
Similarity Search in High
Dimensions II

Piotr Indyk
MIT

Approximate Near(est) Neighbor
•  c-Approximate Nearest

Neighbor: build data structure
which, for any query q
–  returns p’∈P, ||p-q|| ≤ cr,
– where r is the distance to the

nearest neighbor of q
•  c-Approximate r-Near Neighbor:

build data structure which, for
any query q:
–  If there is a point p∈P, ||p-q|| ≤ r
–  it returns p’∈P, ||p-q|| ≤ cr

q

r

cr

Algorithms for c-Approximate
Near Neighbor

Space Time Comment Norm Ref

dn+nO(1/ε2) d * logn /ε2

(or 1)

c=1+ ε Hamm, l2 [KOR’98, IM’98]

nΩ(1/ε2) O(1) [AIP’06]

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c Hamm, l2 [IM’98], [GIM’98],[Cha’02]

ρ(c)<1/c l2 [DIIM’04]

dn * logs dnσ(c) σ(c)=O(log c/c) Hamm, l2 [Ind’01]

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c2 + o(1) l2 [AI’06]

σ(c)=O(1/c) l2 [Pan’06]

Reductions

•  c(1+γ)-Approx Nearest Neighbor reduces to c-Approx
Near Neighbor

•  Easy:
–  Space multiplied by (log Δ)/γ, where Δ is the spread, i.e., all

distances in P are in [1…Δ]
–  Query time multiplied by log((log Δ)/γ)
–  Probability of failure multiplied by (log Δ)/γ
–  Idea:

•  Build data structures with r= ½ , ½ (1+γ), ½ (1+γ)2,… , O(Δ)
•  To answer query, do binary search on values of r

•  Hard: replace log Δ by log n

General reduction
[Har Peled-Indyk-Motwani’11]

•  Assume we have a data structure for dynamic c-Near
Neighbor in under a metric D which, for parameters n,f has:
–  T(n,c,f) construction time
–  S(n,c,f) space bound
–  Q(n,c,f) query time
–  U(n,c,f) update time

•  Then we get a data structure for c(1+O(γ))-Nearest Neighbor
with:
–  O(T(n,c,f)/γ·log2 n+nlogn[Q(n,c,f)+U(n,c,f)]) expected

construction time
–  O(S(n,c,f)/γ · log2 n) space bound
–  Q(n,c,f) O(logn) query time
–  O(f logn) failure probability

•  Generalizes, improves, simplifies and merges [Indyk-
Motwani’98] and [Har Peled’01]

Intro
•  Basic idea: use different scales

(i.e., radiuses r) for different
clouds of points
–  At most n2 total
–  Would like (log n)2 per point, on the

average
•  We will see a simplified reduction:

–  From approximate nearest
neighbor to exact near neighbor

–  Simplifying assumption
•  Actual reduction a little more

complex, but follows the same
idea

Example

Notation
•  UBP (r) = ∪p∈P B(p, r)
•  CCP(r) is a partitioning of P

induced by the connected
components of UBP(r)

•  rmed is the smallest value of r such
that UBP(r) has a component of
size at least n/2 + 1

•  UBmed=UBP(rmed)
•  CCmed=CCP(rmed)
•  Simplifying assumption: UBP(rmed)

has a component of size exactly
 n/2+1

A simplified reduction
•  Set rtop = Θ(nrmed log(n)/γ)
•  Exact near neighbor data

structures NN:
–  For i=0…log1+γ (2rtop/rmed),

 create NN(P, rmed(1+γ)i/2)

–  For each component C∈CCmed
recurse on C

–  Recurse on P′⊂P that contains one
point per each component
C∈CCmed (at most n/2 points)

•  Note that the recursion has depth
O(log n)

Inner radius =rmed/2

Outer radius =rtop

Search
1.  Use NN(P, rmed/2) to check whether

D(q,P)<rmed/2
•  If yes, recurse on the component C

containing q
2.  Else use NN(P, rtop) to check whether

D(q,P)>rtop
•  If yes, recurse on P’

3.  Else perform binary search on
 NN(P, rmed(1+γ)i/2)

•  Correctness for Cases 1 and 3 follows
from the procedure

•  Case 2 need a little work:
–  Each “contraction” introduces an additive

error up to n rmed
–  But the distance to nearest neighbor

lower-bounded by rtop = Θ(nrmed log(n)/γ)
–  Accumulated relative error at most

(1+n rmed/rtop)O(log n) =(1+γ/log(n)) O(log n)

Space

•  Let B(n) be the maximum number of points
stored by the data structure
– Space = O(B(n) log1+γ (rtop/rmed))

•  We have
 B(n)= maxk,n1+n2+…+nk=n Σi B(ni)+B(k)+n

 subject to k≤n/2 ,1≤ni ≤n/2#
•  This solves to O(n log n)

Construction time

•  Estimating rmed
–  Selects a point p uniformly

at random from P
–  Return r∗ =median of the set

D(p,p′) over p′ ∈ P
–  We have

rmed ≤ r∗≤ (n − 1)rmed
 with probability >1/2

•  Approximating CCP(r*)
–  n queries and updates to

NN with r*

Algorithms for c-Approximate
Near Neighbor

Space Time Comment Norm Ref

dn+nO(1/ε2) d * logn /ε2

(or 1)

c=1+ ε Hamm, l2 [KOR’98, IM’98]

nΩ(1/ε2) O(1) [AIP’06]

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c Hamm, l2 [IM’98], [GIM’98],[Cha’02]

ρ(c)<1/c l2 [DIIM’04]

dn * logs dnσ(c) σ(c)=O(log c/c) Hamm, l2 [Ind’01]

dn+n1+ρ(c) dnρ(c) ρ(c)=1/c2 + o(1) l2 [AI’06]

σ(c)=O(1/c) l2 [Pan’06]

Locality-Sensitive Hashing
[Indyk-Motwani’98]

•  Idea: construct hash functions
g: Rd → U such that for any
points p,q:
–  If ||p-q|| ≤ r, then Pr[g(p)=g(q)] is

“high”
–  If ||p-q|| >cr, then Pr[g(p)=g(q)] is

“small”
•  Then we can solve the problem

by hashing
•  Related work: [Paturi-Rajasekaran-

Reif’95, Greene-Parnas-Yao’94, Karp-
Waarts-Zweig’95, Califano-Rigoutsos’93,
Broder’97]

“not-so-small”

q

p

LSH

•  A family H of functions h: Rd → U is called
(P1,P2,r,cr)-sensitive, if for any p,q:
–  if ||p-q|| <r then Pr[h(p)=h(q)] > P1
–  if ||p-q|| >cr then Pr[h(p)=h(q)] < P2

•  Example: Hamming distance
– KOR’98: h(p) = Σi∈S pi ui mod 2

–  IM’98: h(p)=pi, i.e., the i-th bit of p
•  Probabilities: Pr[h(p)=h(q)] = 1-H(p,q)/d

p=10010010
q=11010110

Algorithm
•  We use functions of the form

g(p)=<h1(p),h2(p),…,hk(p)>
•  Preprocessing:

–  Select g1…gL
–  For all p∈P, hash p to buckets g1(p)…gL(p)

•  Query:
–  Retrieve the points from buckets g1(q), g2(q), … , until

•  Either the points from all L buckets have been retrieved, or
•  Total number of points retrieved exceeds 3L

–  Answer the query based on the retrieved points
–  Total time: O(dL)

Analysis [IM’98, Gionis-Indyk-Motwani’99]

•  Lemma1: the algorithm solves c-
approximate NN with:
– Number of hash functions:

 L=nρ, ρ=log(1/P1)/log(1/P2)
– Constant success probability per query q

•  Lemma 2: for Hamming LSH functions, we
have ρ=1/c

Proof of Lemma 1 by picture
•  Points in {0,1}d
•  Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h’s)

•  Distance ranges from 0 to d=10

