Explicit Constructions in HighDimensional Geometry

Piotr Indyk MIT

"Hiah-level Picture"

This talk

- Two explicit constructions:
- A "low-distortion" embedding $A: R^{n} \rightarrow R^{m}, m=n^{1+o(1)}$, such that for any x

$$
\|A x\|_{1}=(1 \pm \varepsilon)\|x\|_{2}
$$

(a.k.a. Dvoretzky's Theorem for I_{1})

- A "nice" measurement matrix $B: R^{n} \rightarrow R^{m}, m=k n^{\circ(1)}$, such that for any $k-$ sparse x, one can efficiently reconstruct x from $B x$
(several matrices with $>\mathrm{k}^{2}$ measurements known)

Embedding $I_{2}{ }^{n}$ into I_{1}

Distortion	Dim. of I_{1}	Type	Reference
$1+\sigma$	$\mathrm{O}\left(\mathrm{n} / \sigma^{2}\right)$	Probabilistic	[Kashin, Figiel- Lindenstrauss-Milman, Gordon]
$\mathrm{O}(1)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	Explicit	[Rudin'60,...]
$1+1 / \mathrm{n}$	$\mathrm{n} \circ(\log \mathrm{n})$	Explicit	[Indyk'00] (cf. LLR'94)
$1+\sigma$	$\mathrm{O}\left(\mathrm{n} / \sigma^{2}\right)$	Prob., nlog 2 n	[Indyk'00]
$1+\sigma$	$\mathrm{O}\left(\mathrm{n} / \sigma^{2}\right)$	Prob., nlogn	[Arstein-Avidan, Milman'06]
$1+\sigma$	$\mathrm{O}\left(\mathrm{n} / \sigma^{2}\right)$	Prob., n	[Lovett-Sodin'07]
$1+1 / \log \mathrm{n}$	$\mathrm{n} 2^{\circ(\log \log \mathrm{n})^{2}}$	Explicit	[Indyk'06]
$\mathrm{n}^{\circ(1)}$	$\mathrm{n}(1+\mathrm{o}(1))$	Explicit'	[Guruswami-Lee-Razborov'07]

Other implications

- Computing Ax takes time $O\left(n^{1+o(1)}\right)$, as opposed to $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Similar phenomenon discovered for Johnson-Lindenstrauss dimensionality reduction lemma [Ailon-Chazelle'06],
- Applications to approximate nearest neighbor problem, Singular Value Decomposition, etc (recall Muthu's talk)

Techniques

- Uncertainty Principles
- Extractors

Uncertainty principles (UP)

- Consider a vector $x \in R^{n}$ and a Fourier matrix F
- UP: either x or Fx must have "many" non-zero entries (for $x \neq 0$)
- History:
- Physics: Heisenberg principle
- Signal processing [Donoho-Stark'89]:
- Consider any $2 n \times n$ matrix $A=[I B]^{\top}$ such that
- B is orthonormal

- For any distinct rows A_{i}, A_{j} of A we have

$$
\left|A_{i} * A_{j}\right| \leq M \text { (coherence) }
$$

- Then for any $x \in R^{n}$ we have that
$\|A x\|_{0}>1 / M$

Extractors

- Expander-like graphs:
- $G=(A, B, E),|A|=a,|B|=b$
- Left degree d
- Property:
- Consider any distribution $\mathrm{P}=\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{a}}\right)$ on A s.t. $\mathrm{p}_{\mathrm{i}} \leq 1 / \mathrm{k}$
- $G(P)$: a distribution on B :
- Pick i from P
- Pick t uniformly from [d]
- j is the t-th neighbor of i
- Then $\| \mathrm{G}(\mathrm{P})$-Uniform(B) $\|_{1} \leq \varepsilon$

- Equivalently, can require the above for $p_{i}=1 / k$ or 0
- Many explicit constructions
- Holy grail:
- k=b
- d=O(log a)
- Can achieve bounds close to the above
- Observation: w.l.o.g. one can assume that the right degree is $O(\mathrm{ad} / \mathrm{b})$

Overview

- Main idea behind the randomized embedding: "spread the mass" over many coordinates
- Before:

$$
x=(1,0,0,0,0,0,0,0,0, \ldots, 0)
$$

- After:

$$
|A x|=\left(\approx 1 / \mathrm{m}^{1 / 2}, . ., \approx 1 / \mathrm{m}^{1 / 2}, \ldots, \ldots, \approx 1 / \mathrm{m}^{1 / 2}\right)
$$

- Therefore

$$
\|A x\|_{1} \approx m^{1 / 2}\|A x\|_{2} \approx m^{1 / 2}\|x\|_{2}
$$

Overview, ctd.

- We would like to obtain something like

$$
|A x|=\left(\approx 1 / \mathrm{m}^{1 / 2}, \ldots, \approx 1 / \mathrm{m}^{1 / 2}, \ldots, \ldots, \approx 1 / \mathrm{m}^{1 / 2}\right)
$$

x

	1	0	0	0	0	0	0	0	0

$\approx 1 / n^{1 / 4}$	0	0	$\approx 1 / \mathrm{n}^{1 / 4}$	0	0	0	0	$\approx 1 / \mathrm{n}^{1 / 4}$

Part I:

- Lemma:
- Let $A=\left[H_{1} H_{2} \ldots H_{L}\right]^{\top}$, such that:
- Each H_{i} is an $\mathrm{n} \times \mathrm{n}$ orthonormal matrix
- For any two distinct rows A_{i}, A_{j} we have $\left|A_{i}^{*} A_{j}\right| \leq M$
- M is called coherence
- Then, for any $x \in R^{n}$, and set S of coordinates, $|S|=s$:

$$
\left\|(A x)_{\mid S}\right\|_{2}^{2} \leq 1+M s
$$

(note that $\|(A x)\|_{2}{ }^{2}=L$)

- Proof:
- Take As
- $\max _{\|x\|=1}\left\|A_{S} x\right\|_{2}^{2}=\lambda\left(A_{S} \times A_{S}{ }^{\top}\right)$
- But $A_{s} \times A_{s}=1+E,\left|E_{i j}\right| \leq M$
- Since E is an $s \times s$ matrix, $\lambda(E) \leq M s$
- Suppose that we have A s.t. $M \leq 1 / \mathrm{n}^{1 / 2}$. Then:
- For any $x \in R^{n},|S| \leq n^{1 / 2}$, we have $\left\|(A x)_{\mid S}\right\|_{2}{ }^{2} \leq 2$
- At the same time, $\|(A x)\|_{2}{ }^{2}=L$
- Therefore, (1-2/L) fraction of the "mass" $\|A x\|_{2}^{2}$ is contained in coordinates is.t. $(A x)_{i}{ }^{2} \leq 1 / n^{1 / 2}$

Part II:

- Let $\mathrm{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}^{\prime}}\right)$
- Define probability distribution

$$
\mathrm{P}=\left(\mathrm{y}_{1}^{2} /\|\mathrm{y}\|_{2}{ }^{2}, \ldots, \mathrm{y}_{\mathrm{n}}{ }^{2} /\|\mathrm{y}\|_{2}{ }^{2}\right)
$$

- Extractor properties imply that, for "most" buckets B_{i}, we have

$$
\left\|\mathrm{G}(\mathrm{y})_{\mid \mathrm{Bi}}\right\|_{2}^{2} \approx\|\mathrm{G}(\mathrm{y})\|_{2}^{2} / \mathrm{\# buckets}
$$

- After log log n steps, "most" entries will be around $1 / n^{1 / 2}$

Incoherent dictionaries

- Can we construct $A=\left[\mathrm{H}_{1} \mathrm{H}_{2} \ldots \mathrm{H}_{\mathrm{L}}\right]^{\top}$ with coherence (close to) $1 / n^{1 / 2}$?
- For $L=2$, take $A=[1 \mathrm{H}]^{\top}$
- For L>2:
- Idea I: use method of conditional probabilities
- Take $H_{i}=H \times D_{i}, D_{i}$ has ± 1 on the diagonal and 0's elsewhere
- Any pair of rows $u \in H_{i}$ and $v \in H_{j}, i \neq j$, are probabilistically indep. $\Rightarrow\left|u^{*} v\right|=O\left(n^{1 / 2} \log n / n\right)$ with high probability
- Derandomize using method of conditional probabilities
- Idea II: use Google (Scholar)
- Turns out A is known for L up to n/2+1 (Kerdock codes)
- Take $H_{i}=H \times D_{i}, D_{i}$ has ± 1 on the diagonal and 0's elsewhere

Efficient measurement matrix

Only the edges from non-zero elements are shown

- Decompose the graph into one-sided matchings / hash functions
- $d=20(\log \log d)^{2}$ hash functions
- Each function maps $\{1 . . \mathrm{n}\}$ into $\{1 . . \mathrm{O}(\mathrm{k})\}$
- For each hash function, a non-zero element is isolated if it falls into a bucket that does not overflow
- Can recover isolated entries using previous results
- Cost: roughly T^{2} measurements per bucket per hash function
- Possible to set T to be polynomial in d

Overflow if >T non-zero elements

- Hash function property (${ }^{*}$): at most ε of non-zero entries are not isolated
- (*) satisfied for most hash functions if a graph is an extractor
- Can use majority vote to determine non-zero elements
- Non-isolated elements lead to incorrect
 identifications
- Good news: only $O(\varepsilon)$ fraction of incorrect elements
- We recovered z s.t., $\|z-x\|_{0} \leq O(\varepsilon$ m)
- Recurse to recover z-x from Az-Ax

Conclusions

- Extractors+UP \rightarrow Embedding of I_{2} into I_{1}
- Dimension almost as good as for the probabilistic result
- Near-linear in n embedding time
- Extractors + group testing \rightarrow efficient measurement matrix for sparse vectors
- Questions:
- Remove $2^{\mathrm{O}(\log \log \mathrm{n})^{2}}$?
- Making other embeddings/matrices explicit?
- Any particular reason why both [AC'06] and this paper use $\mathrm{H} \times \mathrm{D}_{\mathrm{i}}$ matrices ?

Appendix

Digression

- Johnson-Lindenstrauss'84:
- Take a "random" matrix A: $R^{n} \rightarrow R^{m / \varepsilon^{2}}(m \ll n)$
- For any $\varepsilon>0, x \in R^{n}$ we have

$$
\|A x\|_{2}=(1 \pm \varepsilon)\|x\|_{2}
$$

with probability $1-\exp (-m)$

- Ax can be computed in $O\left(\mathrm{mn} / \varepsilon^{2}\right)$ time
- Ailon-Chazelle'06:
- Essentially: take $B=A \times P \times\left(H \times D_{i}\right)$, where
- H : Hadamard matrix
- D_{i} : random ± 1 diagonal matrix
- P : projection on m^{2} coordinates
- A as above (but n replaced by m / ε^{2})
- Ax can be computed $O\left(n \log n+m^{3} / \varepsilon^{2}\right)$

(Norm) embeddings

- Metric spaces $M=(X, D), M^{\prime}=\left(X^{\prime}, D^{\prime}\right)$ (here, $X=R^{n}, X^{\prime}=R^{m}, D=\|.\|_{X}$ and $D=\|\cdot\|_{X^{\prime}}$)
- A mapping $F: M \rightarrow M^{\prime}$ is a c-embedding if for any $p \in X, q \in X$ we have

$$
\begin{gathered}
D(p, q) \leq D^{\prime}(F(p), F(q)) \leq c D(p, q) \\
\left(\text { or, }\|p-q\|_{X} \leq\|F(p-q)\|_{X^{\prime}} \leq c\|p-q\|_{X}\right)
\end{gathered}
$$

- History:
- Mathematics:
- [Dvoretzky'59]: there exists $m(n, \varepsilon)$ s.t., for any $m>m(n, \varepsilon)$ and any space $M^{\prime}=\left(R^{m},\|.\| \|_{X^{\prime}}\right)$ there exists a $(1+\varepsilon)$-embedding of an n-dimensional Euclidean space $I_{2}{ }^{n}$ into M^{\prime}
- In general, m must be exponential in n
- [Milman'71]: proof using concentration of measure methods
- [Figiel-Lindenstrauss-Milman'77, Gordon]: if $M^{\prime}=l_{1}{ }^{m}$, then $m \approx n / \varepsilon^{2}$ suffices That is, $I_{2}{ }^{n} \quad \mathrm{O}(1)$-embeds into $I_{1}{ }^{\mathrm{O}(\mathrm{n})}$
A.k.a. Dvoretzky's theorem for
- Computer science:
- [Linial-London-Rabinovich'94]: [Bourgain'85] for sparsest cut, many other tools
-
- [Dvoretzky, FLM] used for approximate nearest neighbor [IM'98, KOR'98], hardness of lattice problems [Regev-Rosen'06], etc.

