
Near-Optimal Hashing
Algorithms for Approximate
Near(est) Neighbor Problem

Piotr Indyk
MIT

Joint work with: Alex Andoni, Mayur Datar, Nicole Immorlica,
Vahab Mirrokni

Definition

• Given: a set P of points in Rd

• Nearest Neighbor: for any
query q, returns a point p∈P
minimizing ||p-q||

• r-Near Neighbor: for any
query q, returns a point p∈P
s.t. ||p-q|| ≤ r (if it exists)

q

r

Nearest Neighbor: Motivation

• Learning: nearest
neighbor rule

• Database retrieval
• Vector quantization,

a.k.a. compression

?

Brief History of NN

The case of d=2
• Compute Voronoi diagram
• Given q, perform point

location
• Performance:

– Space: O(n)
– Query time: O(log n)

The case of d>2

• Voronoi diagram has size nO(d)

• We can also perform a linear scan: O(dn) time
• That is pretty much all what known for exact

algorithms with theoretical guarantees
• In practice:

– kd-trees work “well” in “low-medium” dimensions
– Near-linear query time for high dimensions

Approximate Near Neighbor
• c-Approximate r-Near Neighbor: build data

structure which, for any query q:
– If there is a point p∈P, ||p-q|| ≤ r
– it returns p’∈P, ||p-q|| ≤ cr

• Reductions:
– c-Approx Nearest Neighbor reduces to c-Approx

Near Neighbor
(log overhead)

– One can enumerate all approx near neighbors
→ can solve exact near neighbor problem

– Other apps: c-approximate Minimum Spanning
Tree, clustering, etc.

q

r

cr

Approximate algorithms

• Space/time exponential in d [Arya-Mount-et al],
[Kleinberg’97], [Har-Peled’02], [Arya-Mount-…]

• Space/time polynomial in d [Kushilevitz-Ostrovsky-
Rabani’98], [Indyk-Motwani’98], [Indyk’98], [Gionis-Indyk-Motwani’99],
[Charikar’02], [Datar-Immorlica-Indyk-Mirrokni’04], [Chakrabarti-
Regev’04], [Panigrahy’06], [Ailon-Chazelle’06]…

[Pan’06]l2σ(c)=O(1/c)

Hamm, l2

l2

Hamm, l2

Hamm, l2

Norm

[AIP’0?]O(1)nΩ(1/ε2)

[Ind’01]σ(c)=O(log c/c)dnσ(c)dn * logs

[DIIM’04]ρ(c)<1/c

[IM’98], [Cha’02]ρ(c)=1/cdnρ(c)dn+n1+ρ(c)

[KOR’98, IM’98]c=1+ εd * logn /ε2 or 1dn+n4/ε2

RefCommentTimeSpace

[AI’06]l2ρ(c)=1/c2 + o(1)dnρ(c)dn+n1+ρ(c)

[AI’06]l2σ(c)=O(1/c2)dnσ(c)dn * logs

Locality-Sensitive Hashing

• Idea: construct hash
functions g: Rd → U such that
for any points p,q:
– If ||p-q|| ≤ r, then Pr[g(p)=g(q)]

is “high”
– If ||p-q|| >cr, then Pr[g(p)=g(q)]

is “small”
• Then we can solve the

problem by hashing

“not-so-small”

q

p

LSH [Indyk-Motwani’98]

• A family H of functions h: Rd → U is called
(P1,P2,r,cr)-sensitive, if for any p,q:
– if ||p-q|| <r then Pr[h(p)=h(q)] > P1

– if ||p-q|| >cr then Pr[h(p)=h(q)] < P2

• Example: Hamming distance
– LSH functions: h(p)=pi, i.e., the i-th bit of p
– Probabilities: Pr[h(p)=h(q)] = 1-D(p,q)/d

p=10010010
q=11010110

LSH Algorithm
• We use functions of the form

g(p)=<h1(p),h2(p),…,hk(p)>
• Preprocessing:

– Select g1…gL
– For all p∈P, hash p to buckets g1(p)…gL(p)

• Query:
– Retrieve the points from buckets g1(q), g2(q), … , until

• Either the points from all L buckets have been retrieved, or
• Total number of points retrieved exceeds 2L

– Answer the query based on the retrieved points
– Total time: O(dL)

Analysis
• LSH solves c-approximate NN with:

– Number of hash fun: L=nρ, ρ=log(1/P1)/log(1/P2)
– E.g., for the Hamming distance we have ρ=1/c
– Constant success probability per query q

• Questions:
– Can we extend this beyond Hamming distance ?

• Yes:
– embed l2 into l1 (random projections)
– l1 into Hamming (discretization)

– Can we reduce the exponent ρ ?

Projection-based LSH
[Datar-Immorlica-Indyk-Mirrokni’04]

• Define hX,b(p)=⎣(p*X+b)/w⎦:
– w ≈ r
– X=(X1…Xd) , where Xi is chosen

from:
• Gaussian distribution (for l2 norm)
• “s-stable” distribution* (for ls norm)

– b is a scalar

• Similar to the l2 → l1 →Hamming
route

X
w

w

* I.e., p*X has same distribution as ||p||s Z, where Z is s-stable

p

Analysis

• Need to:
– Compute Pr[h(p)=h(q)] as a function of ||p-q||

and w; this defines P1 and P2

– For each c choose w that minimizes
ρ=log1/P2(1/P1)

• Method:
– For l2: computational
– For general ls: analytic

w

w

ρ(w) for various c’s: l1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

px
e

r

c=1.1
c=1.5
c=2.5

c=5
c=10

w

w

w

ρ(w) for various c’s: l2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

px
e

r

c=1.1
c=1.5
c=2.5

c=5
c=10

w

w

w

ρ(c) for l2

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Approximation factor c

rho
1/c

New LSH scheme
[Andoni-Indyk’06]

• Instead of projecting onto R1,
project onto Rt , for constant t

• Intervals → lattice of balls
– Can hit empty space, so hash until

a ball is hit
• Analysis:

– ρ=1/c2 + O(log t / t1/2)
– Time to hash is tO(t)

– Total query time: dn1/c2+o(1)

• [Motwani-Naor-Panigrahy’06]:
LSH in l2 must have ρ ≥ 0.45/c2

X
w

w

p

p

Connections to

• [Charikar-Chekuri-Goel-Guha-Plotkin’98]
– Consider partitioning of Rd using balls of radius R
– Show that Pr[Ball(p) ≠ Ball(q)] ≤ ||p-q||/R * d1/2

• Linear dependence on the distance – same as Hamming
• Need to analyze R≈||p-q|| to achieve non-linear behavior!

(as for the projection on the line)

• [Karger-Motwani-Sudan’94]
– Consider partitioning of the sphere via random vectors u

from Nd(0,1) :
p is in Cap(u) if u*p ≥ T

– Showed Pr[Cap(p) = Cap(q)] ≤ exp[- (2T/||p+q||)2/2]
• Large relative changes to ||p-q|| can yield only small relative

changes to ||p+q||

o

p
q

Proof idea

• Claim: ρ=log(P1)/log(P2)→1/c2

– P1=Pr(1), P2=Pr(c)
– Pr(z)=prob. of collision when distance z

• Proof idea:
– Assumption: ignore effects of mapping into Rt

– Pr(z) is proportional to the volume of the cap
– Fraction of mass in a cap is proportional to

the probability that the x-coordinate of a
random point u from a ball exceeds x

– Approximation: the x-coordinate of u has
approximately normal distribution
→ Pr(x) ≈ exp(-A x2)

– ρ=log[exp(-A12)] / log [exp(-Ac2)] = 1/c2

p

pq
x

New LSH scheme, ctd.
• How does it work in practice ?
• The time tO(t)dn1/c2+f(t) is not very

practical
– Need t≈30 to see some improvement

• Idea: a different decomposition of Rt

– Replace random balls by Voronoi
diagram of a lattice

– For specific lattices, finding a cell
containing a point can be very fast
→fast hashing

Leech Lattice LSH
• Use Leech lattice in R24 , t=24

– Largest kissing number in 24D: 196560
– Conjectured largest packing density in 24D
– 24 is 42 in reverse…

• Very fast (bounded) decoder: about 519
operations [Amrani-Beery’94]

• Performance of that decoder for c=2:
– 1/c2 0.25
– 1/c 0.50
– Leech LSH, any dimension: ρ ≈ 0.36
– Leech LSH, 24D (no projection): ρ ≈ 0.26

Conclusions
• We have seen:

– Algorithm for c-NN with dn1/c2+o(1) query time
(and reasonable space)

• Exponent tight up to a constant
– (More) practical algorithms based on Leech lattice

• We haven’t seen:
– Algorithm for c-NN with dnO(1/c2) query time and dn log n space

• Immediate questions:
– Get rid of the o(1)
– …or came up with a really neat lattice…
– Tight lower bound

• Non-immediate questions:
– Other ways of solving proximity problems

Advertisement

• See LSH web page (linked from my web
page for):
– Experimental results (for the ’04 version)
– Pointers to code

Experiments

Experiments (with ’04 version)
• E2LSH: Exact Euclidean LSH (with Alex Andoni)

– Near Neighbor
– User sets r and P = probability of NOT reporting a point within

distance r (=10%)
– Program finds parameters k,L,w so that:

• Probability of failure is at most P
• Expected query time is minimized

• Nearest neighbor: set radius (radiae) to accommodate
90% queries (results for 98% are similar)
– 1 radius: 90%
– 2 radiae: 40%, 90%
– 3 radiae: 40%, 65%, 90%
– 4 radiae: 25%, 50%, 75%, 90%

Data sets
• MNIST OCR data, normalized (LeCun et al)

– d=784
– n=60,000

• Corel_hist
– d=64
– n=20,000

• Corel_uci
– d=64
– n=68,040

• Aerial data (Manjunath)
– d=60
– n=275,476

Other NN packages

• ANN (by Arya & Mount):
– Based on kd-tree
– Supports exact and approximate NN

• Metric trees (by Moore et al):
– Splits along arbitrary directions (not just x,y,..)
– Further optimizations

Running times

 MNIST Speedup Corel_hist Speedup Corel_uci Speedup Aerial Speedup
E2LSH-1 0.00960
E2LSH-2 0.00851 0.00024 0.00070 0.07400
E2LSH-3 0.00018 0.00055 0.00833
E2LSH-4 0.00668
ANN 0.25300 29.72274 0.00018 1.011236 0.00274 4.954792 0.00741 1.109281
MT 0.20900 24.55357 0.00130 7.303371 0.00650 11.75407 0.01700 2.54491

LSH vs kd-tree (MNIST)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0 10 20 30 40 50 60 70

Caveats

• For ANN (MNIST), setting ε=1000% results in:
– Query time comparable to LSH
– Correct NN in about 65% cases, small error otherwise

• However, no guarantees
• LSH eats much more space (for optimal

performance):
– LSH: 1.2 GB
– Kd-tree: 360 MB

