Similarity Search in High Dimensions II

Piotr Indyk
MIT
Approximate Near(est) Neighbor

- **c-Approximate Nearest Neighbor**: build data structure which, for any query \(q \)
 - returns \(p' \in P, \|p-q\| \leq cr \),
 - where \(r \) is the distance to the nearest neighbor of \(q \)
- **c-Approximate r-Near Neighbor**: build data structure which, for any query \(q \):
 - If there is a point \(p \in P, \|p-q\| \leq r \)
 - it returns \(p' \in P, \|p-q\| \leq cr \)
Algorithms for c-Approximate Near Neighbor

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Comment</th>
<th>Norm</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dn + n^{O(1/\varepsilon^2)}$</td>
<td>$d \cdot \log n / \varepsilon^2$ (or 1)</td>
<td>$c = 1 + \varepsilon$</td>
<td>$\text{Hamm, } l_2$</td>
<td>[KOR'98, IM'98]</td>
</tr>
<tr>
<td>$n^{\Omega(1/\varepsilon^2)}$</td>
<td>$O(1)$</td>
<td></td>
<td></td>
<td>[AIP'06]</td>
</tr>
<tr>
<td>$dn + n^{1+\rho(c)}$</td>
<td>$dn^{\rho(c)}$</td>
<td>$\rho(c) = 1/c$</td>
<td>$\text{Hamm, } l_2$</td>
<td>[IM'98], [GIM'98], [Cha'02]</td>
</tr>
<tr>
<td>$dn * \log n$</td>
<td>$dn^{\sigma(c)}$</td>
<td>$\sigma(c) = O(\log c/c)$</td>
<td>$\text{Hamm, } l_2$</td>
<td>[Ind'01]</td>
</tr>
<tr>
<td>$dn + n^{1+\rho(c)}$</td>
<td>$dn^{\rho(c)}$</td>
<td>$\rho(c) = 1/c^2 + o(1)$</td>
<td>l_2</td>
<td>[Al'06]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\sigma(c) = O(1/c)$</td>
<td>l_2</td>
<td>[Pan'06]</td>
</tr>
</tbody>
</table>
 reductions

- $c(1+\gamma)$-Approx Nearest Neighbor reduces to c-Approx Near Neighbor

- Easy:
 - Space multiplied by $(\log \Delta)/\gamma$, where Δ is the spread, i.e., all distances in P are in $[1\ldots\Delta]$
 - Query time multiplied by $\log((\log \Delta)/\gamma)$
 - Probability of failure multiplied by $(\log \Delta)/\gamma$
 - Idea:
 - Build data structures with $r = \frac{1}{2}, \frac{1}{2}(1+\gamma), \frac{1}{2}(1+\gamma)^2, \ldots, O(\Delta)$
 - To answer query, do binary search on values of r

- Hard: replace $\log \Delta$ by $\log n$
General reduction
[Har Peled-Indyk-Motwani’11]

• Assume we have a data structure for dynamic c-Near Neighbor in under a metric D which, for parameters n, f has:
 – $T(n,c,f)$ construction time
 – $S(n,c,f)$ space bound
 – $Q(n,c,f)$ query time
 – $U(n,c,f)$ update time

• Then we get a data structure for $c(1+O(\gamma))$-Nearest Neighbor with:
 – $O(T(n,c,f)/\gamma \cdot \log^2 n + n \log n [Q(n,c,f)+U(n,c,f)])$ expected construction time
 – $O(S(n,c,f)/\gamma \cdot \log^2 n)$ space bound
 – $Q(n,c,f) O(\log n)$ query time
 – $O(f \log n)$ failure probability

• Generalizes, improves, simplifies and merges [Indyk-Motwani’98] and [Har Peled’01]
Intro

• Basic idea: use different scales (i.e., radiuses r) for different clouds of points
 – At most n^2 total
 – Would like $(\log n)^2$ per point, on the average

• We will see a simplified reduction:
 – From approximate nearest neighbor to exact near neighbor
 – Simplifying assumption

• Actual reduction a little more complex, but follows the same idea
Example
Notation

- \(UB_P(r) = \bigcup_{p \in P} B(p, r) \)
- \(CC_P(r) \) is a partitioning of \(P \) induced by the connected components of \(UB_P(r) \)
- \(r_{med} \) is the smallest value of \(r \) such that \(UB_P(r) \) has a component of size at least \(n/2 + 1 \)
- \(UB_{med} = UB_P(r_{med}) \)
- \(CC_{med} = CC_P(r_{med}) \)
- Simplifying assumption: \(UB_P(r_{med}) \) has a component of size exactly \(n/2+1 \)
A simplified reduction

- Set \(r_{\text{top}} = \Theta(nr_{\text{med}} \log(n)/y) \)
- **Exact** near neighbor data structures NN:
 - For \(i=0 \ldots \log_{1+y} (2r_{\text{top}}/r_{\text{med}}) \), create \(\text{NN}(P, r_{\text{med}} (1+y)/2) \)
 - For each component \(C \subseteq C_{\text{med}} \), recurse on \(C \)
 - Recurse on \(P' \subseteq P \) that contains one point per each component \(C \subseteq C_{\text{med}} \) (at most \(n/2 \) points)
- Note that the recursion has depth \(O(\log n) \)

Inner radius = \(r_{\text{med}}/2 \)
Outer radius = \(r_{\text{top}} \)
1. Use \(\text{NN}(P, \frac{r_{\text{med}}}{2}) \) to check whether \(D(q,P)<\frac{r_{\text{med}}}{2} \)
 - If yes, recurse on the component \(C \) containing \(q \)
2. Else use \(\text{NN}(P, r_{\text{top}}) \) to check whether \(D(q,P)>r_{\text{top}} \)
 - If yes, recurse on \(P' \)
3. Else perform binary search on \(\text{NN}(P, r_{\text{med}}(1+\gamma)/2) \)

- Correctness for Cases 1 and 3 follows from the procedure
- Case 2 need a little work:
 - Each “contraction” introduces an additive error up to \(nr_{\text{med}} \)
 - But the distance to nearest neighbor lower-bounded by \(r_{\text{top}} = \Theta(nr_{\text{med}} \log(n)/\gamma) \)
 - Accumulated relative error at most \((1+n \frac{r_{\text{med}}}{r_{\text{top}}})^{O(\log n)} = (1+\gamma/\log(n))^{O(\log n)}\)
Space

• Let $B(n)$ be the maximum number of points stored by the data structure
 – $\text{Space} = O(B(n) \log_{1+\gamma} (r_{\text{top}}/r_{\text{med}}))$

• We have
 \[
 B(n) = \max_{k,n_1+n_2+\ldots+n_k=n} \sum_i B(n_i) + B(k) + n
 \]
 subject to $k \leq n/2$, $1 \leq n_i \leq n/2$

• This solves to $O(n \log n)$
Construction time

• Estimating r_{med}
 - Selects a point p uniformly at random from P
 - Return $r^* = \text{median of the set } D(p, p')$ over $p' \in P$
 - We have
 \[r_{\text{med}} \leq r^* \leq (n - 1)r_{\text{med}} \]
 with probability $>1/2$

• Approximating $\text{CC}_P(r^*)$
 - n queries and updates to NN with r^*
Algorithms for c-Approximate Near Neighbor

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Comment</th>
<th>Norm</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dn + n^{O(1/\varepsilon^2)}$</td>
<td>$d \times \log n / \varepsilon^2$ (or 1)</td>
<td>$c=1+\varepsilon$</td>
<td>Hamm, l_2</td>
<td>[KOR’98, IM’98]</td>
</tr>
<tr>
<td>$n^{\Omega(1/\varepsilon^2)}$</td>
<td>O(1)</td>
<td></td>
<td></td>
<td>[AIP’06]</td>
</tr>
<tr>
<td>$dn + n^{1+\rho(c)}$</td>
<td>$d n^{\rho(c)}$</td>
<td>$\rho(c)=1/c$</td>
<td>Hamm, l_2</td>
<td>[IM’98], [GIM’98], [Cha’02]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\rho(c)<1/c$</td>
<td>l_2</td>
<td>[DIIM’04]</td>
</tr>
<tr>
<td>$dn \times \log n$</td>
<td>$d n^{\sigma(c)}$</td>
<td>$\sigma(c)=O(\log n/c)$</td>
<td>Hamm, l_2</td>
<td>[Ind’01]</td>
</tr>
<tr>
<td>$dn + n^{1+\rho(c)}$</td>
<td>$d n^{\rho(c)}$</td>
<td>$\rho(c)=1/c^2 + o(1)$</td>
<td>l_2</td>
<td>[Al’06]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\sigma(c)=O(1/c)$</td>
<td>l_2</td>
<td>[Pan’06]</td>
</tr>
</tbody>
</table>
Locality-Sensitive Hashing

[Indyk-Motwani’98]

• Idea: construct hash functions $g: \mathbb{R}^d \rightarrow U$ such that for any points p, q:
 – If $||p-q|| \leq r$, then $\Pr[g(p)=g(q)]$ is “high” “not-so-small”
 – If $||p-q|| > cr$, then $\Pr[g(p)=g(q)]$ is “small”

• Then we can solve the problem by hashing

• Related work: [Paturi-Rajasekaran-Reif’95, Greene-Parnas-Yao’94, Karp-Waarts-Zweig’95, Califano-Rigoutsos’93, Broder’97]
LSH

• A family H of functions $h: \mathbb{R}^d \rightarrow U$ is called (P_1, P_2, r, cr)-sensitive, if for any p, q:
 – if $\|p - q\| < r$ then $\Pr[h(p) = h(q)] > P_1$
 – if $\|p - q\| > cr$ then $\Pr[h(p) = h(q)] < P_2$

• Example: Hamming distance
 – KOR’98: $h(p) = \sum_{i \in S} p_i u_i \mod 2$
 – IM’98: $h(p) = p_i$, i.e., the i-th bit of p
 • Probabilities: $\Pr[h(p) = h(q)] = 1 - H(p, q)/d$

$p=10010010$
$q=11010110$
Algorithm

• We use functions of the form
 \(g(p) = \langle h_1(p), h_2(p), \ldots, h_k(p) \rangle \)

• Preprocessing:
 – Select \(g_1 \ldots g_L \)
 – For all \(p \in P \), hash \(p \) to buckets \(g_1(p) \ldots g_L(p) \)

• Query:
 – Retrieve the points from buckets \(g_1(q), g_2(q), \ldots \), until
 • Either the points from all \(L \) buckets have been retrieved, or
 • Total number of points retrieved exceeds \(3L \)
 – Answer the query based on the retrieved points
 – Total time: \(O(dL) \)
Analysis [IM’98, Gionis-Indyk-Motwani’99]

• **Lemma 1**: the algorithm solves c-approximate NN with:
 – Number of hash functions:
 \[L = n^\rho, \quad \rho = \log(1/P1)/\log(1/P2) \]
 – Constant success probability per query q

• **Lemma 2**: for Hamming LSH functions, we have $\rho = 1/c$
Proof of Lemma 1 by picture

- Points in $\{0,1\}^d$
- Collision prob. for $k=1..3$, $L=1..3$ (recall: $L=\#\text{indices}$, $k=\#\text{h's}$)
- Distance ranges from 0 to $d=10$