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What this talk is about
• Low-distortion embeddings:

– Metrics (X,D) ,  (X’,D’)
– Mapping f: X →X’
– Want 

D(p,q) ≤ D’(f(p),f(q)) ≤ c D(p,q)

• Data structures:
– Support some operations on a data set P
– Simple example for P ⊆ {1…M}:

• Insert (p): inserts p into P
• Delete (p): deletes p from P
• Distinct-Count: returns the number of distinct elements in P



Menu
• Nearest Neighbor 

– In high dimensional lpd spaces (focus on p=2)
– In other metrics (Hausdorff, EMD, edit)

• Data structures with sub-linear storage:
– Distinct-Count and more

• Distance oracles
– Given p,q, report D(p,q)
– Sub-quadratic storage
– Very fast distance computation

All algorithms are:
– Approximate
– Randomized (can work with probability, say, 2/3)



Nearest neighbor

• Given: a set P of n points in Rd

• Nearest Neighbor: for any 
query q, returns a point p∈P
minimizing ||p-q||

• r-Near Neighbor: for any query 
q, returns a point p∈P s.t.     
||p-q|| ≤ r (if it exists)
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Nearest Neighbor: Motivation

• Learning: nearest 
neighbor rule

• Database retrieval
• Vector quantization, 

a.k.a. compression

?



The case of d=2  
• Compute Voronoi diagram
• Given q, perform point 

location
• Performance:

– Space: O(n)
– Query time: O(log n)



The case of d>2

• Voronoi diagram has size nO(d)

• We can also perform a linear scan: O(dn)
time

• That is pretty much all what is known  (for 
the exact problem)



Approximate Near Neighbor (NN)
• c-Approximate r-Near Neighbor: build 

data structure which, for any query q: 
– If there is a point p∈P, ||p-q|| ≤ r
– It returns             p’∈P, ||p-q|| ≤ cr

• Reductions:
– c-Approx Nearest Neighbor reduces to 

c-Approx Near Neighbor 
• Query time: multiplied by log n
• Space: multiplied by logO(1) n

[Indyk-Motwani’98; Kushilevitz-Ostrovski-
Rabani’98; Har-Peled’01]
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Johnson-Lindenstrauss
• JL: Any n-point subset X of l2d embeds into l2d’ with 

distortion 1+ε for d’=O(log n/ε2)

• JL’: There is a distribution over mappings 
A: l2d → l2d’ such that, for any x∈l2d :

Pr[  ||x|| ≤ ||A x|| ≤ (1+ε) ||x|| ] ≥ 1- exp(ε2 d’ )

• Clearly, JL’ ⇒JL. But all proofs of JL imply JL’ as well.
• All applications mentioned in this talk require JL’, since 

some/all vectors x are not known in advance



(1+ε)-approximate r-NN with space 
polynomial in n

1. Map A: Rd→Rd’ , d’=O(logn/ε2)
2. Construct r-NN data structure:

• Space: n(1/ε)O(d’)

• Query: O(d’)
3. To find approx r-NN of q, query Aq

Overall:
• Space: nO(log(1/ε)/ε2) (better exponent of O(1/ε2) [KOR’98] )

• Query:  O(d logn/ε2) (improved via FJLT – [Ailon-Chazelle’06])



Metrics 
• Distances between multi-sets of points in Rt

– Hausdorff metric: 
DH(A,B)=maxa∈A minb∈B ||a-b||
H(A,B)=max[ DH(A,B), DH(B,A) ]
– Earth Mover Distance
EMD(A,B)= minπ:A→B Σa∈A ||a-π(a)||

• Distances between strings of symbols:
– ED(s,s’): min #ins/del of symbols
– BED(s,s’): block operations as well
(block move, block copy and reverse operations)

• Can obtain algorithms for such metrics by 
embedding them into normed spaces

ED(  abracadabra , dabra )  = 6
BED( abracadabra , dabra )  = 3 



Embeddings

Ostrovski-
Rabani’05

exp[ (logd)1/2 ]l1Edit distance over d-
length strings

Khot-Naor’05; 
Krauthgamer-
Rabani’06

>log dl1

Khot-Naor’05>tl1
Muthu-Sahinalp’00; 
Cormode-Muthu’02

≈ log dl1Block edit distance 
over d-length strings

Naor-
Schechtman’06

>(logD)1/2l1

Charikar’02;
Indyk-Thaper’03

DO(1)logDl1EMD over {1..D}t 

FarachColton-
Indyk’99

m2(1/ε)t log2 D1+εl∞Hausdorff over m-
subsets of {1..D}t

PaperDim.Dist.ToFrom



Sub-linear storage



Norm estimation
• Norm estimation:

– Initially: x=0
– Stream elements: (i,b) , i=1…d, b∈{-dO(1)… dO(1)}
– Interpretation: xi=xi+b
– Want to maintain ||x||p
– …using little space, i.e., only logO(1) d bits

• Why ? Examples:
– ||x||pp =Σi xi

p = #non-zero coordinates in x, as p→0
– Maintains the number of distinct elements under

• Insertions: (i,1)
• Deletions: (i,-1)



Dimensionality reduction

• Store Ax instead of x
• Key observation: can update Ax under updates to x
• Recover (1±ε)||x||p from Ax (with prob. 1-1/d )
• Issue: cannot store A, must be “pseudorandom”
• Algorithms:

– p=2: [Alon-Matias-Szegedy’96]
• Estimator: median[ (A1x)2+..+ (Ac x)2, (Ac+1x)2+..+ (A2cx)2,..]1/2

• c=1/ε2 , k=c log d
• A: constructed from 4-wise independent random variables

– 0<p ≤ 2: [Indyk’00]
• Estimator: median[ (A1x),…, (Ak x) ]
• A: constructed using Nisan’s PRG



What else ?

• Maintaining geometric statistics (MST 
cost, min matching cost) of sets of points
– E.g., we can maintain EMD(A,B) under 

changes to A,B
• EMD(A,B) into l1 with dist. log D
• Can maintain l1 norm
• Compose

• Maintaining a sparse approximation of a 
vector x



Sparse Approximations

• View x as a function x:{1…d} → {-dO(1)… dO(1)}
• Approximate it using simpler functions

– Linear combinations of at most B vectors in some given basis 
(Fourier, wavelets, etc)

– Piecewise constant function h, with B pieces (buckets)
– Etc..

• Goal: find h s.t.  ||x-h||2 ≤ (1+ε)||x-hOPT||2



Results 

• [Gilbert-Guha-Indyk-Kotidis-Muthukrishnan-Strauss’02] :
– Under increments/decrements of x

maintains piecewise constant h with B pieces 
such that 

||x-h||2 ≤ (1+ε)||x-hOPT||2
– Space: poly(B,1/ε,log n)
– Time: poly(B,1/ε,log n)



General Approach

• Maintain sketches Ax of x
• This allows us to estimate the error of any 

approximation h, via ||x-h|| ≈ ||Ax-Ah||
• Construct h (“invert” the sketch):

– Enumeration – exponential in B
– Greedy
– Dynamic Programming



Compressed sensing
• [Donoho’05; Candes-Romberg-Tao’06;Rudelson-

Vershynin’05;…….]
– Consider x which are B-sparse (with respect to any fixed basis) 

or some generalizations involving noise
– Show that there are mappings A: Rd → Rk such that, for any x, 

given Ax, one can reconstruct x
• Gaussian matrix: k=O(B log(d/B)
• Fourier matrix:     k=O(B logO(1) d)

– Properties can be proved using JL lemma [Baraniuk-Davenport-
DeVore-Wakin’06]

– Reconstruction: minimize ||z||1 s.t. Az=Ax
• Can be done using linear programming

• See http://www.dsp.ece.rice.edu/cs/ for more info



Distance oracles



Metric compression
• Compressed representation of a metric M=(X,D) , |X|=n:

– Spanners [Peleg, etc]: sparse graph G=(X,E) such that M
c-embeds into a metric induced by G

– Can guarantee |E|/n≤ nβ(c) , for  β(c)= 1/ ⎣(c+1)/2⎦ ≈ 2/c
• Fast distance computation [Cohen’94]:

– Approximate D(p,q) in time nβ(c)

• Can get the same result from metric embeddings into l∞
[Matousek’96]

• [Thorup-Zwick’01]: “Distance oracles”
– Approximate D(p,q) in time O(c)

• [Mendel-Naor’06]: “Ramsey partitions”
– Approximate D(p,q) in time O(1)


