
Dynamic Multidimensional Histograms

Nitin Thaper
MIT

nitin@theory.lcs.mit.edu

Piotr Indyk
MIT

indyk@theory.lcs.mit.edu

Sudipto Guha
University of Pennsylvania

sudipto@cis.upenn.edu

Nick Koudas
AT&T Research

koudas@research.att.com

ABSTRACT
Histograms are a concise and flexible way to construct sum-
mary structures for large data sets. They have attracted
a lot of attention in database research due to their utility
in many areas, including query optimization, and approxi-
mate query answering. They are also a basic tool for data
visualization and analysis.

In this paper, we present a formal study of dynamic multi-
dimensional histogram structures over continuous data streams.
At the heart of our proposal is the use of a dynamic summary
data structure (vastly different from a histogram) maintain-
ing a succinct approximation of the data distribution of
the underlying continuous stream. On demand, an accu-
rate histogram is derived from this dynamic data structure.
We propose algorithms for extracting such an accurate his-
togram and we analyze their behavior and tradeoffs. The
proposed algorithms are able to provide approximate guar-
antees about the quality of the estimation of the histograms
they extract.

We complement our analytical results with a thorough
experimental evaluation using real data sets.

1. INTRODUCTION
The explosive growth of networking in recent years has

impacted the way we carry our every day tasks. We trans-
mit enormous amounts of information through the internet,
in forms of emalls, streaming media (audio, video), images
or documents on a daily basis. It is estimated that approxi-
mately 2.5 x 1016 bits flows through the internet on a single
day.

This increase in network connectivity and usage has in-
evitably exacerbated the complexity of network manage-
ment operations. Network operators are faced with challeng-
ing tasks including capacity planning, fault management,
alarm and fault correlation and dynamic bandwidth allo-
cation on a large number of network elements. Operators,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

as well as network management applications, rely increas-
ingly on data analysis to facilitate these tasks. For example,
commonly, operators require to understand or visualize the
network traffic between two or more entities at various lev-
els of detail. Such entities include internet domains, routers
or even individual IP addresses. Traffic can be represented
either as total number of bytes or packets from one entity
to the other. Consider for example two network domains
each encompassing a number of IP addresses. It is often
desired to understand the traffic volume between individual
IP addresses in the two domains. Analysis of such informa-
tion in terms of visualization, can provide valuable insight
about congestion, bandwidth allocation or planning. More-
over, query capabilities are also desirable, such as requesting
the aggregate traffic from a range of addresses to another.
Clearly, such a scenario can be generalized to more than
two domains. A similar scenario could involve other net-
work entities, such as individual routers and their interfaces
etc.

A natural way to view information flow through a net-
work, is that of a continuous data stream. The manage-
ment solution consists of inspecting the data as it flows by
and perform necessary computation for purposes of analysis
without storing most of the data. Each entity in the stream
or stream tuple, consists of a number of attributes. For ex-
ample, in the network traffic domain, the stream tuple might
have as attributes the source and destination of the packet
information as well as a a measure attr ibute, such as bytes
sent t

The database community has been on the forefront of pro-
viding the data management solutions. However much re-
mains to be done in this context. Network elements generate
enormous amount of data at very high rates. The amounts
of data as well as their generation rates render materializa-
tion of data in secondary storage impossible. Even logging
or accumulating the information for a small period of time
can give rise to hundreds of gigabytes of data. As a result,
we are seeking techniques that can effectively approximate
the distribution of continuous streams of data in an incre-
mental and highly efficient way. In particular, the techniques
have to be able to maintain important traffic statistics and
summary diagrams without storing all (or even a significant
fraction of) the data.

One of the most natural and useful summary represen-

~This is exactly the way data is represented on IP packet
headers.

428

tat ions of the da ta for the purpose of da ta visualization
and analysis are histograms. Histograms are a very pop-
ular and flexible way to track the distribution of the da ta
in a database. They have been studied extensively and a
plethora of algorithms exists for their efficient construction
on a single [22, 28, 7, 31, 14, 13] or on multiple [30, 33, 25, 16,
5, 35] at tr ibutes. Wi th a few exceptions however, the bulk of
the work in this area, has addressed the static version of the
problem; that is, given a multi a t t r ibute da ta set which is
assumed static and materialized on secondary storage, and
a fixed amount of space, construct the "best" histogram,
i.e., the histogram minimizing estimation error, for suitably
defined notions of error, depending on the particular appli-
cation context. A common assumption in various works in
this direction is that a new histogram is re-computed from
the data, when changes in the da ta take place. As such,
these proposals for approximating da ta distributions do not
gracefully address the problem in a continuous da ta stream
context. This is because (a) it is impossible to access the
da ta in a stream on demand, while storing all the da ta on
disk for future use is infeasible and (b) stream tuples arrive
dynamically, so the distribution needs to be upda ted all the
time.

In this paper, we address the problem of computing and
maintaining dynamic histogram structures in a continuous
da ta s tream context. The techniques presented in this pa-
per enable us to compute multi-dimensional histograms of
the da ta 2. At the heart of our proposal is the use of a
dynamic summary data structure, which we refer to as a
sketch. The sketch maintains succinctly the stream tuple
distribution. Arrivals of new stream tuples are very effi-
ciently reflected on the sketch. The sketch essentially acts
as a dynamic snapshot of the s tream tuple distribution. A
histogram structure of the mul t i -a t t r ibute stream, can be
efficiently and on demand derived from the sketch.

This approach opens numerous opportunit ies for effective
management of continuous streams. For example, assuming
that a sketch is associated with each network element, query-
ing, analysis or visualization of the continuous streams from
each network element can be efficiently performed by exam-
ination of the histogram extracted from the corresponding
sketch. Moreover, it offers an efficient way of comparing
continuous streams temporally. This can be done by com-
paring the histograms extracted from the sketches tracking
the distribution of the same streams at different t ime peri-
ods. For example, consider comparing the histogram of the
traffic distribution on a router today with the corresponding
histogram of yesterday. Alternatively, consider observing
correlations between traffic, in terms of number of bytes ver-
sus number of packets, by comparing the histograms of byte
and packet distributions, and so on. In addition, sketches of
different da ta streams can be composed (by simply adding
them together), yielding a sketch of the union of the indi-
vidual da ta streams. This becomes useful in scenarios where
the da ta is gathered by many separate agents (e.g., routers)
and needs to be combined together to obtain a summary of
the overall da ta flow. Figure 1 presents an overview of our
approach.

This paper is organized as follows: In Section 2 we review
related work. Section 3 provides definitions necessary for

2Thus we axe able to maintain e.g., overall summary of the
amount of traffic from each source to each destination, by
maintaining a two-dimensional histogram of the traffic data.

Stream

- Network Element

Multidimensional
Histogram

Stream

sketch

Figure 1: Overview of our approach: A ske tch is in-
cremental ly updated from the stream, tracking the
stream distribution succinctly. A multidimensional
histogram is efficiently derived from the sketch on
demand.

our subsequent discussions. Section 4 introduces sketches for
multidimensional distributions and presents their operation,
propert ies and incremental behavior. In Section 5 we present
algorithms with approximate guarantees, to extract a mul-
t idimensional histogram from the sketch, and analyze their
complexity as well as introduce various improvements on the
basic algorithmic approaches introduced. Section 6, builds
on the algorithmic intuition gained, and proposes empiri-
cal approaches, improving the performance of the proposed
algorithms further. Section 7 presents a thorough experi-
mental evaluation of the algorithms presented herein using
real da ta sets. Section 8 concludes the paper and points to
problems of interest for further study.

2. RELATED WORK
Histogram structures have been studied extensively in the

database community, due to their uti l i ty in selectivity esti-
mation for query optimization and approximate query an-
swering. Early approaches to selectivity estimation and
approximate query answering, focused on the problem of
maintaining the distribution of a single a t t r ibute using his-
tograms [24]. A large body of work addresses this problem
with the use of sampling [19, 17, 18]. Various histogramming
algorithms [31, 27, 34, 2] as well as the provably optimal, [22]
and near-optimal [14, 13], approaches have been proposed
in the case of a single at tr ibute. Dynamic maintenance of
histograms in one dimension has also been addressed [1, 7,
28, 10, 8]. The last two papers used sketches as a way of
summarizing the data.

Unlike the one-dimensional case, constructing optimal his-
tograms in multiple dimensions is NP-hard [29]. Thus, many
proposals exist for this problem. Poosala and Ioannidis [30]
proposed algorithms for multidimensional histogram con-
struction. Several heuristics with provable worst-case guar-
antees have been also proposed in [23, 29]. In particular, the
algorithm of [23] used greedy approach to solve a histogram
construction problem in 2D. Others studied the application
of various transforms [25, 33] to this problem. Kollios et.
al., [16] proposed a kernel based algorithm to construct his-
tograms in many dimensions and experimentally showed the
algorithm superior in accuracy to previous approaches. Wu

429

et al., [35] applied the golden rule of sampling to query es-
timation.

All these works deal with the static version of the multidi-
mensional histogram construction problem; that is, a com-
mon assumption is that a histogram is rebuilt periodically
from the data to reflect changes in the underlying data dis-
tribution. Recently Bruno et al., [5] studied the problem of
dynamic histogram construction in multiple dimensions by
observation of query results. They proposed an algorithm
named STHoles and experimentally demonstrated that it is
comparable in accuracy to the best algorithm proposed for
the static version of the multidimensional histogram con-
struction problem.

Continuous data streams, have attracted lots of recent
research attention in both the database [4, 26, 13, 10, 32,
12] as well as the theory community [6, 3, 20, 15, 14, 9, 8].
We mention that the paper [9] investigated stream problems
occurring in networking. Also, the paper [8] presented a
method for reconstructing one-dimensional histograms from
sketches. Their algorithms were obtained either by recon-
structing histogram from wavelet representation (obtained
as in [10]), or via greedy reconstruction of histogram (as
in [23] or in this paper). However, their paper deals exclu-
sively with histograms in one dimension.

3. DEFINITIONS
Let r be a continuous data stream on an attribute set 3

{ A , , . . . At}. Without loss of generality assume that each at-
tribute Ai, 1 < i < ~ has a numerical domain A = {1. . . n}.
A tuple t 6 r can be viewed as a multidimensional point
in {1 . . . n} t. The frequency distribution of r is a function
D : { 1 . . . n } t --~ { 1 . . . m } . For t 6 { 1 . . . n } t the value O(t)
measures the number of times tuple t appears in r. This
function D(t) defines a distribution over the tuples. The
streaming data we will encounter will be a sequence of tu-
pies ti. A simple generalization of the data would be to
represent the data as a sequence (tl, ±) where the positive
symbol would signal the arrival of a new tuple tl and the
negative symbol would indicate that the tuple ti has ex-
pired and is no longer relevant. If we are conceptualizing a
snapshot of the distribution at a point of time, an arrival
corresponds to an insert operation and an expiry, a delete
operation. We can model an update by a combination of the
two. Thus the streaming model already captures dynamic
databases, if we inspect the stream of transactions on the
database.

In this paper we address the problem of approximating
the multidimensional frequency distribution of a stream of
tuples. Our discussion equally applies if D is a general distri-
bution over some discrete domain, as it would be appropriate
for approximating a datacube [11, 33]. We restrict the bulk
of our discussion on the use of piecewise-constant functions
as basis functions for the approximation; we generalize to
other functions of interest in section 5.2.

Our goal is to approximate the distribution D by a his-
togram. Formally a histogram is a function H : {1 . . . n} t --r
{1 . . . M}. Each histogram is defined by a sequence of hy-
perrectangles S1 . . . Sk each Si C {1 . . . n} t and a sequence
of values vl . . . v~, each corresponding to a hyperrectangle.

3We can view the stream as a dynamic realization of the
relation schema R(A1 , . . . At) but since we will not be storing
the relation we will avoid this representation.

For t E {1 . . . n} t, H(t) represents an estimate to D(t). De-
pending on the type of histogram, as explained below, H(t)
is derived from one or more vi values. In practice we repre-
sent histogram H as a sequence {(St, Vl) . . . (S~,vk)}. We
will consider the following classes of histograms:

Tiling histograms: the hyperrectangles form a tiling of
{1 . . . n} t (i.e., they are disjoint and cover the whole
domain). For any t we have H(t) = vi, where t 6 Si

Non-overlapping histograms: the hyperrectangles are
disjoint. For any t we have H(t) = vi, if there exists
Si containing t; H(t) = 0 otherwise.

Priority histograms: the hyperrectangles can overlap.
For any t we have H(t) = vi where i is the largest
index such that t C Si; if none exists, H(t) = O.

Additive histograms: the hyperrectangles can overlap.
For any t we have H(t) = ~i:tes~ vi (the value of H(t)
is 0 if there is no Si containing t).

Commonly each hyperrectangle S~ is referred to as a bucket.
We will refer to a histogram that consists of k buckets, as
a k-histogram. Observe that in all the above models, if we
increase k we can capture the distribution more accurately,
and if we were to store n t buckets, we would capture the
data exactly.

Observe that both the distributions and the histograms
can be viewed as vectors in an N-dimensional space. This
observation is immediate for one-dimensional distributions,
since they are represented by a vector of N = n numbers.
However, a similar situation holds for the multidimensional
case. For example a two-dimensional distribution D de-
fined over an n x n square can be viewed as a point in an
N-dimensional space for N = n 2 and in general for an e-
dimensional distribution as a point in an N = n t space. To
view a distribution D this way however, we assume a fixed
way to linearize the domain, such as row major. The same
holds for de-dimensional histograms; in this case the coordi-
nates corresponding to regions of the n t space covered by a
hyperrectangle Si have the same value vi. In this case we
also assume a row major linearization order.

In the remainder of this paper we will treat D and H both
as functions (represented as sets) as well as N-dimensional
vectors derived from a row major linearization, whenever
convenient. The multidimensional histogram construction
problem is defined as follows:

DEFINITION 1 (OPTIMAL MULTIDIMENSIONAL HISTOGRAMS).
Given a distribution D : {1 . . . n} t --r {1 . . . M} and a fixed
budget of buckets k, construct the k-histogram, H, minimiz-
ing IID-HII2 (the L2 distance between the two distributions)

Each stream operation, in the form of a tuple arrival or
expiry, can potentially change D. Such operations can be
interleaved arbitrarily and take place on subsets of at tr ibute
values of a set of tuples in r. In fact this is an important
aspect of stream analysis. Even if a k-histogram according
to definition 1 is identified, this histogram no longer satisfies
the criteria of the definition, when distribution D changes.
A new histogram has to be identified using the new distribu-
tion resulting from the change. We will present algorithms
to maintain a snapshot of D under any sequence of changes

430

and subsequently to extract a k-histogram according to def-
inition 1 with approximate guarantees. We will present our
proposal in the following steps:

Firs t we introduce a summary da ta structure, which
we refer to as a sketch, capable of maintaining suc-
cinctly a snapshot of D whenever changes occur, show-
ing its propert ies and incremental behavior.

We will introduce algorithms to extract a k-histogram
according to definition 1 with approximate guarantees
and analyze the running t ime of these algorithms.

Building on the intuition gained from these algorithms,
we will propose heuristic approaches to extract multi-
dimensional histograms from a sketch and s tudy their
performance and tradeoffs.

4. SKETCHING MULTIDIMENSIONAL DIS-
TRIBUTIONS

We will show how to maintain an accurate snapshot of
any distr ibution D, and show how to incrementally maintain
it, so it remains accurate under arbi t rary modifications to
D. For this purpose, we introduce the following Johnson-
Lindenstrauss theorem.

THEOREM 1. Consider a random linear mapping A : ~N
~d, such that each entry of the matrix A is chosen indepen-
dently from a certain distribution 4. I f d = O(log(1/P)/e2) ,
then the mapping A has the property that for any fixed x E
~N we have [[x[[2 _<][Ax[[2 < (1 + e)Hx[l~ with probability at
least 1 - P .

Consider any distr ibution D viewed as a vector in an N
dimensional space. Similarly consider a set K of N di-
mensional vectors. A straightforward application of the
union bound implies tha t a random mapping, A, for d =
O(log([KJ/e2)) has (with high probabili ty) the proper ty tha t
for any vector v E K, I lv -Dl l2 _< IIAv-ADll2 _< (l + e) l l v -
DIll. Thus, if we maintain only the "sketch" AD, by mini-
mizing IIAv-AD[[2 we can recover the element v E K which
is closest to D in L2 sense. We will show how to perform
this minimization in section 5. Notice however, that this is
clearly beneficial, because both D and v are N dimensional
vectors, but A D and Av are d-dimensional. Also, the ma-
trix A doesn' t have to be stored explicitly. Its entries can be
generated by using a pseudorandom number generator with
jumpahead capability. Provided that d _< N, significant sav-
ings in space and computat ion time can be achieved.

Now consider the distribution D under dynamic changes
(arrivals,expiry). Recall that we modeled distr ibution D as
an N dimensional vector. An arrival corresponds to an en-
t ry (ti, +) in the stream; this can be represented by an N
dimensional vector (say U), which is only non-zero at the co-
ordinate corresponding to ti. The same approach works for
(t i , -) . The non zero value determines the type of change,
being positive for an arrival operation and negative for an
expiry. The change is reflected to D by a linear operation
between the two vectors.

4 Many distr ibutions can be used here, e.g., Gausslan distri-
bution or uniform distribution over { -1 , 1} (after scaling).
We use a variant of the latter.

Matrix h

0.61 0.13 0.67 -0.39
0.86 0.24 -0.38 -0.21
0.91 -0.17 0.33 -0.16

Data D Sketch of D

pl 11
p2 1 2 -1.35
p3 1 1 D as a vector (2 2 0 1) 1.99
p4 1 2 1.32
p5 22

(a)

One pass sketch computation A1 ffi A x pl A5 = A4 + h x p5

pt -- (1 0 0 o) -0.61 -1.35
p2 = (0 1 0 o) 0.86 1.99
p3 = (1 0 0 o) 0.91 1.32
p4 = (0 1 0 O)
p5 = (0 0 0 1)

(b)

F i g u r e 2: A t w o d i m e n s i o n a l f r e q u e n c y d i s t r i b u -
t i o n (a) C o m p u t i n g t h e s k e t c h o f a k n o w n fre-
q u e n c y d i s t r i b u t i o n a n d (b) O n e p a s s s k e t c h c o m -
p u t a t i o n v ia i n c r e m e n t a l changed for each d a t a p o i n t
Pi, Ai = Ai -x + Api

EXAMPLE 1. Consider a two-dimensional distribution D
expressed as a four dimensional vector D = (1, 3, 4, 1). In-
crementing 3 to $ as a result of an arrival of a value (which
is the linear index numbering the tuple) can be performed
via a vector U = (0,1, O, O) with the linear operation D + U.
Similarly for expiry operations. Observe that the result is
an insert or delete in the linear realization. However as
mentioned before, this is only an analogy. Since the data
is not stored in this model of computation, an insert is not
concretely defined. Thus we will stick to our description of
arrival/expiry.

Clearly, such an operation can be performed in O(1) time.
Notice, that this way of reflecting change to D can handle
bulk insertions or deletions on single or multiple a t t r ibute
values. If we compute the sketch AD, we can maintain it
efficiently since for any vector U expressing change we have,
A (D + U) = A D + AU. If U is non-zero only at one position
as before, we can compute AU in O(d) time. Bulk arrivals or
expiry are handled in a similar way. Given a specific relation
r, of known frequency distribution, deriving A D involves a
simple matr ix multiplication. Since sketches are amenable
to incremental updates, this suggests a strategy to compute
the sketch of a multidimensional da ta set from scratch with a
single pass on r, without knowing r ' s frequency distribution
in advance. Provided tha t the domain of each a t t r ibute is
known, we initialize matr ix A according to Theorem 1 and
a sketch S of size d setting each coordinate to zero. For
each tuple t of r we perform incremental updates to S by
adding vector At. This operation, requires a single scan of r
and can be performed in main memory requiring O(d × [r D
operations. Figure 2 shows an example of this operation.

5. EXTRACTING A HISTOGRAM FROM
THE SKETCH

431

The key idea behind our algorithms is to t reat the dis-
tr ibution and the histograms as points in high-dimensional
space. By maintaining a sketch of the distr ibution, the prob-
lem of finding the opt imum histogram can be solved by com-
puting a histogram whose sketch is "close to" the sketch of
the da ta distribution. Consider any distr ibution D and the
set 7-/ of all k-histograms. Recall that we view D and ele-
ments of 7-/ as points in an N-dimensional space. Observe
that the number of all k-histograms is at most n2lkM ~ , since
there are n 2t possible hyperrectangles to be considered for
the k-histogram and each possible k hyperrectangle collec-
tion, is a candidate. Moreover in each collection of k hyper-
rectangles there are M k possible values to assign. There-
fore, a random mapping A for d = O(log(n2tkMk)/e 2) =
O(k* log n /e 2) has (with high probabil i ty) the proper ty tha t
for any histogram H we have [[H - D[[2 _< [[AH - AD[[2 <
(1 + e) [[H - D[[2. Thus, by maintaining the "sketch" AD, we
can recover the best k-histogram by minimizing [[AH-AD[[2
over all histograms H.

To recover the "best" histogram, we need to solve an
optimization problem over the space of histograms. Ob-
serve tha t if we knew the intervals in the domain of each
a t t r ibute defining the histogram (without knowing the func-
tions within each interval), we could solve the optimizat ion
problem via the Least Squares method. This immediately
gives an n2~td °(1) algorithm by enumerating all possible
subsets of hyperrectangles and finding the best value to set
them to. Unfortunately, such algorithms have unreasonably
large running time.

We will present a technique to extract a histogram with
provable properties from the sketch AD of a mult idimen-
sional frequency distr ibution D, where A is chosen accord-
ing to Theorem 1. We will show tha t if we change the sketch
error making it 1 + elk instead of 1 + e as dic ta ted by The-
orem 1, we can recover approximately the s tructure of the
best k-histogram by extract ing only one bucket at a time.
This effectively allows us to apply greedy search methods
and reduce the t ime of histogram construction.

In the remainder of this section we focus on the problem
of retrieving the best histogram from the sketch AD. Con-
sider the t-dimensional distr ibution D defined over N = n l.
Algorithm GREEDY shown in Figure 3 retrieves a priority
histogram from the sketch AD. The algori thm will output
an opt imum histogram with B buckets for B > k. The exact
relationship of B to k will be established in Theorem 2.

At first, the algorithm initializes histogram H to empty.
The main loop of the algorithm iterates B times, and at each
iteration a bucket of the histogram is extracted. In each it-
eration, the algorithm enumerates all hyperrectangles in the
domain space {1 . . . n} *. There are n 2t such hyperrectangles.
Given a currently opt imum histogram H, it considers each
hyperrectangle S for addit ion to the opt imum histogram so-
lution. Let Hs be the histogram obtained by adding S to
the opt imum solution H. The value that hyperrectangle S
will assume, if added to the opt imum solution, is yet to be
determined and is initialized to the indeterminate variable
X.

The algorithm proceeds computing the sketch of Hs. Con-
ceptually, the sketch of Hs can be computed by viewing the
histogram Hs as a vector / i s of size N. Each coordinate
of this vector is a point p in the domain of D. I f p g S,
then the value of this coordinate is H(p), exactly the same

as the est imate for p in the current opt imum histogram H.
To compute value H(p) from H, since H is a priority his-
togram, we have to search the buckets of H and find the
bucket (hyperrectangle) with the largest index, containing
p. Searching through the buckets of H can be performed in
O(B) t ime in the worst case. If however, the point p belongs
to S, then the corresponding coordinate is set to the (yet to
be determined) value x. In step (2) of the algorithm, the
sketch AHs is computed by mult iplying the d x N matr ix
A with vec tor /~s- This multiplication is performed in t ime
O(ntd).

Then, in step (3) the algori thm assesses the L2 error be-
tween the sketch of the new histogram and the sketch of the
distribution. The resulting function Cs(x) is a quadrat ic
function which is minimized in step (4). Notice tha t this
corresponds to computing minx (ax-b) 2 for some coefficients
a, b and thus the minimum is achieved by sett ing x = 2b/a,
which takes constant t ime. The factors in the running t ime
are, the number of repeti t ions in the outer loop of the algo-
r i thm, B, the number of hyperrectangles, n 2l, the number of
coordinates of the sketch, d and the t ime needed to compute
the sketch of Hs, ntB. The complexity of the algori thm is
O(n3tdB2). Figure 4 presents an example showing the op-
eration of the algorithm.

The guarantee for the quali ty of the histogram returned by
algorithm OREEDY is established by the following Theorem.

THEOREM 2. Let D be the distribution and let H* be the
tiling k-histogram which minimizes HD-H*H]. If the sketch-
ing procedure preserves the distances exactly, then the pri-
ority histogram H reported by GREEDY satisfies [[D- Hilt <_
liD - H * [I ~ .

PROOF. The initial squared error of H is at most N M 2,
since all coordinates of D are smaller than or equal to M.
Consider H at any stage of the algorithm. If we added
all rectangles from H* to H with appropr ia te values, the
error of H would be reduced from HD - H[[~ to [[D -- H*[[~.
Thus, one of the rectangles must reduce the error by at least
1/k. (l iD- HI]22 - H D - H* H~). Therefore, if we add the best
rectangle S to H with the best value (forming Hs) , we have
that

2 D • 2][D- Hsi]2--[[- H]]2_< (1 - 1 / k) (l i D - Hli~ - i l D - H*[]2 2)

After i stages we have,

lID - Hil ~ - []D - H ' [[] _< (1 - 1/k) 'NM 2

If we set i ,~ kln(NM2), then the difference becomes at
most

(1 - - 1/k)~I"(NM2)NM2 < e-ln(NM2)NM3 = 1

Since the difference must be an integer, it is equal to 0. []

In the case of our algorithm, the sketches preserve the dis-
tances between D and H only approximately. However, the
following holds:

THEOREM 3. Let D and H* be as before. If the sketching
procedure preserves the distances up to a factor of (1 + elk),
then the priority histogram H reported by G R E E D Y satisfies
f i b - HH22 _< (1 + e) [[D - H'H22.

432

ALGORITHM GREEDY:
Distribution D : {1 . . .n} t ~ {1 . . .M}
Histogram H with B buckets, represented as a sequence o f hyperrectangles (Si, vl)
Matrix A chosen according to Theorem 1
Sketch A D of D computed with a single pass over the data s e t
Set N = n t
Initialize the histogram H to empty
F o r i = 1 to B = k l n (N M)

For all hyperrectangles S C {1.. . n} t
(1)Create the histogram Hs[x] obtained by adding the rectangle S to H

and set t ing its value to the indeterminate variable x
(2)Transform H s Ix] to its vector representation H[x]

Compute the sketch AI-f s[x]; note that the sketch is a linear function
in x with values in ~d

(3)Define Cs (x) =]lAHs[x] - AD[[~; observe that Cs (x) is a quadratic
function o f x

(4)Compute x which minimizes Cs(x) and denote i t by x s
Let S be the rectangle with the smallest value o f C s (x s)
Add S to H with value x s

F i g u r e 3: A lgor i thm GREEDY

1

Matrix A

40 50

i00 90

First Iteration Second Iteration
SI(01,01) xSl = 70 CSi(xS1) = I00 SI(01,01) xSl = 70 CSi(xSI) = i00
$2(00,01) xS2 = 140 CS2(xS2) = 140 $2(00,01) xS2 = 70 CS2(xS2) = 100
$3(Ii,01} xS3 = 140 CS3(xS3) = 140 $3(11,01) xS3 = 70 CS3(xS3) = i00
$4(01,00} xS4 = 45 CS4(xS4) = 268.7 $4(01,00) xS4 = 45 CS4(xS4) = 70.7
$5(01,ii) xS5 = 95 CS5(xS5) = 127.2 $5(01,11) xS5 = 95 CS5(xS5) = 70.7
$6(00,00) xS6 = 90 XS6(xS6} = 268.7 $6(00,00) xS6 = 20 CS6(xS6) = 70.7
$7(01,00) xS7 = 90 CS7(xS7} = 268.7 $7(01,00) xS7 = 20 CS7(xS7) = 70.7
$8(00,ii) xS8 = 190 CS8(xS8) = 127.2 $8(00,ii) xS8 = 120 CS8{xS8) = 70.7
$9(11,11) xS9 = 190 CS9(xS9} = 127.2 $9(ii,ii) xS9 = 120 CS9(xS9) = 70.7

-i -I -I -I
-i -I I 1 Aasl -280 0 AHS4 -230 50

D approximated with

45 45

70 70

AD = -280 100
Optimum Histogram { ($1, 70), ($4, 45} }

F i g u r e 4: E x a m p l e run o f a l g o r i t h m GREEDY~ us ing d = 2, and two d imens iona l data space D (n = 2). Rectang le s
Si r e p r e s e n t e d w i t h t h e i r e x t e n t in each d imens ion (horizontal~vertical) . Af ter the first i terat ion rectangle 81
is a d d e d to t h e o p t i m u m h i s t o g r a m . A t t h e e n d o f t h e second i terat ion 84 is a d d e d .

Thus, algorithm GREEDY provides a method for extract-
ing a neax-optimal histogram from a sketch which can be in-
crementally maintained under insertions, deletions and up-
dates, in polynomial time. However, the histogram recovery
t ime is very high. We present a sequence of modifications to
the basic GREEDY algorithm which will allow us to decrease
the running t ime by several orders of magnitude.

5.1 Improving the Running Time
We will be considering a series of improvements to the ba-

sic s t rategy of the algorithm in order to improve the running
time. To ease presentation we will restrict our discussion to
the case of two dimensions (~ = 2). Generalization to more
dimensions is straightforward.

Our first modification involves only the way we compute
the sketch AI-Is[x] and does not change the semantics of the
GREEDY algorithm. The basic idea of the improvement is
to observe that we can compute all sketches AI-Is [x] much
faster than in time n 6 times the cost of computing one
sketch. Notice that in step (2) of algorithm GREEDY, a new
sketch is computed for each rectangle S; this computat ion

requires t ime O (n 2 B) for each rectangle S, in the worst case.
We will take advantage of the fact that computing each co-
ordinate of A H s [x] essentially involves summing up all en-
tries of A corresponding to points in S. By enumerating
the rectangles S in a proper order this can be done in con-
stant (rather than O (n 2 B)) t ime per rectangle, using only
n additional units of storage.

The way to perform this computation is as follows. Con-
sider a rectangle S = { 1 . . . u} × {1 . . . v}. We will show how
to compute sketches for Hs,[x] for all O(n 2) S ' that axe
obtained by "translating" S. Given rectangle S, the set of
all O (n 2) rectangles obtained from S by translation, has
as lower left coordinates i , j , 1 _< n - u, 1 _< j _< n - v.
We show how to compute the first coordinate of the sketch
A/fs , Ix]; the remaining d - 1 coordinates axe computed in
the same way. Let a be the first row of A. Our goal is to
compute the dot product a • I-f s, [x] for every S' . We will
actually compute a • (/ f s ' [x] - H), (where H corresponds
to the vector representation of H) and then use the for-
mula a . I-Is, Ix] = a . . H + a - (/-is' [x] - _H). This formula
demonstrates the computat ion we will perform for exposi-

433

tion purposes only; as it will become evident, we do not need
to compute the vector representations of H and Hs, (~r and
Ars, respectively). Notice that if a is the first row of A, then
a • H is the first coordinate of the sketch of H. It remains
to show how to compute, a . (Ars, Ix] - ~r).

Let T : { 1 . . . n } 2 --+ N be a function such that T(p) =
a~-(Ars,[x] - H) (p) , where k E { 1 . . . n 2} is the index in a
corresponding to the point p. Observe tha t a- (Afs, [x] - ~r) =
T(q), where q is the upper-left corner of S' (with lowest val-
ues of coordinates) and T(q) = ~ , e s , T(p). Thus, it suf-

fices to compute ~'(q) for all points q, using small space (i.e.,
without explicitly maintaining the matr ix T) and in O(n 2)
time. This is done as follows. First , for each i = 1 . . . n,
compute and store the "column sum" Ti = ~ j=l T(j, i).
Note tha t each T~ can be computed in O(nB) time, di-
rectly from histogram H. Then T(1, 1) = ~i~--1 Ti, T(1, 2) =
T(1, 1) + T.+i - T1, etc. Thus we can compute all values
T(1, .) in O(nB) time. In order to compute values ~'(2, .), we
first update Ti 's via assigning Ti := Ti - T (1 , i) + T (u + 1, i).
Then we pzoceed as before. Altogether, we can compute all
values of T(q) in O(n2B) time, using n units of storage.

We remark that although our algorithm is not in-place
(i.e., it uses non-constant units of storage), the storage is
used only temporari ly for processing information. This means
tha t (unlike the memory used to store sketches), the same
memory region can be used to process histograms of many
relations.

We can further reduce the running t ime in practice, with-
out sacrificing the guarantees of Theorem 3. The idea is
to choose (in the step (4) of the algorithm) a rectangle S
which is "good-enough", as opposed to "the best one". Let
Hs be the histogram resulting after adding histogram S to
H. Specifically, we choose the first rectangle S such that

lID - Hll= - lID - Hsl[= > ~ / k - l i D - HI[2

for a parameter a > 0. Clearly, this method generates at
most k /a . l n (N M 2) rectangles in the output histogram. At
the same time, if no rectangle S satisfies the above inequality
(i.e., no choice of S yields significant improvements to the
quality of approximation), we can conclude tha t

5 . 2 E x t e n d i n g IMPROVED GREEDY t o O t h e r B a s i s
F u n c t i o n s

It is possible to extend the histogram construction to other
basis functions namely linear or quadrat ic functions, where
each hyperrectangle is equipped with a function tha t com-
putes the contribution of this hyperrectangle towards the
distribution of the tuple ti. For this purpose, the basic algo-
r i thm GREEDY needs to be modified, in order to optimize
the choice of several parameters per bucket (e.g., a linear
function in two dimensions is represented by 3 parameters) .
This can be done in a way similar to the 1-dimensional op-
t imization employed for the piecewise constant case [22].
All the possible ways of combining hyperrectangles, namely,
tiling, priority, non-overlap, additive etc. apply to this case
as well. Linear or quadrat ic functions usually result in a
bet ter fit for a single hyperrectangulax area, since we have
more than one value to represent the function.

6 . F A S T E R EMPIRICAL APPROACHES
Inspired by the operation of the algorithms and the im-

provements presented, in this section we reduce running t ime
further and present empirical approaches which we subse-
quently evaluate. Again, we restrict our discussion to the
two dimensional case (~ = 2) to ease presentation. Our dis-
cussion generalizes in a straightforward way to more than
two dimensions.

We consider replacing priority histograms in algori thm IM-
PROVED GREEDY with additive histograms. In this case, the
running t ime can be reduced by a factor of B. In priori ty
histograms, step (2) of IMPROVED GREEDY the sketch of the
candidate histogram Hs is computed from the sketch of the
currently opt imum histogram H. Recall, tha t during this
computation, one requires for each p 6 S the value H(p) ,
to assess the difference H (p) - x. Computing H(p) takes
O(B) t ime in the worst case, since we might need to scan
all rectangles in H to find one which contains p. However
in the case of additive histograms, for each p 6 S the dif-
ference between the est imate of Hs and that of H for point
p is x if p 6 S or 0 otherwise, and thus updat ing AHs[x]
is much faster. This leads to an algorithm with empirical
running time roughly O(n 2 log 2 nd) and worst-case running
time O(n 2 log 2 ndB).

The second modification involves restricting the search
HD-H[]2-]ID-H*H _< k([[D--H[[2-n~n[[D--HsH2) _< o~llD-HII2for the optimal rectangle S only among rectangles whose

which implies that

[[D- HI[2 _< i_~IaHD- H*II

and thus H is already an almost optimal solution. There-
fore, we output a histogram with at most O(kln(NM2) /a)
buckets, with cost at most (1 + a) larger than the cost of
H* (for small a) .

The benefit of using this version of the algori thm is that
during one enumeration of all rectangles S we can choose
several rectangles to add to H. This version of the algorithm
is expected to have running time reduced by a factor up to
B. We will assume the running time of O(n4dB) in further
analysis. We will refer to algorithm GREEDY incorporating
these improvements as IMPROVED GREEDY

side lengths are powers of 2; we call such rectangles regular.
This decreases the number of rectangles to consider from
O(n 4) to O(n 2log ~ n). Furthermore, the rectangles found
by our algorithms, usually have bounded aspect ratios and
therefore can be represented as a union of a few squares.
Thus, we restrict the search space in algorithm IMPROVED
GREEDY even further, by considering all squares of various
sizes instead of rectangles. This shaves off a factor of log n,
giving us a running t ime of O(n 2 log ndB) .

Finally, we adapt the idea of considering "good-enough"
rectangles in the approach of algorithm IMPROVED GREEDY,
in this case as well. A drawback of the "good-enough" algo-
r i thm is a fixed choice of the parameter c~. If c~ is too large,
the resulting histogram can have large error. On the other
hand, small value of o~ creates many buckets. To circumvent
this issue, we use the following approach: after enumerat ing
all rectangles S as candidates for extending H, we divide a
by 2 and proceed further. In this way we require new rect-

434

angles to produce large gains at the beginning, and much
smaller gains at the end when we axe close to optimum.
The empirical GREEDY algorithm (EGREEDY) we propose,
incorporat ing these properties is shown in Figure 5.

7. EXPERIMENTAL EVALUATION
In order to assess the performance and accuracy of the

proposed algorithms, we conducted a detailed performance
evaluation. We star t by presenting the da ta sets used in our
s tudy and continue with the description and presentation of
our evaluation.

Data s e t s

We used both synthetic and real da ta sets in our experi-
ments. The real da ta sets that we used, reflect real traffic
information collected from operational router devices. The
first real da ta set, which we refer to as Tragic1, represents
the amount of traffic information, for a specific measure of
traffic, at the granularity of a second, flowing through a
number of network elements for the durat ion of an entire
day 5. The second da ta set, which we refer to as Trai~ic2
is similar, but the measure used to quantify traffic demands
is different. These da ta sets can be t rea ted as two dimen-
sional, by computing for every network element source and
dest inat ion pair, the total amount of traffic for the corre-
sponding traffic measure in each da ta set. There are 100
distinct sources and destinations in these da ta set, thus the
domain size is 100xl00 in these da ta sets.

We also use synthetic da ta sets in our experiments. The
synthetic da ta sets are generated by a mixture of three Gaus-
sians, centered at random points, with variances 3, 3 and 5,
respectively; we refer to this da ta set as Gauss. All of our
experiments were performed on a dual-processor Intel ma-
chine (Pentium II, 300 Mhz) with 256 Mb main memory and
512 Kb cache on each processor, running Redhat Linux 6.2.

7.1 Description of Experiments
There are two main parameters of interest in our ap-

proach, namely the t ime to construct the opt imum histogram
for the various algorithms and the accuracy of the resulting
histograms. In this section we experimentally evaluate both
parameters for the algorithms proposed.

To assess the quality of our algorithms for histogram ex-
t ract ion from a sketch, we compare them with histograms
computed by an algorithm that operates directly on the
data; that is, the algorithm does not use sketches, but in-
s tead assumes the distribution of the da ta is available and
operates directly on the da ta distr ibution, computing a his-
togram from the actual data. For this purpose, we chose
the recently proposed STHoles algorithm [5]. The nice fea-
ture of this algorithm is that it is dynamic in the sense that
it learns a good multidimensional histogram from the da ta
by posing queries. Moreover, it was experimentally demon-
s t ra ted in [5] that the quality of the histograms constructed
by the STHoles algorithm is comparable with the quality of
histograms generated by other algorithms that have been
previously shown to compute good multidimensional his-
tograms. Thus, STHoles is a natural candidate to serve as a
benchmark in our setting. As proposed by Bruno et. al., [5],
we trained the STHoles algorithm using 1000 queries with

5The proprietary nature of these da ta sets prohibits us from
providing additional details.

1% query volume. In contrast, our algorithms assume no a
priori knowledge of the da ta distribution. Wi th a single pass
on the da t a (as the s tream tuples arrive) we incrementally
upda te a sketch of a specific size and, on demand, we run
our algori thms to extract a histogram from the sketch.

For a query Q, let AQ be the exact query answer computed
by executing the query On the actual data, UQ the query
est imate assuming a uniform da ta distr ibution and HQ the
query result re turned by the histogram. Following previous
work [5, 21] we define the absolute relative A R E error as

A R E = IAQ - HQI
IAQ - UQI

The average absolute relative error (AARE) is computed by
averaging ARE of a large number of queries uniformly dis-
t r ibuted, chosen such tha t the volume of the range is equal
to 1% of the total grid volume. It is given as a percentage
in the graphs below.

7.2 Evaluating IMPROVED GREEDY

The first set of experiments evaluates the quality and per-
formance of the IMPROVED GREEDY algorithm. Figure 6(a)
presents the accuracy of the IMPROVED GREEDY algorithm
as the number of buckets increases for different sizes of the
sketch. The da ta set Gauss in used in this experiment with
a domain of 20 in each dimension. The sketch size varies
from 50 bytes to 200 bytes. One can observe from the figure
that accuracy increases, with increasing number of buckets
as expected. Moreover the histograms extracted by the al-
gori thm become more accurate as the sketch size increases,
since the sketch tracks the underlying distr ibution more ac-
curately. F o r a small sketch size (50) the quality of the his-
togram remains low if we increase the number of buckets. In
this case, the error induced by sketching is large enough to
obscure any differences between accurate or inaccurate his-
tograms. However, as we increase the sketch length to 100,
we can see an improvement of the quality for larger num-
ber of buckets. This t rend becomes even more visible for
sketch length 200, where the error is reduced from 35% (for
5 buckets) to 18% (for 30 buckets). Figure 6(a) presents
also the accuracy of algorithm STHoles as the number of
buckets increases. For a small number of buckets and for
various sketch sizes algorithm IMPROVED GREEDY outper-
forms STHoles by a large factor. Notice that STHoles has
the exact da t a distr ibution at its disposal, but algori thm IM-
PROVED GREEDY operates only on an approximation of the
distr ibution extracted from the sketch. As the number of
buckets increases, STHoles improves; in this case algori thm
IMPROVED GREEDY is comparable in accuracy.

Figure 6 presents the t ime algorithm IMPROVED GREEDY
requires, to extract the opt imum histogram for 10 buckets
and a sketch of size 50 as the domain of the underlying da ta
space increases. The running t ime is consistent with the
analytical expectations, and increases fast as a function of
the domain size of the underlying stream. Thus, although
algorithm IMPROVED GREEDY is very accurate, being able
to be comparable (as well as outperform) in accuracy algo-
r i thms having exact knowledge of the da ta distr ibution, the
t ime required to extract the guaranteed opt imum histogram
is high. Similar results were obtained for the real da t a sets
as well as addit ional synthetic da ta sets we experimented
with during the course of this study. Algorithm EGREEDY
compensates the high running time of IMPROVED GREEDY.

435

A L G O R I T H M E G R E E D Y :

Distribution D : {1. . . n} t --+ {1. . . M}, represented as an N ---- n t vector
Histogram H with B buckets, represented as a sequence of rectangles (S i ,v i)
S H the sketch of H, a d-dimensional vector
Matrix A chosen according to Theorem 1
Sketch AD of D computed with a single pass over the data set
Parameter o~
Initiate the histogram H to empty
Fori = 1 to B : k l n (N M 2)

For all squares S C {1. . . n} t
(1)Create the histogram Hs[x] obtained by adding the rectangle S to H

and setting its value to the indeterminate variable x
(2)Compute the sketch AI~s[x] from S H according to section 5.1
(3)Define Cs(x) = [[Air[x] - AD[[~; observe that Cs(x) is a quadratic

function of x. Define C = [[SH - AD[I~
(4)Compute x with [[C - Cs(x)ll > ~ / k . c and denote it by x s

Let S be the rectangle satisfying (4) and AH' the corresponding sketch

Add S to H with value x s , set S H = A~r' and ot --

Figure 5: A l g o r i t h m E G R E E D Y

\
\

\
80

A O

2 0

S t O 1 5 2 0 3 0

N u m b e r o f B ~ k ~ s

[¢ ~ k l ~ h - 5 0 , I S k e l c h - 1 O 0 ~ Sk . tch .200 + e T H 0 1 . $]

- i
ooo l

7oo l

eoo

| .o° []
400

~ o o . H 200.
lOO - 1 - -

o
ox i o i sx 1 s 2ox2o

~ t . . p . ~ .uffi.

(a) IMPROVED GREEDY accuracy (b) extract ion t ime

Figure 6: Data set Gauss: (a) Accuracy of IMPROVED GREEDY a lgor i thm wi th increasing n u m b e r o f bucke t s for
various sketch s izes (b) H i s t o g r a m ex trac t ion t i m e for the a lgor i thm, for a sketch s ize of 50 and 10 bucke t s
as the domain of the under ly ing data space increases

We present an evaluation of this algori thm in the sequel.

7.3 Eva lua t ing EGREEDY
In this section, we evaluate the performance of EGREEDY

using real da ta sets. Figure 7(a) presents the accuracy of
the histograms extracted by EGREEDY as a function of the
total number of buckets, for different sizes of the sketch.
Figure 7(a) presents also for comparison, the accuracy of the
corresponding histograms computed by algori thm STHoles
for the same range of buckets.

As is evident in Figure 7 for all sketch sizes, the opti-
mal number of buckets is axound 50; increasing the number
of buckets beyond this quanti ty essentially does not reduce
the error any further. This can be explained by the fact
tha t beyond certain ranges of bucket numbers, the differ-
ences between histograms become undetectable. A similar
observation is evident for the STHoles algorithm as well. In
particular, the improvement gained by increasing the num-
ber of buckets beyond 50 is fairly small and uneven. Algo-
r i thm E G R E E D Y is comparable in accuracy to STHoles for
small sketch sizes and capable to outperform STHoles as

the sketch size increases, for the same ranges of buckets as
is evident in figure 7(a).

Although the optimal number of buckets seems invaxiant
with respect to the sketch size, the resulting error of the
approximation decreases significantly as the sketch size in-
creases. For a total bucket budget of 50, we depict the error
as a function of the sketch size in Figure 7(b). I t should be
noted tha t the error is roughly proport ional to the square
root of the sketch size, which is the dependence predicted
by the Johnson-Lindenstranss lemma (lemma 1). This be-
havior is very useful, since it allows us to predict the sketch
length necessary for achieving certain error.

Figure 8(a) presents the running t ime of algori thm EGREEDY
as a function of the number of buckets for different sketch
sizes. For exposition purposes only, we also depict the t ime
to construct the STHoles histogram. The construction t ime
for STHoles is not really comparable with tha t of EGREEDY
since STHoles operates assuming tha t the entire da ta is
available and issues a large number of queries to "learn"
the distribution. Figure 8(b) presents the running t ime of
EGREEDY for two different bucket budgets increasing the to-

436

B O

~ o 2 o a n 4 o s o 7 5 • o o

N . m b e r o f B.oke t .

ii iiii!ii iii

8 k o t ~ h 8 1 z o

o o o

(a) Error, increasing number of buckets for various (b) Error versus sketch size for 50 buckets

F igu re 7: E r r o r t r e n d s for EGREEDY a n d S T H o l e s for d a t a set Traffic1: (a) Errors inc reas ing n u m b e r o f b u ck e t s
for va r ious ske t ch sizes (b) E r r o r as a f u n c t i o n o f ske tch size for 50 b u c k e t s

!i!!iiiiiiiiiiiiiiiiiiiiiiiiii!!!i
~i~iiiiiiiiii~i~iiiiiiiiiii ii:iiiiiiiiiiiii;~iiiiiiiiiiiiiiiii!iiii!!

o
s o ° 1 ~ o 2 o o o

~ k o t © h m = o

F igu re 9: A c c u r a c y o f e x t r a c t e d h i s t o g r a m s for 100
bucke t s as t h e ske t ch size increases~ for d a t a set
Traffics

tal sketch size. It is evident that the time EGREEDY requires
to extract a good histogram from the sketch is clearly im-
proved compared to that of GREEDY, without great loss in
accuracy. This makes algorithm EGREEDY efficiently appli-
cable to problems of larger scale (distribution domain sizes).

For the case of data set Tra~cP, the overall observations
and trends where very similar to that of Trafflcl; thus, we
omit these graphs for brevity. We present however, in Figure
9 the accuracy of the histograms extracted by EGREEDY for
100 buckets as the sketch size increases.

Finally, we visually demonstrate the quality of the his-
tograms algorithm EGREEDY is able to extract from the
sketch of a data set. Figure 10(a) presents the distribution
of data set Tra~cl and Figure 10(b) its histogram approx-
imation, using algorithm EGREEDY, with 50 buckets and a
sketch size of 1000. The quality of approximation is visu-
ally evident; we remark that this histogram is obtained by a
single pass over data set Tra~cl and subsequent extraction
from the sketch.

8. C O N C L U S I O N S
In this paper we have introduced a very efficient method

to track the distribution of a multiattribute continuous data
stream. We have presented a sketch based approach amenable
to incremental updates to maintain a snapshot of the un-
derlying multidimensional distribution. We proposed algo-
rithms with approximate guarantees to extract an optimum
multidimensional histogram from the sketch and analyti-
cally demonstrated the accuracy and guarantees of our algo-
rithms. These axe the first algorithms proposed with these
properties.

Since the running time of the optimum histogram extrac-
tion algorithm is high, we proposed efficient empirical ap-
proaches and we have experimentally demonstrated using
real and synthetic data sets that the proposed methods are
able to approximate the best histogram solution with high
accuracy.

This work raises a variety of interesting questions for fur-
ther exploration and study. In particular, the sketch-based
technique for tracking the distribution of data streams seems
quite versatile. Initial examination indicates that many
static algorithms known in the literature (e.g., the hierar-
chical partitioning methods of [29]) can be re-implemented
to work when only the sketch of the data is available, with-
out any access to the actual data. This raises the possibility
of improving the quality of computed histograms even fur-
ther, by using more elaborate algorithms than the greedy
approach used in this paper. We plan to investigate these
approaches in our future work in this area.

A c k n o w l e d g m e n t s . The authors would like to thank
Muthu Muthukrishnan, for several important suggestions on
the preliminary version of this paper. In particular, we axe
grateful for pointing to us the references [23, 29] as well as
indicating that the algorithms from [29] could be amenable
to the sketching approach.

9. REFERENCES
[1] A. Aboulnaga and S. Chaudhuri. Self Tuning

Histograms: Building Histograms Without Looking at
Data. Proceedings of ACM SIGMOD, pages 181-192,
June 1999.

[2] S. Acharya, P. Gibbons, V. Poosala, and
S. Ramaswamy. The Aqua Approximate Query
Answering System. Proceedings of ACM SIGMOD,

437

1 B o o . a ~

r

ooo

/
/

/ J°°t
4 O O

(a) Extraction time for ~GRnEDY (b) Histogram extraction t ime for EGREEDY

F i g u r e 8: T r e n d s in t i m e for EGREEDY and d a t a se t ~Pra~cl: (a) E x t r a c t t i m e for EGREEDY~ increas ing n u m b e r
o f b u c k e t for var ious s k e t c h s i z e s (b) H i s t o g r a m e x t r a c t i n g t i m e for E G R E E D Y aS a f u n c t i o n o f s k e t c h s i z e for
50 and 100 b u c k e t s

0

20

160

140

120

100

80

6O

40

20

,vv
IO0

0 10 20 30 40 50 60 70 80 90

140

10

8

6

4

2

20 30 4U ~u --
0 10

(a) Distribution of data set Tra~cl (b) Approximating TRAFFICX using EGREEDY

Figure 10: D i s t r i b u t i o n o f Tragic1 and i ts a p p r o x i m a t i o n w i t h EGREEDY

100

438

Philladephia PA, pages 574-578, June 1999.
[3] B. Babcock, M. Datar, and R. Motwani. Sampling

From a Moving Window Over Streaming Data.
Proceedings of the Symposium on Discrete Algorithms,
2002.

[4] S. Babu and J. Widom. Contineous Queries Over
Data Streams. SIGMOD Record, Sept. 2001.

[5] N. Bruno, L. Gravano, and S. Chandhuri. STHoles: A
Workload Aware Multidimensional Histogram.
Proceedings of ACM SIGMOD, May 2001.

[6] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining Stream Statistics over Sliding Windows.
Proceedings of the Symposium on Discrete Algorithms,
2002.

[7] P. Gibbons, Y. Mattias, and V. Poosala. Fast
Incremental Maintenance of Approximate Histograms.
Proceedings of VLDB, Athens Greece, pages 466-475,
Aug. 1997.

[8] A. Gilbert, S. Guha, P. Indyk, Y. Kotadis,
S. Muthukrishnan, and M. Strauss. Fast, small-space
algorithms for approximate histogram maintanance.
Proc. STOC, 2002.

[9] A. Gilbert, Y. Kotadis, S. Muthukrishnan, and
M. Strauss. Quicksand: quick summary and analysis
of network data. DIMACS tech report.

[10] A. Gilbert, Y. Kotadis, S. Muthukrishnan, and
M. Strauss. Surfing Wavelets on Streams: One Pass
Summaries for Approximate Aggregate Queries.
Proceedings of VLDB, pages 79-88, 2001.

[11] J. Gray, A. Bosworth, A. Leyman, and H. Pirahesh.
Data Cube: A Relational Aggregation Operator
Generalizing Group-by, Cross Tab and Sub Total.
Proceedings of ICDE, pages 152-159, May 1996.

[12] M. Greenwald and S. Khanna. Space-Efficient Online
Computation of Quantile Summaries. Proceedings of
ACM SIGMOD, Santa Barbara, May 2001.

[13] S. Guha and N. Koudas. Approximating a Data
Stream for Querying and Estimation: Algorithms and
Performance Evaluation. ICDE, Feb. 2002.

[14] S. Guha, N. Koudas, and K. Shim. Data Streams and
Histograms. Symposium on the Theory of Computing
(STOC), July 2001.

[15] S. Guha, N. Mishra, R. Motwani, and L. O'callahan.
Clustering Data Streams. Foundations of Computer
Science (FOCS), Sept. 2000.

[16] D. Gunopulos, G. Kollios, V. Tsotras, and
C. Domeniconi. Approximating Multi-Dimensionai
Aggregate Range Queries Over Real Attributes.
Proceedings of ACM SIGMOD, June 2000.

[17] P. Haas, J. Nanghton, S. Seshadri, and L. Stokes.
Sampling Based Estimation Of the Number Of
Distinct Values Of An Attribute. Proceedings of
VLDB, pages 311-322, June 1995.

[18] P. Haas, J. Naughton, S. Seshadri, and A. Swami.
Fixed Precision Estimation Of Join Selectivity.
Proceedings of ACM PODS, pages 190-201, June 1993.

[19] P. Haas and A. Swami. Sequantial Sampling
Procedures for Query Size Estimation. Proceedings of
ACM SIGMGD, San Diego, CA, pages 341-350, June
1992.

[20] P. Indyk. Stable Distributions, Pseudorandom

Generators, Embeddings and Data Stream
Computation". Foundations of Computer Science
(FOCS), Sept. 2000.

[21] Y. Ioannidis and V. Poosala. Balancing Histogram
Optimality and Practicality for Query Result Size
Estimation. Proceedings of ACM SIGMOD, San Hose,
CA, pages 233-244, June 1995.

[22] H. V. Jagadish, N. Koudas, S. Muthukrishnan,
V. Poosala, K. C. Sevcik, and T. Suel. Optimal
Histograms with Quality Guarantees. Proceedings of
VLDB, pages 275-286, Aug. 1998.

[23] S. Khanna, S. Muthukrishnan, and S. Skiena. Efficient
array partitioning. Proe. ICALP, 1997.

[24] R. P. Kooi. The Optimization of Queries in Relational
Databases. PhD Thesis, Case Western Reserve
University, Sept. 1980.

[25] J. Lee, D. Kim, and C. Chung. Multidimensional
Selectivity Estimation Using Compressed Histogram
Information. Proceedings of ACM SIGMOD, pages
205-214, June 1999.

[26] S. Madden and M. Franklin. Fjording the Stream: An
Architecture for Queries Over Streaming Sensor Data.
Proceedings of ICDE, Feb. 2002.

[27] Y. Mattias, J. S. Vitter, and M. Wang.
Wavelet-Based Histograms for Selectivity Estimation.
Proc. of the 1998 ACM SIGMOD Intern. Conf. on
Management of Data, June 1998.

[28] Y. Mattias, J. S. Vitter, and M. Wang. Dynamic
Maintenance of Wavelet-Based Histograms.
Proceedings of the International Conference on Very
Large Databases, (VLDB), Cairo, Egypt, pages
101-111, Sept. 2000.

[29] S. Muthukrishnan, V. Poosala, and T. Suel.
Partitioning two dimensional arrays: algorithms,
complexity and applications. Proc. Intl Conf.
Database Theory, 1998.

[30] V. Poosala and Y. Ioannidis. Selectivity Estimation
Without the Attribute Value Independence
Assumption. Proceedings of VLDB, Athens Greece,
pages 486-495, Aug. 1997.

[31] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita.
Improved Histograms for Selectivity Estimation of
Range Predicates. Proceedings of A CM SIGMOD,
Montreal Canada, pages 294-305, June 1996.

[32] G. Singh, S. Rajagopalan, and B. Lindsay. Random
Sampling Techniques For Space Efficient Computation
Of Large Dataset s. Proceedings of SIGMOD,
Philladelphia PA, pages 251-262, June 1999.

[33] J. Vitter and M. Wang. Approximate computation of
multidimensional aggregates on sparse data using
wavelets. Proceedings of SIGMOD, pages 193-204,
June 1999.

[34] J. Vitter, M. Wang, and B. R. Iyer. Data Cube
Approximation and Histograms via Wavelets. Proc. of
the 1998 ACM CIKM Intern. Conf. on Information
and Knowledge Management, November 1998.

[35] Y. Wu, D. Agrawal, and A. E. Abbadi. Applying the
Golden Rule of Sampling for Selectivity Estimation.
Proceedings of ACM SIGMOD, May 2001.

439

