Explicit Constructions in High-Dimensional Geometry

Piotr Indyk MIT

"High-level Picture"

Compressed Sensing

- Random Projections
- L1 minimization
- (Uniform) UP
- ...

Data Stream / Sublinear Algorithms

- (Pseudo)random Projections
- Isolation/Group Testing

• . . .

Geometric Functional Analysis (Approximation Theory)

Concentration of MeasureLow distortion embeddings

Pseudorandomness

Derandomization

- Explicit constructions
- Expanders/extractors

- A "low-distortion" embedding A: $\mathbb{R}^n \rightarrow \mathbb{R}^m$, m=n^{1+o(1)}, such that for any x

$$|Ax||_{1} = (1 \pm \varepsilon) ||x||_{2}$$

(a.k.a. Dvoretzky's Theorem for I_1)

٠

A "nice" measurement matrix B:Rⁿ→R^m, m=k n^{o(1)}, such that for any k-sparse x, one can efficiently reconstruct x from Bx (several matrices with >k² measurements known)

Embedding I₂ⁿ into I₁

Distortion	Dim. of I ₁	Туре	Reference
1+σ	Ο(n/σ²)	Probabilistic	[Kashin, Figiel- Lindenstrauss-Milman, Gordon]
O(1)	O(n ²)	Explicit	[Rudin'60,]
1+1/n	n ^{O(log n)}	Explicit	[Indyk'00] (cf. LLR'94)
1+σ	O(n/σ²)	Prob., nlog ² n	[Indyk'00]
1+σ	O(n/σ ²)	Prob., nlogn	[Arstein-Avidan, Milman'06]
1+σ	O(n/σ ²)	Prob., n	[Lovett-Sodin'07]
1+1/log n	$n2^{O(\log \log n)^2}$	Explicit	[Indyk'06]
n ^{o(1)}	n(1+o(1))	Explicit'	[Guruswami-Lee-Razborov'07]

Other implications

- Computing Ax takes time O(n^{1+o(1)}), as opposed to O(n²)
- Similar phenomenon discovered for Johnson-Lindenstrauss dimensionality reduction lemma [Ailon-Chazelle'06],
 - Applications to approximate nearest neighbor problem, Singular Value Decomposition, etc (recall Muthu's talk)

Uncertainty principles (UP)

- Consider a vector $x \in \mathbb{R}^n$ and a Fourier matrix F
- UP: either x or Fx must have "many" non-zero entries (for x≠0)
- History:
 - Physics: Heisenberg principle
 - Signal processing [Donoho-Stark'89]:
 - Consider any $2n \times n$ matrix $A = [I B]^T$ such that
 - B is orthonormal
 - For any distinct rows A_i , A_j of A we have $|A_i * A_j| \le M$ (coherence)
 - Then for any $x \in \mathbb{R}^n$ we have that $||Ax||_0 > 1/M$
 - E.g., if $A=[I H]^T$, where H is a normalized $n \times n$ Hadamard matrix

(orthogonal, entries in $\{-1/n^{1/2}, 1/n^{1/2}\}$):

- M=1/n^{1/2}
- Ax must have >n^{1/2} non-zero entries
- We need:
 - A=[H₁ H₂ ... H_L]^T with low-coherence (Kerdock codes)
 - Non-zero → "significantly non-zero"

Extractors

- Expander-like graphs:
 - G=(A,B,E), |A|=a, |B|=b
 - Left degree d
- Property:
 - Consider any distribution $P=(p_1,...,p_a)$ on A s.t. $p_i \le 1/k$
 - G(P) : a distribution on B:
 - Pick i from P
 - Pick t uniformly from [d]
 - j is the t-th neighbor of i
 - Then ||G(P)-Uniform(B)||₁ $\leq \epsilon$
- Equivalently, can require the above for $p_i = 1/k$ or 0
- Many explicit constructions
- Holy grail:
 - k=b
 - d=O(log a)
- Can achieve bounds close to the above
- Observation: w.l.o.g. one can assume that the right degree is O(ad/b)

Overview

- Main idea behind the randomized embedding: "spread the mass" over many coordinates
 - Before:

x = (1, 0, 0, 0, 0, 0, 0, 0, 0, ..., 0)

– After:

 $|Ax| = (\approx 1/m^{1/2}, ..., \approx 1/m^{1/2}, ..., \approx 1/m^{1/2})$

Therefore

 $||Ax||_1 \approx m^{1/2} ||Ax||_2 \approx m^{1/2} ||x||_2$

Overview, ctd.

• We would like to obtain something like $|Ax| = (\approx 1/m^{1/2}, ..., \approx 1/m^{1/2}, ..., \approx 1/m^{1/2})$

UP: n^{1/2} "significantly non-zero" entries

- Lemma: •
 - Let $A=[H_1, H_2, \dots, H_l]^T$, such that:
 - Each H_i is an n×n orthonormal matrix
 - For any two distinct rows A_i , A_j we have $|A_i^*A_j| \leq M$
 - M is called coherence
 - Then, for any $x \in \mathbb{R}^n$, and set S of coordinates, |S|=s:

$$||(Ax)_{|S}||_2^2 \le 1 + Ms$$

(note that $|| (Ax) ||_2^2 = L$)

- Proof: •
 - Take A_s
 - $\max_{||\mathbf{x}||=1} ||\mathbf{A}_{\mathbf{S}} \mathbf{x}||_2^2 = \lambda(\mathbf{A}_{\mathbf{S}} \times \mathbf{A}_{\mathbf{S}}^T)$ But $\mathbf{A}_{\mathbf{S}} \times \mathbf{A}_{\mathbf{S}} = \mathbf{I} + \mathbf{E}, |\mathbf{E}_{\mathbf{ij}}| \le \mathbf{M}$

 - Since E is an $s \times s$ matrix, $\lambda(E) \leq Ms$
- Suppose that we have A s.t. $M \le 1/n^{1/2}$. Then: ٠
 - For any $x \in \mathbb{R}^n$, $|S| \le n^{1/2}$, we have $|| (Ax)_{|S} ||_2^2 \le 2$
 - At the same time, $|| (Ax) ||_2^2 = L$
 - Therefore, (1-2/L) fraction of the "mass" $||Ax||_2$ is contained in coordinates i s.t. $(Ax)_i^2 \le 1/n^{1/2}$

- Let $y=(y_1, ..., y_{n'})$
- Define probability distribution $P=(y_1^2/||y||_2^2, ..., y_n^2/||y||_2^2)$
- Extractor properties imply that, for "most" buckets B_i, we have

 $||G(y)_{|Bi}||_2^2 \approx ||G(y)||_2^2 / #buckets$

 After log log n steps, "most" entries will be around 1/n^{1/2}

Incoherent dictionaries

- Can we construct A=[H₁ H₂ ... H_L]^T with coherence (close to) 1/n^{1/2}?
 - For L=2, take $A=[I H]^T$
 - For L>2:
 - Idea I: use method of conditional probabilities
 - Take $H_i = H \times D_i$, D_i has ± 1 on the diagonal and 0's elsewhere
 - Any pair of rows $u \in H_i$ and $v \in H_i$, $i \neq j$, are probabilistically indep.
 - \Rightarrow |u*v| =O(n^{1/2} log n / n) with high probability
 - Derandomize using method of conditional probabilities
 - Idea II: use Google (Scholar)
 - Turns out A is known for L up to n/2+1 (Kerdock codes)
 - Take $H_i = H \times D_i$, D_i has ± 1 on the diagonal and 0's elsewhere

Efficient measurement matrix

Only the edges from non-zero elements are shown

- Decompose the graph into one-sided matchings
 / hash functions
 - $d = 2^{O(\log \log d)^2}$ hash functions
 - Each function maps {1..n} into {1..O(k)}
- For each hash function, a non-zero element is isolated if it falls into a bucket that does not overflow
 - Can recover isolated entries using previous results
 - Cost: roughly T² measurements per bucket per hash function
 - Possible to set T to be polynomial in d
- Hash function property (*): at most ε of non-zero entries are not isolated
 - (*) satisfied for most hash functions if a graph is an extractor
 - Can use majority vote to determine non-zero elements
- Non-isolated elements lead to incorrect identifications
- Good news: only O(ε) fraction of incorrect elements
 - We recovered z s.t., $||z-x||_0 \le O(\epsilon m)$
 - Recurse to recover z-x from Az-Ax

Overflow if >T non-zero elements

.

Conclusions

- Extractors+UP \rightarrow Embedding of I_2 into I_1
 - Dimension almost as good as for the probabilistic result
 - Near-linear in n embedding time
- Extractors + group testing → efficient measurement matrix for sparse vectors
- Questions:
 - Remove $2^{O(\log \log n)^2}$?
 - Making other embeddings/matrices explicit ?
 - Any particular reason why both [AC'06] and this paper use $H \times D_i$ matrices ?

Appendix

Digression

- Johnson-Lindenstrauss'84:
 - Take a "random" matrix A: $\mathbb{R}^n \rightarrow \mathbb{R}^{m/\epsilon^2}$ (m <<n)
 - For any $\epsilon > 0$, $x \in \mathbb{R}^n$ we have

 $||\mathsf{A}\mathbf{x}||_2 = (1 \pm \varepsilon)||\mathbf{x}||_2$

with probability 1-exp(-m)

- Ax can be computed in $O(mn/\epsilon^2)$ time
- Ailon-Chazelle'06:
 - Essentially: take $B = A \times P \times (H \times D_i)$, where
 - H : Hadamard matrix
 - D_i : random ±1 diagonal matrix
 - P : projection on m² coordinates
 - A as above (but n replaced by m/ϵ^2)
 - Ax can be computed O(nlog n + m^3/ϵ^2)

(Norm) embeddings

- Metric spaces M=(X,D), M'=(X',D') (here, X=Rⁿ, X'=R^m, D=||.||_X and D=||.||_{X'})
- A mapping F: $M \rightarrow M'$ is a c-embedding if for any $p \in X$, $q \in X$ we have $D(p,q) \le D'(F(p),F(q)) \le c D(p,q)$

(or, $||p-q||_X \le ||F(p-q)||_{X'} \le c ||p-q||_X$)

- History:
 - Mathematics:
 - [Dvoretzky'59]: there exists $m(n,\epsilon)$ s.t., for any $m>m(n,\epsilon)$ and any space $M'=(\mathbb{R}^m,||.||_{X'})$ there exists a $(1+\epsilon)$ -embedding of an n-dimensional Euclidean space I_2^n into M'
 - In general, m must be exponential in n
 - [Milman'71]: proof using concentration of measure methods
 - •<u>....</u>

[Figiel-Lindenstrauss-Milman'77, Gordon]: if $M'=I_1^m$, then $m \approx n/\epsilon^2$ suffices

That is, $l_2^n = O(1)$ -embeds into $l_1^{O(n)}$

A.k.a. Dvoretzky's theorem for I1

• ...

- Computer science:
 - [Linial-London-Rabinovich'94]: [Bourgain'85] for sparsest cut, many other tools
 -
 - [Dvoretzky, FLM] used for approximate nearest neighbor [IM'98, KOR'98], hardness of lattice problems [Regev-Rosen'06], etc.