
Aspect-Oriented Language for Reactive Distributed Applications
at the Edge

Ivan Kuraj
CSAIL, MIT, US

ivanko@csail.mit.edu

Armando Solar-Lezama
CSAIL, MIT, US

asolar@csail.mit.edu

Abstract
This paper presents EdgeC, a new language for programming re-
active distributed applications. It enables separation of concerns
between expressing behavior and controlling distributed aspects,
inspired by aspect-oriented language design. In EdgeC, developers
express functionality with sequential behaviors, and data alloca-
tion, reactivity, consistency, and underlying network with orthogo-
nal specifications. Through such separation, EdgeC allows devel-
opers to change functionality and control the shape of resulting
distributed behaviors without cross-cutting code, simplifying de-
ployment to the edge. Developers can reason about and test their
applications as sequential executions, whilst EdgeC automatically
synthesizes low-level distributed code. It handles, with the help
of the EdgeC run-time, allocation, communication, concurrency,
and coordination, across the specified, potentially non-uniform,
network model. We introduce the main features of EdgeC, present
the new compiler design, its prototype implementation, the result-
ing performance, and discuss the potential of the approach for
simplifying development of reactive applications over nonuniform
networks and achieving performance gains, compared to existing
approaches.

ACM Reference Format:
Ivan Kuraj and Armando Solar-Lezama. 2020. Aspect-Oriented Language for
Reactive Distributed Applications at the Edge. In 3rd International Workshop
on Edge Systems, Analytics and Networking (EdgeSys ’20), April 27, 2020,
Heraklion, Greece. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3378679.3394531

1 Introduction
Edge computing poses new challenges for reactive distributed ap-
plications, which go beyond black-box cloud-centric systems [8, 9].
With traditional programming methodologies, design decisions
about distributed aspects, such as data distribution and reactivity
need to be woven together with the application logic. As a result,
implementations become complex even when the underlying logic
is conceptually simple, and the ability to explore different design
choices is limited because small changes to how data is distributed
or how communication is orchestrated require cutting through
multiple layers of code. The design choices might involve different
network models, data allocation schemes, consistency and reactiv-
ity requirements. In such cases, the program developers need to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys ’20, April 27, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7132-2/20/04.
https://doi.org/10.1145/3378679.3394531

write full implementations, significantly different for every com-
bination of design decisions, making it difficult to search for an
optimal overall design, in spite of core logic being fixed. The pro-
gramming complexity further exacerbates when the system needs
to operate in heterogeneous environments, which involve nodes of
various computing capabilities and non-uniform networks.

This paper presents EdgeC1, a framework that aims to simplify
prototyping event-driven reactive distributed programs, amenable
for the edge, including non-uniform deployments. EdgeC relies on
the insight that distributed systems can remain sufficiently specified,
by separating the application logic and distributed aspects. Develop-
ers write a set of operations, which specify the application logic, to-
gether with orthogonal specifications for distributed requirements,
data and computation allocation, reactivity, consistency, and network-
ing concerns. The system generates low-level implementation of a
distributed system which allows invoking the given operations con-
currently and reactively, arbitrarily distributed across the system,
respecting the sequential semantics of operations according to cho-
sen consistency (akin to distributed transactions). Specifications
of behaviors, data/computation allocation, consistency, and net-
work model, can be tweaked and changed separately, while EdgeC
handles low-level code automatically. EdgeC thus allows easier
design space exploration of distributed programs, offloading complex
cross-cutting reasoning from developers. This paper presents the
following contributions: 1) a novel framework design, which syner-
gizes program analysis and synthesis, with a run-time, for developing
optimized implementations that satisfy specifications across cross-
cutting and inter-dependent concerns, applicable in new domains;
2) a prototype implementation of EdgeC and its performance.

This paper focuses on the language and compiler design, and the
programming model in general, in terms of achieving expressive-
ness through orthogonal specifications for behaviors, and allocation,
reactivity and data consistency. In turn, EdgeC assumes distributed
nodes operate in reliable and trusted environments and does not
address aspects related to security and failure-tolerance. We dis-
cuss these aspects later as potential avenues for future work. The
goal of this paper is to propose and examine the potential of the
programming model in terms of expressiveness of behaviors and
performance, without engineering a general and fully optimized
full-fledged system.

2 Overview
We demonstrate the main ideas behind EdgeC through a tutorial
implementing the “100 game“ (analyzed as a motivating example in
[8]). In this simple game, players alternately add a chosen number
to the current sum, and the first one to reach 100 wins. Fig. 1 shows
a high-level view of the architecture of the application. The goal
is to prototype distributed version(s) of the game, with different

1EdgeC is an anagram of initial letters from “Event-driven distributed global-view
consistent executions”

https://doi.org/10.1145/3378679.3394531
https://doi.org/10.1145/3378679.3394531
https://doi.org/10.1145/3378679.3394531

EdgeSys ’20, April 27, 2020, Heraklion, Greece Ivan Kuraj and Armando Solar-Lezama

(a) Bird’s eye view of participants

(b) Sliced view

(c) Architectures

Figure 1. Application overview, its logical “sliced view” and architectures it
can capture

requirements in mind. EdgeC allows the developer to start writ-
ing operations as sequential code (without distribution in mind,
viewing it as “sequential slice” Fig. 1b), and orthogonally define
distributed aspects that define distributed computation shape, be it
standard client-server or more specialized architecture (e.g. ones
shown in Fig. 1c). Through a series of requirements on functionality
and distributed concerns, we show how developers use EdgeC to
incrementally explore new behaviors and/or distributed specifica-
tions, at each point producing fully functional reactive application.
EdgeC synthesizes Scala code and provides a JVM-based runtime,
which is then deployed on an interconnected set of machines (see
§ 3).

Distributed interactive behaviors in EdgeC. The main func-
tionality is making a game move, per player turn, which adds a
given number to the overall score. Fig. 2 shows EdgeC code to
implement this behavior. Syntax of the language is based on Scala.
Scenarios encapsulate a particular set of distributed behaviors (ef-
fectively a sub-system) and are parametrized by node instances
that represent physical machines in the system. With the node dec-
laration (line 1), developers declares two types of nodes, Console,
which encapsulates console id (passed as a parameter when a node
is created), and Server. The Game scenario defines the behavior
over a given server and a set of console nodes (line 3).

In EdgeC, the core functionality is simply given with sequential
code and distributed aspects are provided on top (through annota-
tions). Developers define data and the play function, which takes
a parameter and checks if it’s the current player’s turn: if yes, the
score is increased and other variables are updated. The code for
play is oblivious to any distributed aspects of the computation; it
can be reasoned about and tested as any other sequential function
(e.g. simple unit testing).

Distributing behaviors. Specifications of distributed aspects char-
acterize how sequential behaviors are mapped onto the distributed
system at hand. Firstly, given node instances, here server and consoles
(line 3), each variable is annotated to specify allocation to a node.
The annotation @loc(n) designates the declaration at hand, data
or function, is allocated at instance n. With lines 4-7, developers
allocate game variables on the server, and myId for every console
in consoles (each console owns a copy), while notify can be exe-
cuted only on a Console node. With the construct forall, developers
allocate one myId for each client node and initialize it to id of the
console (line 6).

In EdgeC, all function invocations (behaviors) need to resolve
to specific node instances which determine the actual distributed

1 node Server; node Console(cId: Int)
2

3 scenario Game(server: Server, consoles: Set[Console]) {
4 @loc(server) { var turn: Int = 0; var score: Int = 0;
5 var last: Int = −1 }
6 @forAll(c in consoles) { @loc(c) var myId: Int = c.cId;
7 @loc(c) def notify(r: String) = println(r) }
8

9 @resolve[Console]
10 def play(num: Int) = {
11 if (turn == myId) {
12 score += num; last = myId
13 turn = (turn+1)%consoles.size
14 return true
15 } else return false }
16

17 trigger PlayGame[Console](num: Int)
18

19 triggering(anyOf(consoles) { (c: Console) =>
20 when (PlayGame(num)) { bind(c)(play(num)) }
21 when (onChange(turn)) { notify(``Score is: '' + score) }
22 when (onTrue(score>100)) { notify(``Win: '' + last) }
23 })
24 }

Figure 2. Distributed reactive game

execution at run time. EdgeC does this at the place of invocation, at
compile time, as explained later. While game data is unambiguously
bound to the single server (through @loc), developers annotate
play with resolve[Console] which means behavior needs to bind a
console instance to be invoked; this is due to accessing myId. (EdgeC
allows means of binding different consoles to different variables,
not shown here.) This in turn means: 1) access to myId resolves to
an access on the bound console; 2) play accesses data spread across
different nodes, i.e. server and console. EdgeC automatically splits
behaviors into chunks (based on data allocation), analyzes chunk
inter-dependencies, and performs the necessary communication
needed for distributed execution. Thus, every behavior might be
executed chunk-by-chunk, across multiple different nodes; here,
console sends request to the server (sending data num and myId),
the server evaluates the whole body, and a response is returned.
(EdgeC splits behaviors according to a given network model; by
default, it minimizes communication rounds in a uniform model.)

Invoking behaviors. Having defined the behaviors and data allo-
cation, the next step is to define when behaviors should execute,
i.e. reactivity. With trigger, developers define external events (e.g.
interaction with the system). PlayGame is a trigger that can occur
at Console instances; it represents an event that carries num. EdgeC
generates API stubs for injecting events with parameters (so this can
be done e.g. from a UI). The construct triggering invokes behaviors
in response to triggers. The core of this construct is a when e {b}
statement, which indicates that b should be executed whenever
trigger e occurred. In this example, since the event PlayGame and
behavior play need to bind to some console, developers first use
anyOf(consoles) to quantify over all nodes c in the set consoles, and
use it to bind the invocation of play. Let’s consider line 20: when-
ever PlayGame event is fired, on any quantified console c (bound
implicitly), the system starts the play behavior in the system. The
caller, who injected PlayGame, then waits for the response.

Aspect-Oriented Language for Reactive Distributed Applications at the Edge EdgeSys ’20, April 27, 2020, Heraklion, Greece

Resulting distributed behaviors. EdgeC compiles this program,
accounting the aspect of allocation, into a message-passing imple-
mentation which offers APIs to instantiate nodes, scenarios and
inject events. By default, EdgeC uses the Akka framework [1]. Given
Akka actors are obtained, developers construct nodes from actors
and start the application with:

1 def init(sa: ActorRef, cas: List[ActorRef]) {
2 val cs = cas.zipWithIndex.map({ case (a,i) => Console(a,i) }).toSet
3 Game(Server(sa), cs).start() }

This creates a console node for each actor in the given list, with their
ordinal as cId argument. Interaction is done by injecting events as ac-
tor messages. On the console node, developers can inject PlayGame
with:

1 val console: ActorRef = ...; console ! PlayGame(5)
The system performs a client-server communication pattern, by
communicating num to the server, executing the body of play on the
node specified by sa, retrieves response, and passes it to the caller
(asynchronously through a message). In EdgeC developers can
implement the behavior in different patterns, by either changing
the given behavior code or orthogonal specifications.

Reactivity. Unlike traditional approaches, handling reactivity is
done through a separate specification, without cross-cutting code.
When the game is over, i.e. score reaches 100, developers notify
players by simply binding a call to notify to a trigger onTrue; with
onTrue(c), whenever the condition c (on arbitrary allocated data)
goes from false to true, the trigger is fires (Fig. 2, line 22). EdgeC
allows implicit resolution – the quantified console c is implicitly
bound to the call. This achieves the expected behavior of invoking
notify on all consoles when the game is over. EdgeC makes sure
that, at any point in time, if the trigger condition becomes true,
the corresponding behavior is invoked. It analyzes the code and
checks for all possible places the trigger can fire: in cases it can be
statically determined, a call to the behavior is inserted or omitted,
otherwise a run time check is emitted. (EdgeC fires at most one
declared bound trigger per operation invocation; defined in § 4.)
In this case, EdgeC automatically determines a check needs to be
inserted after invoking play.

However, imagine developers introduced another operation be-
sides play (and bound it to nodes), to reset the game:

1 def reset() { score = 0; turn = 0; last = −1 }
Then, EdgeC does not insert any checks after reset, as analysis
confirms score cannot become 100 after executing reset.

Now, imagine developers want also to notify players of the new
score, whenever it changes. In this case, the developers bind ap-
propriate notify call to the onChange(e) trigger, which triggers
every time the expression e changes (used in Fig. 2, line 21). EdgeC
automatically injects approapriate calls, but also optimizes commu-
nication: namely, after the score reaches 100 both triggers are fired
but the server sends only one message to consoles. (A naive event
handling would fire two behaviors through two separate messages
from the server to consoles, i.e. 2n messages for n consoles.) EdgeC
statically analyzes control flow to minimize communication; here,
it consolidates messages and emits an additional check (and receive
handler on consoles), to cover this case.

Handling consistency. When developing applications with mul-
tiple distributed behaviors occurring at differences places in the

val g = Graph[Node]()
g.node(server, 1.0)
val edges = for (c <− consoles) yield {

g.node(c, 1.0)
g.edge(c, server, 1.0) } /∗ bidirectional ∗/

g.node(cs1, 0.1); g.edge(cs1, server, 0.1)
initNetwork(g)

Figure 3. Network model specifications

system, developers must often coordinate messages to avoid in-
consistent results. Unlike uniform transactional systems, EdgeC
handles consistency at different nodes by employing different low-
level coordination protocols. It analyzes program semantics, places
of invocation, as well as network model to try to optimize and avoid
unnecessary coordination. Our prototype supports strong and weak
consistency modes (given as a flag to our prototype compiler; not
shown).

Under weak consistency, EdgeC simply executes all behaviors
when they get invoked as a sequence of message passing commu-
nication across the system (i.e. more specifically a graph, based on
data dependencies across nodes), without coordination. For strong
consistency, EdgeC analyzes any two behaviors in the system for
potential conflicts that could violate serializability. (EdgeC performs
cycle graph conflict analysis based on prior work [13].) In the run-
ning example, since the game data is allocated on the server node,
strong consistency is preserved if all executions (data modifica-
tions) on server and notification behaviors resulting from those
executions on the consoles are observed in the same order on all
nodes. Under Akka implementation, which uses TCP/IP, this is
automatically satisfied (as message ordering between two nodes
is preserved). However, EdgeC supports backends with weaker as-
sumptions (e.g. UDP or MQTT under low QoS) and implements
such ordering automatically.

EdgeC performs pattern matching on the conflicting behaviors
and underlying network and applies optimizations, such as ordering,
if possible. In case such optimizations are not possible, EdgeC emits
two-phase consistency protocol to ensure strong consistency. In the
given example, imagine developers split data between two servers,
allocate turn on a different server node server2, and redefine reset:

1 scenario Game(server: Server, server2: Server, ...) {
2 @loc(server2) var turn: Int = −1
3 def reset() { /∗ same as before ∗/ }

EdgeC emits two-phase commit for all invocations of play and
resetTurn (regardless of places of triggering) to preserve same or-
dering of observing two operations on server and server2, due to
potential conflicts.

EdgeC guarantees the chosen level of consistency, however, un-
like traditional data management systems, it optimizes distributed
behaviors based on network topology and operation semantics,
making it more amenable for the edge. The optimization is sound,
but incomplete, as EdgeC might fail to recognize a case where
optimization is valid and emit a costly consistency protocol.

Adapting implementations with network models. EdgeC al-
lows developers to model the network, specifying a cost of com-
munication as well as execution on individual nodes. Developers
specify custom models with network. If left unspecified, EdgeC as-
sumes the default uniform network model with costs of execution
and communication equal to 1 across all nodes and edges. Network

EdgeSys ’20, April 27, 2020, Heraklion, Greece Ivan Kuraj and Armando Solar-Lezama

takes a directed weighted graph of the network as an argument, as
shown in Fig. 32.

In the current example, without network model specification, for
play, EdgeC generates behavior following the client-server pattern,
as mentioned. If the depicted network model is specified, however,
since cs1 has lower cost of computing and connectivity (0.1, as
depicted on the left), EdgeC will allocate computation on the node,
incurring more communication rounds, but still overall lower cost,
according to the given model.

Replication and aliasing. EdgeC supports replication as exper-
imental feature in the prototype, limited to certain forms of sce-
narios (programs outside the supported class will fail to compile).
In the running example, developers might decide to replicate data
across multiple server instances (as shown in Fig. 1). Replication is
supported in EdgeC prototype by providing a special annotation:

1 @replicated(3) node Server
2 def resolveReplica(c: Console): Int = ...
3 @resolver(resolveReplica) def play(/∗ as before ∗/)

Here, EdgeC replicates server, implicitly, across 3 instances. It re-
solves accesses to replicated variables, e.g. in play, based on an
externally defined function resolveReplica. Modifying server vari-
ables under strong consistency now involves 2PC across all server
replicas. Replication is supported on the level of a node type; we
plan to extend it to apply to specified node groups and specific
variables.

Peer-to-peer. Let’s assume developers want to fit their application
into a p2p model. In this setting, there are only console nodes, while
every console has its designated console node acting as the server.
This can be achieved by declaring another scenario, similarly as
before, but specifying the server to be one of the console nodes.

1 scenario P2PGame(server: Console, cs: Set[Console]) {
2 require(cs.contains(server))
3 ... /∗ rest is as before ∗/ }

Without any other changes to our running example, EdgeC recog-
nizes the precondition to conclude that the server is also one of the
console nodes. The main difference with respect to the previous
case is that a console node now stores all the game variables (in
addition to myId) and play is instantiated for two cases: 1) originat-
ing console is also the server and play incurs no communication (as
the behavior executes locally on the single console); 2) originating
console is not the server, in which case the behaviors are the same
as discussed before.

3 EdgeC compilation
EdgeC contains two parts: the compiler and the runtime. EdgeC
employs a novel compiler design which incorporates multiple pro-
gram analyses. The compiler compiles EdgeC programs to Java
bytecode, while the runtime implements communication primitives
and consistency protocols (using Akka [1]). The runtime exposes
APIs which are called by the generated code.

Here, we focus on the main tasks of the compiler. The overview
of the compilation is given in Fig. 4. The core parts are the behavior
graph synthesizer and splicer, which analyze behaviors and spec-
ifications, and incrementally splice appropriate code into the dis-
tributed implementation. The compilation process includes helper

2Our prototype currently does not use reflection, thus graphs have to be static instances,
known at compile time.

Figure 4. EdgeC compiler

components: EdgeC preprocessor; AST extractor, which extracts
behaviors and EdgeC specifications; implicit resolver, which binds
nodes at the places of behavior invocations; and code generator,
which transforms the internal representation of programs into byte-
code. Our prototype compiler is implemented as a Scala compiler
plugin.

High-level compilation loop. The compilation process loops over
all triggers, identifying all the places they might trigger, instantiates
bound behaviors, and analyzes the current set of behaviors for
consistency levels under which the behaviors need to be executed.
Effectively, this is done until a fixed point is reached, i.e. no new
changes are made to the resulting implementation.

Behavior splitting and allocation. Given an operation invocation
and its starting node, a behavior graph designates the shape of a dis-
tributed computation: its nodes represent executions of operation
chunks on particular nodes, while edges represent data or control-
flow dependencies between chunks. For each invoked behavior, the
process splits the operation and assigns individual chunks to be
executed on particular nodes, producing a behavior graph. This is
done with minimizing the overall cost of mapping (usually collocat-
ing data with computation). A behavior graph effectively encodes
an execution graph: following the topological sort of such a graph,
the system can execute the operation, incrementally distributed
across the system, while propagating data dependencies according
to its edges. (For example, a graph of play in the running example,
reflects the simple client-server model; it has three nodes, with
edges encoding data dependencies for the request and response.)
A set of behavior graphs serves as intermediate representation of
the final implementation and it captures enough information to
allow emitting low-level code (and allow optimizations based on
the given network model and interactions with other behaviors,
e.g. the aforementioned message consolidation).

Trigger splicing. Trigger splicing identifies the places where trig-
gers get activated (and operations invoked). They are can be at the
originating nodes, in case of external triggers, or inside existing
behaviors that enable conditional triggers during execution (e.g.
for onChange(score), it’s on the server, where play modifies score).
EdgeC analyzes the current set of behavior graphs to discover pos-
sible places where these might get enabled and emits necessary run
time checks.

Consistency analysis. EdgeC, when parametrized with strong
consistency, checks for conflicts by analyzing each pair of behavior
graphs. It employs an analysis based on interference conflict analy-
sis, which allows detecting possible conflicting transactions stati-
cally [13]. We modify the original algorithm to handle distributed

Aspect-Oriented Language for Reactive Distributed Applications at the Edge EdgeSys ’20, April 27, 2020, Heraklion, Greece

Algorithm 1 Execution model as an interpreter
Require: start state s0, condition triggers Tc
1: s ← s0,T ← ∅, E ← ∅ ▷ state, triggers, execution graph
2: loop
3: T ← T∪ newEvents() ▷ include new external events
4: E ← E∪ chooseAndInstantiate(T, s) ▷ start new behaviors
5: el ← removeTop(E) ▷ next element in topological order
6: if el = node(e, t) then ▷ node case
7: res(el) ← eval(s, env(el)); s ← s ∪ res(el) ▷ evaluate

chunk
8: if el is last chunk in operation then
9: E ← E∪ instantiateAll(Tc , s) ▷ check condition

triggers
10: else if el is last chunk in condition trigger t then
11: T ← T∪ checkEnabled(t) ▷ new trigger enabled
12: else el = edдe(n1,n2) ▷ edge case
13: env(n2) ← env(n2) ∪ res(n1) ▷ communicate

dependencies

executions, accounting the network model (and single-threaded
execution per each node, which our prototype currently employs).

Scalability of analyses. All the analyses run in polynomial time
with respect to the program size, except the splitting phase which
run in exponential time. (A faster, heuristic-based, allocationmethod
is left for future work.)

4 Language Semantics
We formalize the semantics of EdgeC programs with an event-
driven model of execution, enriched with specifications of distri-
bution, reactive events, and consistency concerns. It defines the
requirements of the execution model, while allowing different con-
crete scheduling, consistency models, and optimizations.

Event model semantics.We define dynamic semantics by inter-
pretation [12]. The interpreter is given in Algorithm 1. Inputs to
the interpreter include the starting state and a set of all condition
triggers (such as onChange, which need to be checked during exe-
cution). The system maintains the current state (across all nodes),
the set of active triggers T and an execution graph E. The execu-
tion graph represents all active behaviors, waiting to get executed.
Whenever an operation is invoked, its behavior is instantiated and
added to the main graph E. These behaviors might be either opera-
tion invocations or condition checking (which need to evaluate an
expression over current state, e.g. onTrue(score>100)).

The interpreter initializes variables and starts looping. It first
collects new external triggers to the set of active triggersT . Then, it
chooses a subset ofT to instantiate behaviors (chooseAndInstantiate),
adding them to the main execution graph E. The instantiated set
depends on the assumed consistency model: for strong consistency
it only instantiates behaviors which do not conflict with any of the
active behaviors; for weak, it instantiates all behaviors of enabled
triggers. Next, the algorithm picks a node (to execute) or an edge (to
perform communication step) from E: it picks either a non-visited
node from E which has all incoming edges visited, or a non-visited
edge which has the source node visited. (This is akin to topological
order, but generalized to traverse edges as well.) If it visits a node, it
executes it’s behavior chunk, with it’s environment (env(el)), for a

Figure 5. Performance evaluation

result (rel(el)), and updates the state (s). If the node is the last non-
visited node belonging to: 1) an operation invocation, it instantiates
all condition triggers (to be checked, since some of them might
trigger as a result of the current execution); 2) condition behavior,
the evaluation result represents a Boolean which determines if the
given trigger should fire, enabling new behaviors. If it visits an edge
(from n1 to n2) it processes the communication step by updating
environment for the chunk n2.

5 Evaluation
This section evaluates EdgeC prototype showing potential in per-
formance gains due to implementation tweaking allowed by the
expressiveness of the language. We evaluated the JVM implemen-
tation of EdgeC on OpenStack Compute Cluster using 8 machines
(3GHz clock speed and 2GB of RAM).The benchmarks include: 1)
the standard Retwis benchmark ([8]); 2) “reactive Retwis”, with
added reactive behaviors; 3) play from the running example, over a
non-uniform network. The results are shown in Fig. 5. EdgeC finds
all optimizations of behaviors for the given benchmarks; we thus
believe it performs similarly to manual implementations that rely
on the same optimizations.

Redis over uniform network. The first row of graphs shows the
Retwis benchmark, specifically: EdgeC implementationswith strong
and no consistency (strong and weak); Redis-based (no consistency)
implementation with and without concurrent handler (redis and
redis_1thread). EdgeC’s performance is comparable to that of stan-
dard Redis in the weak consistency model. Performance penalty in
EdgeC occurs for strong consistency, as expected, as around 3/4 of
operations require coordination to maintain consistency.

Reactive behaviors. We added a new operation to the Retwis
benchmark for notifications of new post or likes. In Redis, clients
poll after each operation to check for new notifications. The results

EdgeSys ’20, April 27, 2020, Heraklion, Greece Ivan Kuraj and Armando Solar-Lezama

are shown in the second row of Fig. 5. The experiments confirm
expected performance penalty due to polling in Redis; EdgeC ex-
hibits better latency and throughput. The reason is direct splicing
of triggers that avoids polling.

Non-uniform networks behaviors. We evaluated benefits of lever-
aging the network model in EdgeC, under a non-uniform network.
We ran play operation from the running example, with the network
model from § 2; we simulated this by adding delay of 15ms to both
computation and message receives on “slow” nodes. The results are
shown in the third row of Fig. 5. EdgeC outperforms the uniformly
communicating system, in both the throughput and latency, since
the adjustments in computation based on the given network avoids
the unnecessary latency penalties. This becomes more significant
with 8 nodes (with slowdown of around 25%).

5.1 Comparison to other programming models
While existing expressive programming models leverage the se-
quential computation model to some extent, the fundamental dif-
ference lies in the necessity for additional abstractions, such as
remote procedure calls, reactive values, and conflict-free replicated
data type, for handling distributed aspects of the system [2, 6, 7].
(Transaction-based models, on the other hand, do not break the
sequential model, but lack expressiveness for specifications of fine-
grained allocation, reactivity, and optimizations [8].) The additional
abstractions often cross-cut different parts of the program and break
the conceptual model of the intended high-level behavior (e.g. by
forcing a split into smaller computational parts which explicitly
handle communication through messages). While these models ab-
stract away some of the complexity, due to the close match between
the program and the final distributed implementation, expressing
certain complex behaviors requires low-level reasoning and careful
structuring of the program [14].

A representative of a general-purpose model is the actor model
[3, 10]. Despite being concise, (the running example is implemented
in a similar number of lines of code, modulo message declarations)
by providing abstractions which encapsulate sequential computa-
tion as responses to messages, the actor model suffers from cross-
cutting concerns, similarly to other lower-level models. Program-
mers need to manually match the structure of the program to the
resulting flow in the system: high-level behaviors which span across
different nodes have to be split into behavior chunks, data explic-
itly partitioned and forwarded between nodes, and communication
orchestrated through message sending and handling, depending on
the orthogonal requirements, such as data consistency.

Notably, the design decision of separation of concerns afforded
by our programming model inevitably comes with a loss of expres-
siveness for controlling communication. For example, our model
takes away control from the programmer over how messages are
sent across the system, so it cannot be used to implement distributed
algorithms which require specific orchestrations of messages. How-
ever EdgeC leverages message passing, as well as various lower-
level protocols, in the resulting implementations, to achieve the
specified higher-level behavior.

6 Related and Future Work
EdgeC is inspired by prior frameworks, but aims to lift abstractions
to a higher level [5]. Approaches that extend sequential model
with new abstractions, such as RPCs and reactive values, handle

distributed aspects specific to a domain, such as client-server and
computation parallelization, but with no support for reactivity
and consistency [4, 6]. Prior work presented systems that simplify
development of reactive applications, but are not tailored for aspects
needed for the edge, such as computation adaptation [8, 9].

The nature of our approach allows it to be extended with new
specifications while hiding the reasoning complexity in the com-
piler: different specialized backends, such as MQTT, with necessary
adjustments in the code generator; eventual consistency, with rea-
soning about CRDTs and general commutativity with SMT solvers;
dynamic load-balancing, where behavior shapes from different
specified network models are switched at run time, based on the
current load. Aspects such as fault-tolerance could be supported
by leveraging appropriate protocols inside the compiler (e.g. using
protocols which achieve strong consistency of behaviors, but also
fault-tolerance [11]). However, an interesting direction would be to
extend the language to allow programmers to specify fine-grained
fault tolerance and security aspects, providing the compiler more
information for optimization.

References
[1] [n. d.]. Akka – actor toolkit and runtime. ([n. d.]). http://akka.io/
[2] [n. d.]. Meteor - Pure JavaScript web framework. ([n. d.]). http://meteor.com
[3] Gul Agha. 1986. Actors: a Model of Concurrent Computation in Distributed

Systems. MIT Press (1986).
[4] Jean-Pierre et al. Briot. 1998. Concurrency and Distribution in Object-oriented

Programming. Comput. Surveys (1998).
[5] Sergey Bykov et al. 2011. Orleans: Cloud Computing. In SoCC.
[6] Adam Chlipala. 2015. Ur/Web. In POPL.
[7] Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reactive

Programming for GUIs. In PLDI.
[8] Irene Zhang et al. 2016. Diamond: Automating Data Management and Storage

for Wide-Area, Reactive Applications. OSDI (2016).
[9] Rajeev Alur et al. 2016. Systems Computing Challenges in the Internet of Things.

white paper CCC abs/1604.02980 (2016).
[10] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A universal modular ACTOR

formalism for artificial intelligence. In IJCAI.
[11] Brian M Oki and Barbara H Liskov. 1988. Viewstamped replication. In Proceedings

of the seventh annual ACM Symposium on Principles of distributed computing. 8–
17.

[12] John C. Reynolds. 1972. Definitional Interpreters for Higher-order Programming
Languages. In ACM ’72.

[13] Dennis et al. Shasha. 1995. Transaction Chopping: Algorithms and Performance
Studies. ACM Trans. Database Syst. (1995).

[14] Andrew Stuart Tanenbaum and Robbert van Renesse. 1987. A critique of the
remote procedure call paradigm. Technical Report. Vrije Universiteit.

http://akka.io/
http://meteor.com

	Abstract
	1 Introduction
	2 Overview
	3 EdgeC compilation
	4 Language Semantics
	5 Evaluation
	5.1 Comparison to other programming models

	6 Related and Future Work
	References

