
A Meshless Hierarchical
RepresentaKon for Light Transport

1MIT CSAIL      2TKK       3UCSD      4Grenoble University
5INRIA       6PDI/DreamWorks        7NVIDIA Research

Jaakko LehKnen1,2 MaMhias Zwicker3 Emmanuel Turquin4,5

Janne Kontkanen6 Frédo Durand1 François Sillion5,4

Timo Aila7

I believe most of us will agree that interactive Global illumination with moving lights
and cameras in complex environments such as this one is a challenging problem.

I believe most of us will agree that interactive Global illumination with moving lights
and cameras in complex environments such as this one is a challenging problem.

I believe most of us will agree that interactive Global illumination with moving lights
and cameras in complex environments such as this one is a challenging problem.

I believe most of us will agree that interactive Global illumination with moving lights
and cameras in complex environments such as this one is a challenging problem.

How?

•Store lighKng on surfaces
–Enables quick reconstrucKon from any viewpoint

•Examples
–PRT techniques store spaKally varying
transfer matrices [Sloan 02, Ng 03, ..., ..., ...]

–FEM techniques store irradiance/radiosity/radiance

Many techniques tackle this problem by precomputing and storing some sort of
lighting functions on the surfaces of the scene, often using basis functions. The
solutions can then be easily visualized from any viewpoint.

For example, Precomputed Radiance Transfer techniques store spatially varying
transfer matrices that encode the appearance of surface points in terms of input
lighting, while traditional finite element methods store radiance or radiosity in fixed
lighting conditions.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve

Let’s take a look at the most common approach for capturing spatial variation, linear
interpolation over triangles. The lighting function is sampled at the vertices, and the
results are linearly blended across the triangle. While this is easy and general, you
have to sample at all of them to get a complete reconstruction, which is a lot of work
in a complex scene.

In other words, the sampling cannot be adapted to the frequency content of the signal
being approximated. Similar arguments apply to other nonhierarchical bases.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve

Let’s take a look at the most common approach for capturing spatial variation, linear
interpolation over triangles. The lighting function is sampled at the vertices, and the
results are linearly blended across the triangle. While this is easy and general, you
have to sample at all of them to get a complete reconstruction, which is a lot of work
in a complex scene.

In other words, the sampling cannot be adapted to the frequency content of the signal
being approximated. Similar arguments apply to other nonhierarchical bases.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve

Let’s take a look at the most common approach for capturing spatial variation, linear
interpolation over triangles. The lighting function is sampled at the vertices, and the
results are linearly blended across the triangle. While this is easy and general, you
have to sample at all of them to get a complete reconstruction, which is a lot of work
in a complex scene.

In other words, the sampling cannot be adapted to the frequency content of the signal
being approximated. Similar arguments apply to other nonhierarchical bases.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy ✔

Let’s take a look at the most common approach for capturing spatial variation, linear
interpolation over triangles. The lighting function is sampled at the vertices, and the
results are linearly blended across the triangle. While this is easy and general, you
have to sample at all of them to get a complete reconstruction, which is a lot of work
in a complex scene.

In other words, the sampling cannot be adapted to the frequency content of the signal
being approximated. Similar arguments apply to other nonhierarchical bases.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve
✔
✘

Let’s take a look at the most common approach for capturing spatial variation, linear
interpolation over triangles. The lighting function is sampled at the vertices, and the
results are linearly blended across the triangle. While this is easy and general, you
have to sample at all of them to get a complete reconstruction, which is a lot of work
in a complex scene.

In other words, the sampling cannot be adapted to the frequency content of the signal
being approximated. Similar arguments apply to other nonhierarchical bases.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve

•Hierarchical
–Fast

–Difficult

✔
✘

To get adaptive resolution, you can, for instance, paste your favorite wavelet basis on
the surfaces. The multiresolution representation allows computations to take place at
the appropriate level of detail; this makes many algorithms really much faster. This is
all great when the geometry is simple enough such that it allows a nice 2D
parameterization.

But in cases when you have complex geometry, perhaps with topologically disjoint
components such as cobblestones, or even tree foliage, or similar, you’re pretty
much out of luck.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve

•Hierarchical
–Fast

–Difficult

✔
✘

To get adaptive resolution, you can, for instance, paste your favorite wavelet basis on
the surfaces. The multiresolution representation allows computations to take place at
the appropriate level of detail; this makes many algorithms really much faster. This is
all great when the geometry is simple enough such that it allows a nice 2D
parameterization.

But in cases when you have complex geometry, perhaps with topologically disjoint
components such as cobblestones, or even tree foliage, or similar, you’re pretty
much out of luck.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve

•Hierarchical
–Fast

✔
✘

✔

To get adaptive resolution, you can, for instance, paste your favorite wavelet basis on
the surfaces. The multiresolution representation allows computations to take place at
the appropriate level of detail; this makes many algorithms really much faster. This is
all great when the geometry is simple enough such that it allows a nice 2D
parameterization.

But in cases when you have complex geometry, perhaps with topologically disjoint
components such as cobblestones, or even tree foliage, or similar, you’re pretty
much out of luck.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve

•Hierarchical
–Fast

✔
✘

✔

To get adaptive resolution, you can, for instance, paste your favorite wavelet basis on
the surfaces. The multiresolution representation allows computations to take place at
the appropriate level of detail; this makes many algorithms really much faster. This is
all great when the geometry is simple enough such that it allows a nice 2D
parameterization.

But in cases when you have complex geometry, perhaps with topologically disjoint
components such as cobblestones, or even tree foliage, or similar, you’re pretty
much out of luck.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve

•Hierarchical
–Fast

✔
✘

✔

?

To get adaptive resolution, you can, for instance, paste your favorite wavelet basis on
the surfaces. The multiresolution representation allows computations to take place at
the appropriate level of detail; this makes many algorithms really much faster. This is
all great when the geometry is simple enough such that it allows a nice 2D
parameterization.

But in cases when you have complex geometry, perhaps with topologically disjoint
components such as cobblestones, or even tree foliage, or similar, you’re pretty
much out of luck.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve

•Hierarchical
–Fast

✔
✘

✔

?

To get adaptive resolution, you can, for instance, paste your favorite wavelet basis on
the surfaces. The multiresolution representation allows computations to take place at
the appropriate level of detail; this makes many algorithms really much faster. This is
all great when the geometry is simple enough such that it allows a nice 2D
parameterization.

But in cases when you have complex geometry, perhaps with topologically disjoint
components such as cobblestones, or even tree foliage, or similar, you’re pretty
much out of luck.

Some Usual Approaches

•Piecewise linear 
vertex basis
–Flexible, easy

–Not adapKve

•Hierarchical
–Fast

–Difficult

✔
✘

✔
✘

?

To get adaptive resolution, you can, for instance, paste your favorite wavelet basis on
the surfaces. The multiresolution representation allows computations to take place at
the appropriate level of detail; this makes many algorithms really much faster. This is
all great when the geometry is simple enough such that it allows a nice 2D
parameterization.

But in cases when you have complex geometry, perhaps with topologically disjoint
components such as cobblestones, or even tree foliage, or similar, you’re pretty
much out of luck.

Goals for RepresentaKon

Flexible and Simple

Smooth ReconstrucKon

Hierarchical

Independent of Geometric RepresentaKon

In all, we would like a basis that

shares the simplicity and ease of use of the piecewise linear per-vertex interpolation,

offers pleasing smooth reconstruction on smooth surfaces, with no artificial seams

that is hierarchical to enable adaptive computations,

and furthermore, which would be as decoupled from the actual surface representation
as possible.

Overview and Previous Work

Reconstruc7on and Basis Func7ons

Construc7ng the Basis

Applica7on: Direct‐to‐Indirect PRT

Rendering on GPU

Discussion and Conclusions

Previous Work
Hierarchical Surface Bases

•HR
[Hanrahan 91, ...]

•Wavelets
[Gortler 93, Lecot 05, 
Kontkanen 06, ...]

•Volume clusters
[Sillion 95, ...]

•Face clusters
[WillmoR 99, ...]

Lots of work has been done on hierarchical illumination algorithms. This includes
hierarchical radiosity, wavelet radiosity and its glossy derivatives, volume clustering
techniques and face clustering techniques.

We would like to employ similar multiresolution algorithms, but without the need to
parameterize or mesh the surfaces, as is required by all these previous approaches.

Previous Work
PRT

•Focus on angular domain
for illuminaKon
–hierarchical, wavelets
[Ng 03, Liu 04, Wang 07, ...]

•SpaKal: usually per‐vertex, 
no hierarchy
–ExcepKon:
[Kontkanen 06] has hierarchy,
but only simple geometry

Most Precomputed Radiance Transfer or PRT work concentrates more on the efficient
representation of distant incident illumination. Hierarchical wavelet bases are often
employed to enable all-frequency relighting.

However, in the spatial domain, these methods usually resort to standard non-
hierarchical piecewise linear basis functions, which means slow precomputation and
necessitates compression to make the dataset small enough. The Kontkanen PRT
technique for local light sources is a notable exception; they use Haar walets on the
surfaces, but unfortunately this rules out complex scenes.

Previous Work
PRT

•Focus on angular domain
for illuminaKon
–hierarchical, wavelets
[Ng 03, Liu 04, Wang 07, ...]

•SpaKal: usually per‐vertex, 
no hierarchy
–ExcepKon:
[Kontkanen 06] has hierarchy,
but only simple geometry

Most Precomputed Radiance Transfer or PRT work concentrates more on the efficient
representation of distant incident illumination. Hierarchical wavelet bases are often
employed to enable all-frequency relighting.

However, in the spatial domain, these methods usually resort to standard non-
hierarchical piecewise linear basis functions, which means slow precomputation and
necessitates compression to make the dataset small enough. The Kontkanen PRT
technique for local light sources is a notable exception; they use Haar walets on the
surfaces, but unfortunately this rules out complex scenes.

Previous Work
Off‐line Rendering

•Point‐based illuminaKon 
representaKon and 
caching
–Irradiance caching [Ward 88]

–Photon map [Jensen 96]

Point samples
abstract geometry

Point samples have been found really useful in offline rendering. The irradiance cache
interpolates sparse illumination samples, while Photon mapping represents irradiance
through the density of photons. In both approaches, the point samples decouple the
geometric representation from the illumination algorithm, which is a very attractive
property.

However in contrast to these techniques, for PRT and related techniques we need
basis functions and a projection operator, and furthermore the solution needs to be
visualized directly without final gathering. In addition, a multiresolution basis is
essential for fast algorithms.

Previous Work
Meshless RepresentaKons

•Meshless simulaKon
and animaKon
[Desbrun 96, Müller 03, 
Müller 04, Pauly 05, ...]

•Point‐based modeling
[Pfister 00, Amenta 04, ...]

•(Hierarchical) scaMered 
data interpolaKon
[Shepard 68, ...]

So-called Meshless Finite Element Techniques use basis functions defined without the
use of a mesh. In graphics, meshless methods have been applied in simulation and
animation of deformable bodies and fluids.

Furthermore, using points as a rendering and modeling primitive has been explored
for example in the Surfel work and pointset surfaces defined through Moving Least
Squares.

All of these techniques build on scattered data interpolation.

ContribuKons

•Meshless hierarchical funcKon basis
–geometry‐independent mulK‐res algorithms

•Algorithm for generaKng the basis

•Method for rendering directly on GPU

•Novel direct‐to‐indirect PRT algorithm
–complex geometry, efficient precomputaKon

We draw inspiration from all the work just outlined and present a novel meshless
hierarchical function basis for light transport computations. As the name implies, the
basis is not tied to a mesh and thus does not require meshing, clustering or
parameterization, and allows multiscale representation of illumination on arbitrary
geometry.

We also describe a simple algorithm for generating the basis, and a technique for
rendering directly from the basis on the GPU.

Finally, we apply the basis to PRT and describe an algorithm that allows interactive
global illumination with moving local light sources on complex multi-million triangle
scenes, and that has a fast precomputation step thanks to the hierarchy.

Overview
New Surface Basis
Overview of
our approach

Let’s see an overview of how the basis works. Here we illustrate the approximation of
surface irradiance.

ScaMered samples

Our basis builds on point samples scattered in 3D on the surfaces of our scene.

The function that we want to approximate is sampled at the points. The samples only
represent lighting, not the geometry.

ScaRered samples

Smooth reconstrucKon

For ANY point in the scene, we can use a scattered data approximation procedure to
smoothly approximate the function based on the nearby point samples.

For any query point, here denoted in red, we take some weighted average of the point
values from the nearby samples.

ScaRered samples

Smooth reconstrucKon

For ANY point in the scene, we can use a scattered data approximation procedure to
smoothly approximate the function based on the nearby point samples.

For any query point, here denoted in red, we take some weighted average of the point
values from the nearby samples.

ScaRered samples

Smooth reconstrucKon

For ANY point in the scene, we can use a scattered data approximation procedure to
smoothly approximate the function based on the nearby point samples.

For any query point, here denoted in red, we take some weighted average of the point
values from the nearby samples.

Overview
New Surface Basis

ScaRered samples

Smooth reconstrucKon

When this is done for all points, we get a coarse, blurry approximation of the original
function.

If the function varies faster than the spacing of our points, we obviously cannot
capture its behaviour correctly.

Overview
New Surface Basis

ScaRered samples

Smooth reconstruc7on

Add finer levels

To add detail missing from the coarse approximation, we introduce a finer pointset.

Overview
New Surface Basis

ScaRered samples

Smooth reconstruc7on

Add finer levels
Store differences

At these finer points, we compute the DIFFERENCE between the function values and
the previous coarse approximation. These differences are approximated using the
finer points.

Overview
New Surface Basis

ScaRered samples

Smooth reconstruc7on

Add finer levels
Store differences

When the differences are added to the coarse approximation, we get something that
is closer to the true function, but not quite there yet.

ScaRered samples

Smooth reconstruc7on

Add finer levels
Store differences

Reconstruc7onSample Points
To get even closer to the original function, we keep adding levels of finer and finer
points, always computing and storing the differences to the previous approximation.

Now, wherever the original function is smooth, its behaviour will be captured well
already on the coarser levels of the hierarchy, which means that the differences on
finer levels will be small. This key property allows adaptive computations analogous
to wavelets, but without the need for parametrization or meshing.

ScaRered samples

Smooth reconstruc7on

Add finer levels
Store differences

Reconstruc7onSample Points
To get even closer to the original function, we keep adding levels of finer and finer
points, always computing and storing the differences to the previous approximation.

Now, wherever the original function is smooth, its behaviour will be captured well
already on the coarser levels of the hierarchy, which means that the differences on
finer levels will be small. This key property allows adaptive computations analogous
to wavelets, but without the need for parametrization or meshing.

ScaRered samples

Smooth reconstruc7on

Add finer levels
Store differences

Each sample defines
a basis funcKon

Also, it turns out that this intuitive process can be seen as a linear basis projection,
such that each of the points corresponds to a single basis function.

ScaRered samples

Smooth reconstruc7on

Add finer levels
Store differences

Each sample defines
a basis func7on

Precompute light transport 
between basis funcKons

In the end, we will apply the function basis to PRT by hierarchically precomputing
light transport between basis functions.

Overview and Previous Work

ReconstrucKon and Basis FuncKons

Construc7ng the Basis

Applica7on: Direct‐to‐Indirect PRT

Rendering on GPU

Discussion and Conclusions

Now let’s see how we build our meshless basis functions.

•Take local weighted averages of nearby
samples [Shepard 68]

•Each sample is associated with a weight funcKon

Smooth ReconstrucKon

s1 s2 s3 s4

Let’s take a look at how the approximation works.

Specifically, we’re going to take some weighted average of the nearby point samples
to reconstruct the function. These weights in the average are given by a smooth
weight function that is associated with each sample.

The weight functions determine the influence a given sample point has to its
surroundings. This is called Shepard approximation.

We cannot use the weight functions directly as basis functions. That would be radial
basis function or RBF approximation, which would necessitate large linear systems.
Instead we want to use the sampled values directly as basis coefficients. The Shepard
scheme enables this by a normalization step.

•Take local weighted averages of nearby
samples [Shepard 68]

•Each sample is associated with a weight funcKon

Smooth ReconstrucKon

s1 s2 s3 s4

Let’s take a look at how the approximation works.

Specifically, we’re going to take some weighted average of the nearby point samples
to reconstruct the function. These weights in the average are given by a smooth
weight function that is associated with each sample.

The weight functions determine the influence a given sample point has to its
surroundings. This is called Shepard approximation.

We cannot use the weight functions directly as basis functions. That would be radial
basis function or RBF approximation, which would necessitate large linear systems.
Instead we want to use the sampled values directly as basis coefficients. The Shepard
scheme enables this by a normalization step.

•Take local weighted averages of nearby
samples [Shepard 68]

•Each sample is associated with a weight funcKon

Smooth ReconstrucKon

s1 s2 s3 s4

Let’s take a look at how the approximation works.

Specifically, we’re going to take some weighted average of the nearby point samples
to reconstruct the function. These weights in the average are given by a smooth
weight function that is associated with each sample.

The weight functions determine the influence a given sample point has to its
surroundings. This is called Shepard approximation.

We cannot use the weight functions directly as basis functions. That would be radial
basis function or RBF approximation, which would necessitate large linear systems.
Instead we want to use the sampled values directly as basis coefficients. The Shepard
scheme enables this by a normalization step.

•Take local weighted averages of nearby
samples [Shepard 68]

•Each sample is associated with a weight funcKon

Smooth ReconstrucKon

s1 s2 s3 s4

Let’s take a look at how the approximation works.

Specifically, we’re going to take some weighted average of the nearby point samples
to reconstruct the function. These weights in the average are given by a smooth
weight function that is associated with each sample.

The weight functions determine the influence a given sample point has to its
surroundings. This is called Shepard approximation.

We cannot use the weight functions directly as basis functions. That would be radial
basis function or RBF approximation, which would necessitate large linear systems.
Instead we want to use the sampled values directly as basis coefficients. The Shepard
scheme enables this by a normalization step.

•Take local weighted averages of nearby
samples [Shepard 68]

•Each sample is associated with a weight funcKon

Smooth ReconstrucKon

s1 s2 s3 s4

Let’s take a look at how the approximation works.

Specifically, we’re going to take some weighted average of the nearby point samples
to reconstruct the function. These weights in the average are given by a smooth
weight function that is associated with each sample.

The weight functions determine the influence a given sample point has to its
surroundings. This is called Shepard approximation.

We cannot use the weight functions directly as basis functions. That would be radial
basis function or RBF approximation, which would necessitate large linear systems.
Instead we want to use the sampled values directly as basis coefficients. The Shepard
scheme enables this by a normalization step.

From Weights to Basis FuncKons

s1 s2 s3 s4

To get from these weight functions to basis functions, we are going to normalize
each weight function according to the Shepard scheme with the sum of all weight
functions at all points in the domain.

The sum used for normalization is show here in blue.

Now, let me concentrate on one of the weight functions.

We’re now going to divide the weight by the normalizing sum..

.. and this leads us to the normalized basis function.

The procedure is exactly the same for all weight functions. Note how the distribution
of the samples affects the shape of the resulting basis functions.

From Weights to Basis FuncKons

normalizaKon (sum of weights)

s1 s2 s3 s4

To get from these weight functions to basis functions, we are going to normalize
each weight function according to the Shepard scheme with the sum of all weight
functions at all points in the domain.

The sum used for normalization is show here in blue.

Now, let me concentrate on one of the weight functions.

We’re now going to divide the weight by the normalizing sum..

.. and this leads us to the normalized basis function.

The procedure is exactly the same for all weight functions. Note how the distribution
of the samples affects the shape of the resulting basis functions.

From Weights to Basis FuncKons

normalizaKon (sum of weights)

weight

s3

To get from these weight functions to basis functions, we are going to normalize
each weight function according to the Shepard scheme with the sum of all weight
functions at all points in the domain.

The sum used for normalization is show here in blue.

Now, let me concentrate on one of the weight functions.

We’re now going to divide the weight by the normalizing sum..

.. and this leads us to the normalized basis function.

The procedure is exactly the same for all weight functions. Note how the distribution
of the samples affects the shape of the resulting basis functions.

normalizaKon (sum of weights)

Basis FuncKon = Normalized Weight

weight

basis funcKon

s3

To get from these weight functions to basis functions, we are going to normalize
each weight function according to the Shepard scheme with the sum of all weight
functions at all points in the domain.

The sum used for normalization is show here in blue.

Now, let me concentrate on one of the weight functions.

We’re now going to divide the weight by the normalizing sum..

.. and this leads us to the normalized basis function.

The procedure is exactly the same for all weight functions. Note how the distribution
of the samples affects the shape of the resulting basis functions.

Basis FuncKon = Normalized Weight

normalizaKon (sum of weights)

s1 s2 s3 s4

To get from these weight functions to basis functions, we are going to normalize
each weight function according to the Shepard scheme with the sum of all weight
functions at all points in the domain.

The sum used for normalization is show here in blue.

Now, let me concentrate on one of the weight functions.

We’re now going to divide the weight by the normalizing sum..

.. and this leads us to the normalized basis function.

The procedure is exactly the same for all weight functions. Note how the distribution
of the samples affects the shape of the resulting basis functions.

•Weight funcKons are 5D
–posiKon and normal distance

–reconstrucKon respects normal disconKnuiKes (corners)

Basis FuncKon = Normalized Weight

s1 s2 s3 s4

Here I’ve illustrated the weight and basis functions in 1D. In practice, the distance
function we use is a five-dimensional combination of 3D distance and distance
between normals. This means that on smooth surfaces the approximation will be
smooth regardless of any patch or primitive boundaries, but normal discontinuities
such as corners will yield a discontinuous approximation, just as we want.

ProperKes

•Linear funcKon basis
–analogous to piecewise linear, wavelets, ...

–projecKon operator [Gortler 93, ...]

•Wavelet‐like sparsity
–allows mulK‐res and coarse‐to‐fine computaKons

•Independent of geometric representaKon

•Related ideas: Laplacian pyramid, liling scheme

This construction leads to a linear, finite function basis which is analogous to any
other linear basis such as piecewise constants, wavelets, etc.

As I already mentioned, the differencing between the hierarchy levels leads to
wavelet-like sparsity, which is the key to hierarchical, coarse-to-fine algorithms.

Furthermore, the basis is independent of the underlying geometric representation,
because all we need for evaluating the basis functions are pointwise positions and
normals.

The construction has some similarities to certain other multiresolution ideas. Please
refer to the paper for details.

ApproximaKon Example

+ =

Difference FinerCoarse

Red = posiKve
Blue = negaKve

Let’s look at a concrete example where we approximate irradiance over the David.

The coarse approximation on the left is computed from few points and is thus quite
blurry. Once we add in the differences computed at the finer set of points in the
middle, we get more detail, as shown on the right, but it’s still kind of blurry.

ApproximaKon Example

Difference Finer

Red = posiKve
Blue = negaKve

Let’s look at a concrete example where we approximate irradiance over the David.

The coarse approximation on the left is computed from few points and is thus quite
blurry. Once we add in the differences computed at the finer set of points in the
middle, we get more detail, as shown on the right, but it’s still kind of blurry.

ApproximaKon Example

+ =

Difference FinerPrevious

Red = posiKve
Blue = negaKve

Now we just keep adding more levels of points, and thus we get closer and closer to
the ground truth.

Notice how in the smooth areas the differences become small, like on the cheek.

ApproximaKon Example

Meshless reconstrucKon Per‐pixel Reference

This is a comparison to a per-pixel ground truth. I hope you’ll agree that the
approximation is quite convincing.

Overview and Previous Work

Reconstruc7on and Basis Func7ons

ConstrucKng the Basis

Applica7on: Direct‐to‐Indirect PRT

Rendering on GPU

Discussion and Conclusions

Basis ConstrucKon

•Requirements
–uniform coverage (Poisson disk)

–points only on visible surfaces

– independence of geometric representaKon

To get a good representation of the illumination over the surfaces, we want the
distribution of the points to be uniform with respect to the approximation weights.
This is accomplished by a Poisson disk distribution. Furthermore, we want the
algorithm to only place points on surfaces visible from any reasonable viewpoint, and
the algorithm should be as independent of the geometric representation as possible.

Specify 1 seed point

Basis ConstrucKon

We start off by having the user specify 1 seed point in the scene. This point needs to
be somewhere in the free space within the scene where it sees such surfaces that we
want our basis points on.

Specify 1 seed point

Basis ConstrucKon

We start off by having the user specify 1 seed point in the scene. This point needs to
be somewhere in the free space within the scene where it sees such surfaces that we
want our basis points on.

Specify 1 seed point

Generate
candidate parKcles

‐ ray tracing

Basis ConstrucKon

Then, we generate a set of candidate samples by tracing rays backwards from the
seed point. When the ray hits the scene, we store a candidate, then let the ray reflect
randomly, deposit a new candidate at the new intersection, etc. We let the rays
bounce 30 times.

Specify 1 seed point

Generate
candidate parKcles

‐ ray tracing

Basis ConstrucKon

Then, we generate a set of candidate samples by tracing rays backwards from the
seed point. When the ray hits the scene, we store a candidate, then let the ray reflect
randomly, deposit a new candidate at the new intersection, etc. We let the rays
bounce 30 times.

Specify 1 seed point

Generate
candidate parKcles

‐ ray tracing

Basis ConstrucKon

This results in a large set of candidates. Note that these points are not yet Poisson
disk distributed.

Specify 1 seed point

Generate
candidate par7cles

‐ ray tracing

Reject samples that fail 
Poisson criterion
(Dart throwing)

‐Radius related to
  support size

‐Obeys 5D metric induced 
  by weight funcKons

Basis ConstrucKon

Once we have the candidates, we use a simple dart throwing algorithm to pick a
subset of the points that respects the Poisson criterion according to a 5D metric
induced by our weight functions. The acceptance radius is related to the support
sizes of the weight functions. Finer levels of the hierarchy have smaller radiuses.

Specify 1 seed point

Generate
candidate par7cles

‐ ray tracing

Reject samples that fail 
Poisson criterion
(Dart throwing)

‐Radius related to
  support size

‐Obeys 5D metric induced 
  by weight funcKons

Basis ConstrucKon

The same geometry-independent process applies to all levels of hierarchy.

Overview and Previous Work

Reconstruc7on and Basis Func7ons

Construc7ng the Basis

ApplicaKon: Direct‐to‐Indirect PRT

Rendering on GPU

Discussion and Conclusions

ApplicaKon
Direct‐to‐Indirect PRT

•Moving camera and
local light source

•InteracKve indirect illuminaKon

•Basic approach:
– indirect from meshless basis

–per‐pixel direct lighKng w/ shadow maps

–precompute direct‐to‐indirect transport

–follows [Kontkanen 06], [Hasan 06]

Indirect

Direct

Direct+indirect

As an application of our basis, we describe a hierarchical direct-to-indirect PRT
technique for complex geometry and local light sources, where we are able to move
both the camera and a the local light source with interactive indirect illumination.

The basic idea is to render indirect illumination from the basis and compose that with
per-pixel direct illumination rendered using traditional realtime techniques. The
direct illumination is first projected into our basis. Then, a precomputed hierarchical
light transport matrix is used to determine the indirect illumination given the direct
illumination.

The basic premise is the same as in the work of Kontkanen and others and Hasan and
others, but we are limited to neither simple geometry nor a fixed view.

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis funcKons)

Let’s start with the precomputation step, and let’s look at a single basis function,
denoted in yellow.

Now we ask the question: If this single basis function emits light at unit intensity,
what is the resulting global illumination in the rest of the scene?

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis funcKons)

Let’s start with the precomputation step, and let’s look at a single basis function,
denoted in yellow.

Now we ask the question: If this single basis function emits light at unit intensity,
what is the resulting global illumination in the rest of the scene?

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis funcKons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

Links from one
sender basis funcKon

Sender

That illumination is displayed here. Since the basis function resides on a red wall, the
illumination it transmits is also red due to color bleeding. Now, this illumination is
projected into the basis, meaning that we compute so-called links between the
sender and the receiving functions.

In the spirit of classical hierarchical radiosity, not all interactions need to be resolved
to full accuracy, meaning for example that distant transfers can use a lower
resolution than nearby ones. This is key to achieving efficient precomputation, since
not all pairs of basis functions have to be considered. Unlike almost all previous PRT
work, this can be seen as precomputation directly in compressed domain. Please see
the paper for details.

Given the matrix formed by the links it is easy to determine the indirect illumination
in the scene once we know the direct illumination: We just follow the links from
senders to receivers and accumulate.

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis funcKons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

Links from one
sender basis funcKon

Sender

That illumination is displayed here. Since the basis function resides on a red wall, the
illumination it transmits is also red due to color bleeding. Now, this illumination is
projected into the basis, meaning that we compute so-called links between the
sender and the receiving functions.

In the spirit of classical hierarchical radiosity, not all interactions need to be resolved
to full accuracy, meaning for example that distant transfers can use a lower
resolution than nearby ones. This is key to achieving efficient precomputation, since
not all pairs of basis functions have to be considered. Unlike almost all previous PRT
work, this can be seen as precomputation directly in compressed domain. Please see
the paper for details.

Given the matrix formed by the links it is easy to determine the indirect illumination
in the scene once we know the direct illumination: We just follow the links from
senders to receivers and accumulate.

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis funcKons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

Links from one
sender basis funcKon

Sender

Receiver

That illumination is displayed here. Since the basis function resides on a red wall, the
illumination it transmits is also red due to color bleeding. Now, this illumination is
projected into the basis, meaning that we compute so-called links between the
sender and the receiving functions.

In the spirit of classical hierarchical radiosity, not all interactions need to be resolved
to full accuracy, meaning for example that distant transfers can use a lower
resolution than nearby ones. This is key to achieving efficient precomputation, since
not all pairs of basis functions have to be considered. Unlike almost all previous PRT
work, this can be seen as precomputation directly in compressed domain. Please see
the paper for details.

Given the matrix formed by the links it is easy to determine the indirect illumination
in the scene once we know the direct illumination: We just follow the links from
senders to receivers and accumulate.

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis funcKons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

Links from one
sender basis funcKon

Sender

Receiver

Receiver

That illumination is displayed here. Since the basis function resides on a red wall, the
illumination it transmits is also red due to color bleeding. Now, this illumination is
projected into the basis, meaning that we compute so-called links between the
sender and the receiving functions.

In the spirit of classical hierarchical radiosity, not all interactions need to be resolved
to full accuracy, meaning for example that distant transfers can use a lower
resolution than nearby ones. This is key to achieving efficient precomputation, since
not all pairs of basis functions have to be considered. Unlike almost all previous PRT
work, this can be seen as precomputation directly in compressed domain. Please see
the paper for details.

Given the matrix formed by the links it is easy to determine the indirect illumination
in the scene once we know the direct illumination: We just follow the links from
senders to receivers and accumulate.

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis func7ons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

RunKme (for each frame)

‐ Project direct illuminaKon 
(trace rays to samples)

Now, the runtime usage of the matrix is simple.

 Each frame we compute the basis coefficients for direct illumination by casting rays
from the light to the samples.

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis func7ons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

RunKme (for each frame)

‐ Project direct illuminaKon 
(trace rays to samples)

Now, the runtime usage of the matrix is simple.

 Each frame we compute the basis coefficients for direct illumination by casting rays
from the light to the samples.

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis func7ons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

‐ RunKme (for each frame)

‐ Project direct illuminaKon 
(trace rays to samples)

Approximate direct illuminaKon
(never visualized directly)

The result is a basis expansion for direct illumination, which is visualized here for
didactic purposes only.

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis func7ons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

RunKme (for each frame)

‐ Project direct illumina7on 
(trace rays to samples)

‐ Apply transport matrix

Indirect IlluminaKon

Now we merely multiply the direct illumination coefficient vector by the hierarchical
sparse matrix which gives us a vector that describes indirect illumination.

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis func7ons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

RunKme (for each frame)

‐ Project direct illumina7on 
(trace rays to samples)

‐ Apply transport matrix

Indirect IlluminaKon

Now we merely multiply the direct illumination coefficient vector by the hierarchical
sparse matrix which gives us a vector that describes indirect illumination.

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis func7ons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

RunKme (for each frame)

‐ Project direct illumina7on 
(trace rays to samples)

‐ Apply transport matrix

‐ Render per‐pixel direct
(shadow map)

Per‐Pixel Direct IlluminaKon

Then, a per-pixel direct illumination image is rendered using shadow maps..

Global IlluminaKon
(direct+indirect)

Preprocessing

‐ compute transfer matrix 
(light transport between 
basis func7ons)

‐ sparsity due to hierarchy
‐ hierarchical refinement

‐ RunKme (for each frame)

‐ Project direct illumina7on 
(trace rays to samples)

‐ Apply transport matrix

‐ Render per‐pixel direct
(shadow map)

‐ Compose per‐pixel direct
and indirect from basis

And finally composited with the indirect image. This yields a dynamic global
illumination solution.

PRT Results
Scenes

•Sponza atrium (66 ktri)
–used widely in previous work

•Great Hall (2.3 Mtri)
–difficult, intricate geometry

•Kung Fu Panda (5.1 Mtri)
–courtesy of
DreamWorks AnimaKon

–tessellated from actual 
producKon geometry

Let’s look at some results. We used three scenes of increasing complexity. The
Sponza atrium has been used in lots of previous work, while the latter two complex
scenes contain both smooth geometry, detailed surfaces, and lots of topologically
disconnected geometry such as cobblestones. They would be tough to parameterize
with wavelets, and they contain so much geometry that non-hierarchical bases would
result in really long precomputation times.

The 5 million triangle scene from DreamWorks Animation is tessellated from an
actual movie set with no hand-tuning.

PRT Results
StaKsKcs

•PrecomputaKon 27–36 min (single PC)
–100x improvement on Sponza
compared to [Kristensen 05]

•Memory usage 78–120 MB

•RunKme performance
–moving light:        6–9 FPS

–staKonary light:   12–25 FPS

Thanks to the hierarchical precomputation algorithm, we achieve precomputation
times in the order of half an hour on a single PC. On the Sponza scene this is two
orders of magnitude faster than some prior relighting work for local light sources.

The performance varies between 6 and 9 FPS when the light is moving, and 12 and 25
FPS when the light is stationary but the camera is moving.

Video – Sponza (66 ktri)

Note that only the hallway floor gets direct illumination; the ceiling receives only
indirect lighting.

Note that only the hallway floor gets direct illumination; the ceiling receives only
indirect lighting.

Video – The Great Hall (2.3 Mtri)

Here we see the Great Hall model with a light moving in it. Note how the geometry
contains both smooth parts and lots of detail, such as the cobblestones which are all
modeled as individual objects.

Overview and Previous Work

Reconstruc7on and Basis Func7ons

Construc7ng the Basis

Applica7on: Direct‐to‐Indirect PRT

Rendering on GPU

Discussion and Conclusions

OK, now that we saw how to construct the basis, let’s look at rendering.

Rendering on GPU

•Render directly from meshless basis

•Resembles deferred splasng
[Guennebaud 04, Gautron 05]
–basis funcKons rendered as screen‐aligned quads

•Hierarchy causes overdraw
–flaMen hierarchical soluKon to a
nonhierarchical basis prior to display

–could use any basis, e.g. verKces

We utilize deferred shading for rendering directly from the meshless basis. Our
approach closely resembles previous deferred splatting techniques. Please see the
paper for details.

When rendering from the hierarchical representation, each level of the hierarchy must
be drawn separately. This increases overdraw and thus slows rendering down. We
circumvent this by resampling the solution into a non-hierarchical meshless basis
built from the same points before display. We however could use any basis, such
sampling at the vertices.

The paper describes further optimizations such as occlusion queries.

Overview and Previous Work

Reconstruc7on and Basis Func7ons

Construc7ng the Basis

Applica7on: Direct‐to‐Indirect PRT

Rendering on GPU

Discussion and Conclusions

LimitaKons

•DisconKnuiKes like direct
pointlight shadows can be problemaKc
–Use basis only for indirect illuminaKon

•Basis funcKons not necessarily
restricted to a single surface patch
–Good!

–But if leaking happens, finer levels must counter

As with all finite function bases, representing discontinuities such as shadows from
pointlights can be difficult. This can result in some visible ringing. However, when
representing only the smoother indirect illumination in the basis, such artifacts are
avoided.

The basis functions are not limited to one surface primitive. This is a good thing,
since patch or triangle boundaries do not cause discontinuities. However, sometimes
this means that the basis function can leak for instance through a wall to an adjacent
room. In such cases finer levels of the hierarchy must correct the leak.

Portability

•Rely only on ray tracing

•Meshless light transport 
algorithms are geometry‐
independent

•Example: Radiosity on 
meshes, quadric implicits 
and volumetric isosurface
(see tech rep)

Let me further emphasize that none of the algorithms described above require
anything of the geometry but point evaluations and ray tracing. This means that any
light transport algorithm formulated in terms of our basis is entirely decoupled from
the surface type. As an example, I’m showing a simple meshless hierarchical radiosity
solution on a scene that contains a mesh, quadric implicit surfaces, and a volumetric
isosurface of a bonsai tree.

For further applications of the basis, please see our tech report.

Summary

•Meshless hierachical basis
–Point samples, decoupled from geometry

–No meshing, no parameterizaKon

–Enables hierarchical lighKng algorithms
on arbitrary surfaces

–Many applicaKons (see our tech rep)

•Novel direct‐to‐indirect PRT algorithm
–Complex geometry, fast precomputaKon

In summary, we have described a meshless hierarchical function basis for light
transport computations. It enables hierarchical coarse-to-fine illumination algorithms
on arbitrary geometries, completely avoiding meshing and parameterization.

We applied our basis to a direct-to-indirect light transport algorithm, where we are
able to demonstrate moving viewpoints, complex geometry and fast precomputation,
a combination that has not been previously possible.

Acknowledgments

•Colleagues for comments

•Scenes
–DreamWorks AnimaKon, Stephen Duck, Marko Dabrovic,
Eric Tabellion, Andrew Pearce

•Funding
–NaKonal Technology Agency of Finland, Anima Vitae,
AMD Research Finland, NVIDIA, Remedy Entertainment, 
Academy of Finland #108222, INRIA Associate Research
Team ARTIS/MIT, and NSF CAREER 044756

The End —Thank You

