The Physics of Ink Marbling

Aubrey Jaffer

http://people.csail.mit.edu/jaffer/Marbling

Shufang Lu Xiaogang Jin Fei Gao Xiaoyang Mao Craig S. Kaplan Yue Huang Zhejiang University of Technology Zhejiang University Zhejiang University of Technology University of Yamanashi University of Waterloo Zhejiang University

November 2017

Ink Drops

By Ji-Elle - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22072703

Marbling Process

By Ji-Elle - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22072707

Transfer to Paper

By Ji-Elle - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=22072706

Extract Paper

By Ji-Elle - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22072701

- Originated in East Asia in the 1100s or earlier.
- ◊ Suminagashi founded by Jizemon Hiroba in 1151 in Japan.
- Appeared in Central Asia and the Islamic World in the 1400s.
 Called Ebru in Turkish
- Spread to Europe in the 1500s.
- Necmeddin Okyay (1883-1976) of Istanbul Turkey is credited with being the first to marble floral designs.

Japan 1112 36 Poets

Persia 1700s

French curl - France 1735

nonpareil - Germany 1720-1770

England 1830

Spanish wave - Paris 1843

nonpareil - London 1847

double nonpareil - London 1872

bouquet - Vienna 1875

French curl - France 1880

bouquet - Germany 1899

A function $F : X \to Y$ between two topological spaces X and Y is called a homeomorphism if it has the following properties:

- F is a bijection (one-to-one and onto),
- F is continuous,
- its inverse function F^{-1} is continuous.

Each marbling operation F is a homeomorphism between a topological space and itself. F is a deformation of X, which is undone by its inverse F^{-1}

- F preserves all topological properties of X
- The composition of two homeomorphisms F_1 and F_2 is a homeomorphism $F_2 \circ F_1$ with inverse $F_1^{-1} \circ F_2^{-1}$.

- Forward Rendering: Points on the boundaries of color regions are mapped with composite $F_n \circ \ldots \circ F_2 \circ F_1$, then the regions outlined by their mapped points are filled with their color; detail is preserved at all resolutions.
- Reverse Rendering: Each point on the screen is transformed with the inverse composite map $F_1^{-1} \circ F_2^{-1} \circ \ldots \circ F_n^{-1}$ to find the color of its original location.
- Rendering with either method is orders of magnitude faster than direct numerical simulation of the Navier-Stokes equations at many instants of time.

- Tank is arbitrarily large; straight stroke is arbitrarily long.
- Inks are incompressible Newtonian fluids; uniform viscosity.
- Flow is stable; interested only in initial and final positions.
- $\rightarrow\,$ Flow is uniformly parallel to the stroke line.
- \rightarrow Laminar flow.
- $\rightarrow\,$ Can replace perpetual travel of point along line with simultaneous finite travel along line.

- Inertial forces insignificant compared with viscous forces.
- \rightarrow Displacement proportional to velocity.
- \rightarrow Each layer's travel is proportional to adjacent layer travel.
- \rightarrow Separation of variables: displacement parallel to line depends only on perpendicular distance from line.

$$F_x = 0$$
 $F_y = \frac{U}{\exp(|x|/L)}$ $L = \frac{\nu}{|U|}$

 \rightarrow Parallel strokes are independent; displacements add linearly.

Linear Stroke Field

$$F_x = 0$$
 $F_y = \frac{U}{\exp(|x|/L)}$ $L = \frac{\nu}{|U|}$

Linear Stroke

$$F_x = 0 \quad F_y = \frac{U}{\exp(|x|/L)} \quad L = \frac{\nu}{|U|}$$

Effects of Draw Length and Viscosity

Persian Calligraphy Background

A Rake in Action

https://www.youtube.com/watch?v=igr6Znc8aek

Sinusoidal Displacement

$$F_x = \zeta \sin \frac{2\pi y}{p} \qquad F_y = 0$$

Wiggle

Diane Maurer-Mathison

Mathematical Marbling

Serpentine Comparison

Physical Marbling

Mathematical Marbling

Rake Upward

Horizontal Sinusoidal Displacement

Stroke 2 upward

Undo Horizontal Displacement

Opposite Horizontal Displacement

Stroke 2 Upward

Undo Horizontal Displacement

Bouquet Pattern

Lines at Angles. Circular Draw.

Marbled Necktie

French Curl

Physical Marbling

Mathematical Marbling

Circular Design with Transfer Effects

http://people.csail.mit.edu/jaffer/Marbling/Transfer-Effects

Vortex and Irrotational Vortex

Short Stroke Marbling

Çiçekli Ebru by Necmeddin Okyay

Floral Ebru by Necmeddin Okyay

Short Strokes

By Ji-Elle - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22072696 https://commons.wikimedia.org/w/index.php?curid=22072694

Short Strokes

By Ji-Elle - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22072699 https://commons.wikimedia.org/w/index.php?curid=22072702

Short Stroke Deformation

Flows induced by circular disk moving to the right.

Stokes Flow versus Oseen Flow

$$\nabla \cdot \vec{F}(r,\theta) = \frac{1}{r} \frac{\partial r F_r}{\partial r} + \frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta} = 0$$
$$\lim_{r \to \infty} \left\| \vec{F}(r,\theta) \right\| = 0 \qquad \vec{F}(0,0) = [U,0]$$

 $F_r(0,\theta) = U\cos\theta$ $F_{\theta}(0,\theta) = -U\sin\theta$

$$F_r(r,\theta) = U\cos\theta \exp\frac{-r}{L} \quad F_\theta(r,\theta) = \left(\frac{r}{L} - 1\right)U\sin\theta \exp\frac{-r}{L}$$
$$L = \nu/U \qquad r = \sqrt{x^2 + y^2}$$
$$F_x = U\frac{rL - y^2}{rL\exp(r/L)} \quad F_y = U\frac{xy}{rL\exp(r/L)}$$
Stream Function *d*:

Stream Function ψ :

$$\psi(x,y) = \frac{Uy}{\exp(r/L)}$$

Pure Oseen Flow

Comparison with Line Stroke

Short Stroke

Line Stroke

$$\beta = \exp \frac{|x_0|}{L} - \frac{tU}{L}$$

$$x_f(t) = \begin{cases} L \ln \left(\exp \frac{x_0}{L} + \frac{tU}{L}\right), & \text{if } x_0 \ge 0; \\ -L \ln (\beta), & \text{if } \beta > 0; \\ L \ln (2 - \beta), & \text{otherwise.} \end{cases}$$

$$\begin{aligned} x_{\psi}(y) &= \pm \sqrt{\left(L \ln \frac{Uy}{\psi}\right)^2 - y^2} \quad y \neq 0 \\ w(y)^2 &= F_x(x_{\psi}(y), y)^2 + F_y(x_{\psi}(y), y)^2 \\ &= U^2 \frac{[L^2 + y^2]/L^2 - 2y^2 \left/ \left(L\sqrt{L^2 \ln(yU/\psi)^2 + y^2}\right)}{\exp\left(2\sqrt{L^2 \ln(yU/\psi)^2 + y^2}/L\right)} \\ &\zeta &= \sqrt{L^2 \ln(yU/\psi)^2 + y^2} \\ &\int \frac{dy}{w(y)} &= \int \frac{L\zeta \exp\left(\zeta/L\right) dy}{U\sqrt{(L^2 + y^2)\zeta^2 - 2L\zeta y^2}} \end{aligned}$$

Trajectory of Velocity Field

Reversibility

Drive from Start

Drive from Midpoint

Improved Reversibility Stroke

Drive from Start

Drive from Midpoint

Forward

Drive from Start

Drive from Midpoint

Reverse

Inverse Drive from End

Inverse Drive from Midpoint

Solid Marbling

- Except for transfer effects, the two-dimensional mathematical marbling techniques have straightforward three-dimensional analogs.
- Three dimensional short stroke solution:

$$F_r(r,\theta,\varphi) = U\cos\theta\exp\frac{-r}{L}$$

$$F_{\theta}(r, \theta, \varphi) = \left(\frac{r}{2L} - 1\right) U \sin \theta \exp \frac{-r}{L}$$

Cipollino Marble

Oak Flooring

Birds Eye Maple

Pattern Welding

By Fluzwup - Own work, CC0,

https://commons.wikimedia.org/w/index.php?curid=22072699

Solid Marbled Teapot

Solid Marbled Rose

• Are marbling homeomorphisms relevant to biological morphogenesis?

- Are there other solutions to the point Oseen flow differential equation?
- Does the point Oseen solution lead to an improved formula for drag from small spheres?
- Use contour-walking algorithm instead of riding gradients for short stroke.
- Model inks moved with puffs or streams of air.
- Folded paper transfer effects. http://marbleart.us/Moire.htm

- Mathematical Marbling, IEEE Computer Graphics and Applications, Nov.-Dec. 2012 (vol. 32 no. 6) pp 26-35
- Mathematical Marbling Video https://youtu.be/ZgVbIaKhC_4
- *Solid Mathematical Marbling*, IEEE Computer Graphics and Applications, vol. 37, no. 2, pp. 90-98, Mar.-Apr. 2017
- *Marbling-based creative modelling*, Vis. Comput., 33, 6-8 (June 2017), 913-923.
- Oseen Flow in Ink Marbling, arXiv:1702.02106 [physics.flu-dyn]
- http://people.csail.mit.edu/jaffer/Marbling