Algorithmic Applications of Low-distortion Geometric Embeddings

Piotr Indyk

MIT
Low-distortion geometric embeddings

Formally: a mapping $f : P_A \rightarrow P_B$:

- P_A: points from metric space with distance $D(\cdot, \cdot)$
- P_B: points from some normed space, e.g., l_2^d
- For any $p, q \in P_A$

$$1/c \cdot D(p, q) \leq \|f(p) - f(q)\| \leq D(p, q)$$

Parameter c is called “distortion”.
Other embedding definitions possible
Overview of the remainder of the talk

- Motivation
 - General
 - Example: diameter in l_1^d

- Embeddings of finite metrics
 - into norms (Bourgain’s theorem, Matousek’s theorem, etc.)
 - into probabilistic trees (Bartal’s theorem)

- Embeddings of norms into norms
 - dimensionality reduction (e.g., $l_2^{high} \rightarrow l_2^{small}$)
 - switching norms (e.g., $l_2 \rightarrow l_1$)

- Embeddings of special metrics into norms
 - string edit distance
 - Hausdorff metric
Why embeddings

- Reductions from “hard” to “easy” spaces:

 ![Diagram showing reductions from "Hard" to "Easy" spaces]

- Widely applicable

- Many tools available
 (combinatorics, functional analysis)
Example: diameter in l_1^d

- Given: a set P of n points in l_1^d
- Goal: the diameter of P, i.e.,

$$\max_{p,q \in P} \| p - q \|_1$$
Algorithms for diameter in l_1

- Easy: $O(dn^2)$ time
- Can we reduce the dependence on n (e.g., if d constant)?

We will show $O(2^d n)$-time algorithm via:

- Embedding l_1^d into l_∞^d
- Solving the problem in l_∞
Algorithm for diameter in $l_{\infty}^{d'}$

\[
\max_{p,q \in P} \| p - q \|_{\infty}
\]

\[
= \\
= \max_{p,q \in P} \max_{i=1 \ldots d'} |p_i - q_i|
\]

\[
= \max_{i=1 \ldots d'} \left(\max_{p,q \in P} |p_i - q_i| \right)
\]

\[
= \max_{i=1 \ldots d'} \left(\max_{p \in P} p_i - \min_{q \in P} q_i \right)
\]

Running time: $O(d'n)$.
Embedding l^d_1 into l^2_∞

The mapping f is defined as:

$$f(p) = \langle s_0 \cdot p, s_1 \cdot p, \ldots, s_{2^d-1} \cdot p \rangle$$

where s_i is the ith vector in $\{-1, 1\}^d$. Then

$$\|f(p) - f(q)\|_\infty = \|f(p - q)\|_\infty = \max_s |s \cdot (p - q)|$$

$$= \max_s \left| \sum_{i=1}^{d} s_i \cdot (p - q)_i \right| = \left| \sum_{i=1}^{d} \text{sgn}((p - q)_i)(p - q)_i \right|$$

$$= \sum_{i=1}^{d} |(p - q)_i| = \|p - q\|_1$$

Running time: $O(d2^d n)$.
Properties of the embedding

- Isometry (distortion $c = 1$)
- Linear
- Oblivious: $f(p)$ does not depend on P
- Deterministic
- Explicit
Overview of the talk

- Motivation
 - General
 - Example: diameter in l_1^d

- Embeddings of graph-induced metrics
 - into norms (Bourgain’s theorem, Matousek’s theorem, etc.)
 - into probabilistic trees (Bartal’s theorem)

- Embeddings of norms into norms
 - dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
 - switching norms

- Embeddings of special metrics into norms
 - string edit distance
 - Hausdorff metric
Embeddings of finite metrics into norms

Embeddings of $M = (X, D)$ into l^d_p

- X - finite set, $|X| = n$

- D - distance metric (symmetry, triangle inequality etc)

- $D(p, q)$ - shortest distance between p and q in some graph:
 - general graphs \Rightarrow general metrics
 - planar graphs, trees etc \Rightarrow more specialized metrics
General finite metric into norms

Bourgain’s theorem (1985):

Any $M = (X, D)$ can be embedded into l_2^d with distortion $O(\log n)$.

- d: originally exponential in n, can be reduced to $O(\log^2 n)$ [Linial-London-Rabinovitch’94]

- Proof yields randomized algorithm with $O(n^2 \log^2 n)$ running time, can be derandomized

Seminal result:

- Initiated the investigation of embedding finite metrics

- Introduced proof technique which works for other norms and graph classes
The l_∞ version

Matousek’s theorem (1996):

For any $b > 0$, any metric $M = (X, D)$ can be embedded into l_∞^d with distortion $c = 2b - 1$ for $d = O(bn^{1/b} \log n)$.

- Implies $O(\log n)$-distortion embedding into $l_\infty^{\log^2 n}$
 $\Rightarrow O(\log^2 n)$-distortion embedding into l_2

- Proof somewhat easier than Bourgain’s proof

- Same technique
Proof: no-distortion case

Assume \(c = 1 \). Will show \(d = n \) (Frechet, 19??).

Let \(X = \{p_1, \ldots, p_n\} \). Consider a mapping \(f \) defined as:

\[
f(p) = < D(p, p_1), \ldots, D(p, p_n) >
\]

Need to show \(|f(p) - f(q)|_\infty = D(p, q) \).

- \(f \) is a contraction, since for any \(p_i \in X \)

\[
|D(p, p_i) - D(q, p_i)| \leq D(p, q)
\]

\[
\Rightarrow |f(p) - f(q)|_\infty = \max_{p_i} |D(p, p_i) - D(q, p_i)| \leq D(p, q)
\]

- \(f \) does not “shrink” too much, since

\[
|f(p) - f(q)|_\infty = \max_{p_i} |D(p, p_i) - D(q, p_i)|
\]

\[
\geq |D(p, p) - D(p, q)| = D(p, q)
\]
Proof: general distortion

Modifications:

- “Witness” is a set, not a point, i.e.,
 - Define $D(p, A) = \min_{a \in A} D(p, a)$
 - Define
 \[f(p) = \langle D(p, A_1), \ldots, D(p, A_d) \rangle \]
 for carefully chosen sets $A_i \subset X$

- Advantage: can achieve $d = o(n)$

- Drawback: “non-shrinking” only approximate, i.e., for any p, q there exists A_i such that
 \[|D(p, A_i) - D(q, A_i)| \geq D(p, q)/c \]
Matousek’s proof by picture

For each p, q:

1. There are $r_p, r_q > 0$, $r_q \geq r_p + D(p, q)/c$, and A_i, such that
 - A_i hits the ball B_p of radius r_p around p
 - A_i avoids the ball B_q of radius r_q around q

 (or the same for p swapped with q). This implies

 \[|D(p, A_i) - D(q, A_i)| \geq D(p, q)/c, \text{ for some } A_i \]

2. $|D(p, A_i) - D(q, A_i)| \leq D(p, q)$ for all A_i

 (follows from triangle inequality)
Matousek’s proof, ctd.

Need to construct the sets A_i (the red dots).

Main ideas:

1. Ensure existence of r_p, r_q such that the volume of B_p is not much smaller than the volume of B_q, and B_p, B_q disjoint (volume \equiv cardinality)

2. Choose A_i’s at random with proper density, so that with good probability it hits B_p and avoids B_q (prob. of including each point $\approx 1/vol. \ of \ B_q$)
Main lemma

Lemma: For each p, q there exists r such that

$$\frac{|B(p, r)|}{|B(q, r + D(p, q)/c)|} \geq 1/n^{1/b}$$

or vice-versa, and the two balls are disjoint. (recall that $c = 2b - 1$)

Proof: Start from $r = 0$. Check if $|B(p, 0)|$ not much smaller than $|B(q, D(p, q)/c)|$.

If so, we are done.
Main lemma: proof ctd.

Otherwise, swap the roles of p, q and take $r = D(p, q)/c$.

Check if $B(q, r)$ not much smaller than $B(p, r + D(p, q)/c)$. If so, we are done. Otherwise, repeat.

Observations:

- The process could take b steps until B_p, B_q overlap

- If the balls grew by $> n^{1/b}$ each time, they would have $> n$ volume at the end
Matousek’s proof: the end

We know that there exists r such that

$$|B(p, r)| \geq \frac{|B(q, r + D(p, q)/c)|}{n^{1/b}}$$

and the two balls are disjoint.

If we choose A_i by including each point to A_i with probability $\approx 1/|B(q, r + D(p, q)/c)|$, then the probability that

- A_i hits $B(p, r)$
- A_i avoids $B(q, r + D(p, q)/c)$

is $\approx 1/n^{1/b}$.

Generating A_is $O(bn^{1/b}\log n)$ times, with different probabilities (to make sure we are OK for all densities), gives high probability of success.
Summing up

- We showed that any metric can be embedded into l^d_∞ with distortion $c = 2b - 1$, $d = O(bn^{1/b} \log n)$

- For $b = \log n$ we get $c = O(\log n)$, $d = O(\log^2 n)$
 $\Rightarrow O(\log^2 n)$-distortion embedding into l_2

- Proof of Bourgain’s theorem requires more “counting”
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Distortion</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>l_2</td>
<td>$O(\log n)$</td>
<td>Bourgain’85</td>
</tr>
<tr>
<td>any</td>
<td>$l_\infty^{O(bn^{1/b}\log n)}$</td>
<td>$2b - 1$</td>
<td>Matousek'96</td>
</tr>
<tr>
<td>expanders</td>
<td>$l_p, p = O(1)$</td>
<td>$\Omega(\log n)$</td>
<td>LLR’94</td>
</tr>
<tr>
<td>high girth graphs</td>
<td>any norm with dim $\Omega(n^{1/b})$</td>
<td>$2b - 1$</td>
<td>Matousek'96 (Erdos conj.)</td>
</tr>
<tr>
<td>planar</td>
<td>l_2</td>
<td>$\Theta(\sqrt{\log n})$</td>
<td>Rao’99, Newman-Rabinovich’02</td>
</tr>
<tr>
<td>planar</td>
<td>$l_\infty^{\log^2 n}$</td>
<td>$O(1)$</td>
<td></td>
</tr>
<tr>
<td>outerplanar</td>
<td>l_1</td>
<td>$O(1)$</td>
<td>GNRS’99</td>
</tr>
<tr>
<td>trees</td>
<td>l_1</td>
<td>1</td>
<td>folklore</td>
</tr>
<tr>
<td>trees</td>
<td>$l_\infty^{O(\log n)}$</td>
<td>1</td>
<td>LLR’94</td>
</tr>
<tr>
<td>trees</td>
<td>l_2</td>
<td>$\Theta(\sqrt{\log \log n})$</td>
<td>Matousek</td>
</tr>
<tr>
<td>(1,2)-metric with B 1’s</td>
<td>$l_\infty^{O(B \log n)}$ (also l_p’s)</td>
<td>1</td>
<td>Trevisan’97, I’00</td>
</tr>
</tbody>
</table>
Volume-respecting embeddings [Feige’98]

- Stricter notion of embedding
- Ensures low distortion of k-dimensional “volumes”
- Specializes to ordinary embedding for $k = 2$
- Proof uses Bourgain’s technique in elaborate way (and implies Bourgain’s theorem for $k = 2$)
Applications (of embeddings into norms)

• Approximation algorithms: Bourgain’s theorem, volume-respecting embeddings

• Proximity-preserving labelling: Matousek’s theorem

• Hardness results: $(1,2)$-metrics
App I: Approximation algorithms

Sparsest cut problem:

Given:

- graph $G = (V, E)$, cost $c : E \rightarrow \mathbb{R}^+$
- k terminal pairs $\{s_i, t_i\}$, with demands $d(i)$

Goal: find $S \subset V$ minimizing

$$
\rho(S) = \frac{\sum_{u \in S, v \in V - S} c(\{u, v\})}{\sum_{i: s_i \in S, t_i \in V - S} d(i)}
$$
Sparsest cut: algorithm

- Long history, starting from [Leighton-Rao’88]

- Best so far: $O(\log k)$-approximation [Linial-London-Rabinovich’94, Aumann-Rabani’94]

- Method:
 - Solve linear relaxation of the problem - the solution forms a metric
 - Embed the metric into l_1
 - Solve the problem optimally assuming a metric induced by l_1

- Comments:
 - $O(\log k)$ comes from Bourgain’s theorem
 - Easier metric \Rightarrow better bounds (e.g., planar graphs)
 - Embedding does not provide a straightforward reduction
Applications of v. r. embeddings

- Min graph bandwidth: \(\log^{O(1)} n \)-approximation [Feige’98, Dunagan-Vempala’01]

- VLSI design problems [Vempala’98]

Again, embeddings do not provide straightforward reductions.
App II: Proximity-preserving labelling

Proximity-preserving labelling [Peleg'99]

- Given: a metric $M = (X, D)$, distortion c
- Goal: to find a labelling $f : X \rightarrow \{0, 1\}^d$ such that
 - given $f(p), f(q)$ we can estimate $D(p, q)$ up to a factor of c
 - d as small as possible
Proximity-preserving labelling

Immediate application of low-distortion embeddings:

- Matousek’s theorem gives best bound for general metrics

- Best isometric labelling scheme for trees also follows from embeddings (but not for constant tree-width graphs)

Implications in other direction [GPPR'01]:

- $\Omega(n^{1/2}/\log n)$ dimension lower bound for isometric embeddings of bounded degree graphs

- $\Omega(n^{1/3}/\log n)$ for bounded degree planar graphs
App III: Hardness

Necessity of double exponential dependence on d of PTAS's in l^d_p (e.g., for TSP) [Trevisan'97, I'00]

- Consider $(1,2)$-B metrics:
 - Distances 1 and 2,
 - At most B 1's per vertex, $B = O(1)$

- $(1 + \epsilon)$-approximating TSP in such metrics is NP-hard [Papadimitriou-Yannakakis'87]

- But such metrics can be embedded into $l^O_p(B \log n)$
 - With very small distortion (and somewhat weaker def of embedding) for $p < \infty$ [Trevisan'97]
 - With no distortion for $p = \infty$ [I'00]

- Therefore, cannot have $2^{2^{\omega(d)}}$ time unless

 $$\text{NP} \subset \text{DTIME} \left(2^{2^{\omega(\log n)}}\right) \subset \text{DTIME} \left(2^{\omega(n)}\right)$$
A digression

Embeddings used for all of the aforementioned applications:

• Approximation algorithms

• Proximity-preserving labelling

• Hardness (for l_∞)

are based on Bourgain’s technique of “witness sets”.
Overview of the talk

• Motivation
 – General
 – Example: diameter in l_1^d

• Embeddings of graph-induced metrics
 – into norms (Bourgain's theorem, Matousek's theorem, etc.)
 – into probabilistic trees (Bartal's theorem)

• Embeddings of norms into norms
 – dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
 – switching norms

• Embeddings of special metrics into norms
 – string edit distance
 – Hausdorff metric
Embeddings into probabilistic trees

Probabilistic metric is a convex combination of metrics, i.e.,

• if T_1, \ldots, T_k are metrics, $T_i = (X, D_i)$

• and $\alpha_1 \ldots \alpha_n > 0$, $\sum_i \alpha_i = 1$

• then the prob. metric $M = (X, \overline{D})$ is defined by

$$\overline{D}(p, q) = \sum_i \alpha_i D_i(p, q)$$

If T_i chosen with probability α_i, then

$$E[D_i(p, q)] = \overline{D}(p, q)$$
Probabilistic embeddings

For

- a metric $M_Y = (Y, D)$, and

- probabilistic metric $M_X = (X, \overline{D})$ defined by $T_i = (X, D_i), i = 1 \ldots k$

a mapping $f : Y \rightarrow X$ is a probabilistic embedding of M_Y into M_X with distortion c if for any $p, q \in Y$:

1. f expands by at most a factor of c on the average, i.e.,
 \[\overline{D}(f(p), f(q)) \leq cD(p, q) \]

2. f never contracts, i.e.,
 \[\min_i D_i(f(p), f(q)) \geq D(p, q) \]

This is more than just an ordinary embedding of M_Y into M_X!
Why embed into probabilistic trees?

Not possible to embed a cycle metric into a tree metric [Rabinovitch-Raz, Gupta'01] with $o(n)$ distortion.

Can do much better for probabilistic trees! (for any metric)

- [AKPW’91]: $2^{O \left(\sqrt{\log n \log \log n} \right)}$ distortion

- [Bartal’96] and [Bartal’98]:
 - $O(\log^2 n)$ and $O(\log n \log \log n)$ distortion
 - Simpler class of trees
 (Hierarchically Well-Separated Trees)
 - Many applications

Imply identical results for embeddings into l_1
Proof of weaker bound

We’ll “show” $O(\log^3 n \cdot \log \Delta)$ distortion
(Δ - furthest/closest pair ratio)

Contains essential elements of [Bartal’96], with additional ideas.

Proof:

• Embed $M = (Y, D)$ into l^d_∞ with distortion $\log n$, $d = O(\log^2 n)$

• From now on, we assume M induced by l_∞, multiply final distortion by $\log n$

• Partition the l^d_∞ space probabilistically into clusters of different diameters

• “Stitch” the clusters together into a tree
Probabilistic partitions

- \(l \)-partition: any partition of \(Y \) into clusters of diameter \(\leq l \)

- \((r, \rho)\)-partition: a distribution over \(r \cdot \rho \) partitions, such that for any \(p, q \in Y \), the prob. that \(p, q \) go to different clusters is at most \(D(p, q)/r \)

In \(l^d_\infty \), \((r, d)\)-partitions are easy to get by randomly shifting a grid of side \(r \cdot d \)

\[
\begin{array}{c|c}
\bullet & \bullet \\
\hline
p & q \\
\hline
\hline
d & r
\end{array}
\]

Probability of a cut \(\leq d \cdot \frac{D(p, q)}{dr} \)
Probabilistic tree construction

Recursive construction of a random tree. Initially $r = \Delta$.

- Generate an $r \cdot \rho$-partition P from a (r, ρ)-partition

- Within any cluster Y_i of P, generate a random tree T_i with root u_i using $r/2$

- Create artificial node u and connect u to u_i's using edges of length $\rho \cdot r/2$
Construction: I

- Create a root
- We will create subtrees recursively
Construction: II

- Subdivide using a randomly shifted grid
- Create nodes for each cell
- Edge length proportional to the side of the grid cell
- Close points unlikely to be separated
Construction: III

- Further subdivide within each cell
- Stop when single points are reached
Construction: IV

Distortion:

- One factor $\log n$ comes from embedding into l_∞
- One factor comes from $\log \Delta$ levels in the tree
- One factor $\log^2 n$ comes from ρ (ratio between probability of cutting and the edge length)
Non-contraction

No tree contracts the distances:

- Consider any cluster Y of diameter $\leq r \rho$
- Adding new node u with distance $r \rho / 2$ to all points in Y cannot increase the distance
Distortion

Fix pair $p, q \in Y$. The pair $p, q,$:

- Is separated by (Δ, ρ)-partition with prob. $\frac{D(p, q)}{\Delta}$
 \Rightarrow tree distance $\Delta \cdot \rho$

- Is separated by $(\Delta/2, \rho)$-partition with prob. $\frac{D(p, q)}{\Delta/2}$
 \Rightarrow tree distance $\Delta/2 \cdot \rho$, etc...

Expected distance:

- $2^i r \cdot \rho \cdot \frac{D(p, q)}{2^i r} = \rho \cdot D(p, q)$ per level

- times $O(\log \Delta)$ levels

$= O(\rho \log \Delta) \cdot D(p, q)$
Summing up

- Overall distortion: $O(\log^3 n \cdot \log \Delta)$

- Trees have special structure (HST):
 - On the way from the root to a leaf distances decrease exponentially
 - All distances from a node to its children are the same

- Can get rid of the additional nodes $\Rightarrow X = Y$
Summary of the prob. emb. into HSTs

<table>
<thead>
<tr>
<th>From</th>
<th>Distortion</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>$O(\log n \log \log n)$</td>
<td>Bartal’98</td>
</tr>
<tr>
<td>high-girth</td>
<td>$\Omega(\log n)$</td>
<td>Bartal’96</td>
</tr>
<tr>
<td>planar</td>
<td>$O(\log n)$</td>
<td>GKR</td>
</tr>
<tr>
<td>l_2^d</td>
<td>$O(\sqrt{d} \log n)$</td>
<td>CCGGP’98</td>
</tr>
</tbody>
</table>
Applications (of embeddings into prob. trees)

Algorithms (approximate, on-line):

- Prob. embeddings provide fairly general reductions from problems over metrics to problems over trees

- Approximation algorithm for metric M:
 - Let A be an a-approximation algorithm for trees
 - Replace M by a random tree T
 \[
 \Rightarrow \text{OPT}_T \leq c \cdot \text{OPT}_M
 \]
 - Use A on T to produce a solution for T with cost
 \[
 \leq a \cdot \text{OPT}_T \leq a \cdot c \cdot \text{OPT}_M
 \]
 - Interpret it as a solution for M
 - Final cost $\leq a \cdot c \cdot \text{OPT}_M$

- Similar approach works for on-line problems

- The structure of HST makes the task even easier
Applications: on-line algorithms

Metrical task systems [Borodin, Linial, Saks'87]:

• Defined by a metric $M = (X, D)$, initial server position $p \in X$

• Input: a sequence of tasks $\tau = \tau_1, \tau_2, \ldots$, $\tau_i : X \to [0, \infty)$

• Given next task τ_i, the algorithm:
 – Moves the server from its current position x to a new position y
 – Serves the task from y
 – Incurred cost: $D(x, y) + \tau(y)$

• Want: to design an algorithm A with small competitive ratio, i.e.,

$$\max_{\tau} \frac{\text{Cost incurred by } A \text{ on } \tau}{\text{Optimal cost of serving } \tau}$$
Prob. embeddings for MTS

- We have seen prob. embedding of $M = (X, D)$ into (X, \overline{D}), where (X, \overline{D}) is a convex combination of HSTs.

- Can use it to reduce the problem over general metrics to problem over HSTs:
 - Let A be a b-competitive algorithm for HST
 - Choose a random HST T
 - Feed all tasks to A
 - Interpret all server moves of A as moves in M

- Cost estimations:
 - Let OPT be optimal server trajectory in M with cost C
 - It corresponds to a server trajectory in T with expected cost $\leq c \cdot C$, where c is the distortion
 - A will find a solution S for T with cost $\leq b \cdot c \cdot C$
 - Interpreting S as a solution for M only decreases the cost
Applications of prob. embeddings

• For “metric” problems, a b-competitive algorithm for HSTs implies a (randomized) $O(b \log^{O(1)} n)$-competitive algorithm for general metric:
 – $O(\log^{O(1)} n)$-competitive algorithm for metrical task systems [BBBT’98, FM’00]
 – distributed problems [Bartal’98]

• Same holds for approximation algorithms:
 – “Buy-at-bulk” network design [Azar-Awerbuch’97]
 – Group Steiner problem
 – ...(≈ 10 problems)
Overview of the talk

• Motivation
 – General
 – Example: diameter in l_1^d

• Embeddings of graph-induced metrics
 – into norms (Bourgain’s theorem, Matousek’s theorem, etc.)
 – into probabilistic trees (Bartal’s theorem)

• Embeddings of norms into norms
 – dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
 – switching norms

• Embeddings of special metrics into norms
 – string edit distance
 – Hausdorff metric
Embeddings of norms into norms

Different from finite metrics:

- Embeddings of infinite spaces

- Advantage: we do not have to know all points in advance

- Drawback: sometimes guarantees only randomized
Randomized embeddings

For metrics $M = (X, D), M' = (X', D')$, a distribution \mathcal{F} over mappings $f : X \rightarrow X'$ is a randomized embedding with

- distortion c
- contraction probability P_{con}
- expansion probability P_{exp}

if for any $p, q \in X$ we have

- $D'(f(p), f(q)) < 1/c \cdot D(p, q)$ with prob. $\leq P_{con}$
- $D'(f(p), f(q)) > D(p, q)$ with prob. $\leq P_{exp}$

$P = P_{con} + P_{exp}$ is called failure probability
Dimensionality reduction in l_2

There is a randomized embedding from l_2^d into $l_2^{d'}$ with distortion $1 + \epsilon$ and failure probability $e^{-\Omega(d'/\epsilon^2)}$.

Corollary: For any set $P \subset l_2^d$ there exists an embedding of (P, l_2) into $l_2^{d'}$ with distortion $1 + \epsilon$, where $d' = \frac{\text{const}}{\epsilon^2} \cdot \ln |P|$.

($\text{const} \approx 4$ for small enough $\epsilon > 0$)
Proof

• Several proofs known [JL’84, FM’88, IM’98, DG’99, AV’99]

• All of them proceed by showing:

Take any \(u \in \mathbb{R}^d, \|u\|_2 = 1 \). Let \(A_1, \ldots A_{d'} \) be “random” vectors from \(\mathbb{R}^d \), and let \(A = [A_1 \ldots A_{d'}]^T \). Then \(\|Au\|_2 \) is sharply concentrated around its mean (equal to 1).

• Linearity of \(A \) implies that for \(p, q \in l_2^d \), we have

\[
\|Ap - Aq\|_2 = \|A(p - q)\|_2 = \|p - q\|_2 \cdot \|Au\|_2 \approx \|p - q\|_2
\]

where \(u = (p - q)/\|p - q\|_2 \).
Proof (sketch)

We show a proof when all entries in A chosen from Gaussian distribution $\mathcal{N}(0, 1)$ [I-Motwani'98]

- Sum of independent random variables from Gaussian distribution has Gaussian distribution
 \Rightarrow each A_iu has Gaussian distribution

- The variance of a sum is a sum of variances
 \Rightarrow the variance of each A_iu is $\sum_j u_j^2 = 1$
 \Rightarrow each A_iu is indep. chosen from $\mathcal{N}(0, 1)$

- $\|Au\|_2^2$ is a sum of squares of independent Gaussians
 - sum of squares of two Gaussians has exponential distribution
 - sum of squares of many Gaussian has chi-square distribution
 - the distributions well understood
 - “Plug and Play”
Summary of the results

- Distortion: $1 + \epsilon$
- Prob. of contraction: P_{con}
- Prob. of expansion: P_{exp}
- Failure probability $P = P_{con} + P_{exp}$

<table>
<thead>
<tr>
<th>Norm</th>
<th>Dimension</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_2</td>
<td>$O(\log(1/P)/\epsilon^2)$</td>
<td>JL’84</td>
</tr>
<tr>
<td>l_2</td>
<td>$\Omega(1/\log(1/\epsilon) \cdot \log(1/P)/\epsilon^2)$</td>
<td>A+C+M</td>
</tr>
<tr>
<td>l_1</td>
<td>$(\log(1/P_{con}) + 1/P_{exp})^{O(1/\epsilon)}$</td>
<td>I’00</td>
</tr>
<tr>
<td>Hamming</td>
<td>$O(\log(1/P)/\epsilon^2)$</td>
<td>KOR’98 I’00</td>
</tr>
<tr>
<td>(dist. range)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Techniques used

- l_2 upper bound: random projection on a plane spanned by set of random vectors
 - chosen i.i.d. from d-dim Gaussian distribution (can be efficiently derandomized [EIO’02])
 - chosen i.i.d. from uniform dist. over a sphere
 - forced to be orthonormal (Haar measure) [JL,FM]
 - chosen i.i.d. from $\{-1, 1\}^d$ or $\{-1, 0, 1\}^d$ [Achlioptas’01]

Can be derandomized using [Shivakumar’02]

- l_2 lower bound: upper bound on “almost orthogonal” vectors in \mathbb{R}^d [Alon, Charikar, Matousek]

- l_1 upper bound: 1-stable distributions, i.e., generate A such that $\|Ax\|_1$ estimates $\|x\|_1$

- Hamming metric: random linear mapping over GF(2)
Application of dimensionality reduction

- “Straightforward” applications
- Faster embedding computation
- Continuous (clustering) problems
- Sublinear-storage computation
- Miscellaneous:
 - learning robust concepts [Arriaga-Vempala’99]
 - deterministic approximation algorithms using semidefinite programming [Engebretsen-I-O’Donnell’02, Shivakumar’02]
App I: Straightforward applications

Running time:

\[T(n, d) \Rightarrow T(n, \log n) + d \log n \cdot (\# \text{ points to embed}) \]

- **Linear improvement:** closest pair, nearest neighbor, diameter, MST etc.
 - time: \(O(dn^2) \Rightarrow O(\log n \cdot n^2) + O(dn \log n) \)

- **Exponential improvement:** nearest neighbor
 [Kushilevitz-Ostrovy-Rabani’98, I-Motwani’98]
 - space: \(n2^{O(d)} \Rightarrow n^{O(1)} \)
 - query: \((d + \log n)^{O(1)} \Rightarrow O(d \log n + \log^{O(1)} n) \)
App II: Faster embedding computation

- Computing embedding in $o(dn)$ time

- Feasible if the pointset defined implicitly, e.g., as a set of all d-substrings of a given string

- A substring difference problem: preprocess the data to estimate (quickly) the distance between two given d-substrings [I-Koudas-Muthukrishnan’00]

 - dim. reduction gives $O(n \log n)$ space and $O(\log n)$ query time
 - but $\Theta(dn \log n)$ preprocessing time

 - embedding linear \Rightarrow can use FFT to get $O(n \log d \log n)$ preprocessing time

```
string: ___________
random vector : __________
```

\[d \]
App II: Faster embedding computation, ctd.

- Other string problems: variable d, string nearest neighbor problem [I-Koudas-Muthukrishnan’00]
- Line crossing metric [Har-Peled-I’00]
App III: Continuous (clustering) problems

- Generic problem:
 - Given: n points in l_p^d
 - Find: k centers in \mathbb{R}^d to minimize the total distance between the points and their nearest centers

 (total distance $\in \{\max \text{ dist.}, \text{sum of dist.}, \ldots\}$)

- Simple dimensionality reduction does not work!
 (solution in the reduced space could be bogus)

- Idea [Dasgupta'99]:
 - Reduce the dimension
 - Identify (or guess) the clusters (not centers!) in the low-dimensional space
 - For each cluster, find its center in original space

- Works for learning mixtures of Gaussians [D'99], k-median for small k [OR'00], k-center
Low-storage computation

• Dimensionality reduction reduces space as well

• Prototypical example: vector maintenance
 – Data structure maintaining $x \in \mathbb{R}^d$
 (x_i - counter for element i)
 – Enables increments/decrements of coordinates
 – Reports estimation of $\|x\|_p$

• Applications:
 – $p = 0$: # non-zero positions (distinct elements)
 – $p = 2$: self-join size
Norm maintenance: results

$(1 + \varepsilon)$-approximation in $(\log n + 1/\varepsilon)^{O(1)}$ space:

- $p = 0$ (but $x \geq 0$): Flajolet-Martin'85
- $p = 2$: Alon-Matias-Szegedy'96
 (also any integer p with sublinear storage)
- $p \in [0, 2]$: I’00, Cormode-Muthukrishnan’01
 (earlier FKS’99,FS’00)
Norm maintenance: approach

- Maintain low-dimensional Ax to represent x
- Reduce the amount of randomness used in A
- Implementation:
 - [AMS’96]:
 * 4-wise independent entries of A
 * Use median (not sum) to estimate the norm
 - [I’00]:
 * Use Nisan’s generator to generate A
 * Can “simulate” JL lemma
 * Works for any $p \in [0, 2]$ via p-stable distributions
Other low-storage results

- Maintaining string properties [CM’01]
- Norm maintenance in fixed window [DGIM’02]
- Maintaining approximations of a vector
 (wavelet [GKMS’01], piecewise-linear [GGIKMS’01])
- ...
Overview of the talk

• Motivation
 – General
 – Example: diameter in l_1^d

• Embeddings of graph-induced metrics
 – into norms (Bourgain's theorem, Matousek’s theorem, etc.)
 – into probabilistic trees (Bartal’s theorem)

• Embeddings of norms into norms
 – dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
 – switching norms

• Embeddings of special metrics into norms
 – string edit distance
 – Hausdorff metric
Switching norms

- We have seen one already ($l_1 \rightarrow l_\infty$)

- Mostly ordinary embeddings, at last! (although often constructed using random mappings)

- Switch from “hard” to “easy” norms (l_1 or l_∞)

- All constructed using linear mappings

- Topic extensively investigated in functional analysis
Embeddings

Embeddings from l_{p}^{d} into $l_{1}^{d'}$

<table>
<thead>
<tr>
<th>From</th>
<th>Dist.</th>
<th>d'</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 2$</td>
<td>$1 + \epsilon$</td>
<td>$O(d \log(1/\epsilon)/\epsilon^2)$</td>
<td>FLM'77</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{2}$</td>
<td>$O(d^2)$</td>
<td>Berger'97</td>
</tr>
<tr>
<td></td>
<td>$1 + \epsilon$</td>
<td>$d^{O(\log d)}$</td>
<td>I’00</td>
</tr>
<tr>
<td>$p \in [1, 2]$</td>
<td>$1 + \epsilon$</td>
<td>$O(d \log(1/\epsilon)/\epsilon^2)$</td>
<td>JS’82</td>
</tr>
</tbody>
</table>

Embeddings from l_{p}^{d} into $l_{\infty}^{d'}$

<table>
<thead>
<tr>
<th>From</th>
<th>Dist.</th>
<th>d'</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 1$ polyhedral norm</td>
<td>1</td>
<td>2^{d-1}</td>
<td>folklore</td>
</tr>
<tr>
<td>any norm</td>
<td>$1 + \epsilon$</td>
<td>$O(1/\epsilon)^{d/2}$</td>
<td>folklore</td>
</tr>
<tr>
<td></td>
<td>$1 + \epsilon$</td>
<td>(Dudley’s theorem)</td>
<td>folklore</td>
</tr>
<tr>
<td>$p = 2$</td>
<td>$1 + \epsilon$</td>
<td>$O(\log(1/P_{con}) + 1/P_{exp})^{O(1/\epsilon)}$</td>
<td>I’01</td>
</tr>
</tbody>
</table>
Applications of norm switching

- Embeddings into l_1 norm
 - $l_2 \rightarrow l_1 \rightarrow$ Hamming: approx. nearest neighbor algorithms
 - same route: k-median algorithm [Ostrovsky-Rabani’00]

- Embeddings into l_∞ norm
 - Diameter/furthest neighbor in l_1, l_2
 - Nearest neighbor in product of l_2 norms [I’01]
Overview of the talk

• Embeddings of graph-induced metrics
 – into norms (Bourgain’s theorem, Matousek’s theorem, etc.)
 – into probabilistic trees (Bartal’s theorem)

• Embeddings of norms into norms
 – dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
 – switching norms

• Embeddings of special metrics into norms
 – string edit distance
 – Hausdorff metric
Special metrics

• Hausdorff metric: for any two sets \(A, B \subset X \) in a metric \(M = (X, D) \), define

\[
\vec{D}_H(A, B) = \max_{a \in A} \min_{b \in B} D(a, b)
\]

\[
D_H(A, B) = \max(\vec{D}_H(A, B), \vec{D}_H(B, A))
\]

Applications: vision, pattern recognition
\((M = l^2, l^3)\)

• Levenstein metric: \(D_L(s, s') = \text{minimum number of insertions/deletions/substitutions/etc. needed to transform } s \text{ into } s' \)

Applications: computational biology, etc.
Special metrics

• Would like to solve problems (e.g., nearest neighbor, clustering) over D_H, D_L

• However, these metrics are more complex than normed spaces
 – D_H “contains” l_∞
 – D_L “contains” Hamming metric

• Thus, would like to embed them into proper normed spaces

• Additional benefit: if embedding is fast, can get fast approximate algorithm for computing $D(\cdot, \cdot)$
Embeddings of special metrics

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Dist.</th>
<th>Dim.</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_H over (X, D)</td>
<td>l_∞</td>
<td>1</td>
<td>$</td>
<td>X</td>
</tr>
<tr>
<td>D_H over l_p^d (s-subsets)</td>
<td>l_∞</td>
<td>$1 + \epsilon$</td>
<td>$s^2/\epsilon^O(d)$</td>
<td>FI'99</td>
</tr>
<tr>
<td>D_L with block moves</td>
<td>Hamm.</td>
<td>$\approx \log d$</td>
<td></td>
<td>CPSC’00, MS’00, CM’01</td>
</tr>
</tbody>
</table>

Other metrics:

- Permutation distances
 [Cormode-Muthukrishnan-Sahinalp’01]
Conclusions

• We have seen lots of embeddings!

• But also main techniques used:
 – Finite metrics: “witness sets”
 – Normed spaces: random linear mappings
 – Probabilistic trees: stitching prob. partitions into trees

• Tools mostly taken from combinatorics and functional analysis
Open problems

• General open problems:
 – More embeddings
 – More applications of embeddings

• Specific problems:
 – Planar graph metrics into l_1
 – $O(\log n)$ distortion for embedding metrics into probabilistic trees
 – Dimensionality reduction for l_1
 – Embeddings of Levenstein metric