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Abstract— We consider theapproximate sparse recovery prob-  maintain instead the sketcAz, under incremental updates
lem, where the goal is to (approximately) recover a high- to 2. Specifically, if a new packet arrives, the corresponding
dimensional vectorz € R™ from its lower-dimensional sketch coordinate ofz is incremented byl. This can be easily

Az € R™. Specifically, we focus on the sparse recovery problem . . -
in the ¢, norm: for a parameter k, given the sketchAz, compute done if the sketching procedure is linear. In the areacwh-

an approximation & of x such that the ¢, approximation error  Pressed sensingCRT06a], [Don06], [TLWF06], [DDT*08],
||z — Z||1 is close tomin, ||z — z’||1, where 2’ ranges over all the data acquisition itself is done using (analog or dipital

vectors with at most & terms. The sparse recovery problem hardware, which is capable of computing a dot product
has been subject to extensive research over the last few years of the measurement vector and the signal at a unit cost.

Many solutions to this problem have been discovered, achieving oth licati include breaki . f databas
different trade-offs between various attributes, such as the er applications Incluge breaxing privacy of databasas v

sketch length, encoding and recovery times. aggregate queries [DMTO7].

A recent paper [IR08] provided a sparse recovery scheme In this paper, we focus on using linear sketchés to
which achieved close to optimal performance on virtually all computesparse approximationef xT. Forma”y, we say that
attributes (see Figure 1). In particular, this was the first recovey a vectory is k-sparseif it contains at most non-zero entries.

scheme that guaranteed)(k log(n/k)) sketch length, and near- . . . .
linear O(n log(n/k)) recovery time smultaneously. This was The goal is to find a vectat such that the,, approximation

achieved by using sketching matricesd which were themselves €rTor ||z — &[[,, is at moste > 0 times the smallest possible
very sparse. The matrix sparsity enabled decreasing the amount ¢, approximation errot|z — z’||,, wherez’ ranges over all

of computation spent on encoding and recovery. k-sparse vectors (we denote this type of guarantee/py<*
In this paper we present a new practical variant of that ¢/¢,”). Note that for any value of;, the error|lz — 2|, is

algorithm, that we call Sparse Matching Pursuit, or SMP. The  minimized wheni consists of thek largest (in magnitude)
running time of the new algorithm is slightly higher (by a coefficients ofz

logarithmic factor) than of its predecessor, and its sketch length
bound remains unchanged. However, it@mpirical sketch length The problem was subject to an extensive research over

is substantially lower. This makes our scheme an attractive the last few years, in several different research commesyiti
Opt'otn for sparse recovery problems, both in theory and in  j,clyding applied mathematics, digital signal processing
practice. theoretical computer science. The goal of that researah is t
l. INTRODUCTION obtain encoding and recovery schemes with low probabil-
~ ity of error (ideally, deterministic schemes), short sketch
Over the recent years, a new approach for obtaining |gngths, low encoding, update and recovery times, good
succinct approximate representation setlimensional vec- gpproximation error bounds and resilient to measurement
tors (or signals) has been discovered. For any signahe gise. The current state of the art is presented in Figére 1

representatlor! Is equal tdx, where A is am x n matrix. Our work builds on a recent paper [IR08]. In that paper
The vectorAx is often referred to as thmeasurement vector
. : the authors propose a recovery scheme, caiétP, that

or sketchof z. Althoughm is typically mgch sma!ler than is based on sparse random (or pseudo-random) matrices.
n, thg sketchAx contains plenty of useful information aboutUp 10 the leading constants, EMP achieves the best known
the S|gn.alx. . ) . ) bounds for the sketch length, encoding and update times,

‘The linearity of the sketching method is crucial for &ng the recovery time (ifc is large enough). Also, the
wide variety of applications. In the area data stream gcheme is resilient to noise. The only theoretical drawback
computing[Mut03], [Ind07], the vectorsz are often Very of that scheme is thé, < C/; error guarantee, which is
large, and cannot be represented explicitly; for example, known [CDDO06] to be weaker than thig < S50, guarantee
could denote the total number of packets with destinatiogchievable by some of the other algorithms.
1 passing through a network router. It is thus preferable to
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Paper R/D Sketch length Encoding time | Sparsity/ Decoding time Approximation | Noise
Update time error
[CCFCO02], [CMO06] R klog%n nlog®n log%n klog?n lo < Clo
R klogn nlogn logn nlogn o < Cla
[CMO04] R klog?n nlog®n log?n klog?n 0 < Cly
R klogn nlogn logn nlogn 01 < Ct
[CRTO6b], [RV06] | D klog(n/k) nklog(n/k) | klog(n/k) LP 2 < 75l Y
D k logd n nlogn k logd n LP lo < kl%gl Y

[GSTVO06] D klog?n nlog®n log?n klogn 0, < Clognty Y

[GSTVO07] D klog?n nlogdn log? n k2log?n b < 7zl
[GLROS] D | k(logn)dlogloglogn knl—a ni—a LP by < kl%el

(k “large”)

[BGI*08] D klog(n/k) nlog(n/k) log(n/k) LP 1 < Clh Y
[DMO8] D klog(n/k) nklog(n/k) klog(n/k) | nklog(n/k)log R Ly < kl%él Y
[NTO8] D klog(n/k) nklog(n/k) | klog(n/k) | nklog(n/k)logR | f2< Tzl Y

D klog?n nlogn klog?n nlognlog R ly < kl%gl Y
[IRO8] D klog(n/k) nlog(n/k) log(n/k) nlog(n/k) 4 < (1+4¢€)l Y

Best bound D klog(n/k) nlog(n/k) log(n/k) min[k log? n, Ly < k16/2 41 Y

per column nlog(n/k)]

This paper D klog(n/k) nlog(n/k) log(n/k) nlog(n/k)log R 4 < Cly Y

Fig. 1. Summary of the sparse recovery results. Virtually all referencededaund at [Gro06]. All bounds ignore th(-) constants. We
also ignore other aspects of algorithms, such as explicitness or wlitiersf the measurement matrices. The columns describe: citation;
sketch type (deterministic or randomized); sketch length; time to computgiven z; time to updateAx after incrementing one of the
coordinates ofr; time to recover an approximation efgiven Az (below); approximation guarantee (below); does the algorithm tolerate
noisy measurement vectors of the form+ .. The parameter§' > 1, d > 2 anda > 0 denote some absolute constants, possibly different
in each row. The parameterdenotes any positive constant. We assume khat n/2. In the decoding time column LP=KR, m,T)
denotes the time needed to solve a linear program defined by am matrix A which supports matrix-vector multiplication (i.e., the
encoding) in timel". Heuristic arguments indicate that &R m, T') ~ /nT if the interior-point method is employed. Some of the running
times of the algorithms depend on the “precision parame&nivhich is always bounded from the above by the norm of the vectibr

its coordinates are integers. It is known [CDDO6] thé *< .5 (1" implies 41 < (14 O(c))¢1", and that it is impossible to achieve
“fy < Cly" deterministically unless the number of measuremen®(is).

Although EMP offers excellent asymptotic guarantees, if§he running time of the new algorithm is slightly higher (by
empirical performance is not so great; specifically, the nhuna logarithmic factor) than of EMP. However, empiricallyeth
ber of measurements required by the algorithm to achieagorithm performs successful recovery from a signifigantl
correct recovery is suboptimal. For example, our recovegmaller number of measurements. In particular, for the in-
experiments on random signédsparse signals of length, stances described above, SMP typically needs abood
for k = 50 andn = 20000, show that one typically needs atmeasurements (see section V for more detailed empirical
least5000 measurements to recover the signal correctly usingyaluation of the algorithm). The asymptotic bound on the
the EMP algorithm. In comparison, the linear-programmingaumber of required measurements is stk log(n/k)).

based recovery algorithm for sparse matrices [B@] re-  The combination of good asymptotic and empirical per-
quires only about!50 measurements to perform the samgormance makes our scheme an attractive option for sparse
task. recovery problems, both in theory and in practice.

In this paper we present a new variant of EMP, called
Sparse Matching Pursyibr SMP. The algorithm is based on a Techniques and Related Work
the ideas from [IR08] as well as from [BG08] and [NTO8].

As in [IR08], our scheme uses a mattk that is binary

3For both algorithms we used randomly generated 0-1 matricels Wif"mdSparse Such a matrix can be interpreted as an adjacency

column sparsity equal t@o0. matrix of a bipartite graplt, with left vertex set{1...n}



and right vertex sef{1...m}. The sparsity immediately Finally, there are interesting connections between SMP
implies low encoding and sketch update times. The recoveand the message-passing-based recovery methods for sparse
algorithm is iterative, in the spirit oOrthogonal Matching matrices [SBB06a], [LMP08]. In particular, the Counter
Pursuit [TG05]. In each iteration, the algorithm estimatesBraids algorithm of [LMP08] provides provable guarantees
the difference between the current approximatiohand for the quality of recovered approximation. However, that
the signalxz from the (possibly noisy) sketcH(xz/ — ) = scheme works only for non-negative signals

Axd — Az. The estimation:* of the differenceu = 27 — x

is obtained by using voting-like mechanism, where eachll. PRELIMINARIES AND FORMAL STATEMENT OF THE
coordinateu? is equal to the median of the coordinates of RESULT

the sketch vectorw that correspond to the neighbors of
in the graphG. The approximation:’ is updated byu, and
the process is repeated.

Our algorithms builds on a large body of work in severa,
areas, such aslata stream computingMut03], [Ind07],
compressed sensirf@RT06b], [Don06] andcoding theory
In the following, we describe prior works that inspired aord/
are closely related to our algorithm. The reader is referr

An essential tool for our constructions awmbalanced
expander graphsConsider a bipartite grapf = (U, V, E).

e refer toU as the “left” part, and refer td/ as the
right” part; a vertex belonging to the left (right) part is
called a left (right) vertex. In our constructions the lefirp
will correspond to the seft1, 2, ..., n} of coordinate indexes
of vectorz, and the right part will correspond to the set of

¢ ) B&DS] broad . fer w indexes of the measurement matrix. A bipartite graph
0 a companion paper [ ] for a broader overview o is called left-d-regular if every vertex in the left part has

ideas developed in t_he aforementioned aregs. ~ exactlyd neighbors in the right part.
The most immediate ancestor of SMP is the algorithm 5 c .00 1. A bipartite, leftd-regular graph G =

presented in [IR08] (which in turn has been influencegU V.E) is an (s, d, ¢)-expanderif any setS c U of at
by several other data stream algorithms, including those .’ AT o .
from [GGI+02], [CCFC02], [CM04], [CMO6], [GSTVO8], FHost s left vertices has at leagt — €)d|S| neighbors.

[GSTVO07]). The algorithm in [IR08] used sparse sketching Since expander graphs are meaningful only whep <

matrices, and iterative, voting-like mechanism to recoveflU|: some vertices must share neighbors, and hence the pa-

the signal approximation. In order to achieve desired ajj@metere cannot be smaller thatyd. Using the probabilistic

proximation guarantees, however, the algorithm imposdg®thod one can show that there eXistd, ¢)-expanders with

strict conditions on the recovery process. In particulaghe ¢ = O(log(|U|/s)/e) and [V| = O(slog(|U|/s)/€?).

coordinate of the approximation was estimated only once, For many applications one usually needs explicit

and was never revised again. This process resulted in expander, i.e., an expander for which we can efficiently

increased empirical sketch length. compute the neighbor set of a given left vertex. No ex-
The analysis and the general algorithmic frameworRIiCit constructions with the aforementioned (optimal)- pa

of SMP have been significantly influenced by the idea@Meters are known. However, it is known [GUV07] how
from [DMO08], [NTO8], [BMOS]. In those papers the authors!® €Xplicitly construct expanders with left degree =
presented iterative algorithms for matricassatisfying the O((log |U[)(log s)/e)tFr/e and right set siz¢d”s'*), for
following Restricted Isometry Propertgr RIP [CRTO6b]: &Ny fixeda > 0. In the remainder of this paper, we will
for any k-sparsez, we have|Az|, ~ ||z|j2. In turn, the @SSume expanders with the optimal parameters.

analysis of SMP uses the fact that sparse random matriced-or a setS of nodes ofG, the set of its neighbors & is
satisfy a related property calleRiP-1[BGI*08], where we denoted byl'¢(S). The subscriptz will be omitted when it
require that for any:-sparser we have||Az||; ~ |z|; (i.e., is clear from the context, and we wriig{u) as a shorthand
the near-isometry holds in thg norm). As a result, some for I'({u}).

ideas from the aforementioned papers apply here as well.For anyn-dimensional vector:, and S c {1...n}, we
In particular, we use the decomposition of the input signalse =g to denote an|S|-dimensional projection of: on
z into the “head” z(*) (containing thek most significant coordinates inS.

components ofr) and the “tail” z — =(*), and interpret the

“sketch of the tail” termA(z—z(®)) as “measurement noise”. A. Formal statement of the result

The iterative voting procedure used by SMP is reminiscent

of the iterative decoding algorithms used flmw-density . I -
arity-checkcodes. In fact, iterative algorithms of this typesparse. The sketching mattikis am x n matrix induced by
P ’ a (s,d,e)-expanderG = ({1...n},{1...m},E), for s =

have been used, e.g., in [XHO7], [Ind08], to design spars&k). Let ;. be them-dimensional “noise” vector, and let

recovery algorithms. However, those algorithms were d%—: ‘Azt 1 be the “noisy measurement” vector. Also, denote
signed to work only for the case where the sigmais k- K ' '

sparse or “almost’k-sparse. In contrast, SMP is designed’ — ”“'h/d'_ o
and guaranteed to work for arbitrary input signals For technical reasons we assume thé divisible by four.

Moreover, we set to be a “sufficiently small” constant.

Consider anyn-dimensional “signal” vector that is k-



A. Main Lemmas

3 tg: z:j:—oo Lemma 3:For any2k-sparseu, letc = Au+ p andn =
3) Repeatl times lpallr/d. Then
a) Letj—j+1 | Hox[u* (e)] = ully < O(@)]lully + O(n)
b) Letc=0b— Az7~! The above lemma is in fact a simplification of Theorem
Note:c = A(x — 27~ 1) +p 5 in [IR08]. However, in this paper we will present a self-

c) Letw* = u*(c) be such that for any=1...n | contained proof, which is very different from the combina-
torial argument used in [IR08].

Proof: For the purpose of analysis, we assume that
d) Letw = Hoxlu*] |ui| > ... > |u,|. Note that since: is 2k-sparse, we have

Note: from Lemma 3 we have Ugks1 = ... = up, = 0. Let § = {1...2k}. The proof of
Lemma 3 relies on the following two lemmas, whose proof
is deferred to the next section.

u*(c); = mediaricr;)

v/ = (2 =271 < [l — 2?7 /4+ Cn

e) Letx! =a/~! +uf Lemma 4:
Note: ||z — 27|y < ||z — 29| /4 + C .
0 Let 2 — Hy [ ("~ u)slls = O@)ully + O(n)
Note: from Lemma 6 we have Lemma 5:Let B C S be a set of coordinates of size at

most2k. Then

[up —uplh = llupl = O(e)[[ully + O(n)

_ _ . _ Let T' be the coordinates of th2k largest in magnitude
Fig. 2. Sparse Matching Pursuit algorithm coefficients ofu*. Then:

lz =27l < flo — 27 7H| /2 +2Cn

| Hop[u"] — ully
lur — ully

[(u* —w)sarll + [up_gll + [lus—7(1

Theorem 1:There exists an algorithm that, for any
sparse signat and noise vectog,givenb = Ax+pu, recovers
x* such that||x — z*||; = O(||u|l1/d). The algorithm runs

in time O (ndlog(d||z||1/||pl1))- < @ —w)sarll + [lup_sll +
Let 2(*) be the besti-sparse approximation of, i.e., us_rlli + [[(u* = u)s—rl1
e = argmin,_,,,qc o |lz—2'||1. Sincedz+p = Az + = |(u" —u)slly + lup_sll + [lus_rlh

[+ Az — 2], and[|A(z — 2W)[|; < d||lz — 2™, for . ,
any z, Theorem 1 immediately implies the following more | To bound|jug_s |1, observe th_at forany e § T and
i’ € T—S, we haveluf| < |u}|. Since|T -S| = |S—T], it
general statement. i i
. follows that|jus_,|1 < |ur_gl|l1- Hence, forB =T — 5,
Corollary 2: For any parametek, any vectorz and noise it follows from Lemmas 4 and 5 that
vectoru, givenb = Ax + pu, the algorithm recovers* such } i X
that ||z — z*|y = O(||ullr /d + ||z — z®|1). [ Hok[u"]—ully < [[(w"—u)s[i+2[lupll = O(e)llulli+O0(n)
|
Lemma 6:For any k-sparse vector, and any vector’
In this section we describe th&parse Matching Pursuit e have
algorithm. We also present an overview of the algorithm | Hy[z'] — 2|1 < 2|2’ — x|

analysis. Proof: Let S be a support of, and letT” be the largest
The algorithm is as follows. Recall that we assume that coefficients ofz’. Observe that from the definition @f and

the signalz is k-sparse, andd = Ax + u. The algorithm the fact thatlS — 7| = |T — S|, it follows that ||z [ <

will compute approximations®, z!, ... 2T Let H;[y] be a |2 |l1. We have

“thresholding operator”, which zeros out all blutargest in

magnitude coefficients of the argument

From the comments in the algorithm description (assuming

Ill. THE ALGORITHM

o7 — [l

= les—zlh + llo7_slh + lzsnr — 2sarll

Lemmas 3 and 6) we conclude that, fosmall enough and < (lws—rlh + l7s—r — zs—rllh) +
foranyj =1,2,...7, we have lz7r_slli + lzsnr — Tsqrlla
a7 — 2|y < [|lz]l1/27 + 4Cn < eposlh+ o r —2s—rl +

/ /
Thus, setting the number of iterations To= log(||z||1/n) lzr_sllh + [2snr — Zsarlh

guarantees that < 2z =2y
" = 2], = O(n) [



IV. PROOFS OFLEMMAS 4 AND 5 c(i) — c(i — 1). Thus

We start from some basic observations. Zaj = Z[c(i) —c(i—1)]b;
j i=1
Decomposition.For the analysis, it is convenient to decom- i Lo
pose the vectoru into a sumv 4+ v”. The vectorv is such < Z c(@)bi — Z c(i = 1)bi—1 +
thatv; = u,(;) wherei(j) is the indexi’ from I'(j) with the ’jl =2
largest value ofu; |. c(i = 1)(bio1 — by)
Fact 1: Let v” = Au — v. Then|[v”||; < 2ed||ull1. =
The proof of this fact is virtually identical to the t .
proof of the RIP1 property of expander matrices described < ath 4+ Y a(i—1)(bi-1 — b;)
in [BGI108]. The reader is referred to that paper for the , =2
details.
< Y albioy —by)
It follows that the vector = Au + u can be represented s
asc=v+', where||v'||; < O(e)d||lu|lx + ||xll1- < albl

Composing quantiles.In the proof we will compute bounds
on the medians of vectotsg|, whereB are subsets of coor- u
dinates. In light of the above decomposition, it would make
sense to compute separate bounds for mediarjsgfand A Proof of Lemma 4

[vi|, and then combine them. Unfortunately, it is in general Recall that.} = mediar(vr(i)ﬂ’p(i))- Therefore, we need
not true that medigm + v) < mediar{u) + mediar{v), even to bound

for positive vectorsu,v. Fortunately, we can overcome this

problem by using lower quantiles. Specifically, for any non- (" —u)sh

> Imediartur) + vi)) — il

negativen-dimensional vector:, and anya € (0,1) such ies
that an is an integer, we define quayt) to be thean-th = ) |mediarfur;) — uf + v,
largest element of.. Then we have the following fact. =

Fact 2: For any vectors:, v > 0 of dimensionn, divisible < Y mediar|ur) — uf| + [vf )
by 4, we have i€s

whereu¢ is a vector of dimensiom containing as coor-
quant ,(u + v) < quant , (u) + quant 4 (v) dinatesd copies ofu;. For anyi € S, let w’ = vp(; — uf.
Then, it suffices to bound
Proof: Let U = quant ,(u) andV = quant ,(v). There ) ; ;
are at most/4 — 1 elements ofu (v, resp.) that are greater > _mediar{jw’| + [vf;)[) < Y quant(jw']) +

thanU(V, resp.). Therefore, there are at least 2(n/4 — ies ies
1) = n/2 + 2 elements ofu + v that are not greater than unan;/4(|v’r(i)|)
U + V, which concludes the proof. [ ] i€s
_ _ _ We bound the second term using the following claim.
Telescoping trick. Consider two sequences.= ay, ..., as Claim 8: Let P be any set of at most coordinates. Then
and b = by,...by of positive numbers, such that
{a1,...,as} C {b1,...b;}. In addition, we assumé, > > " quant (o] ;) = O(|v/[[1/d)
by > ... > b = 0. The two sequences are related in the ieP
following way. For eachb;, definec(i) to be the cardinality Proof: For eachvj, let c(j) be the number of € P

of the setC(i) = {j : a; > b;}, i.e., the number of times having at leastd/4 neighbors in the sef{l...;}. From
an element from{b; ...b;} appears in the sequenege we the expansion properties of the grapgh it follows that
assumec(0) = 0. The following claim states that if this c¢(j)(d/4 — ed) < j. Thusc(j) < 8;j/d. Applying Claim 7

number is bounded, then the sum of the elements &f finishes the proof. [ ]
only a fraction of the sum of elements in Therefore, the contribution of the second term is at most
Claim 7: Assume that(i) < «i for somea > 0. Then O(||[v'||1/d) = O(e||ul|1) + O(n).
lallr < aflb]]. To bound the first term, we proceed as follows. Recall
Proof: For simplicity of exposition, we assume thatthat we assumed that the entries|, |uz|, ... appear in the

all terms inb are distinct. First, observe that for each non-increasing order. Partitiofl into the union ofS* and
the number of times the valug occurs ina is equal to S~ =S — S*, whereST™ ={ie€ S:|lH)NTH{L...i—



1})| < d/4}. We will bound the first term separately for 10 F—=——== @10)

elements inSt and S—. Count-Min (d=50)
) . [|-©-swpP A
Observe that for eaci € St the number of non- 10° H..x.- GPSR 273

T e pon P
zero elements inw® is smaller thand/4. Therefore, A 1-Magic ’
> ies+ quant ,(Jw'|) = 0.
To take care of the elements BT we need to bound

Z quant 4 (Jor) — ug]) < Z quant ,,(jor@)l) (1)

€S~ €S
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For anyr € S, consider the sef5, containing indices
i€ S™ such thafl'(:;) NT'({1...7})| > d/4. Our goal is to
show thatS,| is relatively small, and therefore few elements
of the sum in equation 1 can be large.

We partitionS,. into S< =S, n{1...r} andS> = S, —
S<. From the expansion properties 6f it follows that

d(1—¢)(r+1S7]) <dr+3/4-d|S; |
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Fig. 3. Comparisons of recovery times. We used the followingupaters:

> € the signal sparsitye = 0.002n, the number of measurements = 0.1n,
Therefore we hav@s’r | = 1/4767" < 8er. and the matrix sparsity parametér= 10 (except for Count-Min for which

To boundS<. we observe that from the definition ¢~  We also use the higher value d@f= 50). The SMP algorithm is run for 10
T - iterations.
and the expansion df it follows that

d(1 — e)r < d(r — |S5]) +3/4 - d| S5

measurement matrix; a recovery of the vector from the sketch
Therefore we haveS;”| < 4er and|S,| = [S7| + [S5] < is attempted and the experiment is deemed successful if the
12er. That is, for anyr, at most12er terms in the sum in recovered vector is identical to the original vector. Foregi
equation 1 can be greater than|. From Claim 7 it follows parameters of signal length, sketch lengthn, and signal
that the total value of the sum is at maste)||ul|:. sparsityk, we generate a single measurement matrix with a

Putting all terms together concludes the proof of Lemma 4iven sparsity and perform a number of separate experiments

with the same matrix. The fraction of the experiments that
B. Proof of Lemma 5 are successful is indicative of the probability that a vecto
is correctly recovered using a “typical” matrix of the given
parameters. To visualize the sketch sizes, we fix the signal
lengthn and varym,k along a two-dimensional grid.

We need to bound

()l = Z\mediarﬁvp(i)ﬁ—v’r(i)ﬂ Our results are shown in figure 4. We compare our
icB algorithm with three other recovery methods capable of
< lquant ,, (vre)| + lquant ,, (v )| handling sparse matrices. The first one is the Count-Min

; /a0 ;; ) algorithm [CMO04F. The other two algorithms rely on linear-

i ) programming-based recovery. Specifically, we use two linea
Using Claim 8 we can bound the second term bynimization algorithms?;-magic with thel 1eq_pd pro-
O(e)||ulls + O(n). To bound the first term we proceed aSyram [CROS] and GPSR [FNWO%] See [BI08], [BGIF08]

fo”(?WS- For eachr € S we define B, = {i € B : for more details on linear-programming-based recovemaisi
IT(e) "nT'({1...7})| > d/4}. From expansion of the graph sparse sketching matrices.

G and the fact thaB NS = ( it follows that : .
We also measured the running time of our recovery
(1—e€)d(r+|B,|) <dr+3/4-d|B,| algorithms; the results are shown in figure 3. The algo-
rithms were implemented in Matlab, with critical subroeiin
(sparse matrix multiplication, median recovery) writtenG
and compiled as a Matlab Executable. The code is avail-

It follows that | B,.| < 8er. From Claim 7 we conclude that
the first term is bounded b§(e)]|ul|; .

V. EXPERIMENTS 4Since we are dealing with signals that can have negativediuaies,

To estimate the empirical sketch sizes that our SMPe are using the “median” version of the algorithm, see theirmmalgoaper
or details.

algorithm requires, we perform experiments in which we testste gpsRr algorithm requires a precision parametewhich impacts
exact recovery of sparse vectors (similarly to [BI08]). Anthe quality of recovery as well as the running time of the dtgar. In our
experiment is performed as follows: a vector is generatepfperiments we used = 10~°||ATy||o. Higher values ofr resulted in

. w . . . slightly lower running times, but at the expense of reducimg quality of
consisting ofk non-zero peaks which are randomly eltherrecovery, which increased the number of measurements needethitve
+1 or —1; the sketch is computed by applying a giver given pobability of success.
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Fig. 4. Results of exact recovery experiments for SMP (topur@Min (middle row), GPSR (bottom-left) anti -MAGIC (bottom-right). All plots
are for the same signal lengih = 20000 and the same sparsity range< [10, 100]. The resolution of each plot is shown: the number of verticds a
divisions ("Ms”), number of horizontal axis divisions ("Kp'and number of trials per point. The matrix sparsity was sef te 10 for all algorithms
except Count-Min for whichi = 50 was also used. SMP usé8 iterations and attempts to recoveRh-sparse vector.



able athttp://groups.csail.mt.edu/toc/sparse/ w ki/
i ndex. php?titl e=Sparse_Recovery_Experi nments

A. Discussion [DMO08] W. Dai and O. Milenkovic. Subspace pursuit for comzies
sensing: Closing the gap between performance and complexity.
All the aforementioned methods use the same type of Arxiv-0803.0811 2008. , _
. . [E)MTO?] C. Dwork, F. McSherry, and K. Talwar. The price of yaty
measurement matrix (sparse and binary). Any of the methods and the limits of LP decodingSTOG 2007.
can be used to recover a signal from a given sketch [Don06] D. L. Donoho. Compressed Sensiti§EE Trans. Info. Theory
Az. Thus, the choice of the recovery method depends gn 52(4):1289-1306, Apr. 2006. _ ,

. . %NWOY] M.A.T. Figueiredo, R.D Nowak, and S.J. Wright. Gradie
the amount of available computatlonal resources. As per projection for sparse reconstruction: Application to coegsed
figures 3 and 4, using SMP instead of linear-programming sensing and other inverse problem&E Journal of Selected
methods can reduce the running time by up to a few ordeys Topics in Signal Processing, 2007. _

. . . éGGH’OZ] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. MuthuKkrigan,
of magnitude. At the same time, the sketch length for a given and M. J. Strauss. Fast, small-space algorithms for approsimat
sparsityk is increased only by small factor (between 3 and histogram maintenance. IACM Symposium on Theoretical
5, for n = 20, 000). Computer Science2002.
’ ’ [GLRO8] V. Guruswami, J. Lee, and A. Razborov. Almost euclidea
Both SMP and Count-Min have low (near-linear) running subspaces df; via expander codesSODA 2008.

times. For fixed matrix sparsity parametér= 10, SMP [Gro06] Rice DSP Group. Compressed sensing resoursilable at
http://ww. dsp. ece. ri ce. edu/ cs/ , 2006.

runs roughly 10 times longer than Count-Min (which iS[GSTVOG] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vimsin.

not surprising, since each of the 10 iterations of SMP Algorithmic linear dimension reduction in thé, norm for
utilizes a Count-Min-like voting process). However, Count sparse vectors. Submitted for publication, 2006. ,
Mi . hiah | of t hi d [GSTVO7] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vsmsin.

In requires higher values 0 achieve good recovery One sketch for all: fast algorithms for compressed sensing. In

performance, which brings its running time closer to that of ACM STOC 2007pages 237-246, 2007.
SMP (and also increases the encoding and update time of {R&/V07] V. Guruswami, C. Umans, and S. P. Vadhan. Unbalanced

. . . . expanders and randomness extractors from Parvaresh-Vardy
algorithm). In that case, Count-Min requires sketches dwic codes. INIEEE Conference on Computational Complexity

the length of those required by SMP. (CCC 2007) pages 96-108, 2007.
[Ind07] P. Indyk. Sketching, streaming and sublinear-space
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