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Opportunities: de novo therapeutics, catalysts, and materials

Challenges: Despite many successes from conventional methods such 
as Rosetta, first designs often fail (unreliability), outcomes are sensitive 

to methodology (non-robustness), and design throughput is slow

… could we learn to generate designs directly?
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Structure

Perplexity (per amino acid)

Learning protein design, directly

Result: Comparison of features and architecture

Result: Structure-conditioned language models 
can generalize to unseen 3D structures

Protein foldingSequence

Protein design
“inverse folding”

Approach: Graph-based sequence generation

Local attention builds up context for structure 
(and sequence)
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Conclusion: Deep generative models can learn 

to design proteins directly from structure

Graph features represent molecular geometry

Unit vector

Edge features are relative transformations 
between frames (SE(3)-invariant)

Published as a workshop paper at ICLR 2019

Table 1: Null perplexities

Null model Perplexity Conditioned on

Uniform 20.00 -
Natural frequencies 17.83 Random position in a natural protein
Pfam HMM profiles 11.64 Specific position in a specific protein family

Each layer of the encoder implements a multi-head self-attention component, where head ` 2 [L] can
attend to a separate subspace of the embeddings via learned query, key and value transformations
(Vaswani et al., 2017). The queries are derived from the current embedding at node i while the
keys and values from the relational information rij = (hj , eij) at adjacent nodes j 2 N(i, k).
Specifically, W (`)
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the representation.
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We update the embeddings with this residual and alternate between these self-attention layers and
position-wise feedforward layers as in the original Transformer (Vaswani et al., 2017). We stack
multiple layers atop each other, and thereby obtain continually refined embeddings as we traverse
the layers bottom up. The encoder yields the embeddings produced by the topmost layer as its
output.

Decoder Our decoder module has the same structure as the encoder but with augmented relational
information rij that allows access to the preceding sequence elements s<i in a causally consistent

manner. Whereas the keys and values of the encoder are based on the relational information rij =
(hj , eij), the decoder can additionally access sequence elements sj as

r
(dec)
ij =

(
(h(dec)

j , eij ,g(sj)) i > j

(h(enc)
j , eij ,0) i  j

.

Here h
(dec)
j is the embedding of node j in the current layer of the decoder, h(enc)

j is the embedding
of node j in the final layer of the encoder, and g(sj) is a sequence embedding of amino acid sj
at node j. This concatenation and masking structure ensures that sequence information only flows
to position i from positions j < i, but still allows position i to attend to subsequent structural
information.

We stack three layers of self-attention and position-wise feedforward modules for the encoder and
decoder with a hidden dimension of 128 throughout the experiments5.

2.3 TRAINING

Dataset To evaluate the ability of the models to generalize across different protein folds, we col-
lected a dataset based on the CATH hierarchical classification of protein structure (Orengo et al.,

5except for the decoder-only language model experiment which used a hidden dimension of 256
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Encoder attends to node & edge tuples:

Decoder attends to node, edge, sequence triples
with masking:

Multi-head attention like Transformer [Vaswani et al 
2017, Shaw et al 2018] with node embeddings hi 
and edges rij

hi
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The protein sequence design problem

Given a 3D protein structure x, what sequence(s) s will fold into it?

Input: 3D backbone
Output: Sequence of amino acids

along backbone

CartoonAtoms

p(s|x) =
�
i

p(si |x, s<i)
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Table 2: Per-residue perplexities for protein language modeling (lower is better). The protein
chains have been cluster-split by CATH topology, such that test includes only unseen 3D folds. While
a structure-conditioned language model can generalize in this structure-split setting, unconditional
language models struggle.

Test set Short Single chain All
Structure-conditioned models

Structured Transformer (ours) 8.54 9.03 6.85

SPIN2 [8] 12.11 12.61 -
Language models

LSTM (h = 128) 16.06 16.38 17.13
LSTM (h = 256) 16.08 16.37 17.12
LSTM (h = 512) 15.98 16.38 17.13
Test set size 94 103 1120

3D structure [43], meaning that sequence similarity need not necessarily be high. At the same time,
single mutations may cause a protein to break or misfold, meaning that high sequence similarity
isn’t sufficient for a correct design. To deal with this, we will focus on three kinds of evaluation: (i)
likelihood-based, where we test the ability of the generative model to give high likelihood to held
out sequences, (ii) native sequence recovery, where we evaluate generated sequences vs the native
sequences of templates, and (iii) experimental comparison, where we compare the likelihoods of the
model to high-throughput data from a de novo protein design experiment.

We find that our model is able to attain considerably improved statistical performance in its likelihoods
while simultaneously providing more accurate and efficient sequence recovery.

4.1 Statistical comparison to likelihood-based models

Protein perplexities What kind of perplexities might be useful? To provide context, we first
present perplexities for some simple models of protein sequences in Table 1. The amino acid alphabet
and its natural frequencies upper-bound perplexity at 20 and ⇠17.8, respectively. Random protein
sequences under these null models are unlikely to be functional without further selection [44]. First
order profiles of protein sequences such as those from the Pfam database [45], however, are widely
used for protein engineering. We found the average perplexity per letter of profiles in Pfam 32
(ignoring alignment uncertainty) to be ⇠11.6. This suggests that even models with high perplexities
high as ⇠ 11 have the potential to be useful for the space of functional protein sequences.

The importance of structure We found that there was a significant gap between unconditional
language models of protein sequences and models conditioned on structure. Remarkably, for a range
of structure-independent language models, the typical test perplexities are ⇠16-17 (Table 2), which
were barely better than null letter frequencies (Table 1). We emphasize that the RNNs were not
broken and could still learn the training set in these capacity ranges. All structure-based models had
(unsurprisingly) considerably lower perplexities. In particular, our Structured Transformer model
attained a perplexity of ⇠7 on the full test set. It seems that protein language models trained on one
subset of 3D folds (in our cluster-splitting procedure) generalize poorly to predict the sequences

Table 3: Ablation of graph features and model components. Test perplexities (lower is better).

Node features Edge features Aggregation Short Single chain All
Rigid backbone

Dihedrals Distances, Orientations Attention 8.54 9.03 6.85
Dihedrals Distances, Orientations PairMLP 8.33 8.86 6.55

C↵ angles Distances, Orientations Attention 9.16 9.37 7.83
Dihedrals Distances Attention 9.11 9.63 7.87
Flexible backbone

C↵ angles Contacts, Hydrogen bonds Attention 11.71 11.81 11.51
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Method Recovery (%) Speed (AA/s) CPU Speed (AA/s) GPU
Rosetta 3.10 fixbb 17.9 4.88⇥ 10�1 N/A

Ours (T = 0.1) 27.6 2.22⇥ 102 1.04⇥ 104

(a) Single chain test set (103 proteins)

Method Recovery (%)
Rosetta, fixbb 1 33.1
Rosetta, fixbb 2 38.4

Ours (T = 0.1) 39.2

(b) Ollikainen benchmark (40 proteins)

Table 4: Improved reliability and speed compared to Rosetta. (a) On the ‘single chain’ test set,
our model more accurately recovers native sequences than Rosetta fixbb with greater speed (CPU:
single core of Intel Xeon Gold 5115, GPU: NVIDIA RTX 2080). This set includes NMR-based
structures for which Rosetta is known to not be robust [46]. (b) Our model also performs favorably
on a prior benchmark of 40 proteins. All results reported as median of average over 100 designs.

of unseen folds. We believe this possibility might be important to consider when training protein
language models for protein engineering and design.

Improvement over deep profile-based methods We also compared to a recent method SPIN2
that predicts, using deep neural networks, protein sequence profiles given protein structures [8].
Since SPIN2 is computationally intensive (minutes per protein for small proteins) and was trained
on complete proteins rather than chains, we evaluated it on two subsets of the full test set: a ‘Small’
subset of the test set containing chains up to length 100 and a ‘Single chain’ subset containing only
those models where the single chain accounted for the entire protein record in the Protein Data Bank.
Both subsets discarded any chains with structural gaps (chain break). We found that our Structured
Transformer model significantly improved upon the perplexities of SPIN2 (Table 2).

Graph representations and attention mechanisms The graph-based formulation of protein de-
sign can accommodate very different formulations of the problem depending on how structure is
represented by a graph. We tested different approaches for representing the protein including both
more ‘rigid’ design with precise geometric details, and ‘flexible’ topological design based on spatial
contacts and hydrogen bonding (Table 3). For the best perplexities, we found that using local orienta-
tion information was indeed important above simple distance measures. At the same time, even the
topological features were sufficient to obtain better perplexities than SPIN2 (Table 2), which uses
precise atomic details.

In addition to varying the graph features, we also experimented with an alternative aggregation
function from message passing neural networks [36].5 We found that a simple aggregation function
�hi =

P
j MLP(hj ,hj , eij) led to the best performance of all models, where MLP(·) is a two layer

perceptron that preserves the hidden dimension of the model. We speculate that this is due to potential
overfitting by the attention mechanism. Although this suggests room for future improvements, we
use multi-head self-attention throughout the remaining experiments.

4.2 Benchmarking protein redesign

Decoding strategies Generating protein sequence designs requires a sampling scheme for drawing
high-likelihood sequences from the model. While beam-search or top-k sampling [47] are commonly
used heuristics for decoding, we found that simple biased sampling from the temperature adjusted
distributions p(T )(s|x) =

Q
i

p(si|x,s<i)
1/T

P
a p(a|x,s<i)1/T

was sufficient for obtaining sequences with higher
likelihoods than native. We used a temperature of T = 0.1 selected from sequence recovery on
validation. For conditional redesign of a subset of positions in a protein, we speculate that the
likelihood calculation is sufficiently fast such that MCMC-based approaches such as Gibbs sampling
may be feasible.

5We thank one of our reviewers for this suggestion.
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Result: Improved speed and accuracy over 
conventional methods

Ollikainen et al Benchmark (40 structures; re-split training for 0 topology overlap)

Most sequence dependencies are spatially local

Dense SparseO(N2)
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k-NN Orientations, 
k = 30

Distances

Spatial adjacency gives the 
relevant context for sequences

Why so low? This set contains many NMR 
structures (rather than X-ray) for which 
conventional methods are not robust

Evolutionary evidence: 
sequence covariation 

predicts spatial contacts
[Marks et al 2012]

Engineering evidence: 
Rosetta uses spatially 
local pairwise Markov 

Random Fields
[Leaver-Fay et al 2011]

Our single chain test set (103 structures)

~ 400x speedup on one core of CPU 
~ 20,000x speedup GPU

Atoms Cartoon
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Structure Attributed Graph Sequence
V(x), E(x)
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2. Language modeling decoder

1. Represent structure as graph
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Implication: 
Structure the computation to focus on spatial interaction

Dataset creation

CATHdb 40%NR
↓

Full chains, 500 AA
↓

Split by topology
↓

~18,000 chains
In train

p(s|x) =
�
i

p(si |x, s<i)
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Node features: Dihedral angles of backbone

Relations

Distance Direction Rotation

Point cloud with local frames

Why so low? Sequences in test are from different fold topologies
Significant boost in statistical performance vs other neural method

Simpler message passing aggregation offers room for improvement (Thanks, reviewer!)
Goal: Expressive but invariant

descriptors


