Low-distortion embeddings and data structures

Piotr Indyk MIT

What this talk is about

- Low-distortion embeddings:
 - Metrics (X,D) , (X',D')
 - Mapping f: $X \rightarrow X'$
 - Want

 $\mathsf{D}(\mathsf{p},\mathsf{q}) \leq \mathsf{D}'(\mathsf{f}(\mathsf{p}),\mathsf{f}(\mathsf{q})) \leq \mathsf{c} \; \mathsf{D}(\mathsf{p},\mathsf{q})$

- Data structures:
 - Support some operations on a data set P
 - Simple example for $P \subseteq \{1...M\}$:
 - Insert (p): inserts p into P
 - Delete (p): deletes p from P
 - Distinct-Count: returns the number of *distinct* elements in P

Menu

- Nearest Neighbor
 - In high dimensional I_p^d spaces (focus on p=2)
 - In other metrics (Hausdorff, EMD, edit)
- Data structures with sub-linear storage:
 - Distinct-Count and more
- Distance oracles
 - Given p,q, report D(p,q)
 - Sub-quadratic storage
 - Very fast distance computation

All algorithms are:

- Approximate
- Randomized (can work with probability, say, 2/3)

Nearest neighbor

- Given: a set P of n points in R^d
- Nearest Neighbor: for any query q, returns a point p∈P minimizing ||p-q||
- r-Near Neighbor: for any query q, returns a point p∈P s.t.
 ||p-q|| ≤ r (if it exists)

 \bigcirc

Nearest Neighbor: Motivation

- Learning: nearest neighbor rule
- Database retrieval
- Vector quantization, a.k.a. compression

The case of d=2

- Compute Voronoi diagram
- Given q, perform point location
- Performance:
 - Space: O(n)
 - Query time: O(log n)

The case of d>2

- Voronoi diagram has size n^{O(d)}
- We can also perform a linear scan: O(dn) time
- That is pretty much all what is known (for the exact problem)

Approximate Near Neighbor (NN)

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point $p \in P$, $||p-q|| \le r$
 - It returns $p' \in P$, $||p-q|| \leq cr$
- Reductions:
 - c-Approx Nearest Neighbor reduces to c-Approx Near Neighbor
 - Query time: multiplied by log n
 - Space: multiplied by log^{O(1)} n

[Indyk-Motwani'98; Kushilevitz-Ostrovski-Rabani'98; Har-Peled'01]

 \bigcirc

Johnson-Lindenstrauss

- JL: Any n-point subset X of I₂^d embeds into I₂^{d'} with distortion 1+ε for d'=O(log n/ε²)
- JL': There is a distribution over mappings A: $I_2^d \rightarrow I_2^{d'}$ such that, for any $x \in I_2^{d}$:

Pr[||x|| ≤ ||A x|| ≤ (1+ε) ||x||] ≥ 1- exp(ε² d')

- Clearly, JL' \Rightarrow JL. But all proofs of JL imply JL' as well.
- All applications mentioned in this talk require JL', since some/all vectors x are not known in advance

 $(1+\varepsilon)$ -approximate r-NN with space polynomial in n

- 1. Map A: $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d'}$, d'=O(logn/ ε^{2})
- 2. Construct r-NN data structure:
 - Space: $n(1/\epsilon)^{O(d')}$
 - Query: O(d')
- 3. To find approx r-NN of q, query Aq

Overall:

Space: $n^{O(\log(1/\epsilon)/\epsilon^2)}$

(better exponent of $O(1/\epsilon^2)$ [KOR'98])

Query: $O(d \log n/\epsilon^2)$ (improved via FJLT – [Ailon-Chazelle'06])

Metrics

Distances between multi-sets of points in R^t

- Hausdorff metric: $DH(A,B)=max_{a\in A}min_{b\in B} ||a-b||$ H(A,B)=max[DH(A,B), DH(B,A)]

– Earth Mover Distance

 $\mathsf{EMD}(\mathsf{A},\mathsf{B})=\min_{\pi:\mathsf{A}\to\mathsf{B}}\Sigma_{\mathsf{a}\in\mathsf{A}}||\mathsf{a}\text{-}\pi(\mathsf{a})||$

- Distances between strings of symbols:
 - ED(s,s'): min #ins/del of symbols
 - BED(s,s'): block operations as well

(block move, block copy and reverse operations)

 Can obtain algorithms for such metrics by embedding them into normed spaces

ED(abracadabra , dabra) = 6 BED(abracadabra , dabra) = 3

Embeddings

From	То	Dist.	Dim.	Paper
Hausdorff over m- subsets of {1D} ^t	l _∞	1+ε	m²(1/ε) ^t log² D	FarachColton- Indyk'99
EMD over {1D} ^t	I ₁	logD	D ^{O(1)}	Charikar'02; Indyk-Thaper'03
	I ₁	>(logD) ^{1/2}		Naor- Schechtman'06
	I ₁	>t		Khot-Naor'05
Block edit distance over d-length strings	I ₁	≈ log d		Muthu-Sahinalp'00; Cormode-Muthu'02
Edit distance over d- length strings	I ₁	exp[(logd) ^{1/2}]		Ostrovski- Rabani'05
	I ₁	>log d		Khot-Naor'05; Krauthgamer- Rabani'06

Sub-linear storage

Norm estimation

- Norm estimation:
 - Initially: x=0
 - Stream elements: (i,b) , i=1...d, $b \in \{-d^{O(1)}...d^{O(1)}\}$
 - Interpretation: $x_i = x_i + b$
 - Want to maintain ||x||_p
 - ... using little space, i.e., only $\log^{O(1)} d$ bits
- Why ? Examples:
 - $||x||_p^p = \sum_i x_i^p = \#$ non-zero coordinates in x, as $p \rightarrow 0$
 - Maintains the number of distinct elements under
 - Insertions: (i,1)
 - Deletions: (i,-1)

Dimensionality reduction

- Store Ax instead of x
- Key observation: can update Ax under updates to x
- Recover $(1 \pm \varepsilon) ||x||_{p}$ from Ax (with prob. 1-1/d)
- Issue: cannot store A, must be "pseudorandom"
- Algorithms:
 - p=2: [Alon-Matias-Szegedy'96]
 - Estimator: median[$(A_1x)^2$ +..+ $(A_cx)^2$, $(A_{c+1}x)^2$ +..+ $(A_{2c}x)^2$,..]^{1/2}
 - $c=1/\epsilon^2$, k=c log d
 - A: constructed from 4-wise independent random variables
 - 0 : [Indyk'00]
 - Estimator: median[(A₁x),..., (A_kx)]
 - A: constructed using Nisan's PRG

What else ?

- Maintaining geometric statistics (MST cost, min matching cost) of sets of points
 - E.g., we can maintain EMD(A,B) under changes to A,B
 - EMD(A,B) into I_1 with dist. log D
 - Can maintain I_1 norm
 - Compose
- Maintaining a sparse approximation of a vector x

Sparse Approximations

- View x as a function $x:\{1...d\} \rightarrow \{-d^{O(1)}...d^{O(1)}\}$
- Approximate it using simpler functions
 - Linear combinations of at most B vectors in some given basis (Fourier, wavelets, etc)
 - Piecewise constant function h, with B pieces (buckets)
 - Etc..
- Goal: find h s.t. $||x-h||_2 \le (1+\epsilon)||x-h_{OPT}||_2$

Results

- [Gilbert-Guha-Indyk-Kotidis-Muthukrishnan-Strauss'02]
 - Under increments/decrements of x
 maintains piecewise constant h with B pieces such that

 $||x-h||_2 \le (1+\varepsilon)||x-h_{OPT}||_2$

- Space: poly(B,1/ε,log n)
- Time: $poly(B, 1/\epsilon, log n)$

General Approach

- Maintain sketches Ax of x
- This allows us to estimate the error of any approximation h, via ||x-h|| ≈ ||Ax-Ah||
- Construct h ("invert" the sketch):
 - Enumeration exponential in B
 - Greedy
 - Dynamic Programming

Compressed sensing

- [Donoho'05; Candes-Romberg-Tao'06;Rudelson-Vershynin'05;.....]
 - Consider x which are B-sparse (with respect to any fixed basis) or some generalizations involving noise
 - Show that there are mappings A: $\mathbb{R}^d \to \mathbb{R}^k$ such that, for any x, given Ax, one can reconstruct x
 - Gaussian matrix: k=O(B log(d/B)
 - Fourier matrix: $k=O(B \log^{O(1)} d)$
 - Properties can be proved using JL lemma [Baraniuk-Davenport-DeVore-Wakin'06]
 - Reconstruction: minimize ||z||₁ s.t. Az=Ax
 - Can be done using linear programming
- See http://www.dsp.ece.rice.edu/cs/ for more info

Distance oracles

Metric compression

- Compressed representation of a metric M=(X,D), |X|=n:
 - Spanners [Peleg, etc]: sparse graph G=(X,E) such that M
 c-embeds into a metric induced by G
 - Can guarantee $|E|/n \le n^{\beta(c)}$, for $\beta(c) = 1/\lfloor (c+1)/2 \rfloor \approx 2/c$
- Fast distance computation [Cohen'94]:
 - Approximate D(p,q) in time $n^{\beta(c)}$
- Can get the same result from metric embeddings into I_∞ [Matousek'96]
- [Thorup-Zwick'01]: "Distance oracles"
 - Approximate D(p,q) in time O(c)
- [Mendel-Naor'06]: "Ramsey partitions"
 - Approximate D(p,q) in time O(1)