Similarity Search in High Dimensions II

Piotr Indyk MIT

Approximate Near(est) Neighbor

- c-Approximate Nearest Neighbor: build data structure which, for any query q
 - returns $p' \in P$, $||p-q|| \leq cr$,
 - where r is the distance to the nearest neighbor of q
- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point $p \in P$, $||p-q|| \le r$
 - − it returns p' \in P, ||p-q|| ≤ cr

 \bigcirc

Algorithms for c-Approximate Near Neighbor

Space	Time	Comment	Norm	Ref
$dn+n^{O(1/\epsilon^2)}$	d * logn /ε²	c=1+ ε	Hamm, I ₂	[KOR'98, IM'98]
	(or 1)			
$n^{\Omega(1/\epsilon^2)}$	O(1)			[AIP'06]
dn+n ^{1+p(c)}	dn ^{ρ(c)}	ρ(c)=1/c	Hamm, I ₂	[IM'98], [GIM'98],[Cha'02]
		ρ(c)<1/c	l ₂	[DIIM'04]
dn * logs	dn ^{σ(c)}	$\sigma(c)=O(\log c/c)$	Hamm, I ₂	[Ind'01]
dn+n ^{1+p(c)}	dn ^{ρ(c)}	$\rho(c)=1/c^2 + o(1)$	l ₂	[Al'06]
		σ(c)=O(1/c)		[Pan'06]

Reductions

- c(1+γ)-Approx Nearest Neighbor reduces to c-Approx Near Neighbor
- Easy:
 - Space multiplied by $(\log \Delta)/\gamma$, where Δ is the spread, i.e., all distances in P are in $[1...\Delta]$
 - Query time multiplied by $log((log \Delta)/\gamma)$
 - Probability of failure multiplied by $(\log \Delta)/\gamma$
 - Idea:
 - Build data structures with r= $\frac{1}{2}$, $\frac{1}{2}(1+\gamma)$, $\frac{1}{2}(1+\gamma)^2$,..., O(Δ)
 - To answer query, do binary search on values of r
- Hard: replace $\log \Delta$ by $\log n$

General reduction [Har Peled-Indyk-Motwani'11]

- Assume we have a data structure for dynamic c-Near Neighbor in under a metric D which, for parameters n,f has:
 - T(n,c,f) construction time
 - S(n,c,f) space bound
 - Q(n,c,f) query time
 - U(n,c,f) update time
- Then we get a data structure for $c(1+O(\gamma))$ -Nearest Neighbor with:
 - $O(T(n,c,f)/\gamma \cdot \log^2 n + n\log n[Q(n,c,f)+U(n,c,f)])$ expected construction time
 - $O(S(n,c,f)/\gamma \cdot \log^2 n)$ space bound
 - Q(n,c,f) O(logn) query time
 - O(f logn) failure probability
- Generalizes, improves, simplifies and merges [Indyk-Motwani'98] and [Har Peled'01]

Intro

- Basic idea: use different scales (i.e., radiuses r) for different clouds of points
 - At most n² total
 - Would like (log n)² per point, on the average
- We will see a simplified reduction:
 - From approximate nearest neighbor to exact near neighbor
 - Simplifying assumption
- Actual reduction a little more complex, but follows the same idea

()

 \bigcirc

Example

Notation

- $UB_{P}(r) = U_{p \in P}B(p, r)$
- CC_P(r) is a partitioning of P induced by the connected components of UB_P(r)
- r_{med} is the smallest value of r such that UB_P(r) has a component of size at least n/2 + 1
- $UB_{med} = UB_{P}(r_{med})$
- $CC_{med} = CC_{P}(r_{med})$
- Simplifying assumption: UB_P(r_{med}) has a component of size exactly

n/2+1

A simplified reduction

- Set $r_{top} = \Theta(nr_{med} \log(n)/\gamma)$
- Exact near neighbor data structures NN:
 - For i=0...log_{1+ γ} (2r_{top}/r_{med}), create NN(P, r_{med}(1+ γ)ⁱ/2)
 - For each component C∈CC_{med}
 recurse on C
 - Recurse on P'⊂P that contains one point per each component
 C∈CC_{med} (at most n/2 points)
- Note that the recursion has depth O(log n)

Inner radius $=r_{med}/2$ Outer radius $=r_{top}$

Search

- 1. Use NN(P, $r_{med}/2$) to check whether $D(q,P) < r_{med}/2$
 - If yes, recurse on the component C containing q
- 2. Else use NN(P, r_{top}) to check whether $D(q,P)>r_{top}$
 - If yes, recurse on P'
- 3. Else perform binary search on NN(P, $r_{med}(1+\gamma)^{i/2}$)
- Correctness for Cases 1 and 3 follows from the procedure
- Case 2 need a little work:
 - Each "contraction" introduces an additive error up to n r_{med}
 - But the distance to nearest neighbor lower-bounded by $r_{top} = \Theta(nr_{med} \log(n)/\gamma)$
 - Accumulated relative error at most $(1+n r_{med}/r_{top})^{O(\log n)} = (1+\gamma/\log(n))^{O(\log n)}$

Space

 Let B(n) be the maximum number of points stored by the data structure

 $-\operatorname{Space} = O(B(n) \log_{1+\gamma} (r_{top}/r_{med}))$

• We have

 $B(n) = \max_{k,n1+n2+\ldots+nk=n} \Sigma_i B(n_i) + B(k) + n$ subject to k < n/2 , 1 < n < n/2

This solves to O(n log n)

Construction time

- Estimating r_{med}
 - Selects a point p uniformly at random from P
 - Return r^* =median of the set D(p,p') over $p' \in P$
 - We have

 $r_{med} \le r^* \le (n - 1)r_{med}$ with probability >1/2

- Approximating CC_P(r*)
 - n queries and updates to NN with r*

Algorithms for c-Approximate Near Neighbor

	Space	Time	Comment	Norm	Ref
	$dn+n^{O(1/\epsilon^2)}$	d * logn /ε²	c=1+ ε	Hamm, I ₂	[KOR'98, IM'98]
		(or 1)			
	$n^{\Omega(1/\epsilon^2)}$	O(1)			[AIP'06]
→	dn+n ^{1+ρ(c)}	dn ^{ρ(c)}	ρ(c)=1/c	Hamm, I ₂	[IM'98], [GIM'98],[Cha'02]
			ρ(c)<1/c	I ₂	[DIIM'04]
	dn * logs	dn ^{σ(c)}	σ(c)=O(log c/c)	Hamm, I ₂	[Ind'01]
	dn+n ^{1+ρ(c)}	dn ^{ρ(c)}	$\rho(c)=1/c^2 + o(1)$	l ₂	[Al'06]
			σ(c)=O(1/c)	I ₂	[Pan'06]

Locality-Sensitive Hashing

[Indyk-Motwani'98]

- Idea: construct hash functions
 g: R^d → U such that for any points p,q:
 - If ||p-q|| ≤ r, then Pr[g(p)=g(q)] is "high" "not-so-small"
 - If ||p-q|| >cr, then Pr[g(p)=g(q)] is "small"
- Then we can solve the problem by hashing
- Related work: [Paturi-Rajasekaran-Reif'95, Greene-Parnas-Yao'94, Karp-Waarts-Zweig'95, Califano-Rigoutsos'93, Broder'97]

LSH

- A family H of functions h: R^d → U is called (P₁,P₂,r,cr)-sensitive, if for any p,q:
 – if ||p-q|| <r then Pr[h(p)=h(q)] > P₁
 - if ||p-q|| > cr then $Pr[h(p)=h(q)] < P_2$
- Example: Hamming distance
 - KOR'98: $h(p) = \sum_{i \in S} p_i u_i \mod 2$
 - IM'98: $h(p)=p_i$, i.e., the i-th bit of p
 - Probabilities: Pr[h(p)=h(q)] = 1-H(p,q)/d

p=10010010 q=11010110

Algorithm

- We use functions of the form $g(p) = \langle h_1(p), h_2(p), \dots, h_k(p) \rangle$
- Preprocessing:
 - Select $g_1 \dots g_L$
 - For all $p \in P$, hash p to buckets $g_1(p) \dots g_L(p)$
- Query:
 - Retrieve the points from buckets $g_1(q), g_2(q), ..., until$
 - Either the points from all L buckets have been retrieved, or
 - Total number of points retrieved exceeds 3L
 - Answer the query based on the retrieved points
 - Total time: O(dL)

Analysis [IM'98, Gionis-Indyk-Motwani'99]

- Lemma1: the algorithm solves capproximate NN with:
 - Number of hash functions:

L=n^ρ, ρ=log(1/P1)/log(1/P2)

Constant success probability per query q

- Lemma 2: for Hamming LSH functions, we have $\rho\text{=}1\text{/}c$

Proof of Lemma 1 by picture

- Points in {0,1}^d
- Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h's)
- Distance ranges from 0 to d=10

