
Practical Near-optimal Sparse Recovery in the L1 Norm

R. Berinde, P. Indyk and M. Ruz̆ić

Abstract— We consider theapproximate sparse recovery prob-
lem, where the goal is to (approximately) recover a high-
dimensional vector x ∈ Rn from its lower-dimensional sketch
Ax ∈ Rm. Specifically, we focus on the sparse recovery problem
in the ℓ1 norm: for a parameter k, given the sketchAx, compute
an approximation x̂ of x such that the ℓ1 approximation error
‖x − x̂‖1 is close tominx′ ‖x − x′‖1, where x′ ranges over all
vectors with at most k terms. The sparse recovery problem
has been subject to extensive research over the last few years.
Many solutions to this problem have been discovered, achieving
different trade-offs between various attributes, such as the
sketch length, encoding and recovery times.

A recent paper [IR08] provided a sparse recovery scheme
which achieved close to optimal performance on virtually all
attributes (see Figure 1). In particular, this was the first recovery
scheme that guaranteedO(k log(n/k)) sketch length, and near-
linear O(n log(n/k)) recovery time simultaneously. This was
achieved by using sketching matricesA which were themselves
very sparse. The matrix sparsity enabled decreasing the amount
of computation spent on encoding and recovery.

In this paper we present a new practical variant of that
algorithm, that we call Sparse Matching Pursuit, or SMP. The
running time of the new algorithm is slightly higher (by a
logarithmic factor) than of its predecessor, and its sketch length
bound remains unchanged. However, itsempirical sketch length
is substantially lower. This makes our scheme an attractive
option for sparse recovery problems, both in theory and in
practice.

I. I NTRODUCTION

Over the recent years, a new approach for obtaining a
succinct approximate representation ofn-dimensional vec-
tors (or signals) has been discovered. For any signalx, the
representation is equal toAx, whereA is a m × n matrix.
The vectorAx is often referred to as themeasurement vector
or sketchof x. Although m is typically much smaller than
n, the sketchAx contains plenty of useful information about
the signalx.

The linearity of the sketching method is crucial for a
wide variety of applications. In the area ofdata stream
computing [Mut03], [Ind07], the vectorsx are often very
large, and cannot be represented explicitly; for example,xi

could denote the total number of packets with destination
i passing through a network router. It is thus preferable to
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maintain instead the sketchAx, under incremental updates
to x. Specifically, if a new packet arrives, the corresponding
coordinate ofx is incremented by1. This can be easily
done if the sketching procedure is linear. In the area ofcom-
pressed sensing[CRT06a], [Don06], [TLW+06], [DDT+08],
the data acquisition itself is done using (analog or digital)
hardware, which is capable of computing a dot product
of the measurement vector and the signal at a unit cost.
Other applications include breaking privacy of databases via
aggregate queries [DMT07].

In this paper, we focus on using linear sketchesAx to
computesparse approximationsof x. Formally, we say that
a vectory is k-sparseif it contains at mostk non-zero entries.
The goal is to find a vector̂x such that theℓp approximation
error ‖x − x̂‖p is at mostc > 0 times the smallest possible
ℓq approximation error‖x − x′‖q, wherex′ ranges over all
k-sparse vectors (we denote this type of guarantee by “ℓp ≤
c ℓq”). Note that for any value ofq, the error‖x − x̂‖q is
minimized whenx̂ consists of thek largest (in magnitude)
coefficients ofx.

The problem was subject to an extensive research over
the last few years, in several different research communities,
including applied mathematics, digital signal processingand
theoretical computer science. The goal of that research is to
obtain encoding and recovery schemes with low probabil-
ity of error (ideally, deterministic1 schemes), short sketch
lengths, low encoding, update and recovery times, good
approximation error bounds and resilient to measurement
noise. The current state of the art is presented in Figure 12.

Our work builds on a recent paper [IR08]. In that paper
the authors propose a recovery scheme, calledEMP, that
is based on sparse random (or pseudo-random) matrices.
Up to the leading constants, EMP achieves the best known
bounds for the sketch length, encoding and update times,
and the recovery time (ifk is large enough). Also, the
scheme is resilient to noise. The only theoretical drawback
of that scheme is theℓ1 ≤ Cℓ1 error guarantee, which is
known [CDD06] to be weaker than theℓ2 ≤ C

k1/2 ℓ1 guarantee
achievable by some of the other algorithms.

1We use the term “deterministic” for a scheme in which one matrixA
works for all signalsx, and “randomized” for a scheme that generates
a“random” matrix A which, for each signalx, works with probability
1 − 1/n. However, “deterministic” does not mean “explicit” - we allow
the matrixA to be constructed using the probabilistic method.

2The figure depicts only the algorithms that work forarbitrary signals
x. Many other results are known for the case where the vectorx itself is
required to bek-sparse, e.g., see [TG05], [SBB06b], [SBB06a], [Don06],
[XH07].



Paper R/D Sketch length Encoding time Sparsity/ Decoding time Approximation Noise
Update time error

[CCFC02], [CM06] R k logd n n logd n logd n k logd n ℓ2 ≤ Cℓ2
R k log n n log n log n n log n ℓ2 ≤ Cℓ2

[CM04] R k logd n n logd n logd n k logd n ℓ1 ≤ Cℓ1
R k log n n log n log n n log n ℓ1 ≤ Cℓ1

[CRT06b], [RV06] D k log(n/k) nk log(n/k) k log(n/k) LP ℓ2 ≤ C

k1/2
ℓ1 Y

D k logd n n log n k logd n LP ℓ2 ≤ C

k1/2
ℓ1 Y

[GSTV06] D k logd n n logd n logd n k logd n ℓ1 ≤ C log nℓ1 Y

[GSTV07] D k logd n n logd n logd n k2 logd n ℓ2 ≤ ǫ

k1/2
ℓ1

[GLR08] D k(log n)d log log log n kn1−a n1−a LP ℓ2 ≤ C

k1/2
ℓ1

(k “large”)

[BGI+08] D k log(n/k) n log(n/k) log(n/k) LP ℓ1 ≤ Cℓ1 Y

[DM08] D k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) log R ℓ2 ≤ C

k1/2
ℓ1 Y

[NT08] D k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) log R ℓ2 ≤ C

k1/2
ℓ1 Y

D k logd n n log n k logd n n log n log R ℓ2 ≤ C

k1/2
ℓ1 Y

[IR08] D k log(n/k) n log(n/k) log(n/k) n log(n/k) ℓ1 ≤ (1 + ǫ)ℓ1 Y

Best bound D k log(n/k) n log(n/k) log(n/k) min[k logd n, ℓ2 ≤ ǫ

k1/2
ℓ1 Y

per column n log(n/k)]

This paper D k log(n/k) n log(n/k) log(n/k) n log(n/k) log R ℓ1 ≤ Cℓ1 Y

Fig. 1. Summary of the sparse recovery results. Virtually all references canbe found at [Gro06]. All bounds ignore theO(·) constants. We
also ignore other aspects of algorithms, such as explicitness or universality of the measurement matrices. The columns describe: citation;
sketch type (deterministic or randomized); sketch length; time to computeAx given x; time to updateAx after incrementing one of the
coordinates ofx; time to recover an approximation ofx given Ax (below); approximation guarantee (below); does the algorithm tolerate
noisy measurement vectors of the formAx+µ. The parametersC > 1, d ≥ 2 anda > 0 denote some absolute constants, possibly different
in each row. The parameterǫ denotes any positive constant. We assume thatk < n/2. In the decoding time column LP=LP(n, m, T )
denotes the time needed to solve a linear program defined by anm × n matrix A which supports matrix-vector multiplication (i.e., the
encoding) in timeT . Heuristic arguments indicate that LP(n, m, T ) ≈ √

nT if the interior-point method is employed. Some of the running
times of the algorithms depend on the “precision parameter”R, which is always bounded from the above by the norm of the vectorx if
its coordinates are integers. It is known [CDD06] that “ℓ2 ≤ c

k1/2 ℓ1” implies “ℓ1 ≤ (1 + O(c))ℓ1”, and that it is impossible to achieve
“ℓ2 ≤ Cℓ2” deterministically unless the number of measurements isΩ(n).

Although EMP offers excellent asymptotic guarantees, its
empirical performance is not so great; specifically, the num-
ber of measurements required by the algorithm to achieve
correct recovery is suboptimal. For example, our recovery
experiments on random signedk-sparse signals of lengthn,
for k = 50 andn = 20000, show that one typically needs at
least5000 measurements to recover the signal correctly using
the EMP algorithm. In comparison, the linear-programming-
based recovery algorithm for sparse matrices [BGI+08] re-
quires only about450 measurements to perform the same
task3.

In this paper we present a new variant of EMP, called
Sparse Matching Pursuit, or SMP. The algorithm is based on
the ideas from [IR08] as well as from [BGI+08] and [NT08].

3For both algorithms we used randomly generated 0-1 matrices with
column sparsity equal to20.

The running time of the new algorithm is slightly higher (by
a logarithmic factor) than of EMP. However, empirically, the
algorithm performs successful recovery from a significantly
smaller number of measurements. In particular, for the in-
stances described above, SMP typically needs about2000
measurements (see section V for more detailed empirical
evaluation of the algorithm). The asymptotic bound on the
number of required measurements is stillO(k log(n/k)).

The combination of good asymptotic and empirical per-
formance makes our scheme an attractive option for sparse
recovery problems, both in theory and in practice.

A. Techniques and Related Work

As in [IR08], our scheme uses a matrixA that is binary
andsparse. Such a matrix can be interpreted as an adjacency
matrix of a bipartite graphG, with left vertex set{1 . . . n}



and right vertex set{1 . . . m}. The sparsity immediately
implies low encoding and sketch update times. The recovery
algorithm is iterative, in the spirit ofOrthogonal Matching
Pursuit [TG05]. In each iteration, the algorithm estimates
the difference between the current approximationxj and
the signalx from the (possibly noisy) sketchA(xj − x) =
Axj − Ax. The estimationu∗ of the differenceu = xj − x
is obtained by using voting-like mechanism, where each
coordinateu∗

i is equal to the median of the coordinates of
the sketch vectorAu that correspond to the neighbors ofi
in the graphG. The approximationxj is updated byu, and
the process is repeated.

Our algorithms builds on a large body of work in several
areas, such asdata stream computing[Mut03], [Ind07],
compressed sensing[CRT06b], [Don06] andcoding theory.
In the following, we describe prior works that inspired and/or
are closely related to our algorithm. The reader is referred
to a companion paper [BGI+08] for a broader overview of
ideas developed in the aforementioned areas.

The most immediate ancestor of SMP is the algorithm
presented in [IR08] (which in turn has been influenced
by several other data stream algorithms, including those
from [GGI+02], [CCFC02], [CM04], [CM06], [GSTV06],
[GSTV07]). The algorithm in [IR08] used sparse sketching
matrices, and iterative, voting-like mechanism to recover
the signal approximation. In order to achieve desired ap-
proximation guarantees, however, the algorithm imposed
strict conditions on the recovery process. In particular, each
coordinate of the approximation was estimated only once,
and was never revised again. This process resulted in an
increased empirical sketch length.

The analysis and the general algorithmic framework
of SMP have been significantly influenced by the ideas
from [DM08], [NT08], [BM08]. In those papers the authors
presented iterative algorithms for matricesA satisfying the
following Restricted Isometry Propertyor RIP [CRT06b]:
for any k-sparsex, we have‖Ax‖2 ≈ ‖x‖2. In turn, the
analysis of SMP uses the fact that sparse random matrices
satisfy a related property calledRIP-1 [BGI+08], where we
require that for anyk-sparsex we have‖Ax‖1 ≈ ‖x‖1 (i.e.,
the near-isometry holds in theℓ1 norm). As a result, some
ideas from the aforementioned papers apply here as well.
In particular, we use the decomposition of the input signal
x into the “head”x(k) (containing thek most significant
components ofx) and the “tail” x − x(k), and interpret the
“sketch of the tail” termA(x−x(k)) as “measurement noise”.

The iterative voting procedure used by SMP is reminiscent
of the iterative decoding algorithms used forlow-density
parity-checkcodes. In fact, iterative algorithms of this type
have been used, e.g., in [XH07], [Ind08], to design sparse
recovery algorithms. However, those algorithms were de-
signed to work only for the case where the signalx is k-
sparse or “almost”k-sparse. In contrast, SMP is designed
and guaranteed to work for arbitrary input signalsx.

Finally, there are interesting connections between SMP
and the message-passing-based recovery methods for sparse
matrices [SBB06a], [LMP+08]. In particular, the Counter
Braids algorithm of [LMP+08] provides provable guarantees
for the quality of recovered approximation. However, that
scheme works only for non-negative signalsx.

II. PRELIMINARIES AND FORMAL STATEMENT OF THE

RESULT

An essential tool for our constructions areunbalanced
expander graphs. Consider a bipartite graphG = (U, V,E).
We refer to U as the “left” part, and refer toV as the
“right” part; a vertex belonging to the left (right) part is
called a left (right) vertex. In our constructions the left part
will correspond to the set{1, 2, . . . , n} of coordinate indexes
of vectorx, and the right part will correspond to the set of
row indexes of the measurement matrix. A bipartite graph
is called left-d-regular if every vertex in the left part has
exactlyd neighbors in the right part.

Definition 1: A bipartite, left-d-regular graph G =
(U, V,E) is an (s, d, ǫ)-expanderif any set S ⊂ U of at
mosts left vertices has at least(1 − ǫ)d|S| neighbors.

Since expander graphs are meaningful only when|V | <
d|U |, some vertices must share neighbors, and hence the pa-
rameterǫ cannot be smaller than1/d. Using the probabilistic
method one can show that there exist(s, d, ǫ)-expanders with
d = O(log(|U |/s)/ǫ) and |V | = O(s log(|U |/s)/ǫ2).

For many applications one usually needs anexplicit
expander, i.e., an expander for which we can efficiently
compute the neighbor set of a given left vertex. No ex-
plicit constructions with the aforementioned (optimal) pa-
rameters are known. However, it is known [GUV07] how
to explicitly construct expanders with left degreed =
O((log |U |)(log s)/ǫ)1+1/α and right set size(d2s1+α), for
any fixed α > 0. In the remainder of this paper, we will
assume expanders with the optimal parameters.

For a setS of nodes ofG, the set of its neighbors inG is
denoted byΓG(S). The subscriptG will be omitted when it
is clear from the context, and we writeΓ(u) as a shorthand
for Γ({u}).

For anyn-dimensional vectorx, and S ⊂ {1 . . . n}, we
use xS to denote an|S|-dimensional projection ofx on
coordinates inS.

A. Formal statement of the result

Consider anyn-dimensional “signal” vectorx that is k-
sparse. The sketching matrixA is am×n matrix induced by
a (s, d, ǫ)-expanderG = ({1 . . . n}, {1 . . . m}, E), for s =
O(k). Let µ be them-dimensional “noise” vector, and let
b = Ax+µ be the “noisy measurement” vector. Also, denote
η = ‖µ‖1/d.

For technical reasons we assume thatn is divisible by four.
Moreover, we setǫ to be a “sufficiently small” constant.



1) Let j = 0
2) Let xj = 0
3) RepeatT times

a) Let j = j + 1
b) Let c = b − Axj−1

Note: c = A(x − xj−1) + µ
c) Let u∗ = u∗(c) be such that for anyi = 1 . . . n

u∗(c)i = median(cΓ(i))

d) Let uj = H2k[u∗]
Note: from Lemma 3 we have

‖uj − (x − xj−1)‖1 ≤ ‖x − xj−1‖/4 + Cη

e) Let xj = xj−1 + uj

Note: ‖x − xj‖1 ≤ ‖x − xj−1‖/4 + Cη
f) Let xj = Hk[xj ]

Note: from Lemma 6 we have

‖x − xj‖1 ≤ ‖x − xj−1‖/2 + 2Cη

Fig. 2. Sparse Matching Pursuit algorithm

Theorem 1:There exists an algorithm that, for anyk-
sparse signalx and noise vectorµ,givenb = Ax+µ, recovers
x∗ such that‖x − x∗‖1 = O(‖µ‖1/d). The algorithm runs
in time O(nd log(d‖x‖1/‖µ‖1)).

Let x(k) be the bestk-sparse approximation ofx, i.e.,
x(k) = argmink−sparse x′‖x−x′‖1. SinceAx+µ = Ax(k)+

[µ + A(x − x(k))], and‖A(x − x(k))‖1 ≤ d‖x − x(k)‖1 for
any x, Theorem 1 immediately implies the following more
general statement.

Corollary 2: For any parameterk, any vectorx and noise
vectorµ, given b = Ax + µ, the algorithm recoversx∗ such
that ‖x − x∗‖1 = O(‖µ‖1/d + ‖x − x(k)‖1).

III. T HE ALGORITHM

In this section we describe theSparse Matching Pursuit
algorithm. We also present an overview of the algorithm
analysis.

The algorithm is as follows. Recall that we assume that
the signalx is k-sparse, andb = Ax + µ. The algorithm
will compute approximationsx0, x1, . . . , xT . Let Hl[y] be a
“thresholding operator”, which zeros out all butl largest in
magnitude coefficients of the argumenty.

From the comments in the algorithm description (assuming
Lemmas 3 and 6) we conclude that, forǫ small enough and
for any j = 1, 2, . . . T , we have

‖xj − x‖1 ≤ ‖x‖1/2j + 4Cη

Thus, setting the number of iterations toT = log(‖x‖1/η)
guarantees that

‖xT − x‖1 = O(η)

A. Main Lemmas

Lemma 3:For any2k-sparseu, let c = Au + µ andη =
‖µ‖1/d. Then

‖H2k[u∗(c)] − u‖1 ≤ O(ǫ)‖u‖1 + O(η)

The above lemma is in fact a simplification of Theorem
5 in [IR08]. However, in this paper we will present a self-
contained proof, which is very different from the combina-
torial argument used in [IR08].

Proof: For the purpose of analysis, we assume that
|u1| ≥ . . . ≥ |un|. Note that sinceu is 2k-sparse, we have
u2k+1 = . . . = un = 0. Let S = {1 . . . 2k}. The proof of
Lemma 3 relies on the following two lemmas, whose proof
is deferred to the next section.

Lemma 4:

‖(u∗ − u)S‖1 = O(ǫ)‖u‖1 + O(η)

Lemma 5:Let B ⊂ S be a set of coordinates of size at
most2k. Then

‖u∗

B − uB‖1 = ‖u∗

B‖1 = O(ǫ)‖u‖1 + O(η)

Let T be the coordinates of the2k largest in magnitude
coefficients ofu∗. Then:

‖H2k[u∗] − u‖1

= ‖u∗

T − u‖1

= ‖(u∗ − u)S∩T ‖1 + ‖u∗

T−S‖1 + ‖uS−T ‖1

≤ ‖(u∗ − u)S∩T ‖1 + ‖u∗

T−S‖1 +

‖u∗

S−T ‖1 + ‖(u∗ − u)S−T ‖1

= ‖(u∗ − u)S‖1 + ‖u∗

T−S‖1 + ‖u∗

S−T ‖1

To bound‖u∗

S−T ‖1, observe that for anyi ∈ S − T and
i′ ∈ T −S, we have|u∗

i | ≤ |u∗

i′ |. Since|T −S| = |S−T |, it
follows that‖u∗

S−T ‖1 ≤ ‖u∗

T−S‖1. Hence, forB = T − S,
it follows from Lemmas 4 and 5 that

‖H2k[u∗]−u‖1 ≤ ‖(u∗−u)S‖1+2‖u∗

B‖1 = O(ǫ)‖u‖1+O(η)

Lemma 6:For anyk-sparse vectorx, and any vectorx′

we have
‖Hk[x′] − x‖1 ≤ 2‖x′ − x‖1

Proof: Let S be a support ofx, and letT be the largest
k coefficients ofx′. Observe that from the definition ofT and
the fact that|S − T | = |T − S|, it follows that ‖x′

S−T ‖1 ≤
‖x′

T−S‖1. We have

‖x′

T − x‖1

= ‖xS−T ‖1 + ‖x′

T−S‖1 + ‖xS∩T − x′

S∩T ‖1

≤ (‖x′

S−T ‖1 + ‖x′

S−T − xS−T ‖1) +

‖x′

T−S‖1 + ‖xS∩T − x′

S∩T ‖1

≤ ‖x′

T−S‖1 + ‖x′

S−T − xS−T ‖1 +

‖x′

T−S‖1 + ‖xS∩T − x′

S∩T ‖1

≤ 2‖x − x′‖1



IV. PROOFS OFLEMMAS 4 AND 5

We start from some basic observations.

Decomposition.For the analysis, it is convenient to decom-
pose the vectorAu into a sumv + v”. The vectorv is such
thatvj = ui(j) wherei(j) is the indexi′ from Γ(j) with the
largest value of|ui′ |.

Fact 1: Let v” = Au − v. Then‖v”‖1 ≤ 2ǫd‖u‖1.

The proof of this fact is virtually identical to the
proof of the RIP1 property of expander matrices described
in [BGI+08]. The reader is referred to that paper for the
details.

It follows that the vectorc = Au + µ can be represented
asc = v + v′, where‖v′‖1 ≤ O(ǫ)d‖u‖1 + ‖µ‖1.

Composing quantiles.In the proof we will compute bounds
on the medians of vectors|cB |, whereB are subsets of coor-
dinates. In light of the above decomposition, it would make
sense to compute separate bounds for medians of|vB | and
|v′

B |, and then combine them. Unfortunately, it is in general
not true that median(u+ v) ≤ median(u)+ median(v), even
for positive vectorsu, v. Fortunately, we can overcome this
problem by using lower quantiles. Specifically, for any non-
negativen-dimensional vectoru, and anyα ∈ (0, 1) such
that αn is an integer, we define quantα(u) to be theαn-th
largest element ofu. Then we have the following fact.

Fact 2: For any vectorsu, v ≥ 0 of dimensionn divisible
by 4, we have

quant1/2(u + v) ≤ quant1/4(u) + quant1/4(v)

Proof: Let U = quant1/4(u) and V = quant1/4(v). There
are at mostn/4− 1 elements ofu (v, resp.) that are greater
thanU (V , resp.). Therefore, there are at leastn − 2(n/4 −
1) = n/2 + 2 elements ofu + v that are not greater than
U + V , which concludes the proof.

Telescoping trick. Consider two sequences:a = a1, . . . , as

and b = b1, . . . bt of positive numbers, such that
{a1, . . . , as} ⊂ {b1, . . . bt}. In addition, we assumeb1 ≥
b2 ≥ . . . ≥ bt = 0. The two sequences are related in the
following way. For eachbi, definec(i) to be the cardinality
of the setC(i) = {j : aj ≥ bi}, i.e., the number of times
an element from{b1 . . . bi} appears in the sequencea; we
assumec(0) = 0. The following claim states that if this
number is bounded, then the sum of the elements ofa is
only a fraction of the sum of elements inb.

Claim 7: Assume thatc(i) ≤ αi for someα > 0. Then
‖a‖1 ≤ α‖b‖1.

Proof: For simplicity of exposition, we assume that
all terms in b are distinct. First, observe that for eachi,
the number of times the valuebi occurs ina is equal to

c(i) − c(i − 1). Thus

∑

j

aj =
t∑

i=1

[c(i) − c(i − 1)]bi

≤
t∑

i=1

c(i)bi −
t∑

i=2

c(i − 1)bi−1 +

t∑

i=2

c(i − 1)(bi−1 − bi)

≤ αtbt +

t∑

i=2

α(i − 1)(bi−1 − bi)

≤
t∑

i=2

α(bi−1 − bt)

≤ α‖b‖1

A. Proof of Lemma 4

Recall thatu∗

i = median(vΓ(i)+v′

Γ(i)). Therefore, we need
to bound

‖(u∗ − u)S‖1 =
∑

i∈S

|median(vΓ(i) + v′

Γ(i)) − ui|

=
∑

i∈S

|median(vΓ(i) − ud
i + v′

Γ(i))|

≤
∑

i∈S

median(|vΓ(i) − ud
i | + |v′

Γ(i)|)

whereud
i is a vector of dimensiond containing as coor-

dinatesd copies ofui. For anyi ∈ S, let wi = vΓ(i) − ud
i .

Then, it suffices to bound
∑

i∈S

median(|wi| + |v′

Γ(i)|) ≤
∑

i∈S

quant1/4(|w
i|) +

∑

i∈S

quant1/4(|v
′

Γ(i)|)

We bound the second term using the following claim.

Claim 8: Let P be any set of at mosts coordinates. Then
∑

i∈P

quant1/4(|v
′

Γ(i)|) = O(‖v′‖1/d)

Proof: For eachv′

j , let c(j) be the number ofi ∈ P
having at leastd/4 neighbors in the set{1 . . . j}. From
the expansion properties of the graphG it follows that
c(j)(d/4 − ǫd) ≤ j. Thus c(j) ≤ 8j/d. Applying Claim 7
finishes the proof.

Therefore, the contribution of the second term is at most
O(‖v′‖1/d) = O(ǫ‖u‖1) + O(η).

To bound the first term, we proceed as follows. Recall
that we assumed that the entries|u1|, |u2|, . . . appear in the
non-increasing order. PartitionS into the union ofS+ and
S− = S − S+, whereS+ = {i ∈ S : |Γ(i) ∩ Γ({1 . . . i −



1})| < d/4}. We will bound the first term separately for
elements inS+ andS−.

Observe that for eachi ∈ S+ the number of non-
zero elements inwi is smaller than d/4. Therefore,∑

i∈S+ quant1/4(|w
i|) = 0.

To take care of the elements inS− we need to bound
∑

i∈S−

quant1/4(|vΓ(i) − ud
i |) ≤

∑

i∈S−

quant1/4(|vΓ(i)|) (1)

For any r ∈ S, consider the setSr containing indices
i ∈ S− such that|Γ(i)∩Γ({1 . . . r})| ≥ d/4. Our goal is to
show that|Sr| is relatively small, and therefore few elements
of the sum in equation 1 can be large.

We partitionSr into S<
r = Sr ∩{1 . . . r} andS>

r = Sr −
S<

r . From the expansion properties ofG it follows that

d(1 − ǫ)(r + |S>
r |) ≤ dr + 3/4 · d|S>

r |

Therefore we have|S>
r | ≤ ǫ

1/4−ǫr ≤ 8ǫr.

To boundS<
r , we observe that from the definition ofS−

and the expansion ofG it follows that

d(1 − ǫ)r ≤ d(r − |S<
r |) + 3/4 · d|S<

r |

Therefore we have|S>
r | ≤ 4ǫr and |Sr| = |S>

r | + |S<
r | ≤

12ǫr. That is, for anyr, at most12ǫr terms in the sum in
equation 1 can be greater than|ur|. From Claim 7 it follows
that the total value of the sum is at mostO(ǫ)‖u‖1.

Putting all terms together concludes the proof of Lemma 4.

B. Proof of Lemma 5

We need to bound

‖(u∗)B‖1 =
∑

i∈B

|median(vΓ(i) + v′

Γ(i))|

≤
∑

i∈B

|quant1/4(vΓ(i))| +
∑

i∈B

|quant1/4(v
′

Γ(i))|

Using Claim 8 we can bound the second term by
O(ǫ)‖u‖1 + O(η). To bound the first term we proceed as
follows. For eachr ∈ S we define Br = {i ∈ B :
|Γ(i) ∩ Γ({1 . . . r})| ≥ d/4}. From expansion of the graph
G and the fact thatB ∩ S = ∅ it follows that

(1 − ǫ)d(r + |Br|) ≤ dr + 3/4 · d|Br|

It follows that |Br| ≤ 8ǫr. From Claim 7 we conclude that
the first term is bounded byO(ǫ)‖u‖1.

V. EXPERIMENTS

To estimate the empirical sketch sizes that our SMP
algorithm requires, we perform experiments in which we test
exact recovery of sparse vectors (similarly to [BI08]). An
experiment is performed as follows: a vector is generated
consisting ofk non-zero “peaks” which are randomly either
+1 or −1; the sketch is computed by applying a given
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Fig. 3. Comparisons of recovery times. We used the following parameters:
the signal sparsityk = 0.002n, the number of measurementsm = 0.1n,
and the matrix sparsity parameterd = 10 (except for Count-Min for which
we also use the higher value ofd = 50). The SMP algorithm is run for 10
iterations.

measurement matrix; a recovery of the vector from the sketch
is attempted and the experiment is deemed successful if the
recovered vector is identical to the original vector. For given
parameters of signal lengthn, sketch lengthm, and signal
sparsityk, we generate a single measurement matrix with a
given sparsity and perform a number of separate experiments
with the same matrix. The fraction of the experiments that
are successful is indicative of the probability that a vector
is correctly recovered using a “typical” matrix of the given
parameters. To visualize the sketch sizes, we fix the signal
lengthn and varym,k along a two-dimensional grid.

Our results are shown in figure 4. We compare our
algorithm with three other recovery methods capable of
handling sparse matrices. The first one is the Count-Min
algorithm [CM04]4. The other two algorithms rely on linear-
programming-based recovery. Specifically, we use two linear
optimization algorithms:ℓ1-magic with thel1eq pd pro-
gram [CR05] and GPSR [FNW07]5. See [BI08], [BGI+08]
for more details on linear-programming-based recovery using
sparse sketching matrices.

We also measured the running time of our recovery
algorithms; the results are shown in figure 3. The algo-
rithms were implemented in Matlab, with critical subroutines
(sparse matrix multiplication, median recovery) written in C
and compiled as a Matlab Executable. The code is avail-

4Since we are dealing with signals that can have negative coordinates,
we are using the “median” version of the algorithm, see the original paper
for details.

5The GPSR algorithm requires a precision parameterτ , which impacts
the quality of recovery as well as the running time of the algorithm. In our
experiments we usedτ = 10−3‖AT y‖∞. Higher values ofτ resulted in
slightly lower running times, but at the expense of reducing the quality of
recovery, which increased the number of measurements needed toachieve
a given pobability of success.
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Fig. 4. Results of exact recovery experiments for SMP (top), Count-Min (middle row), GPSR (bottom-left) andℓ1-MAGIC (bottom-right). All plots
are for the same signal lengthn = 20000 and the same sparsity rangek ∈ [10, 100]. The resolution of each plot is shown: the number of vertical axis
divisions (”Ms”), number of horizontal axis divisions (”Ks”) and number of trials per point. The matrix sparsity was set tod = 10 for all algorithms
except Count-Min for whichd = 50 was also used. SMP uses10 iterations and attempts to recover a2k-sparse vector.



able at http://groups.csail.mit.edu/toc/sparse/wiki/
index.php?title=Sparse Recovery Experiments .

A. Discussion

All the aforementioned methods use the same type of
measurement matrix (sparse and binary). Any of the methods
can be used to recover a signalx from a given sketch
Ax. Thus, the choice of the recovery method depends on
the amount of available computational resources. As per
figures 3 and 4, using SMP instead of linear-programming
methods can reduce the running time by up to a few orders
of magnitude. At the same time, the sketch length for a given
sparsityk is increased only by small factor (between 3 and
5, for n = 20, 000).

Both SMP and Count-Min have low (near-linear) running
times. For fixed matrix sparsity parameterd = 10, SMP
runs roughly 10 times longer than Count-Min (which is
not surprising, since each of the 10 iterations of SMP
utilizes a Count-Min-like voting process). However, Count-
Min requires higher values ofd to achieve good recovery
performance, which brings its running time closer to that of
SMP (and also increases the encoding and update time of the
algorithm). In that case, Count-Min requires sketches twice
the length of those required by SMP.

ACKNOWLEDGEMENTS

The authors would like to thank Wei Dai, Anna Gilbert,
Olgica Milenkovic, Martin Strauss and Joel Tropp for many
useful discussions.

REFERENCES

[BGI+08] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss.
Combining geometry and combinatorics: a unified approach to
sparse signal recovery.Allerton, 2008.

[BI08] R. Berinde and P. Indyk. Sparse recovery using sparserandom
matrices.MIT-CSAIL Technical Report, 2008.

[BM08] T. Blumensath and M.E.Davies. Iterative hard thresholding for
compressed sensing.Preprint, available at arXiv:0805.0510v1,
2008.

[CCFC02] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent
items in data streams.ICALP, 2002.

[CDD06] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing
and bestk-term approximation.Preprint, 2006.

[CM04] G. Cormode and S. Muthukrishnan. Improved data stream
summaries: The count-min sketch and its applications.FSTTCS,
2004.

[CM06] G. Cormode and S. Muthukrishnan. Combinatorial algorithms
for Compressed Sensing. InProc. 40th Ann. Conf. Information
Sciences and Systems, Princeton, Mar. 2006.

[CR05] E. J. Cand̀es and J. Romberg. ℓ1-MAGIC: Recovery of
Sparse Signals via Convex Programming, 2005. Available at
http://www.acm.caltech.edu/l1magic .

[CRT06a] E. Cand̀es, J. Romberg, and T. Tao. Robust uncertainty
principles: Exact signal reconstruction from highly incomplete
frequency information.IEEE Inf. Theory, 52(2):489–509, 2006.

[CRT06b] E. J. Cand̀es, J. Romberg, and T. Tao. Stable signal recovery
from incomplete and inaccurate measurements.Comm. Pure
Appl. Math., 59(8):1208–1223, 2006.

[DDT+08] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly,
and R. Baraniuk. Single-pixel imaging via compressive sam-
pling. IEEE Signal Processing Magazine, 2008.

[DM08] W. Dai and O. Milenkovic. Subspace pursuit for compressive
sensing: Closing the gap between performance and complexity.
Arxiv:0803.0811, 2008.

[DMT07] C. Dwork, F. McSherry, and K. Talwar. The price of privacy
and the limits of LP decoding.STOC, 2007.

[Don06] D. L. Donoho. Compressed Sensing.IEEE Trans. Info. Theory,
52(4):1289–1306, Apr. 2006.

[FNW07] M.A.T. Figueiredo, R.D Nowak, and S.J. Wright. Gradient
projection for sparse reconstruction: Application to compressed
sensing and other inverse problems.IEE Journal of Selected
Topics in Signal Processing, 1, 2007.

[GGI+02] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan,
and M. J. Strauss. Fast, small-space algorithms for approximate
histogram maintenance. InACM Symposium on Theoretical
Computer Science, 2002.

[GLR08] V. Guruswami, J. Lee, and A. Razborov. Almost euclidean
subspaces ofl1 via expander codes.SODA, 2008.

[Gro06] Rice DSP Group. Compressed sensing resources.Available at
http://www.dsp.ece.rice.edu/cs/ , 2006.

[GSTV06] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin.
Algorithmic linear dimension reduction in theℓ1 norm for
sparse vectors. Submitted for publication, 2006.

[GSTV07] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin.
One sketch for all: fast algorithms for compressed sensing. In
ACM STOC 2007, pages 237–246, 2007.

[GUV07] V. Guruswami, C. Umans, and S. P. Vadhan. Unbalanced
expanders and randomness extractors from Parvaresh-Vardy
codes. In IEEE Conference on Computational Complexity
(CCC 2007), pages 96–108, 2007.

[Ind07] P. Indyk. Sketching, streaming and sublinear-space
algorithms. Graduate course notes, available at
http://stellar.mit.edu/S/course/6/fa07/6.895/ ,
2007.

[Ind08] P. Indyk. Explicit constructions for compressed sensing of
sparse signals.SODA, 2008.

[IR08] P. Indyk and M. Ruzic. Near-optimal sparse recovery inthe l1
norm. FOCS, 2008.

[LMP+08] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and
A. Kabbani. Counter braids: A novel counter architecture for
per-flow measurement.SIGMETRICS, 2008.

[Mut03] S. Muthukrishnan. Data streams: Algorithms and
applications (invited talk at soda’03). Available at
http://athos.rutgers.edu/∼muthu/stream-1-1.ps ,
2003.

[NT08] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples.Appl. Comp. Har-
monic Anal., 2008. To appear.

[RV06] M. Rudelson and R. Veshynin. Sparse reconstruction by convex
relaxation: Fourier and Gaussian measurements. InProc. 40th
Ann. Conf. Information Sciences and Systems, Princeton, Mar.
2006.

[SBB06a] S. Sarvotham, D. Baron, and R. G. Baraniuk. Compressed
sensing reconstruction via belief propagation.Technical Report
ECE-0601, Electrical and Computer Engineering Department,
Rice University, 2006.

[SBB06b] S. Sarvotham, D. Baron, and R. G. Baraniuk. Sudocodes -
fast measurement and reconstruction of sparse signals.IEEE
International Symposium on Information Theory, 2006.

[TG05] J. A. Tropp and A. C. Gilbert. Signal recovery from partial
information via Orthogonal Matching Pursuit. Submitted to
IEEE Trans. Inform. Theory, April 2005.

[TLW+06] Dharmpal Takhar, Jason Laska, Michael B. Wakin, Marco F.
Duarte, Dror Baron, Shriram Sarvotham, Kevin Kelly, and
Richard G. Baraniuk. A new compressive imaging cam-
era architecture using optical-domain compression. InProc.
IS&T/SPIE Symposium on Electronic Imaging, 2006.

[XH07] W. Xu and B. Hassibi. Efficient compressive sensing with de-
terminstic guarantees using expander graphs.IEEE Information
Theory Workshop, 2007.


