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In the lower atmosphere (Z = 16 km), the moist adiabatic lapse rate L averages 6.5 K/km. So the
temperature at altitude z is roughly T0 − Lz.

The air pressure P and density r at altitude z are
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whereR = 287 m2·s−2·K−1 is the gas constant for air, and g is the gravitational acceleration. g/(LR) ≈ 5.253.
Let ρ(z, P0, T0) = r(z, T0)/ν be the density normalized so that Q, the integral of ρ over Z at T0 = 300 K, is
airmass of 1.
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ν ≈ 9.23 × 103 g · m−4

The saturation humidity decreases exponentially with temperature, hence it decreases exponentially
with altitude. “Surface Dew Point and Water Vapor Aloft” [40] posits that vapor density (saturated or not)
is exponentially decreasing through the troposphere.

Let W be the depth in millimeters of water from a vertical column of atmosphere were its water
condensed. Let V (z) = υ · (1 − e−β z)/β be the fraction of precipitable moisture depth from ground level to
altitude z, where β = 0.44 km−1 [40].

1 =
υ

β
(1 − e−β Z).

For Z = 16 km, υ =
β

(1 − e−β Z)
= 0.440 km−1.

Let τ(z, ω, ζ, P0, T0,W ) be the transmittance at wavenumber ω through an atmospheric column to
altitude z. The logarithm of transmittance, K, is composed of dry and 1 mm of humidity components:

τ(z, ω, ζ, P0, T0,W ) = eK(z,ω,ζ,P0,T0,W )

K(z, ω, ζ, P0, T0,W ) = (logB(ω)Q(z, P0, T0) + logH1(ω)W V (z)) · α(ζ)

where α(ζ) is the airmass at angle ζ from zenith. Two formulas for airmass are [29]:
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The choice does not materially effect the results of simulation.
The derivative of transmittance τ with respect to z is:
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The attenuated emission per unit length at altitude z is M(ω, T0 −Lz) · κ(z, ω, ζ, P0, T0,W ). Thus the
flow of thermal radiation from the cloudless troposphere into the emitter is:

SZ(Z, ω, ζ, P0, T0,W ) =

∫ Z

0

M(ω, T0 − Lz) · κ(z, ω, ζ, P0, T0,W ) dz

The contributions from small z dominate the integral; so linear integration steps have poor numerical
conditioning. z = exp y works, but then has too many steps near zero. Mike Speciner suggests hyperbolic
sine as a compromise. Let z = γ · sinh y.

SZ(Z, ω, ζ, P0, T0,W ) =
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M(ω, T0 − L · γ · sinh y) · κ(γ · sinh y, ω, ζ, P0, T0,W ) · γ · cosh y · dy

Water and ice clouds act as blackbody radiators in the thermal-infrared band. For a cloud whose base
is at altitude C:

SC(C,ω, ζ, P0, T0,W ) = M(ω, T0 − LC) · τ(C,ω, ζ, P0, T0,W )

+
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SC and SZ are the fluxes from a column of air at angle ζ from the zenith. In order to compute the total
flux, integrate the product of the column flux with the emissivity ε(ω, ζ) over the hemisphere and spectrum.∫ π/2
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The hourly thermal radiation from the troposphere is a mixture of the integrated SC and SZ according
to the opaque-sky-cover ratio.

Net Radiative Transfer∫ π/2

0

∫ ∞
0

2π · (M(ω, T0) − S(ω, ζ, T0)) · ε(ω, ζ) · sin ζ · cos ζ · dω dζ

Integrating the net-radiative-transfer has the advantage that at ω where the troposphere is opaque,
M(ω, T0) − S(ω, ζ, T0) is zero, allowing those iterations to be skipped.

The net-radiative-transfer for an emitter which is not at ambient temperature can be calculated by
adding: ∫ π/2

0

∫ ∞
0

2π · (M(ω, T1) −M(ω, T0)) · ε(ω, ζ) · sin ζ · cos ζ · dω dζ

If ε is constant with respect to ω and ζ, this simplifies to: (Mh(T1) −Mh(T0)) · ε, where Mh is the
hemispheric black-body emission.

Restricted Aperture

For the case of a Lambertian emitter with non-spectral emissivity εL with an aperture restricted to a vertical
θ-cone having apeture-gain GA (between 0 and 1), the net radiative transfer is:∫ θ/2

0

∫ ∞
0

2π · (M(ω, T0) − S(ω, ζ)) · εL ·GA · sin ζ · cos ζ · dω dζ
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