
Sequential Sparse Matching Pursuit

Radu Berinde
MIT

texel@mit.edu

Piotr Indyk
MIT

indyk@theory.csail.mit.edu

Abstract— We propose a new algorithm, called Sequential
Sparse Matching Pursuit (SSMP), for solving sparse recovery
problems. The algorithm provably recovers a k-sparse approx-
imation to an arbitrary n-dimensional signal vector x from only
O(k log(n/k)) linear measurements of x. The recovery process
takes time that is only near-linear in n. Preliminary experiments
indicate that the algorithm works well on synthetic and image
data, with the recovery quality often outperforming that of
more complex algorithms, such as l1 minimization.

I. INTRODUCTION

Over the recent years, a new approach for obtaining a
succinct approximate representation of n-dimensional vec-
tors (or signals) has been discovered. For any signal x, the
representation is equal to Ax, where A is a m × n matrix.
The vector Ax is often referred to as the measurement vector
or sketch of x. Although m is typically much smaller than
n, the sketch Ax contains plenty of useful information about
the signal x. A particularly useful and well-studied problem
is that of stable sparse recovery: given Ax, recover a k-
sparse vector x∗ (i.e. having at most k non-zero components)
satisfying some approximation guarantee. In this paper we
consider the `1/`1 guarantee1 where we require

‖x− x∗‖1 ≤ C min
k-sparse x′

‖x− x′‖1 (1)

where C is an absolute constant. Sparse recovery has appli-
cations to numerous areas such as data stream computing [1],
[2] and compressed sensing [3], [4], [5].

It is known [3], [6], [7], [8], [9], [10] that there exist
matrices A and recovery algorithms satisfying Equation 1
with sketch length m = O(k log(n/k)). In particular, the
algorithms EMP [9] and SMP [10] achieve the aforemen-
tioned bound together with a near-linear (in n) recovery
times. The computational efficiency of these algorithms is
of key importance when solving massive recovery problems.

However, both EMP and SMP suffer from certain draw-
backs. In case of EMP, the empirical number of measure-
ments required by the algorithm to achieve correct recovery
is suboptimal (i.e. the empirical ”big-Oh” constant is large).
While the SMP algorithm achieves much better empirical
performance, its original version suffers from convergence
problems when the input parameters (notably the sparsity
k and the number of measurements m) fall outside of the
theoretically guaranteed region. The SMP package2 fixes the

1Some algorithms can achieve somewhat stronger properties, such as the
`2/`1 guarantee. However, in this paper we focus exclusively on the `1/`1
case.

2Available at http://groups.csail.mit.edu/toc/sparse/wiki/index.php?title=Sparse Recovery Experiments

issue by forcing convergence; however, this requires that
the user provides an additional and somewhat unintuitive
convergence parameter.

In this paper we present a new algorithm, called Sequential
Sparse Matching Pursuit, that bypasses the aforementioned
problems. In a nutshell, it is simply a version of SMP
where the updates to the candidate approximation vector
are performed sequentially, as opposed to in parallel. As a
result, the convergence is achieved automatically. Moreover,
since the algorithm always performs the ”best” update first,
empirically SSMP performs significantly better than SMP
(see section VI). At the same time, SSMP inherits the
theoretical O(k log(n/k)) measurement bound, and has a
near-linear time of O(log(‖x‖1/η) · dn(d + log n)) where
d = O(log(n/k)) and η is the noise level (defined later in
the paper).

A. Related work

The sparse recovery problem has been a subject of a
tremendous amount of work. We refer the reader to our
earlier paper [6] for a broad overview of the work in the
area and comparison of different techniques. Below, we only
briefly discuss the prior work of relevance to this paper.

Sparse recovery using sparse matrices. The most im-
mediate ancestor of SSMP is the SMP algorithm introduced
in [10]. Both SMP and SSMP use sparse binary sketching
matrices, and iterative, voting-like mechanism to recover the
signal approximation. The main difference between them is
that SMP performs O(k) updates of the approximation vector
in parallel, while SSMP performs them sequentially.

More generally, there has been substantial amount of
work utilizing sparse matrices to obtain sketches of high-
dimensional vectors that support efficient sparse recov-
ery (see, e.g., [11], [12], [13]). See [14] for a survey of those
methods.

Iterative algorithms. Iterative algorithms are a popular
approach to sparse recovery problem, see e.g., [7], [8], [15].
Our approach builds on that line of work, notably [8], who
show show how Restricted Isometry Property can be used to
analyze iteration steps.

Coding theory. The iterative voting procedure used by
SMP and SSMP is reminiscent of the iterative decoding
algorithms used for low-density parity-check codes. In fact,
iterative algorithms of this type have been used, e.g., in [16],
[17], [18], to design sparse recovery algorithms. However,
those algorithms were designed to work only for the case
where the signal x is k-sparse or “almost” k-sparse. In
contrast, SSMP is designed and guaranteed to work for
arbitrary input signals x.

Message passing. There are interesting connections be-
tween SMP and SSMP and the message-passing-based recov-
ery methods for sparse matrices [19], [20], [21]. In particular,
the Counter Braids algorithm of [20] provides provable guar-
antees for the quality of recovered approximation. However,
that scheme works only for non-negative signals x.

II. PRELIMINARIES

A. Expanders

An essential tool for our constructions are unbalanced
expander graphs. Consider a bipartite graph G = (U, V,E).
We refer to U as the “left” part, and refer to V as the
“right” part; a vertex belonging to the left (right) part is
called a left (right) vertex. In our constructions the left part
will correspond to the set {1, 2, . . . , n} of coordinate indexes
of vector x, and the right part will correspond to the set of
row indexes of the measurement matrix. A bipartite graph
is called left-d-regular if every vertex in the left part has
exactly d neighbors in the right part.

Definition 1: A bipartite, left-d-regular graph G =
(U, V,E) is an (s, d, ε)-expander if any set S ⊂ U of at
most s left vertices has at least (1− ε)d|S| neighbors.

Since expander graphs are meaningful only when |V | <
d|U |, some vertices must share neighbors, and hence the pa-
rameter ε cannot be smaller than 1/d. Using the probabilistic
method one can show that there exist (s, d, ε)-expanders with
d = O(log(|U |/s)/ε) and |V | = O(s log(|U |/s)/ε2).

For many applications one usually needs an explicit ex-
pander, i.e. an expander for which we can efficiently compute
the neighbor set of a given left vertex. No explicit con-
structions with the aforementioned (optimal) parameters are
known. However, it is known [22] how to explicitly construct
expanders with left degree d = O((log |U |)(log s)/ε)1+1/α

and right set size (d2s1+α), for any fixed α > 0. In the
remainder of this paper, we will assume expanders with the
optimal parameters.

B. RIP

A key property of matrices that enables sparse recovery is
the Restricted Isometry Property.

Definition 2: An m × n matrix A is said to satisfy
RIP(p, k, δ) if, for any k-sparse vector x, we have

‖x‖p(1− δ) ≤ ‖Ax‖p ≤ ‖x‖p

For the case of p = 2, the notion has been introduced
in [23], where it was also shown that e.g. random gaus-
sian matrices satisfy it with high probability. Unfortunately,
sparse matrices that we use in this paper cannot satisfy the
RIP(2) property, unless their number of rows is ”large” [24].
However, it was shown [6] that such matrices can satisfy
RIP(1). In particular, the adjacency matrices of expander
graphs, scaled by a factor of 1/d, do have this property.
These are the matrices that we will use in this paper.

C. Notation

For a set S of nodes of G, the set of its neighbors in G is
denoted by ΓG(S). The subscript G will be omitted when it
is clear from the context, and we write Γ(u) as a shorthand
for Γ({u}).

For any n-dimensional vector x, and S ⊂ {1 . . . n}, we
use xS to denote an |S|-dimensional projection of x on
coordinates in S.

All uses of the norm notation ‖ · ‖ in this paper refer to
the L1 norm.

We define Hl[y] to be a “thresholding operator”, which
zeros out all but l largest in magnitude coefficients of the
argument y.

III. FORMAL STATEMENT OF THE RESULTS

Theorem 1: There exists an algorithm (SSMP) that, for
any k-sparse signal x and noise vector µ, given b = Ax+µ,
recovers x∗ such that ‖x− x∗‖1 = O(‖µ‖1).

Let x(k) be the best k-sparse approximation of x, i.e.
x(k) = argmink−sparse x′‖x−x′‖1. Since Ax+µ = Ax(k)+
[µ + A(x − x(k))], and ‖A(x − x(k))‖1 ≤ ‖x − x(k)‖1 for
any x, Theorem 1 immediately implies the following more
general statement.

Corollary 2: For any parameter k, any vector x and noise
vector µ, given b = Ax + µ, the SSMP algorithm recovers
x∗ such that ‖x− x∗‖1 = O(‖µ‖1 + ‖x− x(k)‖1).

IV. ALGORITHM

In this section we describe the Sequential Sparse Matching
Pursuit algorithm. We also present an overview of the
algorithm analysis.

We start from a notation recap. We use x to denote the
original k-sparse n-dimensional signal and µ to denote the
m-dimensional measurement noise vector, where η = ‖µ‖1.
The m × n measurement matrix A is equal to 1/d · A(G),
where G is a ((c+1)k, (1−ε/2)d)-expander with left degree
d, and A(G) is its adjacency matrix. The matrix A satisfies
RIP(1, (c+ 1)k, ε), i.e. for any (c+ 1)k-sparse vector x we
have (1−ε)‖x‖1 ≤ ‖Ax‖1 ≤ ‖x‖1. The measurement vector
is defined as b = Ax+ µ, where µ is the ”noise vector”.

The algorithm consists of two nested iterations: the inner
one and the outer one. The goal of the inner iteration is to
reduce the residual error ‖Axj − b‖1 by a constant factor,
unless the error is already smaller than cl‖µ‖1. This is done
in S = (c − 1)k update steps, where each step reduces the

1) Let j = 0
2) Let xj = 0
3) Repeat T = O(log(‖x‖1/η)) times

a) Let j = j + 1
b) Repeat S = (c− 1)k times
• Find a coordinate i and an increment z

that minimizes ‖A(xj + zei)− b‖1
• Set xj to xj + zei

Remark: from Corollary 5 we have
‖x− xj‖1 ≤ ‖x− xj−1‖1/4 + Cη

c) Let xj = Hk[xj]
Remark: from Lemma 6 we have
‖x− xj‖1 ≤ ‖x− xj−1‖1/2 + 2Cη

4) Report x′ = xT

Fig. 1. Sequential Sparse Matching Pursuit algorithm

residual error by a factor (1−cu/k) or better. In each update
step, the algorithm finds a coordinate i and an increment z
such that ‖A(xj + zei) − b‖1 is minimized. For a given i,
the value of z that minimizes the expression is equal to the
median of the vector (Axj − b)N , where N is the set of
neighbors of i in G.

In each step of the outer loop, the inner loop is executed,
and then the vector xj is re-sparsified by keeping the largest
(in the absolute value) k coordinates of xj . As in SMP, this
step approximately preserves the error of xj .

A. Implementation and the running time

The algorithm can be efficiently implemented in the fol-
lowing way. For each i, we maintain the optimum increment
z = zi, together with the resulting change Di to the L1
error norm. The Di’s are stored in a priority queue (e.g., in
a heap), which enables finding the largest value of Di, as
well as update the value of each Di in time O(log n).

When a value of some (say the i-th) coordinate of xj is
modified, this affects the values of d entries l of the vector
Axj− b. In turn, each entry l can affect the values Di′ of all
O(dn/m) neighbors i′ of l. For each such i′ we will need
to recompute the median in O(d) time, and update the heap.
Thus, each coordinate update takes O(d2n/m(d + log n))
time. Therefore, the total running time of the algorithm is at
most O(log(‖x‖1/η) ·d2nk/m(d+ log n)), which simplifies
to O(log(‖x‖1/η) · dn(d+ log n)) since m = Θ(kd).

B. Correctness

The correctness proof is outlined in the remarks in the
algorithm description. The key part of the argument is to
show that if the residual error is at least cl‖µ‖1, then each
update step reduces it by a factor (1 − cu/k) or better.
Specifically, we show the following lemma.

Lemma 3: If ‖Ax′ − b‖1 ≥ cl‖µ‖1, then there exists an

index i such that

‖A(x′ − eix′i + eixi)− b‖1 ≤ (1− cu/k)‖Ax′ − b‖1
To relate the improvement in the residual error to a

reduction in approximation error, we use the following claim:
Claim 4: It holds that:

(1− ε)‖x′−x‖1 ≤ ‖Ax′− b‖1 +‖µ‖1 ≤ ‖x−x′‖1 + 2‖µ‖1

Proof: From the RIP(1, (c+ 1)k, ε) property of A:

(1− ε)‖x′ − x‖1 ≤ ‖Ax′ −Ax‖1
≤ ‖Ax′ − (Ax+ µ) + µ‖1
≤ ‖Ax′ − b‖1 + ‖µ‖1
= ‖A(x′ − x)− µ‖1 + ‖µ‖1
≤ ‖x− x′‖1 + 2‖µ‖1

We obtain the following corollary:
Corollary 5: There exist constants c and C such that, after

the j-th inner loop, we have

‖x− xj‖1 ≤ ‖x− xj−1‖1/4 + Cη

The sparsification step is handled by the following simple
lemma.

Lemma 6: For any k-sparse vector x, and any vector x′

we have
‖Hk[x′]− x‖1 ≤ 2‖x′ − x‖1

Proof: Observe that Hk[x′] is the closest k-sparse
vector to x. Thus, we have ‖Hk[x′] − x′‖1 ≤ ‖x − x′‖1.
The lemma follows from triangle inequality.

Theorem 1 now follows from the above two lemmas.

V. PROOF OF LEMMA 3

Let ∆ = x′ − x. Since b = Ax + µ, the thesis of the
theorem can be rewritten as

‖A(∆− ei∆i)− µ‖1 ≤ (1− cu/k)‖A∆− µ‖1

First, observe that, by triangle inequality, the assumption
‖Ax′ − b‖1 ≥ cl‖µ‖1 implies that ‖Ax′ − Ax‖1 ≥ (cl −
1)‖µ‖1. By the RIP1 property of A this implies

‖∆‖1 = ‖x′ − x‖1 ≥ (1− ε)(cl − 1)‖µ‖1 (2)

Let T = supp(∆). Clearly, |T | ≤ (c + 1)k. Consider any
i ∈ T , and let Ni be the set of neighbors of i in the graph
G. The key idea in the proof is to split the neighborhood set
Ni into a union of N+

i and N−i . This is done by proceeding
as in the proof of the RIP1 principle in [6]. First, w.l.o.g.,
we reorder the coordinates so that |∆1| ≥ |∆2| ≥ . . . ≥
|∆n|. Then, we enumerate the edges (i, j) of the graph G in
lexicographic order. If (i, j) is the first edge from any node
to the vertex j, then j is included in N+

i , otherwise it is
included in N−i . Note that the sets N+

i are pairwise disjoint.
From the expansion property of G, it follows that for any

prefix of p first vertices i, we have
∑p
i=1 |N

−
i | ≤ εdp. This

in turn implies several other properties. In particular, for a
constant cp > 1, define T+ ⊂ T to contain all indices i
such that |N−i | ≤ cpdε. The following claim states that the
coordinates in T+ contain most of the ”L1 mass” of ∆.

Claim 7: ∑
i∈T+

|∆i| ≥ (1− 1/cp)‖∆‖1

Proof: Let T− = T \ T+. Consider all the indices
u1, u2, . . . in T− so that u1 < u2 < . . .; by definition
|N−ui
| > cpdε for all i. For any k ≥ 1 consider the k-th

index uk. Then

kcpdε <

k∑
j=1

|N−uj
| ≤

uk∑
i=1

|N−i | ≤ ukdε

It follows that uk > kcp. Thus there are at least k(cp −
1) indices in T+ ∩ {1 . . . uk} for all k. This allows us to
partition T+ in the following way: for any k let Sk be the set
containing the smallest cp−1 elements of (T+ ∩ {1 . . . uk})\(⋃k−1

i=1 Si

)
.

Notice that sets Sk are by construction disjoint. For any
index uk in T−, we have a set of cp − 1 unique indices in
T+, all of which are smaller than uk; hence for any v ∈ Sk,
|∆v| ≥ |∆uk

|. Since

‖∆‖1 ≥
∑

uk∈T−

(
|∆uk

|+
∑
v∈Sk

|∆v|

)
≥

∑
uk∈T−

cp|∆uk
|

it follows that
∑
i∈T+ |∆i| ≥ (1− 1/cp)‖∆‖1.

The above claim implies∑
i∈T+

‖(A∆iei)N+
i
‖1 ≥

∑
i∈T+

∆i|N+
i |/d

≥ (1− 1/cp)(1− cpε)‖∆‖1
(3)

The next claim concerns the amount of the L1 mass
contributed to a coordinate j of the vector A∆ by the
coordinates i ∈ T such that j ∈ N−i . We can think about this
mass as ”noise” contributed by the coordinates of ∆ itself (as
opposed to µ). Again, from the edge enumeration process, it
follows that this contribution is low overall. Specifically:

Claim 8: ∑
i∈T+

‖(A(∆−∆iei))Ni‖1 ≤ ε‖∆‖1

Proof: Since sets N+
i are disjoint

∑
i∈T+

‖(A(∆−∆iei))N+
i
‖1 ≤

1
d

∑
i∈T+

∑
j∈N+

i

∑
i′|j∈N−

i′

|∆i′ |

≤ 1
d

∑
j

∑
i|j∈N−i

|∆i| ≤
1
d

n∑
i=1

|∆i| · |N−i |

Define the value sp = pdε −
∑p
i=1 |N

−
i |. We know that all

sp ≥ 0.

n∑
i=1

|∆i| · |N−i | = dε|∆1| − s1|∆1|+
n∑
i=2

|∆i| · |N−i |

≤ dε|∆1| − s1|∆2|+
n∑
i=2

|∆i| · |N−i |

≤ dε(|∆1|+ |∆2|)− s2|∆2|+
n∑
i=3

|∆i| · |N−i |

≤ dε(|∆1|+ |∆2|)− s2|∆3|+
n∑
i=3

|∆i| · |N−i |

≤ · · · ≤ dε
n∑
i=1

|∆i| − sn|∆n| ≤ dε‖∆‖1

The above claim implies∑
i∈T+

‖(A(∆−∆iei))N+
i
‖1 ≤ ε‖∆‖1 (4)

Now we proceed with the main part of the proof. Define

gaini = ‖A∆− µ‖1 − ‖A(∆− ei∆i)− µ‖1

Observe that, equivalently, we have

gaini = ‖(A∆− µ)Ni
‖1 − ‖(A(∆− ei∆i)− µ)Ni

‖1

Therefore

gaini = ‖(A∆− µ)Ni‖1 − ‖(A(∆− ei∆i)− µ)Ni‖1
= ‖(A∆− µ)N+

i
‖1 − ‖(A(∆− ei∆i)− µ)N+

i
‖1+

+
[
‖(A∆− µ)N−i ‖1 − ‖(A(∆− ei∆i)− µ)N−i ‖1

]
≥ ‖(A∆− µ)N+

i
‖1 − ‖(A(∆− ei∆i)− µ)N+

i
‖1−

− ‖(Aei∆i)N−i ‖1
≥ ‖(A∆)N+

i
‖1 − ‖(A(∆− ei∆i))N+

i
‖1 − 2‖µN+

i
‖1−

− ‖(Aei∆i)N−i ‖1
≥ ‖(Aei∆i)N+

i
‖1 − 2‖(A(∆− ei∆i))N+

i
‖1 − 2‖µN+

i
‖1−

− ‖(Aei∆i)N−i ‖1

≥ (1− cpε

1− cpε
)‖(Aei∆i)N+

i
‖1−

− 2‖(A(∆− ei∆i))N+
i
‖1 − 2‖µN+

i
‖1

Aggregating over all i ∈ T+, we have∑
i∈T+

gaini ≥
∑
i∈T+

((
1− cpε

1− cpε
)
‖(Aei∆i)N+

i
‖1−

− 2‖(A(∆− ei∆i))N+
i
‖1 − 2‖µN+

i
‖1
)

From Claims 7 and 8, and the fact that the sets N+
i are

pairwise disjoint, we have∑
i∈T+

gaini ≥
(
1− cpε

1− cpε
)
(1− 1/cp)(1− cpε)‖∆‖1−

− 2ε‖∆‖1 − 2‖µ‖1
=
[(

1− cpε

1− cpε
)
(1− 1/cp)(1− cpε)− 2ε−

− 2/((1− ε)(cl − 1))
]
‖∆‖1

= C‖∆‖1

where we used Equation 2 to relate ‖∆‖1 and ‖µ‖1. It
follows that there exists a coordinate i ∈ T+ such that

gaini ≥
C

|T+|
‖∆‖1 ≥

C

(c+ 1)k
‖∆‖1

At the same time

‖∆‖1 ≥ ‖A(x′ − x)‖1 ≥ ‖Ax′ −Ax− µ‖1 − ‖µ‖1

≥ ‖Ax′ − b‖1 −
‖∆‖1

(1− ε)(cl − 1)

Therefore

gaini ≥
C

(c+ 1)k
‖Ax′ − b‖1/

(
1− 1

(1− ε)(cl − 1)

)
and we are done.

VI. EXPERIMENTAL RESULTS

A. Exact recovery of random sparse signals

We test SSMP on sparse signals in which k positions are
randomly chosen and the value for each position is set to
either +1 or −1. For a set of parameters m, k, the probability
of correct recovery is estimated by randomly choosing a
measurement matrix and attempting recovery of 100 random
k-sparse signals, noting the fraction of successful recoveries.
We show the results for signals of size n = 20000 in
figure 2; graphs generated in the same manner are also
shown for SMP [10] and LP [3], [25]. SSMP shows a
significant improvement compared to SMP, requiring 40%
less measurements for sparse signals. SSMP bridges the
gap between SMP and the much slower method of `1-
minimization using linear programming.

Our tests have shown that a small number of iterations
T suffices for SSMP to recover sparse vectors; in this
setting SSMP typically decodes signals faster than SMP. A
benchmark comparing the running times of SSMP with SMP,
GPSR [26], and `1−MAGIC [25] is shown in figure 3.

B. Approximate recovery of images

We also present experiments with recovery of natural
images in the spirit of [3], [27], [21]. For a given image, we
perform measurements on the vector containing the image’s
db2 wavelet coefficients and use SSMP as well as other
algorithms to recover the vector and reconstruct the image.

We use two 256 × 256 grayscale images: the boat image
in [3], [27] and the peppers image in [21]. We evaluate

the quality of each recovery by computing the `1 norm of
the approximation error in the wavelet basis as well as the
peak signal-to-noise ratio (PSNR). Note that the PSNR is a
logarithmic function of the `2 approximation error which is
the same in both the wavelet and the original (image) bases.

Figure 4 shows the results of our experiments on the
two images. We plot the quality of the approximation with
varying number of measurements m. For both SSMP and
SMP we have to choose the sparsity of the recovery k. After
experimenting with different values, we chose two values for
k: one equal to 5% of the number of measurements m, which
performs well with fewer measurements; and one equal to
10% of m which performs well with many measurements.
We see that SSMP results in better quality that SMP, even
exceeding the recovery quality of LP when the number of
measurements is large. We also note that the behavior of the
algorithms has been remarkably consistent between the two
images.

Figure 5 shows how the three parameters S, T , and k
affect the quality of the recovered image. For each plot, one
parameter is fixed to a sensible value while the other two
parameters are varied over a range. The tests are run on
the peppers image, with m = 17000 measurements. Notice
that increasing the number of inner steps S beyond a small
multiple of k does not lead to significant improvement; on the
other hand, increasing the number of iterations T generally
increases the quality of the recovery. The running times are,
as expected, proportional to the total number of steps S · T .

REFERENCES

[1] S. Muthukrishnan, “Data streams: Algorithms and applications (invited
talk at soda’03),” Available at http://athos.rutgers.edu/∼muthu/stream-
1-1.ps, 2003.

[2] P. Indyk, “Sketching, streaming and sublinear-space
algorithms,” Graduate course notes, available at
http://stellar.mit.edu/S/course/6/fa07/6.895,
2007.

[3] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Comm. Pure Appl. Math.,
vol. 59, no. 8, pp. 1208–1223, 2006.

[4] D. L. Donoho, “Compressed Sensing,” IEEE Trans. Info. Theory,
vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[5] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and
R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE
Signal Processing Magazine, 2008.

[6] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss, “Combin-
ing geometry and combinatorics: a unified approach to sparse signal
recovery,” Allerton, 2008.

[7] W. Dai and O. Milenkovic, “Subspace pursuit for compressive
sensing: Closing the gap between performance and complexity,”
Arxiv:0803.0811, 2008.

[8] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comp. Harmonic Anal.,
2008, to appear.

[9] P. Indyk and M. Ruz̆ić, “Near-optimal sparse recovery in the l1 norm,”
FOCS, 2008.

[10] R. Berinde, P. Indyk, and M. Ruz̆ić, “Practical near-optimal sparse
recovery in the l1 norm,” Allerton, 2008.

[11] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and
M. J. Strauss, “Fast, small-space algorithms for approximate histogram
maintenance,” in ACM Symposium on Theoretical Computer Science,
2002.

[12] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” ICALP, 2002.

Sparsity of signal (k)

N
u
m

b
e
r

o
f
m

e
a
s
u
re

m
e
n
ts

 (
m

)

SSMP − Probability of correct recovery (n = 20000, d = 8)
Resolution: 12 Ms x 19 Ks x 100 trials

10 20 30 40 50 60 70 80 90 100

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity of signal (k)

N
u
m

b
e
r

o
f
m

e
a
s
u
re

m
e
n
ts

 (
m

)

l1−Magic − Probability of correct recovery (n = 20000, d = 8)
Resolution: 19 Ms x 10 Ks x 100 trials

10 20 30 40 50 60 70 80 90 100
100

200

300

400

500

600

700

800

900

1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity of signal (k)

N
u
m

b
e
r

o
f
m

e
a
s
u
re

m
e
n
ts

 (
m

)

SMP − Probability of correct recovery (n = 20000, d = 8)
Resolution: 25 Ms x 19 Ks x 100 trials

10 20 30 40 50 60 70 80 90 100

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Results of exact recovery experiments for SMP, SSMP, and `1-MAGIC. All plots are for the same signal length n = 20000, matrix sparsity
d = 8 and signal sparsities k ∈ [10, 100]. The resolution of each plot is shown: the number of vertical axis divisions (”Ms”), the number of horizontal
axis divisions (”Ks”), and the number of trials per point. SMP uses 10 iterations; SSMP uses S = 4k inner steps and T = 1 iteration. Note that higher
parameter settings for SMP and SSMP yield similar results.

[13] G. Cormode and S. Muthukrishnan, “Improved data stream summaries:
The count-min sketch and its applications,” LATIN, 2004.

[14] A. Gilbert and P. Indyk, “Sparse recovery using sparse matrices,”
Manuscript, 2009.

[15] D. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing,” PNAS, 2009.

[16] W. Xu and B. Hassibi, “Efficient compressive sensing with deter-
minstic guarantees using expander graphs,” IEEE Information Theory
Workshop, 2007.

[17] P. Indyk, “Explicit constructions for compressed sensing of sparse
signals,” SODA, 2008.

[18] S. Jafarpour, W. Xu, B. Hassibi, and A. R. Calderbank, “Efficient
and robust compressed sensing using high-quality expander graphs,”
Manuscript, 2008.

[19] S. Sarvotham, D. Baron, and R. G. Baraniuk, “Compressed sensing
reconstruction via belief propagation,” Technical Report ECE-0601,
Electrical and Computer Engineering Department, Rice University,
2006.

[20] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: A novel counter architecture for per-flow measure-
ment,” SIGMETRICS, 2008.

[21] M. Akçakaya, J. Park, and V. Tarokh, “Compressive sensing using
low density frames,” Submitted to IEEE Trans. on Signal Processing,
2009.

[22] V. Guruswami, C. Umans, and S. P. Vadhan, “Unbalanced expanders
and randomness extractors from Parvaresh-Vardy codes,” in IEEE
Conference on Computational Complexity (CCC 2007), 2007, pp. 96–
108.

[23] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation,” IEEE Inf. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[24] V. Chandar, “A negative result concerning explicit matrices with the
restricted isometry property,” Preprint, 2008.

[25] E. J. Candès and J. Romberg, `1-MAGIC: Recovery of
Sparse Signals via Convex Programming, 2005, available at
http://www.acm.caltech.edu/l1magic.

[26] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for
sparse reconstruction: Application to compressed sensing and other
inverse problems,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 1, 2007.

[27] R. Berinde and P. Indyk, “Sparse recovery using sparse random
matrices,” MIT-CSAIL Technical Report, 2008.

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Length of signal (n)

A
v
e
ra

g
e
 r

e
c
o
v
e
ry

 t
im

e
 (

s
e
c
o
n
d
s
)

SSMP

SMP

GPSR

l1−Magic

Fig. 3. Comparison of recovery times for sparse signals. We used the following parameters: the signal sparsity k = 0.002n, the number of measurements
m = 0.1n, and the matrix sparsity parameter d = 8. Note that, for n = 20, 000, the parameters fall into the regions depicted in figure 2. SSMP is ran
with S = 4K inner steps and T = 1 iteratios; the SMP algorithm is run for 10 iterations. The settings roughly correspond to the parameters in figure 2.

0.5 1 1.5 2 2.5 3

x 10
4

16

18

20

22

24

26

28

Number of measurements (m)

S
N

R

SSMP k=0.05m

SMP k=0.05m

SSMP k=0.1m

SMP k=0.1m

LP

0.5 1 1.5 2 2.5 3

x 10
4

10
3.2

10
3.3

10
3.4

Number of measurements (m)

L
1

 n
o

rm
 o

f
d

if
fe

re
n

c
e

 i
n

 w
a

v
e

le
t

b
a

s
is

SSMP k=0.05m

SMP k=0.05m

SSMP k=0.1m

SMP k=0.1m

LP

0.5 1 1.5 2 2.5 3

x 10
4

16

18

20

22

24

26

28

Number of measurements (m)

S
N

R

SSMP k=0.05m

SMP k=0.05m

SSMP k=0.1m

SMP k=0.1m

LP

0.5 1 1.5 2 2.5 3

x 10
4

10
3.2

10
3.3

10
3.4

Number of measurements (m)

L
1

 n
o

rm
 o

f
d

if
fe

re
n

c
e

 i
n

 w
a

v
e

le
t

b
a

s
is

SSMP k=0.05m

SMP k=0.05m

SSMP k=0.1m

SMP k=0.1m

LP

Fig. 4. Approximate recovery experiments with the boat image (top) and peppers image (bottom). SSMP is ran with S = 10000, T = 20. SMP is ran
for 100 iterations with convergence control parameter 0.5. Matrix sparsity is d = 8.

SSMP (k=1700) − recovery SNR

Inner steps (S)

It
e

ra
ti
o

n
s
 (

T
)

21.70

21.76

21.80

21.85

22.08

22.01

22.36

22.17

22.53

21.77

21.44

21.86

21.71

22.22

22.47

22.52

22.98

22.92

21.59

21.78

22.16

22.07

22.60

22.88

22.82

23.14

23.24

21.58

21.83

22.09

22.28

22.54

22.95

23.09

23.26

23.23

21.84

21.83

21.84

22.28

22.61

23.11

23.16

23.10

23.56

21.64

21.81

21.99

22.29

22.51

22.81

23.23

23.40

23.27

21.93

22.00

22.07

21.90

22.52

22.89

23.29

23.29

23.04

21.70

21.86

22.16

22.26

22.80

22.81

23.16

23.50

23.26

2000 4000 8000 16000 32000 64000 128000 256000

1

2

4

8

16

32

64

128

256
21.5

22

22.5

23

23.5

SSMP (S=16000) − recovery SNR

Iterations (T)

S
p
a
rs

it
y
 (

k
)

19.43

20.83

21.63

21.88

22.08

21.76

21.51

21.60

19.43

20.83

21.65

22.05

22.12

21.95

21.64

21.72

19.43

20.85

21.73

22.27

22.40

22.10

21.84

21.67

19.39

20.87

21.86

22.37

22.34

22.13

21.96

21.55

19.43

20.91

21.94

22.37

22.73

22.49

22.25

22.08

19.40

20.91

21.80

22.50

22.93

23.10

22.68

22.20

19.45

20.94

21.93

22.49

22.75

23.26

22.74

22.47

19.47

20.96

21.86

22.53

22.79

23.24

23.30

22.64

19.47

20.93

21.80

22.41

22.77

23.42

22.97

23.18

1 2 4 8 16 32 64 128 256

250

500

750

1000

1250

1750

2000

2250

19.5

20

20.5

21

21.5

22

22.5

23

SSMP (T=32) − recovery SNR

Inner Steps (S)

S
p
a
rs

it
y
 (

k
)

19.39

20.79

21.65

22.24

22.06

22.11

22.07

21.57

21.77

19.44

20.89

21.77

22.27

22.55

22.47

22.46

22.13

22.02

19.44

20.91

21.82

22.50

22.68

22.71

22.67

22.32

21.87

19.40

20.91

21.80

22.50

22.93

22.88

23.10

22.68

22.20

19.45

20.87

21.78

22.57

22.98

22.85

22.82

22.75

22.24

19.42

20.92

21.78

22.54

22.91

22.93

23.00

22.80

22.40

19.43

20.97

21.91

22.55

22.87

23.07

22.94

23.09

22.29

2000 4000 8000 16000 32000 64000 128000

250

500

750

1000

1250

1500

1750

2000

2250
19.5

20

20.5

21

21.5

22

22.5

23

SSMP (k=1700) − recovery time (seconds)

Inner steps (S)

It
e
ra

ti
o
n
s
 (

T
)

0.22

0.47

0.78

1.64

3.20

6.56

12.42

25.66

47.19

0.34

0.78

1.59

3.02

5.59

11.02

22.56

42.81

89.89

0.80

1.44

2.70

5.30

11.17

22.50

43.42

92.67

185

1.36

2.73

5.33

10.30

21.64

43.92

83.48

172

343

2.56

5.36

10.38

20.66

41.19

80.42

164

331

671

5.09

9.94

20.39

40.66

80.70

163

324

648

1377

9.97

19.48

37.98

77.44

154

323

638

1500

2599

18.77

36.81

75.06

151

301

597

1200

2397

4845

2000 4000 8000 16000 32000 64000 128000 256000

1

2

4

8

16

32

64

128

256

1

10

100

1000

Fig. 5. Experimental characterisation of SSMP (peppers image, m = 17000, d = 8).

