
Using B-trees to Implement Water: a Portable,
High Performance, High-Level Language

A. Jaffer, M. Plusch, and R. Nilsson

Clear Methods, Inc.
One Broadway, 14th Floor

Cambridge, Massachusetts 02142 USA

Abstract - To achieve high performance, the next generation of
high-level programming languages should incorporate databases
as core technology. Presented here are the design considerations
for the Water language leading to the use of a (B-tree) Indexed
Sequential Access Method database at its core.

INTRODUCTION

 As increasing CPU speed outpaces growth in memory
bandwidth, programming languages must deal with
aggregations of data in order to keep pace both with execution
speed and programmer time. To scale with CPU speed, lower
level language constructs require more and more
sophistication from the (high-level) compiler. Higher level
language constructs need only be optimized by the
implementation language - provided they are the right
constructs.
 An example of this is the for_each construct of the Water
language. This language’s sole iteration construct maps over
elements of vectors, maps over database keys and values, or
maps over integers, and can collect results in a vector, in a
database, or reduce them with a given function. The input
keys can be arbitrarily filtered.
 This is an example using for_each to iterate over a vector
containing two strings.

 <vector "zero" "one"/>.<for_each combiner=join>
 <join key "=" value "; "/>
 </>

 Returns: “0=zero; 1=one; ”

 The implementation of for_each has code optimized for the
possible combinations of input type, map function, and filter.
It also has code optimizing the common cases where primitive
methods are given for filter, map, or reduce. Because
for_each usually iterates multiple times per invocation, the
time to dispatch to the correct code is negligible when
amortized over the iterations.
 The Water language had it origins in 1998 when
Christopher Fry and Mike Plusch, the founders of Clear
Methods, recognized both the potential and the limitations of
XML and Web services. Water has since become a platform
enabling businesses to make use of Web services and XML
without the inherent limitations and complexity of traditional
Web services development.
 The first version of Water was released in 2001 to run on
Java virtual machines. This first implementation suffers from
slow operation and long startup times. In late 2006, a new

higher-performance implementation was needed in order to
achieve the performance level appropriate for a lightweight
browser plug-in. In addition to achieving high performance, it
was critical that the language be compatible with multiple
operating systems and platforms.
 The Water language is object-oriented. Object-key pairs are
associated with methods and other values. Water has
lexically-scoped environments; environment-variable pairs are
associated with values. Water is reflexive; in the Java
implementation, code is stored as objects. The top-level
environment and root of the class hierarchy can grow to have a
large number of associations.
 The Java implementation of Water spends considerable time
loading library code into the runtime image. Startup would be
much faster if binary code objects could be saved and restored
from a file.
 Embedded platforms do not all support virtual memory.
And many platforms (embedded or not) perform poorly as
memory use by applications or plugins grows. To improve
performance it is important to control RAM use by
applications and plugins.
 So we are looking for a core technology that:

• stores associations (in databases)
• has fast access times for both large and small

databases
• can be saved to and restored from binary files
• has a bounded RAM footprint

 B-trees [1] [2] [3] [4] have all of these properties. Such use
of B-trees is not without precedent; created in 1966, the
MUMPS (Massachusetts General Hospital Utility Multi-
Programming System) and its derivatives are based on an
Indexed Sequential Access Method (ISAM) database, most
often B-trees.
 We have adapted the WB B-tree library [5] for Water's use.
It has the additional benefit of being thread-safe; critical
update operations are protected by distributed locks; inter-
thread communication is supported through mutual-exclusion
operations provided in the application programmer interface.
Thus WB can be used to support multiple sessions in a server
or in a browser's multiple frames.

MULTILINGUAL PROGRAMMING

 WB is written in a subset of the Algorithmic Language
Scheme which can be translated to C by the Schlep compiler

[6] which is included in the WB distribution. At Clear
Methods, Aubrey Jaffer and Ravi kiran Gorrepati adapted
Schelp to create scm2java and scm2cs, producing completely
compatible implementations of WB in Java-1.5 and C#. This
same translation technology is used for translating the Scheme
sources for the Water compiler and runtime engine into C,
Java, and C#.
 The use of these translators means that compiler and engine
development (and releases) can proceed in parallel with Water
code development using any of Water's compatible platforms.
The Scheme implementation (SCM [7]) used for development
does comprehensive bounds and type checking, eliminating
the need for writing many program-logic checks into the
source code of the Water compiler and engine.
 Another mechanical translation is done by a simple bespoke
Scheme program processing the data-representation design
document, extracting the version, byte opcode, and
(numerical) type assignments and producing source files
which are included or otherwise used in the builds and
runtime.
 Java and C# provide garbage-collection. In C, the new
Water implementation uses the Boehm conservative garbage
collector [8] for temporary allocations.

PRIMITIVE TYPES

 The keys and their associated values in WB are from 0 to
255 bytes in length. The 250 bytes are more than enough to
host all the codepoints, identifiers, and numbers including
bignums that users (other than number-theorists) need.
Integers are from 1 byte to 249 bytes in length and are stored
big-endian with a length prefix so they sort correctly as keys
in B-trees. Water also encodes strings and binary objects
smaller than 253 bytes as immediate objects.
 Although there are techniques for extending B-tree keys and
values in length, at some point it becomes burdensome for the
runtime infrastructure to allocate and store large primitive
types in the runtime image; doing so also can exceed the
bounded RAM footprint. So the new Water implementation
picks as its boundary 253 bytes. A string or binary object
larger than this is given a unique identifier and its data is
stored under numerical keys appended to its identifier.
Whether a string or binary object is represented as a single
immediate or as associations in a B-tree is not discernable to
the user.
 The index used for each string chunk is the UTF-8
codepoint offset of the end of the chunk from the beginning of
the first chunk. Strings thus have O(log N) access time even
though their UTF-8 representation has variable numbers of
bytes per codepoint.

OBJECT ENCODING

 The straightforward embedding of Water object structures
into B-trees is that every record instance (classes are also
record instances) has a unique identifier; and every slot
corresponds to an association of the slot-value with that

identifier combined with the slot-name. A slot-name is a non-
negative integer or immediate string. A slot-value is either an
immediate datum or an identifier for a (long string or) record.
 A straightforward embedding of Water program expressions
into B-trees builds on the object representation. Each
expression is represented as a record. The _subject field (the
object that gets the method call), if present, contains the literal
datum or the identifier of the subject expression. The
_method field contains the method-name string or the
identifier of the method expression. Named arguments
associate their keys (appended to the expression identifier)
with their values or value expressions. Unnamed arguments
associate their numerical order (0 ...) with their literal values
or value expressions.
 Variables and certain other strings used as keys or symbols
are assigned unique identifiers; the forward and backward
identification with strings being stored in B-trees. These
identifiers are one to five bytes in length.
 Although independent from other representation decisions,
lexical bindings are also convenient to store in B-trees. Each
environment has an identifier; and each variable (combined
with the environment-identifier) is associated with its value.
An environment's associations are deleted just before the
environment is reused.
 To support good error reporting, it is desirable to link every
program expression to its location in a source file. This can be
done simply in a B-tree while presenting no bloat or overhead
to the code itself. A dedicated B-tree associates the identifier
of each expression with its filename and offsets.
 In WB, a B-tree handle caches the last block visited,
bypassing would-be full traversals from the B-tree's root for
nearby references. To take advantage of this, the Water
implementation uses six WB handles: string-to-variable,
variable-to-string, bindings, records, program, and program-
annotations.

SECURITY

 The six WB handles, along with directories to which a
session has access, are the set of capabilities passed to routines
in the Water compiler and runtime engine. They cannot be
accessed or modified from a Water program. They are not
stored in B-trees. Pointed to only from the call stack, they
provide a measure of protection and isolation from other
threads, which have separate call stacks.

EXECUTION

 Modern CPUs execute dozens of instructions in the time it
takes to fetch one cache-line from main memory. Few
applications today tend to be CPU-bound; most are memory-
or cache-bound. (CPU-bound programs tend to be
overrepresented in benchmark suites.) For all their benefits,
access to small datums through B-trees does incur significant
overhead. But for a runtime interpreter, multiple fetches from
the straightforward embedding of program expressions
precede each data access. Thus, the most productive area to

optimize for overall performance is to reduce the bandwidth of
program B-tree fetches.
 Toward this end, we would like to aggregate a program
expression into single B-tree value. But WB values are
limited in length. So the aggregate expression format should
also be space efficient. And the format should provide for
overflow by being able to indicate that an expression is
continued in the next B-tree association's value (WB supports
ISAM).
 The aggregate expression format is a byte encoding with
several types of codes. All the primitive methods are assigned
single byte codes, as are prefix-markers. Identifiers, of which
there are eight types (including symbol, long-string, method,
and expression), have byte codes, the bottom two bits of
which indicate the number of bytes following: 1, 2, 3, or 4.
(Those identifiers are then between two and five bytes in size.)
 For expressions there are markers delimiting the boundary
between keyed and unkeyed arguments and the end of
arguments. For the method definition, there are 24 codes
indicating whether the following parameter is keyed or
unkeyed, evaluated or unevaluated, required or optional,
whether a default expression follows, and whether a type
specifier follows.

SYSTEM STATE

 As described here, all the state of a Water session except for
the call stack is contained in its B-trees. WB being disk-
backed, those B-trees are stored in a file on disk or other mass
storage device. The time to run the 230kB Water executable,
resume a 285kB saved session, compile and execute a trivial
program, and exit takes about 6ms (3ms user + 3ms system)
on a 3.0GHz Pentium-4 running Fedora-7 Linux. This time
doesn't increase no matter how large the saved session is
because WB reads only the blocks it needs from disk.
 The ability to save program and data together into a format
that runs on all platforms opens intriguing possibilities.
Database files can contain their report generators, accessible
with one click. Documents can adjust their formatting to suit
the platform they are opened on.

ABOUT THE WATER LANGUAGE

 Water is a secure, dynamic object-oriented language and
database. It is an all-purpose language (and meta-language)
that runs Web applications off-line in the browser or server-
side [9]. The language is compatible with .NET, Java, and C
on Windows, Linux and Mac OS X systems. Water handles
all aspects of software including UI, logic, and database.
 Water programs can store persistent data locally with
Water's embedded object/XML database. The small footprint
(<500kB) and instant-startup are well suited for running
programs in the browser. HTML, CSS and JavaScript are
naturally part of Water programs. The same Water program
can be flexibly deployed to run either locally in the browser or
on the server. Programs install automatically with one click.

 The simplest Hello World program in Water is:

 "Hello Water!"

It displays the text Hello Water! in a browser window.
 The following Water program uses a model-view-controller
(MVC) design pattern.
(http://waterlanguage.org/examples/model_view_controller.h2o)

<class model_view_controller
 model_data=<v "sample string"/> />

<method model_view_controller.htm>
 <form action=<w .<controller_method/> />
 .model_data.<for_each combiner=insert>
 <div value/>
 </>
 <input name="an_input"
 value=.model_data.<last/> />
 <input type="submit" value="Submit"/>
 />
</>

<method model_view_controller.controller_method
 an_input=req>
 .model_data.<insert an_input/>
 _subject
</>

model_view_controller

 Opening the URL runs the Water program in a browser and
displays the screen shown in Fig 1.

Fig. 1 Screen shot 1

 This display of the application was created from a view
implemented with the htm method. The model data is
displayed in div tags using:

.model_data.<for_each combiner=insert>
 <div value/>
 </>

 The input box displaying the last value in model data is
created by:

<input name="an_input" value=.model_data.<last/> />

 The submit button is created by:

<input type="submit" value="Submit"/>

 If the user replaces sample string with Water in the input
field, the program displays the screen shown in Fig 2.

Fig. 2 Screen shot 2

 Clicking Submit will call the controller_method and pass in
the argument an_input with value Water.

model_view_controller.<controller_method
 an_input="Water"/>

 When the controller method is called, it inserts an_input
argument into the model data:

<method model_view_controller.controller_method
 an_input=req>
 .model_data.<insert an_input/>
 _subject
</>

 This causes the application's presentation to refresh
showing the value added to model data as in Fig. 3.

Fig. 3 Screen shot 3

REFERENCES

[1] Michael Ley, B-Tree, Computer Science Bibliography [Online],

dblp.uni-trier.de, Universität Trier, Available:
http://www.informatik.uni-trier.de/~ley/db/access/btree.html

[2] R. Bayer and E. McCreight, "Organization and maintenance of

large ordered indexes," Acta Informatica, 1:173-189, 1972.

[3] Yehoshua Sagiv, "Concurrent Operations on B*-trees with

Overtaking," JCSS 33(2): 275-296 (1986).

[4] W.E. Weihl and P. Wang, "Multi-version memory: Software

cache management for concurrent B-trees," in Proc. 2nd IEEE
Symp. Parallel and Distributed Processing, 1990, pp 650-655.

[5] R. Zito-Wolf, J. Finger, and A. Jaffer, WB B-tree Library

Reference Manual (2a2) [Online], February 2008. Available:
http://people.csail.mit.edu/jaffer/WB

[6] A. Jaffer, Schlep: Scheme to C translator for a subset of Scheme

[Online], Available:
http://people.csail.mit.edu/jaffer/Docupage/schlep.html

[7] A. Jaffer, SCM Scheme Implementation Reference Manual (5e5)

[Online], February 2008, Available:
http://people.csail.mit.edu/jaffer/SCM

[8] H. Boehm, A. Demers, and M. Weiser, A garbage collector for

C and C++ [Online], Available:
http://www.hpl.hp.com/personal/Hans_Boehm/gc

[9] Plusch, Mike, Water: Simplified Web Services and XML

Programming [Online], Available:
http://waterlanguage.org/water_book_2002/index.htm

