Generative Models for Graph-Based Protein Design

John Ingraham, Vikas K. Garg, Regina Barzilay, Tommi Jaakkola
{ingraham, vgarg, regina, tommi}@csail.mit.edu
MIT CSAIL, Cambridge MA, USA

Learning protein design, directly Approach: Graph-based sequence generation
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Opportunities: de novo therapeutics, catalysts, and materials Structure Encoder Sequence Decoder (autoregressive)

Challenges: Despite many successes from conventional methods such
as Rosetta, first designs often fail (unreliability), outcomes are sensitive
to methodology (non-robustness), and design throughput is slow

.. could we learn to generate designs directly?

The protein sequence design problem - Information flow
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Spatial adjacency gives the

relevant context for sequences Evolutionary evidence:

seguence covariation
Sparse O(Nk) predicts spatial contacts

[Marks et al 2012] Goal: Expressive but invariant Node features: Dihedral angles of backbone
descriptors

Graph features represent molecular geometry
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Edge features are relative transformations

Engineering evidence: Point cloud with local frames between frames (SE(3)-invariant)

Rosetta uses spatially
local pairwise Markov
Random Fields
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Result: Improved speed and accuracy over
conventional methods

Our single chain test set (103 structures)

Method Recovery (%) Speed (AA/s) CPU  Speed (AA/s) GPU
Rosetta 3.10 fixbb 17.9 4.88 x 10~ N/A
Ours (T = 0.1) 27.6 2.22 x 102 1.04 x 104

Ollikainen et al Benchmark (40 structures; re-split training for O topology overlap)

Method Recovery (%) ~ 400x speedup on one core of CPU
Rosetta, fixbb 1 33.1 ~ 20,000x speedup GPU
Rosetta, £ixbb 2 38.4 Why so low? This set contains many NMR
Ours (1'=0.1) 39.2

structures (rather than X-ray) for which
conventional methods are not robust

Result: Structure-conditioned language models
can generalize to unseen 3D structures

Perplexity (per amino acid)

Dataset creation Test set Short Single chain  All
Structure-conditioned models
Structured Transformer (ours) 8.54 9.03 6.85
CATHdb 409%NR
! SPIN?2 12.11 12.61 -
Full chains, 500 AA  Language models
! LSTM (h = 128) 16.06 16.38 17.13
Split by topology LSTM (h = 256) 16.08 16.37 17.12
i LSTM (h = 512) 15.98 16.38 17.13 |
~18,000 chains Test set size 94 103 1120
In train
Significant boost in statistical performance vs other neural method
Why so low? Sequences in test are from different fold topologies
Null model Perplexity Conditioned on
Uniform 20.00 -
Natural frequencies 17.83 Random position in a natural protein

Ptam HMM profiles 11.64 Specific position in a specific protein family

Result: Comparison of features and architecture

Node features Edge features Aggregation Short Single chain  All

Rigid backbone

Dihedrals Distances, Orientations Attention 8.54 9.03 6.85
Dihedrals Distances, Orientations PairMLP 8.33 8.86 6.55
C. angles Distances, Orientations Attention 9.16 9.37 7.83
Dihedrals Distances Attention 9.11 9.63 7.87
Flexible backbone

C. angles Contacts, Hydrogen bonds Attention 11.71 11.81 11.51

Simpler message passing aggregation offers room for improvement (Thanks, reviewer!)

Conclusion: Deep generative models can learn
to design proteins directly from structure
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