1 / \mathrm{c})$	I_{2}	[Pan'06]

Reductions

- $c(1+\gamma)$-Approx Nearest Neighbor reduces to c-Approx Near Neighbor
- Easy:
- Space multiplied by $(\log \Delta) / \gamma$, where Δ is the spread, i.e., all distances in P are in [1... Δ]
- Query time multiplied by $\log ((\log \Delta) / \mathrm{y})$
- Probability of failure multiplied by $(\log \Delta) / \gamma$
- Idea:
- Build data structures with $r=1 / 2,1 / 2(1+\gamma), 1 / 2(1+\gamma)^{2}, \ldots, O(\Delta)$
- To answer query, do binary search on values of r
- Hard: replace $\log \Delta$ by log n

General reduction [Har Peled-Indyk-Motwani'11]

- Assume we have a data structure for dynamic c-Near Neighbor in under a metric D which, for parameters n, f has:
- $T(n, c, f)$ construction time
- $S(n, \mathrm{c}, \mathrm{f})$ space bound
- $\mathrm{Q}(\mathrm{n}, \mathrm{c}, \mathrm{f})$ query time
- U(n,c,f) update time
- Then we get a data structure for $\mathrm{c}(1+\mathrm{O}(\mathrm{y}))$-Nearest Neighbor with:
- $O\left(T(n, c, f) / \gamma \cdot \log ^{2} n+n \operatorname{logn}[Q(n, c, f)+U(n, c, f)]\right)$ expected construction time
- O(S(n,c,f)/y • $\left.\log ^{2} n\right)$ space bound
- $\mathrm{Q}(\mathrm{n}, \mathrm{c}, \mathrm{f}) \mathrm{O}(\operatorname{logn})$ query time
- O(f logn) failure probability
- Generalizes, improves, simplifies and merges [IndykMotwani'98] and [Har Peled'01]

Intro

- Basic idea: use different scales (i.e., radiuses r) for different clouds of points
- At most n^{2} total
- Would like $(\log n)^{2}$ per point, on the average
- We will see a simplified reduction:
- From approximate nearest neighbor to exact near neighbor
- Simplifying assumption
- Actual reduction a little more complex, but follows the same idea

Example

Notation

- $U B_{p}(r)=U_{p \in P} B(p, r)$
- $C_{P}(r)$ is a partitioning of P induced by the connected components of $U B_{p}(r)$
- $r_{\text {med }}$ is the smallest value of r such that $U B_{p}(r)$ has a component of size at least $n / 2+1$
- $U B_{\text {med }}=U B_{p}\left(r_{\text {med }}\right)$
- $C^{\text {med }}=C C_{p}\left(r_{\text {med }}\right)$
- Simplifying assumption: $U B_{p}\left(r_{\text {med }}\right)$ has a component of size exactly n/2+1

A simplified reduction

- Set $r_{\text {top }}=\Theta\left(n r_{\text {med }} \log (n) / \mathrm{y}\right)$
- Exact near neighbor data structures NN:
- For $\mathrm{i}=0 \ldots \log _{1+\mathrm{y}}\left(2 \mathrm{r}_{\text {top }} / r_{\text {med }}\right)$, create $\mathrm{NN}\left(\mathrm{P}, \mathrm{r}_{\text {med }}(1+\gamma)^{1 / 2}\right)$
- For each component $C \in C C_{\text {med }}$ recurse on C
- Recurse on $P^{\prime} \subset P$ that contains one point per each component $C \in C_{\text {med }}$ (at most $n / 2$ points)
- Note that the recursion has depth O(log n)

$$
\begin{aligned}
& \text { Inner radius }=r_{\text {med }} / 2 \\
& \text { Outer radius }=r_{\text {top }}
\end{aligned}
$$

Search

1. Use $N N\left(P, r_{\text {med }} / 2\right)$ to check whether $D(q, P)<r_{\text {med }} / 2$

- If yes, recurse on the component C containing q

2. Else use $\mathrm{NN}\left(\mathrm{P}, \mathrm{r}_{\text {top }}\right)$ to check whether $D(q, P)>r_{\text {top }}$

- If yes, recurse on P'

3. Else perform binary search on

$$
\mathrm{NN}\left(\mathrm{P}, \mathrm{r}_{\text {med }}(1+\mathrm{y})^{1 / 2}\right)
$$

- Correctness for Cases 1 and 3 follows from the procedure
- Case 2 need a little work:
- Each "contraction" introduces an additive error up to $n r_{\text {med }}$
- But the distance to nearest neighbor lower-bounded by $r_{\text {top }}=\Theta\left(n r_{\text {med }} \log (n) / \gamma\right)$
- Accumulated relative error at most
$\left(1+n r_{\text {medr }} r_{\text {top }}\right)^{0(\log n)}=(1+\gamma / \log (n))^{\circ}(\log n)$

Space

- Let $B(n)$ be the maximum number of points stored by the data structure
- Space $=O\left(B(n) \log _{1+\gamma}\left(r_{\text {top }} / r_{\text {med }}\right)\right)$
- We have

$$
B(n)=\max _{k, n 1+n 2+\ldots+n k=n} \Sigma_{i} B\left(n_{i}\right)+B(k)+n
$$

subject to $k \leq n / 2,1 \leq n \leq n / 2$

- This solves to $O(n \log n)$

Construction time

- Estimating $r_{\text {med }}$
- Selects a point p uniformly at random from P
- Return $r^{*}=m e d i a n$ of the set $D\left(p, p^{\prime}\right)$ over $p^{\prime} \in P$
- We have

$$
r_{\text {med }} \leq r^{*} \leq(n-1) r_{\text {med }}
$$

with probability >1/2

- Approximating $\mathrm{CC}_{\mathrm{p}}\left(\mathrm{r}^{*}\right)$
- n queries and updates to NN with r^{*}

Algorithms for c-Approximate Near Neighbor

Space	Time	Comment	Norm	Ref
$d n+n^{O\left(1 / \varepsilon^{2}\right)}$	$\begin{aligned} & d^{*} \log n / \varepsilon^{2} \\ & \text { (or } 1 \text {) } \end{aligned}$	$\mathrm{c}=1+\varepsilon$	Hamm, I_{2}	[KOR'98, IM'98]
$\mathrm{n}^{\Omega\left(1 / \varepsilon^{2}\right)}$	O(1)			[AIP'06]
$d n+\mathrm{n}^{1+\rho(c)}$	dn ${ }^{\text {p(c) }}$	$\rho(\mathrm{c})=1 / \mathrm{c}$	Hamm, I_{2}	[IM'98], [GIM'98],[Cha'02]
		$\rho(\mathrm{c})<1 / \mathrm{c}$	I_{2}	[DIIM'04]
dn * logs	$\mathrm{d} \mathrm{n}^{\sigma(c)}$	$\sigma(\mathrm{c})=\mathrm{O}(\log \mathrm{c} / \mathrm{c})$	Hamm, I_{2}	[Ind'01]
$\mathrm{dn}+\mathrm{n}^{1+p(c)}$	$\mathrm{d} \mathrm{n}^{\rho(\mathrm{c})}$	$\rho(\mathrm{c})=1 / \mathrm{c}^{2}+\mathrm{o}(1)$	I_{2}	[Al'06]
		$\sigma(\mathrm{c})=\mathrm{O}(1 / \mathrm{c})$	I_{2}	[Pan'06]

Locality-Sensitive Hashing [Indyk-Motwani'98]

- Idea: construct hash functions $\mathrm{g}: \mathrm{R}^{\mathrm{d}} \rightarrow \mathrm{U}$ such that for any
 points p, q :
- If $\|p-q\| \leq r$, then $\operatorname{Pr}[g(p)=g(q)]$ is "high" "not-so-small"
- If $\||p-q \||>c r$, then $\operatorname{Pr}[g(p)=g(q)]$ is
- Then we can solve the problem by hashing

- Related work: [Paturi-RajasekaranReif'95, Greene-Parnas-Yao'94, Karp-Waarts-Zweig'95, Califano-Rigoutsos'93, Broder'97]

LSH

- A family H of functions $h: R^{d} \rightarrow U$ is called ($\left.P_{1}, P_{2}, r, c r\right)$-sensitive, if for any p, q :
- if $\|p-q\|<r$ then $\operatorname{Pr}[h(p)=h(q)]>P_{1}$
- if $\|p-q\|>c r$ then $\operatorname{Pr}[h(p)=h(q)]<P_{2}$
- Example: Hamming distance
- KOR'98: $h(p)=\Sigma_{i \in S} p_{i} u_{i} \bmod 2$
- IM'98: $h(p)=p_{i}$, i.e., the i-th bit of p
- Probabilities: $\operatorname{Pr}[h(p)=h(q)]=1-H(p, q) / d$

$$
\begin{aligned}
& p=10010010 \\
& q=11010110
\end{aligned}
$$

Algorithm

- We use functions of the form

$$
g(p)=<h_{1}(p), h_{2}(p), \ldots, h_{k}(p)>
$$

- Preprocessing:
- Select $g_{1} \ldots g_{L}$
- For all $p \in P$, hash p to buckets $g_{1}(p) \ldots g_{L}(p)$
- Query:
- Retrieve the points from buckets $g_{1}(q), g_{2}(q), \ldots$, until
- Either the points from all L buckets have been retrieved, or
- Total number of points retrieved exceeds 3L
- Answer the query based on the retrieved points
- Total time: $\mathrm{O}(\mathrm{dL})$

Analysis [IM'98, Gionis-Indyk-Motwani'99]

- Lemma1: the algorithm solves capproximate NN with:
- Number of hash functions:

$$
L=n^{\rho}, \rho=\log (1 / P 1) / \log (1 / P 2)
$$

- Constant success probability per query q
- Lemma 2: for Hamming LSH functions, we have $\rho=1 / \mathrm{c}$

Proof of Lemma 1 by picture

- Points in $\{0,1\}^{\text {d }}$
- Collision prob. for $\mathrm{k}=1$.. $3, \mathrm{~L}=1$. 3 (recall: $\mathrm{L}=\#$ \#ndices, $\mathrm{k}=\# \mathrm{H}^{\prime} \mathrm{s}$)
- Distance ranges from 0 to $\mathrm{d}=10$

