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In the lower atmosphere (Z = 16km), the moist adiabatic lapse rate L averages 6.5 K/km. So the
temperature at altitude z is roughly Ty — L z.
The air pressure P and density r at altitude z are
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where R = 287m?-s~2.-K~! is the gas constant for air, and g is the gravitational acceleration. g/(LR) ~ 5.253.
Let p(z, Py, Ty) = r(z,Tp)/v be the density normalized so that @, the integral of p over Z at Ty = 300 K, is
airmass of 1.
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The saturation humidity decreases exponentially with temperature, hence it decreases exponentially
with altitude. “Surface Dew Point and Water Vapor Aloft” [40] posits that vapor density (saturated or not)
is exponentially decreasing through the troposphere.

Let W be the depth in millimeters of water from a vertical column of atmosphere were its water
condensed. Let V(z) = v - (1 — e #%)/B be the fraction of precipitable moisture depth from ground level to
altitude z, where 8 = 0.44km™" [40].

1:%(1—6*/32).

B

_ —1

For Z=16km, v=

Let 7(z,w,(, Py, To, W) be the transmittance at wavenumber w through an atmospheric column to
altitude z. The logarithm of transmittance, K, is composed of dry and 1 mm of humidity components:
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where a(() is the airmass at angle ¢ from zenith. Two formulas for airmass are [29]:
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The choice does not materially effect the results of simulation.
The derivative of transmittance 7 with respect to z is:
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The attenuated emission per unit length at altitude z is M (w, Ty — L 2) - k(z,w, ¢, Py, Tp, W). Thus the
flow of thermal radiation from the cloudless troposphere into the emitter is:
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The contributions from small z dominate the integral; so linear integration steps have poor numerical
conditioning. z = expy works, but then has too many steps near zero. Mike Speciner suggests hyperbolic
sine as a compromise. Let z = v - sinhy.
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Water and ice clouds act as blackbody radiators in the thermal-infrared band. For a cloud whose base
is at altitude C:
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Sc and Sz are the fluxes from a column of air at angle  from the zenith. In order to compute the total
flux, integrate the product of the column flux with the emissivity (w, ¢) over the hemisphere and spectrum.
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The hourly thermal radiation from the troposphere is a mixture of the integrated S and Sz according
to the opaque-sky-cover ratio.

Net Radiative Transfer
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Integrating the net-radiative-transfer has the advantage that at w where the troposphere is opaque,
M(w,To) — S(w, , Tp) is zero, allowing those iterations to be skipped.

The net-radiative-transfer for an emitter which is not at ambient temperature can be calculated by
adding:
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If £ is constant with respect to w and ¢, this simplifies to: (Mp(Ty) — My(To)) - €, where M}, is the
hemispheric black-body emission.

Restricted Aperture

For the case of a Lambertian emitter with non-spectral emissivity €;, with an aperture restricted to a vertical
f-cone having apeture-gain G4 (between 0 and 1), the net radiative transfer is:
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