
Hobbit
SCM Compiler

Version 5f1

Tanel Tammet
Department of Computing Science
Chalmers University of Technology
University of Go"teborg
S-41296 Go"teborg Sweden

This manual is for the Hobbit compiler for SCM (version 5f1, May 2013),

Copyright c© 2002 Free Software Foundation

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the author.

i

Table of Contents

1 Introduction . 1

2 Compiling with Hobbit . 2
2.1 Compiling And Linking . 2
2.2 Error Detection . 4
2.3 Hobbit Options . 5
2.4 CC Optimizations . 7

3 The Language Compiled . 8
3.1 Macros . 8
3.2 SCM Primitive Procedures . 8
3.3 SLIB Logical Procedures . 8
3.4 Fast Integer Calculations . 9
3.5 Force and Delay . 9
3.6 Suggestions for writing fast code . 9

4 Performance of Compiled Code 14
4.1 Gain in Speed . 14
4.2 Benchmarks . 15
4.3 Benchmark Sources . 16

4.3.1 Destruct . 16
4.3.2 Recfib . 16
4.3.3 div-iter and div-rec . 17
4.3.4 Hanoi . 17
4.3.5 Tak . 18
4.3.6 Ctak . 18
4.3.7 Takl . 19
4.3.8 Cpstak . 19
4.3.9 Pi . 20

5 Principles of Compilation . 21
5.1 Expansion and Analysis . 21
5.2 Building Closures . 22
5.3 Lambda-lifting . 23
5.4 Statement-lifting . 25
5.5 Higher-order Arglists . 25
5.6 Typing and Constants . 26

ii

6 About Hobbit . 27
6.1 The Aims of Developing Hobbit . 27
6.2 Manifest . 27
6.3 Author and Contributors . 27
6.4 Future Improvements . 28
6.5 Release History . 28

Index . 31

Chapter 1: Introduction 1

1 Introduction

Hobbit is a small optimizing scheme-to-C compiler written in Report 4 scheme and intended
for use together with the SCM scheme interpreter of A. Jaffer. Hobbit compiles full Report
4 scheme, except that:

• It does not fully conform to the requirement of being properly tail-recursive: non-
mutual tailrecursion is detected, but mutual tailrecursion is not.

• Macros from the Report 4 appendix are not supported (yet): only the common-lisp-like
defmacro is supported.

Hobbit treats SCM files as a C library and provides integration of compiled procedures and
variables with the SCM interpreter as new primitives.

Hobbit compiles scheme files to C files and does not provide anything else by itself (eg.
calling the C compiler, dynamic loading). Such niceties are described in the next chapter
Section 2.1 [Compiling And Linking], page 2.

Hobbit (derived from hobbit5x) is now part of the SCM Scheme implementation. The most
recent information about SCM can be found on SCM’s WWW home page:

http://people.csail.mit.edu/jaffer/SCM

Hobbit4d has also been ported to the Guile Scheme implementation:
http://www.gnu.org/software/guile/anon-cvs.html

http://people.csail.mit.edu/jaffer/SCM
http://www.gnu.org/software/guile/anon-cvs.html

Chapter 2: Compiling with Hobbit 2

2 Compiling with Hobbit

2.1 Compiling And Linking

(require ’compile)

[Function]hobbit name1.scm name2.scm . . .
Invokes the HOBBIT compiler to translate Scheme files ‘name1.scm’, ‘name2.scm’,
. . . to C files ‘name1.c’ and ‘name1.h’.

[Function]compile-file name1.scm name2.scm . . .
Compiles the HOBBIT translation of name1.scm, name2.scm, . . . to a dynamically
linkable object file name1<object-suffix>, where <object-suffix> is the object file suffix
for your computer (for instance, ‘.so’). name1.scm must be in the current directory;
name2.scm, . . . may be in other directories.

If a file named ‘name1.opt’ exists, then its options are passed to the build invocation
which compiles the c files.

cd ~/scm/

scm -rcompile -e"(compile-file \"example.scm\")"

Starting to read example.scm

Generic (slow) arithmetic assumed: 1.0e-3 found.

** Pass 1 completed **

** Pass 2 completed **

** Pass 3 completed **

** Pass 4 completed **

** Pass 5 completed **

** Pass 6 completed **

C source file example.c is built.

C header file example.h is built.

These top level higher order procedures are not clonable (slow):

(nonkeyword_make-promise map-streams generate-vector runge-kutta-4)

These top level procedures create non-liftable closures (slow):

(nonkeyword_make-promise damped-oscillator map-streams scale-vector elementwise runge-kutta-4 integrate-system)

; Scheme (linux) script created by SLIB/batch Sun Apr 7 22:49:49 2002

; ================ Write file with C defines

(delete-file "scmflags.h")

(call-with-output-file

"scmflags.h"

(lambda (fp)

(for-each

Chapter 2: Compiling with Hobbit 3

(lambda (string) (write-line string fp))

’("#define IMPLINIT \"Init5f1.scm\""

"#define BIGNUMS"

"#define FLOATS"

"#define ARRAYS"

"#define DLL"))))

; ================ Compile C source files

(system "gcc -O2 -fpic -c -I/usr/local/lib/scm/ example.c")

(system "gcc -shared -o example.so example.o -lm -lc")

(delete-file "example.o")

; ================ Link C object files

(delete-file "slibcat")

Compilation finished at Sun Apr 7 22:49:50

[Function]compile->executable exename name1.scm name2.scm . . .
Compiles and links the HOBBIT translation of name1.scm, name2.scm, . . . to a SCM
executable named exename. name1.scm must be in the current directory; name2.scm,
. . . may be in other directories.

If a file named ‘exename.opt’ exists, then its options are passed to the build invo-
cation which compiles the c files.

cd ~/scm/

scm -rcompile -e"(compile->executable \"exscm\" \"example.scm\")"

Starting to read example.scm

Generic (slow) arithmetic assumed: 1.0e-3 found.

** Pass 1 completed **

** Pass 2 completed **

** Pass 3 completed **

** Pass 4 completed **

** Pass 5 completed **

** Pass 6 completed **

C source file example.c is built.

C header file example.h is built.

These top level higher order procedures are not clonable (slow):

(nonkeyword_make-promise map-streams generate-vector runge-kutta-4)

These top level procedures create non-liftable closures (slow):

(nonkeyword_make-promise damped-oscillator map-streams scale-vector elementwise runge-kutta-4 integrate-system)

; Scheme (linux) script created by SLIB/batch Sun Apr 7 22:46:31 2002

; ================ Write file with C defines

(delete-file "scmflags.h")

Chapter 2: Compiling with Hobbit 4

(call-with-output-file

"scmflags.h"

(lambda (fp)

(for-each

(lambda (string) (write-line string fp))

’("#define IMPLINIT \"Init5f1.scm\""

"#define COMPILED_INITS init_example();"

"#define CCLO"

"#define FLOATS"))))

; ================ Compile C source files

(system "gcc -O2 -c continue.c scmmain.c findexec.c script.c time.c repl.c scl.c eval.c sys.c subr.c debug.c unif.c rope.c example.c scm.c")

; ================ Link C object files

(system "gcc -rdynamic -o exscm continue.o scmmain.o findexec.o script.o time.o repl.o scl.o eval.o sys.o subr.o debug.o unif.o rope.o example.o scm.o -L/usr/local/lib/scm/ -lm -lc")

Compilation finished at Sun Apr 7 22:46:44

Note Bene: ‘#define CCLO’ must be present in ‘scmfig.h’.

In order to see calls to the C compiler and linker, do

(verbose 3)

before calling these functions.

2.2 Error Detection

Error detection during compilation is minimal. In case your scheme code is syntactically
incorrect, hobbit may crash with no sensible error messages or it may produce incorrect C
code.

Hobbit does not insert any type-checking code into the C output it produces. Eg, if a
hobbit-compiled program applies ‘car’ to a number, the program will probably crash with
no sensible error messages.

Thus it is strongly suggested to compile only throughly debugged scheme code.

Alternatively, it is possible to compile all the primitives into calls to the SCM procedures
doing type-checking. Hobbit will do this if you tell it to assume that all the primitives may
be redefined. Put

(define compile-all-proc-redefined #t)

anywhere in top level of your scheme code to achieve this.

Note Bene: The compiled code using

(define compile-all-proc-redefined #t)

will typically be much slower than one produced without using

(define compile-all-proc-redefined #t).

All errors caught by hobbit will generate an error message

COMPILATION ERROR:

<description of the error>

and hobbit will immediately halt compilation.

Chapter 2: Compiling with Hobbit 5

2.3 Hobbit Options

1. Selecting the type of arithmetics.

By default hobbit assumes that only immediate (ie small, up to 30 bits) integers
are used. It will automatically assume general arithmetics in case it finds any non-
immediate numbers like 1.2 or 10000000000000 or real-only procedures like real-sin

anywhere in the source.

Another way to make Hobbit assume that generic arithmetic supported by SCM (ie
exact and/or inexact reals, bignums) is also used, is to put the following line somewhere
in your scheme source file:

(define compile-allnumbers t)

where t is arbitrary.

In that case all the arithmetic primitives in all the given source files will be assumed
to be generic. This will make operations with immediate integers much slower. You
can use the special immediate-integer-only forms of arithmetic procedures to recover:

%negative? %number? %> %>= %= %<= %<

%positive? %zero? %eqv? %+ %- %* %/

See Chapter 3 [The Language Compiled], page 8.

2. Redefinition of procedures.

By default hobbit assumes that neither primitives nor compiled procedures are rede-
fined, neither before the compiled program is initialized, during its work or later via
the interpreter.

Hobbit checks the compiled source and whenever some variable bar is defined as a
procedure, but is later redefined, or set! is applied to bar, then hobbit assumes thas
this particular variable bar is redefinable. bar may be a primitive (eg ‘car’) or a name
of a compiled procedure.

Note Bene: According to the Report 4 it is NOT allowed to use scheme keywords as
variables (you may redefine these as macros defined by defmacro, though):

=> and begin case cond define delay do else if lambda

let let letrec or quasiquote quote set! unquote unquote-splicing

If you want to be able to redefine some procedures, eg. ‘+’ and ‘baz’, then put both

(set! + +)

(set! baz baz)

somewhere into your file.

As a consequence hobbit will generate code for ‘+’ and ‘baz’ using the run-time values
of these variables. This is generally much slower than using non-redefined ‘+’ and ‘baz’
(especially for ‘+’).

If you want to be able to redefine all the procedures, both primitives (eg ‘car’) and the
compiled procedures, then put the following into the compiled file:

(define compile-all-proc-redefined t)

where t is arbitrary.

If you want to be able to redefine all the compiled procedures, but not the scheme
primitives, then put the following into the compiled file:

Chapter 2: Compiling with Hobbit 6

(define compile-new-proc-redefined t)

where t is arbitrary.

Again, remember that redefinable procedures will be typically much slower than non-
redefinable procedures.

3. Inlined variables and procedures.

You may inline top-level-defined variables and procedures. Notice that inlining is DIF-
FERENT for variables and procedures!

NEVER inline variables or procedures which are set! or redefined anywhere in you
program: this will produce wrong code.

• You may declare certain top-level defined variables to be inlined. For example, if
the following variable foo is declared to be inlined

(define foo 100)

then ‘foo’ will be everywhere replaced by ‘100’.

To declare some variables foo and bar to be inlined, put a following definition anywhere
into your file:

(define compile-inline-vars ’(foo bar))

Usually it makes sense to inline only these variables whose value is either a small integer,
character or a boolean.

Note Bene: Do not use this kind of inlining for inlining procedures! Use the following
for procedures:

• You may declare certain procedures to be inlined. For example, if the following
foo is declared to be inlined

(define (foo x) (+ x 2))

then any call

(foo something)

will be replaced by

(+ something 2)

Inlining is NOT safe for variable clashes – in other words, it is not "hygienic".

Inlining is NOT safe for recursive procedures – if the set of inlined procedures contains
either immediate or mutual (foo calling bar, bar calling foo) recursion, the compiler
will not terminate. To turn off full inlining (harmful for recursive funs), change the
definition of the *full-inlining-flag* in the section "compiler options" to the value #f
instead of #t.

To declare some procedures foo and bar to be inlined, put a following definition any-
where into your file:

(define compile-inline ’(foo bar))

4. Speeding up vectors:

Put

(define compile-stable-vectors ’(baz foo))

into your file to declare that baz and foo are vector names defined once on the top level,
and set! is never applied to them (vector-set! is, of course, allowed). This speeds
up vector reference to those vectors by precomputing their location.

Chapter 2: Compiling with Hobbit 7

5. Speeding up and hiding certain global variables:

Put

(define compile-uninterned-variables ’(bazvar foovar))

into your file to declare that bazvar and foovar are defined on the top level and they
do always have an immediate value, ie a boolean, immediate (30-bit) integer or a
character. Then bazvar and foovar will NOT be accessible from the interpreter. They’ll
be compiled directly into static C vars and used without an extra C *-operation prefixed
to other global scheme variables.

6. Intermediate files

To see the output of compiler passes, change the following definition in ‘hobbit.scm’.

(define *build-intermediate-files* #f)

to:

(define *build-intermediate-files* #t)

7. Name clashes

It may happen that several originally different scheme variable names are represented
by one and the same C variable. This will happen, for example, if you have separate
variables a-1 and a 1.

If such (or any other) name clashes occur you may need to change some control variables
in the first sections of ‘hobbit.scm’ (up to the section "global variable defs") or just
rename some variables in your scheme program.

8. Other options

See various control variables in the first sections of ‘hobbit.scm’ (up to section "global
variable defs").

2.4 CC Optimizations

When using the C compiler to compile the C code output by hobbit, always use strong
optimizations (eg. ‘cc -xO3’ for cc on Sun, ‘gcc -O2’ or ‘gcc -O3’ for gcc). Hobbit does
not attempt to do optimizations of the kind we anticipate from the C compiler, therefore it
often makes a serious difference whether the C compiler is run with a strong optimization
flag or not.

For the final and fast version of your program you may want to first recompile the whole scm
(scmlit for the version scm4e2) using the ‘-DRECKLESS’ flag suppressing error checking: the
hobbit-compiled code uses some SCM primitives in the compiled files with the suffix .o, and
a number of these primitives become faster when error checking is disabled by ‘-DRECKLESS’.
Notice that hobbit never inserts error checking into the code it produces.

Chapter 3: The Language Compiled 8

3 The Language Compiled

Calls to load or require occurring at the top level of a file being compiled are ignored.
Calls to load or require within a procedure are compiled to call (interpreted) load or
require as appropriate.

Several SCM and SLIB extensions to the Scheme report are recognized by hobbit as Scheme
primitives.

3.1 Macros

The Common-lisp style defmacro implemented in SCM is recognized and procedures defined
by defmacro are expanded during compilation.

Note Bene: any macro used in a compiled file must be also defined in one of the compiled
files.

‘#.<expression>’ is read as the object resulting from the evaluation of <expression>. The
calculation is performed during compile time. Thus <expression> must not contain variables
defined or set! in the compiled file.

3.2 SCM Primitive Procedures

Real-only versions of transcedental procedures (warning: these procedures are not compiled
directly into the corresponding C library procedures, but a combination of internal SCM
procedures, guaranteeing exact correspondence with the SCM interpreter while hindering
the speed):

real-sqrt real-exp real-ln real-expt real-sin real-cos real-tan

real-asin real-acos real-atan real-sinh real-cosh real-tanh real-asinh

real-acosh real-atanh

Note Bene: These procedures are compiled to faster code than the corresponding generic
versions sqrt, abs, . . . expt.

A selection of other extra primitives in SCM is also recognized as primitives. eg.
get-internal-run-time, quit, abort, restart, chdir, delete-file, rename-file.

3.3 SLIB Logical Procedures

The following bitwise procedures in the scheme library file ‘logical.scm’ are compiled
directly to fast C operations on immediate integers (small 30-bit integers) (Scheme library
funs in the upper row, C ops below):

logand logior logxor lognot logsleft logsright

& | ^ ~ << >>

The following alternative names logical:logand, logical:logior, logical:logxor,
logical:lognot, and ash are compiled for the generic case, not immediate-integers-only
and are thus much slower.

Notice that the procedures logsleft, logsright are NOT in the the library file
‘logical.scm:’ the universal procedure ash is instead. Procedures ash, logcount,

Chapter 3: The Language Compiled 9

integer-length, integer-expt, bit-extract, ipow-by-squaring, in ‘logical.scm’ are
not primtives and they are all compiled into calls to interpreted code.

logsleft and logsright are defined for non-compiled use in the file ‘scmhob.scm’ included
in the SCM distribution.

3.4 Fast Integer Calculations

The following primitives are for immediate (30-bit) integer-only arithmetics. The are com-
piled directly into the corresponding C operations plus some bitshifts if necessary. They
are good for speed in case the compiled program uses BOTH generic arithmetics (reals,
bignums) and immediate (30-bit) integer arithmetics. These procedures are much faster
than corresponding generic procedures taking also reals and bignums. There is no point in
using these unless the program as a whole is compiled using generic arithmetics, since oth-
erwise all the arithmetics procedures are compiled directly into corresponding C operations
anyway.

Note Bene: These primitives are NOT defined in SCM or its libraries. For non-compiled
use they are defined in the file ‘scmhob.scm’ included in the SCM distribution.

%negative? %number? %> %>= %= %<= %<

%positive? %zero? %eqv? %+ %- %* %/

3.5 Force and Delay

The nonessential procedure force and syntax delay are implemented exactly as suggested
in the report 4. This implementation deviates internally from the implementation of force
and delay in the SCM interpeter, thus it is incorrect to pass a promise created by delay in
the compiled code to the force used by interpreter, and vice-versa for the promises created
by the interpreter.

3.6 Suggestions for writing fast code

The following suggestions may help you to write well-optimizable and fast code for the
hobbit-scm combination. Roughly speaking, the main points are:

• minimizing consing and creation of new vectors and strings in speed-critical parts,

• minimizing the use of generic (non-integer) arithmetics in speed-critical parts,

• minimizing the usage of procedures as first-class objects (very roughly speaking, explicit
lambda-terms and call/cc) in speed-critical parts,

• using special options and fast-compiled primitives of the compiler.

Here come the details.

1. Immediate arithmetics (ie using small, up to 30 bits integers) is much faster than
generic (reals and bignums) arithmetics. If you have to use generic arithmetic in your
program, then try to use special immediate arithmetics operations %=, %<=, %+, %*, . . .
for speed-critical parts of the program whenever possible.

Also, if you use bitwise logical operations, try to use the immediate-integer-only versions

logand logior logxor lognot logsleft logsright

and not logical:logand or ash, for example.

Chapter 3: The Language Compiled 10

2. Due to its inner stack-based architecture, the generic (not escape-only) continuations
are very slow in SCM. Thus they are also slow in compiled code. Try to avoid contin-
uations (calls to the procedure call-with-current-continuation and calls to the continu-
ations it produces) in speed-critical parts.

3. In speed-critical parts of your program try to avoid using procedures which are redefined
or defined by set!:

(set! bar +)

(set! f (lambda (x) (if (zero? x) 1 (* x (f (- x 1))))))

anywhere in the compiled program. Avoid using compiler flags (see Section 2.3 [Hobbit
Options], page 5):

(define compile-all-proc-redefined t)

(define compile-new-proc-redefined t)

4. Do not use complicated higher-order procedures in speed-critical parts. By complicated
we mean not clonable, where clonability is defined in the following way (Note Bene:
the primitives ‘map’ and ‘for-each’ are considered clonable and do not inflict a speed
penalty).

A higher-order procedure (HOP for short) is defined as a procedure with some of its
formal arguments occuring in the procedure body in a function position, that is, as a
first element of a list. Such an argument is called a higher-order argument.

A HOP ‘bar’ is clonable iff it satisfies the following four conditions:

1. ‘bar’ is defined as

(define bar (lambda ...))

or

(define (bar ...) ...)

on top level and bar is not redefined anywhere.

2. the name ‘bar’ occurs inside the body of bar only in a function position and not
inside an internal lambda-term.

3. Let f be a higher-order argument of bar. Any occurrence of f in bar has one of the
following two forms:

• f occurs in a function position,

• f is passed as an argument to bar and in the call it occurs in the same position
as in the argument list.

4. Let f be a higher-order argument of bar. f does not occur inside a lambda-term
occurring in bar.

Examples:

If ‘member-if’ is defined on top level and is not redefined anywhere, then
‘member-if’ is a clonable HOP:

(define (member-if fn lst)

(if (fn (car lst))

lst

(member-if fn (cdr lst))))

member-if-not is not a clonable HOP (fn occurs in a lambdaterm):

Chapter 3: The Language Compiled 11

(define (member-if-not fn lst)

(member (lambda (x) (not (fn x))) lst))

show-f is not a clonable HOP (fn occurs in a non-function position in (display fn)):

(define (show-f fn x)

(set! x (fn x))

(display fn)

x)

5. In speed-critical parts avoid using procedures which return procedures.

Eg, a procedure

(define plus

(lambda (x)

(lambda (y) (+ y x))))

returns a procedure.

6. A generalisation of the previous case 5:

In speed-critical parts avoid using lambda-terms except in non-set! function def-
initions like

(define foo (lambda ...)),

(let ((x 1) (f (lambda ...))) ...)

(let* ((x 1) (f (lambda ...))) ...)

(let name ((x 1) (f (lambda ...))) ...)

(letrec ((f (lambda ...)) (g (lambda ...))) ...)

or as arguments to clonable HOP-s or primitives map and for-each, like

(let ((x 0)) (map (lambda (y) (set! x (+ 1 x)) (cons x y)) list))

(member-if (lambda (x) (< x 0)) list)

where member-if is a clonable HOP.

Also, avoid using variables with a procedural value anywhere except in a function
position (first element of a list) or as an argument to a clonable HOP, map or
for-each.

Lambda-terms conforming to the current point are said to be liftable.

Examples:

(define (bar x) (let ((f car)) (f (f x))))

has ‘car’ in a non-function and non-HOP-argument position in (f car), thus it is
slower than

(define (bar x) (let ((f 1)) (car (car x))))

Similarly,

(define (bar y z w)

(let ((f (lambda (x) (+ x y))))

(set! w f)

(cons (f (car z))

(map f z))))

has ‘f’ occurring in a non-function position in (set! w f), thus the lambda-term
(lambda (x) (+ x y)) is not liftable and the upper ‘bar’ is thus slower than the
following equivalent ‘bar’ with a liftable inner lambda-term:

Chapter 3: The Language Compiled 12

(define (bar y z w)

(let ((f (lambda (x) (+ x y))))

(set! w 0)

(cons (f (car z))

(map f z))))

Using a procedure bar defined as

(define bar (let ((x 1)) (lambda (y) (set! x y) (+ x y))))

is slower than using a procedure bar defined as

(define *bar-x* 1)

(define bar (lambda (y) (set! *bar-x* y) (+ *bar-x* y)))

since the former definition contains a non-liftable lambda-term.

7. Try to minimize the amount of consing in the speed-critical program fragments,
that is, a number of applications of cons, list, map, quasiquote (‘) and vector-
>list during the time program is running. ‘cons’ (called also by ‘list’, ‘map’ and
‘quasiquote’) is translated into a C call to an internal cons procedure of the SCM
interpreter. Excessive consing also means that the garbage collection happens
more often. Do (verbose 3) to see the amount of time used by garbage collection
while your program is running.

Try to minimize the amount of creating new vectors, strings and symbols in
the speed-critical program frgaments, that is, a number of applications of
make-vector, vector, list->vector, make-string, string-append, *->string,
string->symbol. Creating such objects takes typically much more time than
consing.

8. The Scheme iteration construction ‘do’ is compiled directly into the C iteration
construction ‘for’. We can expect that the C compiler has some knowledge about
‘for’ in the optimization stage, thus it is probably faster to use ‘do’ for iteration
than non-mutual tailrecursion (which is recognized by hobbit as such and is com-
piled into a jump to a beginning of a procedure) and certainly much faster than
non-tail-recursion or mutual tailrecursion (the latter is not recognized by hobbit
as such).

9. Declare small nonrecursive programs which do not contain let-s or lambdaterms
as being inlinable.

Declare globally defined variables which are never set! or redefined and whose
value is a small integer, character or a boolean, as being inlinable. See Section 2.3
[Hobbit Options], page 5.

10. If possible, declare vectors as being stable. See Section 2.3 [Hobbit Options],
page 5. This gives a minor improvement in speed.

11. If possible, declare critical global vars as being uninterned. See Section 2.3 [Hobbit
Options], page 5. This gives a minor improvement in speed. Declare the global
variables which are never set! and have an (unchanged) numeric or boolean value
as being inlined. See Section 2.3 [Hobbit Options], page 5.

In addition, take the following into account:

• When using the C compiler to compile the C code output by hobbit, always use
strong optimizations (eg. ‘cc -xO3’ for cc on Sun, ‘gcc -O2’ or ‘gcc -O3’ for gcc).

Chapter 3: The Language Compiled 13

Hobbit does not attempt to do optimizations of the kind we anticipate from the
C compiler, therefore it often makes a big difference if the C compiler is run with
a strong optimization flag or not.

• hobbit does not give proper tailrecursion behaviour for mutual tailrecursion (foo
calling bar, bar calling foo tailrecursively).

Hobbit guarantees proper tailrecursive behaviour for non-mutual tailrecursion (foo
calling foo tailrecursively), provided that foo is not redefined anywhere and that
foo is not a local function which occurs also in a non-function and non-clonable-
HOP-argument position (i.e. cases 3 and 6 above).

Chapter 4: Performance of Compiled Code 14

4 Performance of Compiled Code

4.1 Gain in Speed

The author has so far compiled and tested a number of large programs (theorem provers
for various logics and hobbit itself).

The speedup for the provers was between 25 and 40 times for various provable formulas.
Comparison was made between the provers being interpreted and compiled with ‘gcc -O2

-DRECKLESS’ on Sparcstation ELC in both cases.

The provers were written with care to make the compiled version run fast. They do not
perform excessive consing and they perform very little arithmetic.

According to experiments made by A. Jaffer, the compiled form of the example program
‘pi.scm’ was approximately 11 times faster than the interpreted form.

As a comparison, his hand-coded C program for the same algorithm of computing pi was
about 12 times faster than the interpreted form. ‘pi.scm’ spends most of of its time in
immediate arithmetics, vector-ref and vector-set!.

P. Kelloma"ki has reported a 20-fold speedup for his generic scheme debugger. T. Moore
has reported a 16-fold speedup for a large gate-level IC optimizer.

Self-compilation speeds Hobbit up only ca 10 times.

However, there are examples where the code compiled by hobbit runs actually slower than
the same code running under interpreter: this may happen in case the speed of the code
relies on non-liftable closures and proper mutual tailrecursion. See for example the closure-
intensive benchmark CPSTAK in the following table.

Chapter 4: Performance of Compiled Code 15

4.2 Benchmarks

We will present a table with the performance of three scheme systems on a number of
benchmarks: interpreted SCM, byte-compiled VSCM and hobbit-compiled code. The upper
13 benchmarks of the table are the famous Gabriel benchmarks (originally written for lisp)
modified for scheme by Will Clinger. The lower five benchmarks of the table are proposed
by other people. Selfcompile is the self-compile time of Hobbit.

Hobbit performs well on most of the benchmarks except CPSTAK and CTAK: CPSTAK is
a closure-intensive tailrecursive benchmark and CTAK is a continuations-intensive bench-
mark. Hobbit performs extremely well on these benchmarks which essentially satisfy the
criterias for well-optimizable code outlined in the section 6 above.

FFT is real-arithmetic-intensive.

All times are in seconds.

SCM 4c0(U) and 1.1.5*(U) (the latter is the newest version of VSCM) are compiled and
run by Matthias Blume on a DecStation 5000 (Ultrix). VSCM is a bytecode-compiler using
continuation-passing style, and is well optimized for continuations and closures.

SCM 4e2(S) and Hobbit4b(S) compiled (with ‘cc -xO3’) and run by Tanel Tammet on a
Sun SS10 (lips.cs.chalmers.se). Hobbit is a Scheme-to-C compiler for SCM, the code it
produces does not do any checking. SCM and hobbit are not optimized for continuations.
Hobbit is not optimized for closures and proper mutual tailrecursion.

SCM and Hobbit benchmarks were run giving ca 8 MB of free heap space before each test.

Benchmark |SCM 4c0(U) 1.1.5*(U)| SCM 4e2(S) Hobbit4b(S)

----------------|--

Deriv | 3.40 3.86 | 2.9 0.18

Div-iter | 3.45 2.12 | 2.6 0.083

Div-rec | 3.45 2.55 | 3.5 0.42

TAK | 1.81 1.71 | 1.4 0.018

TAKL |14.50 11.32 | 13.8(1.8 in gc) 0.13

TAKR | 2.20 1.64 | 1.7 1.5 0.018

Destruct | ? ? | 7.4(1.8 in gc) 0.18

Boyer | ? ? | 27.(3.8 in gc) 1.9

CPSTAK | 2.72 2.64 | 2.0 1.92 3.46(2.83 in gc)

CTAK |31.0 4.11 | memory memory

CTAK(7 6 1) | ? ? | 0.83 0.74

FFT |12.45 15.7 | 11.4 10.8 1.0

Puzzle | 0.28 0.41 | 0.46(0.22 gc) 0.03

--

(recfib 25) | ? ? | 4.1 0.079

(recfib 30) | ? ? | 55. (10.in gc) 0.87

(pi 300 3) | ? ? | 7.4 0.46

(hanoi 15) | ? ? | 0.68 0.007

(hanoi 20) | ? ? | 31. (9. in gc) 0.2

--

Chapter 4: Performance of Compiled Code 16

4.3 Benchmark Sources

A selection of (smaller) benchmark sources

4.3.1 Destruct

;;;; Destructive operation benchmark

(define (destructive n m)

(let ((l (do ((i 10 (- i 1))

(a ’() (cons ’() a)))

((= i 0) a))))

(do ((i n (- i 1)))

((= i 0))

(if (null? (car l))

(do ((l l (cdr l)))

((null? l))

(or (car l) (set-car! l (cons ’() ’())))

(append! (car l) (do ((j m (- j 1))

(a ’() (cons ’() a)))

((= j 0) a))))

(do ((l1 l (cdr l1))

(l2 (cdr l) (cdr l2)))

((null? l2))

(set-cdr! (do ((j (quotient (length (car l2)) 2) (- j 1))

(a (car l2) (cdr a)))

((zero? j) a)

(set-car! a i))

(let ((n (quotient (length (car l1)) 2)))

(cond ((= n 0) (set-car! l1 ’()) (car l1))

(else (do ((j n (- j 1))

(a (car l1) (cdr a)))

((= j 1)

(let ((x (cdr a)))

(set-cdr! a ’()) x))

(set-car! a i)))))))))))

;; call: (destructive 600 50)

4.3.2 Recfib

(define (recfib x)

(if (< x 2)

x

(+ (recfib (- x 1))

(recfib (- x 2)))))

Chapter 4: Performance of Compiled Code 17

4.3.3 div-iter and div-rec

;;;; Recursive and iterative benchmark divides by 2 using lists of ()’s.

(define (create-n n)

(do ((n n (- n 1))

(a ’() (cons ’() a)))

((= n 0) a)))

(define *ll* (create-n 200))

(define (iterative-div2 l)

(do ((l l (cddr l))

(a ’() (cons (car l) a)))

((null? l) a)))

(define (recursive-div2 l)

(cond ((null? l) ’())

(else (cons (car l) (recursive-div2 (cddr l))))))

(define (test-1 l)

(do ((i 300 (- i 1))) ((= i 0))

(iterative-div2 l)

(iterative-div2 l)

(iterative-div2 l)

(iterative-div2 l)))

(define (test-2 l)

(do ((i 300 (- i 1))) ((= i 0))

(recursive-div2 l)

(recursive-div2 l)

(recursive-div2 l)

(recursive-div2 l)))

;; for the iterative test call: (test-1 *ll*)

;; for the recursive test call: (test-2 *ll*)

4.3.4 Hanoi

;;; C optimiser should be able to remove the first recursive call to

;;; move-them. But Solaris 2.4 cc, gcc 2.5.8, and hobbit don’t.

(define (hanoi n)

(letrec ((move-them

(lambda (n from to helper)

(if (> n 1)

(begin

(move-them (- n 1) from helper to)

(move-them (- n 1) helper to from))))))

(move-them n 0 1 2)))

Chapter 4: Performance of Compiled Code 18

4.3.5 Tak

;;;; A vanilla version of the TAKeuchi function

(define (tak x y z)

(if (not (< y x))

z

(tak (tak (- x 1) y z)

(tak (- y 1) z x)

(tak (- z 1) x y))))

;; call: (tak 18 12 6)

4.3.6 Ctak

;;;; A version of the TAK function that uses continuations

(define (ctak x y z)

(call-with-current-continuation

(lambda (k)

(ctak-aux k x y z))))

(define (ctak-aux k x y z)

(cond ((not (< y x)) (k z))

(else (call-with-current-continuation

(ctak-aux

k

(call-with-current-continuation

(lambda (k) (ctak-aux k (- x 1) y z)))

(call-with-current-continuation

(lambda (k) (ctak-aux k (- y 1) z x)))

(call-with-current-continuation

(lambda (k) (ctak-aux k (- z 1) x y))))))))

(define (id x) x)

(define (mb-test r x y z)

(if (zero? r)

(ctak x y z)

(id (mb-test (- r 1) x y z))))

;;; call: (ctak 18 12 6)

Chapter 4: Performance of Compiled Code 19

4.3.7 Takl

;;;; The TAKeuchi function using lists as counters.

(define (listn n)

(if (not (= 0 n))

(cons n (listn (- n 1)))

’()))

(define l18 (listn 18))

(define l12 (listn 12))

(define l6 (listn 6))

(define (mas x y z)

(if (not (shorterp y x))

z

(mas (mas (cdr x) y z)

(mas (cdr y) z x)

(mas (cdr z) x y))))

(define (shorterp x y)

(and (pair? y) (or (null? x) (shorterp (cdr x) (cdr y)))))

;; call: (mas l18 l12 l6)

4.3.8 Cpstak

;;;; A continuation-passing version of the TAK benchmark.

(define (cpstak x y z)

(define (tak x y z k)

(if (not (< y x))

(k z)

(tak (- x 1)

y

z

(lambda (v1)

(tak (- y 1)

z

x

(lambda (v2)

(tak (- z 1)

x

y

(lambda (v3)

(tak v1 v2 v3 k)))))))))

(tak x y z (lambda (a) a)))

;;; call: (cpstak 18 12 6)

Chapter 4: Performance of Compiled Code 20

4.3.9 Pi

(define (pi n . args)

(let* ((d (car args))

(r (do ((s 1 (* 10 s))

(i 0 (+ 1 i)))

((>= i d) s)))

(n (+ (quotient n d) 1))

(m (quotient (* n d 3322) 1000))

(a (make-vector (+ 1 m) 2)))

(vector-set! a m 4)

(do ((j 1 (+ 1 j))

(q 0 0)

(b 2 (remainder q r)))

((> j n))

(do ((k m (- k 1)))

((zero? k))

(set! q (+ q (* (vector-ref a k) r)))

(let ((t (+ 1 (* 2 k))))

(vector-set! a k (remainder q t))

(set! q (* k (quotient q t)))))

(let ((s (number->string (+ b (quotient q r)))))

(do ((l (string-length s) (+ 1 l)))

((>= l d) (display s))

(display #\0)))

(if (zero? (modulo j 10)) (newline) (display #\space)))

(newline)))

Chapter 5: Principles of Compilation 21

5 Principles of Compilation

5.1 Expansion and Analysis

1. Macros defined by defmacro and all the quasiquotes are expanded and compiled into
equivalent form without macros and quasiquotes.

For example, ‘(a , x) will be converted to (cons ’a (cons x ’())).

2. Define-s with the nonessential syntax like

(define (foo x) ...)

are converted to defines with the essential syntax

(define foo (lambda (x) ...))

Non-top-level defines are converted into equivalent letrec-s.

3. Variables are renamed to avoid name clashes, so that any local variable may have a
whole procedure as its scope. This renaming also converts let-s to let*-s. Variables
which do not introduce potential name clashes are not renamed. For example,

(define (foo x y)

(let ((x y)

(z x))

(let* ((x (+ z x)))

x)))

is converted to

(define foo

(lambda (x y)

(let* ((x__1 y)

(z x)

(x__2 (+ z x__1)))

x__2)))

4. In case the set of procedures defined in one letrec is actually not wholly mutually
recursive (eg, f1 calls f2, but f2 does not call f1, or there are three procedures, f1, f2,
f3 so that f1 and f2 are mutually recursive but f3 is not called from f1 or f2 and it does
not call them, etc), it is possible to minimize the number of additional variables passed
to procedures.

Thus letrec-s are split into ordered chunks using dependency analysis and topological
sorting, to reduce the number of mutually passed variables. Wherever possible, letrec-
s are replaced by let*-s inside these chunks.

5. Normalization is performed. This converts a majority of scheme control procedures
like cond, case, or, and into equivalent terms using a small set of primitives. New
variables may be introduced in this phase.

In case a procedure like or or and occurs in the place where its value is treated as a
boolean (eg. first argument of if), it is converted into an analogous boolean-returning
procedure, which will finally be represented by an analogous C procedure (eg. || or
&&).

Associative procedures are converted into structures of corresponding nonassociative
procedures. List is converted to a structure of cons-s.

Chapter 5: Principles of Compilation 22

Map and for-each with more than two arguments are converted into an equivalent
do-cycle. map-s and for-each-s with two arguments are treated as if they were defined
in the compiled file – the definitions map1 and for-each1 are automatically included,
if needed.

There is an option in ‘hobbit.scm’ to make all map-s and for-each-s be converted into
equivalent do-loops, avoiding the use of map1 and/or for-each1 altogether.

6. Code is analysed for determining which primitive names and compiled procedure names
are assumed to be redefinable.

7. Analysing HOP clonability: hobbit will find a list of clonable HOP-s with information
about higher-order arguments.

Criterias for HOP clonability are given in the section 6.4.

8. Analysis of liftability: hobbit will determine which lambda-terms have to be built as real
closures (implemented as a vector where the first element is a pointer to a function and
the rest contain values of environment variables or environment blocks of surrounding
code) and which lambda-terms are liftable.

Liftability analysis follows the criterias given in section 6.5 and 6.6.

5.2 Building Closures

Here Hobbit produces code for creating real closures for all the lambda-terms which are not
marked as being liftable by the previous liftability analysis.

Global variables (eg x-glob) are translated as pointers (locations) to SCM objects and used
via a fetch: *x glob (or a fetch macro GLOBAL(x-glob) which translates to *x glob).

While producing closures hobbit tries to minimize the indirection levels necessary. Generally
a local variable x may have to be translated to an element of a vector of local variables built
in the procedure creating x. If x occurs in a non-liftable closure, the whole vector of local
variables is passed to a closure.

Such a translation using a local vector will only take place if either x is set! inside a
non-liftable lambda-term or x is a name of a recursively defined non-liftable function, and
the definition of x is irregular. The definition of x is irregular if x is given the non-liftable
recursive value t by extra computation, eg as

(set! x (let ((u 1)) (lambda (y) (display u) (x (+ u 1)))))

and not as a simple lambdaterm:

(set! x (lambda (y) (display x) (x (+ y 1))))

In all the other cases a local scheme variable x is translated directly to a local C variable x
having the type SCM (a 32-bit integer). If such an x occurs in a non-liftable closure, then
only its value is passed to a closure via the closure-vector. In case the directly-translated
variable x is passed to a liftable lambda-term where it is set!, then x is passed indirectly
by using its address &x. In the lifted lambda-term it is then accessed via *.

If all the variables x1, . . . , xn created in a procedure can be translated directly as C
variables, then the procedure does not create a special vector for (a subset of) local variables.

Chapter 5: Principles of Compilation 23

An application (foo . . .) is generally translated to C by an internal apply of the SCM
interpreter: apply(GLOBAL(foo), . . .). Using an internal apply is much slower than using
direct a C function call, since:

• there is an extra fetch by GLOBAL(foo),

• internal apply performs some computations,

• the arguments of foo are passed as a list constructed during application: that is, there
is a lot of expensive consing every time foo is applied via an internal apply.

However, in case foo is either a name of a non-redefined primitive or a name of a non-
redefined liftable procedure, the application is translated to C directly without the extra
layer of calling apply: foo(. . .).

Sometimes lambda-lifting generates the case that some variable x is accessed not directly,
but by *x. See the next section.

Undefined procedures are assumed to be defined via interpreter and are called using an
internal apply.

5.3 Lambda-lifting

When this pass starts, all the real (nonliftable) closures have been translated to closure-
creating code. The remaining lambda-terms are all liftable.

Lambda-lifting is performed. That is, all procedures defined inside some other procedure
(eg. in letrec) and unnamed lambda-terms are made top-level procedure definitions. Any
N variables not bound in such procedures which were bound in the surrounding procedure
are given as extra N first parameters of the procedure, and whenever the procedure is called,
the values of these variables are given as extra N first arguments.

For example:

(define foo

(lambda (x y)

(letrec ((bar (lambda (u) (+ u x))))

(bar y))))

is converted to

(define foo

(lambda (x y)

(foo-fn1 x y)))

(define foo-fn1

(lambda (x u)

(+ u x)))

The case of mutually recursive definitions in letrec needs special treatment – all free
variables in mutually recursive funs have, in general, to be passed to each of those funs. For
example, in

(define (foo x y z i)

(letrec ((f1 (lambda (u) (if x (+ (f2 u) 1))))

(f2 (lambda (v) (if (zero? v) 1 (f1 z)))))

(f2 i)))

Chapter 5: Principles of Compilation 24

the procedure f1 contains a free variable x and the procedure f2 contains a free variable z.
Lambda-lifted f1 and f2 must each get both of these variables:

(define (foo x y z i)

(foo-fn2 x z i))

(define foo-fn1

(lambda (x z u) (if x (+ (foo-fn2 x z u) 1))))

(define foo-fn2

(lambda (x z v) (if (zero? v) 1 (foo-fn1 x z z))))

Recall that hobbit has already done dependency analysis and has split the original letrec
into smaller chunks according to this analysis: see pass 1.

Whenever the value of some free variable is modified by set! in the procedure, this variable
is passed by reference instead. This is not directly possible in scheme, but it is possible in
C.

(define foo

(lambda (x y z)

(letrec ((bar (lambda (u) (set! z (+ u x z)))))

(bar y)

z)))

is converted to incorrect scheme:

(define foo

(lambda (x y z)

(foo-fn1 x (**c-adr** z) y)

z))

(define foo-fn1

(lambda (x (**c-adr** z) u)

(set! (**c-fetch** z) (+ u x (**c-fetch** z)))))

The last two will finally be compiled into correct C as:

SCM foo(x, y, z)

SCM x, y, z;

{

foo_fn1(x, &z, y);

return z;

}

SCM foo_fn1(x, z, u)

SCM x, u;

SCM *z;

{

return (*z = (u + x) + *z);

}

Chapter 5: Principles of Compilation 25

5.4 Statement-lifting

As the scheme do-construction is compiled into C for, but for cannot occur in all places
in C (it is a statement), then if the do in a scheme procedure occurs in a place which will
not be a statement in C, the whole do-term is lifted out into a new top-level procedure
analogously to lambda-lifting. Any statement-lifted parts of some procedure foo are called
foo auxn, where n is a number.

The special C-ish procedure **return** is pushed into a scheme term as far as possible to
extend the scope of statements in the resulting C program. For example,

(define foo

(lambda (x y)

(if x (+ 1 y) (+ 2 y))))

is converted to

(define foo

(lambda (x y)

(if x (**return** (+ 1 y)) (**return** (+ 2 y)))))

Immediate tailrecursion (foo calling foo tailrecursively) is recognized and converted into an
assignment of new values to args and a jump to the beginning of the procedure body.

5.5 Higher-order Arglists

All procedures taking a list argument are converted into ordinary non-list taking procedures
and they are called with the list-making calls inserted. For example,

(define foo

(lambda (x . y)

(cons x (reverse y))))

is converted to

(define foo

(lambda (x y)

(cons x (reverse y))))

and any call to foo will make a list for a variable y. For example,

(foo 1 2 3)

is converted to

(foo 1 (cons 2 (cons 3 ’()))).

All higher-order procedure calls where an argument-term contains unbound variables will
generate a new instance (provided it has not been created already) of this higher-order
procedure, carrying the right amount of free variables inside to right places.

For example, if there is a following definition:

(define (member-if fn lst)

(if (fn (car lst))

lst

(member-if fn (cdr lst))))

and a call

Chapter 5: Principles of Compilation 26

(member-if (lambda (x) (eq? x y)) lst),

a new instance of member-if is created (if an analogous one has not been created before):

(define (member-if_inst1 tmp fn lst)

(if (fn tmp (car lst))

lst

(member-if_inst1 tmp fn (cdr lst))))

and the call is converted to

(member-if_inst1 y foo lst)

and a top-level define

(define (foo y x) (eq? x y))

In addition, if the higher-order procedure is to be exported, an additional instance is created,
which uses apply to call all argument-procedures, assuming they are defined via interpreter.
The exportable higher-order procedure will have a name fun exporthof, where fun is the
name of the original procedure.

5.6 Typing and Constants

All C<->Scheme conversions for immediate objects like numbers, booleans and characters
are introduced. Internal apply is used for undefined procedures. Some optimizations are
performed to decrease the amount of C<->Scheme object conversions.

All vector, pair and string constants are replaced by new variables. These variables are
instantiated to the right values by init foo*.

Procedures foo which are to be exported (made accesible to the interpreter), and which
have an arity different from one of the following five templates: x, (), (x), (x y), (x y z), are
made accessible via an additional procedure foo wrapper taking a single list argument.

C Code Generation

More or less straightforward.

The type conversion between C objects and immediate Scheme objects of the type boolean,
char and num is performed by macros. The scheme object ’() is represented by the macro
object EOL.

Intermediate files

Experiment yourself by defining:

(define *build-intermediate-files* #t)

instead of the default:

(define *build-intermediate-files* #f).

Chapter 6: About Hobbit 27

6 About Hobbit

6.1 The Aims of Developing Hobbit

1. Producing maximally fast C code from simple scheme code.

By simple we mean code which does not rely on procedures returning procedures (clo-
sures) and nontrivial forms of higher-order procedures. All the latter are also compiled,
but the optimizations specially target simple code fragments. Hobbit performs global
optimization in order to locate such fragments.

2. Producing C code which would preserve as much original scheme code structure as pos-
sible, to enable using the output C code by a human programmer (eg. for introducing
special optimizations possible in C). Also, this will hopefully help the C compiler to
find better optimizations.

6.2 Manifest

‘hobbit.scm’ the hobbit compiler.
‘scmhob.scm’ the file defining some additional procedures recognized by hobbit as

primitives. Use it with the interpreter only.

‘scmhob.h’ the common headerfile for hobbit-compiled C files.
‘hobbit.texi’ documentation for hobbit.

6.3 Author and Contributors

Tanel Tammet
Department of Computing Science
Chalmers University of Technology
University of Go"teborg
S-41296 Go"teborg Sweden

A. Jaffer (agj@alum.mit.edu), the author of SCM, has been of major help with a number of
suggestions and hacks, especially concerning the interface between compiled code and the
SCM interpreter.

Several people have helped with suggestions and detailed bug reports, e.g. David
J. Fiander (davidf@mks.com), Gordon Oulsnam (STCS8004@IRUCCVAX.UCC.IE),
Pertti Kelloma"ki (pk@cs.tut.fi), Dominique de Waleffe (ddw2@sunbim.be) Terry Moore
(tmm@databook.com), Marshall Abrams (ab2r@midway.uchicago.edu). Georgy K.
Bronnikov (goga@bronnikov.msk.su), Bernard Urban (Bernard.URBAN@meteo.fr), Charlie
Xiaoli Huang, Tom Lord (lord@cygnus.com), NMICHAEL@us.oracle.com, Lee Iverson
(leei@ai.sri.com), Burt Leavenworth (EDLSOFT@aol.com).

Chapter 6: About Hobbit 28

6.4 Future Improvements

1. Optimisations:

• the calls to internal apply: we’d like to avoid the excessive consing of always
building the list of arguments.

• speeding up the creation of a vector for assignable closure-variables

• several peephole optimisations.

2. Improve Variable creation and naming to avoid C function name clashes.

3. Report 4 macros.

4. Better error-checking.

5. Better liftability analysis.

6. More tailrecursion recognition.

7. Better numeric optimizations.

8. Fast real-only arithmetics: $eqv, $=, $>, $+, $*, etc.

6.5 Release History

[In February 2002, hobbit5x was integrated into the SCM distribution. Changes
since then are recorded in ‘scm/ChangeLog’.]

hobbit4d:

• the incorrect translation of char>?, char-ci>?, char>=?, char-ci>=?
string>?, string-ci>?, string-ci>=?, string>=? reported by Burt
Leavenworth (EDLSOFT@aol.com) was fixed.

• the name clash bug for new variables new varN occurring in non-liftable
closures (reported by Lee Iverson (leei@ai.sri.com)) was fixed.

• the major COPYRIGHT change: differently from all the previous versions
of Hobbit, hobbit4d is Free Software.

hobbit4c:

• a liftability-analysis bug for for-each and map reported by Lee Iverson
(leei@ai.sri.com) has been fixed.

• The output C code does not contain the unnecessary ;-s on separate lines
any more.

hobbit4b: The following bugs have been fixed:

• Erroneous treatment of [and] inside symbols, reported by A. Jaffer
(agj@alum.mit.edu).

• A bug in the liftability analysis, reported by A. Jaffer (agj@alum.mit.edu).

• A bug occurring in case arguments are evaluated right-to-left, which hap-
pens with Hobbit compiled by gcc on GNU/Linux. Reported and patched
by George K. Bronnikov (goga@bronnikov.msk.su)

• A closure-building bug sometimes leading to a serious loss of efficiency
(liftability not recognized), reported by NMICHAEL@us.oracle.com.

• A bug in the liftability analysis (non-liftable lambda-term inside a liftable
lambda-term) reported by Lee Iverson (leei@ai.sri.com)

Chapter 6: About Hobbit 29

hobbit4a: Several bugs found in version4x are fixed.

hobbit4x (not public):
• A major overhaul: Hobbit is now able to compile full scheme, not just the

fast liftable-clonable fragment.

The optimizations done by the earlier versions are preserved.

• Numerous bugs found in earlier versions have been fixed.

hobbit3d: bugs found in the version 3c are fixed.

hobbit3c:

• the form

(define foo (let ((x1 <t1>) ... (xn <tn>)) (lambda ...)))

is now supported for all terms <ti> except procedures defined in the com-
piled files.

• macros are partially supported by doing a preprocessing pass using the
procedures pprint-filter-file and defmacro:expand* defined in slib.

• the file ‘scmhob.scm’ defining hobbit-recognized nonstandard procedures
is created.

• the documentation is improved (thanks go to Aubrey for suggestions).

hobbit3b:

• Aubrey fixed some problems with the version 3.

• It is now OK to define procedures "by name" on top level.

• It is now OK to apply "apply", etc to procedures defined in the compiled
file. Compiled procedures may now be passed to procedures not defined
but still called in the compiled files.

hobbit3:

• Generic arithmetic supported by SCM (exact and inexact reals, bignums)
is made available.

• The #. special syntactic form of SCM is made available.

• Procedures with chars are compiled open-coded, making them faster.

• The bug concerning strings containing an embedded \nl char is corrected
(thanks to Terry Moore, (tmm@databook.com)).

• The special declaration compile-stable-vectors for optimizing vector access
is introduced.

• Source code may contain top-level computations, top-level loads are ig-
nored.

• The bug causing "or" to (sometimes) lose tailrecursiveness is corrected.

• Hobbit now allows the following very special form:

(define foo (let ((bar bar)) (lambda ...)))

Notice (bar bar). See the section 5 above. It will produce wrong code if
bar is redefined.

There were several versions of the 2-series, like 2.x, which were not made
public. The changes introduced are present in the version 3.

Chapter 6: About Hobbit 30

hobbit2:

• The following bitwise procedures in the scheme library file ‘logical.scm’
are compiled directly to C (Scheme library funs in the upper row, C ops
below):

logand logior logxor lognot logsleft logsright

& | ^ ~ << >>

Notice that the procedures logsleft, logsright are NOT in the the li-
brary file ‘logical.scm’: the universal procedure ash is instead. Proce-
dures ash, logcount, integer-length, integer-expt, bit-extract in
‘logical.scm’ are not recognized by hobbit.

hobbit1a3 (not public):
• the letrec-sorting bug often resulting in not recognizing procedures de-

fined in letrec (or local defines) has been corrected.

• the primitives string and vector are now compiled correctly.

hobbit1a2 (not public):
• any fixed arity procedure (including primitives) may be passed to any

higher-order procedure by name. Variable arity procedures (eg primitives
list, +, display and defined funs like (define (foo x . y) x)) must not
be passed to new defined higher-order funs.

• some optimizations have been introduced for calls to map and for-each.

• (map list x y) bug has been corrected.

• Corrected self-compilation name clash between call cc and call-cc.

hobbit1a1 (not public):
• named let is supported.

• the inlining bug is fixed: all procedures declared to be inlined are fully
inlined, except when the flag *full-inlining-flag* is defined as #f.

• the letrec (or in-procedure define) bug where local procedure names were
not recognized, is fixed.

• documentation says explicitly that definitions like

(define foo (let ((x 0)) (lambda (y) ...)))

are assumed to be closure-returning procedures and are prohibited.

• documentation allows more liberty with passing procedures to higher-order
funs by dropping the general requirement that only unnamed lambda-terms
may be passed. Still, primitives and list-taking procedures may not be
passed by name.

• documentation prohibits passing lambda-terms with free variables to re-
cursive calls of higher-order procedures in the definition of a higher-order
procedure.

hobbit1: the first release

Index 31

Index

C
compile->executable . 3
compile-file . 2

H

hobbit . 2

	Introduction
	Compiling with Hobbit
	Compiling And Linking
	Error Detection
	Hobbit Options
	CC Optimizations

	The Language Compiled
	Macros
	SCM Primitive Procedures
	SLIB Logical Procedures
	Fast Integer Calculations
	Force and Delay
	Suggestions for writing fast code

	Performance of Compiled Code
	Gain in Speed
	Benchmarks
	Benchmark Sources
	Destruct
	Recfib
	div-iter and div-rec
	Hanoi
	Tak
	Ctak
	Takl
	Cpstak
	Pi

	Principles of Compilation
	Expansion and Analysis
	Building Closures
	Lambda-lifting
	Statement-lifting
	Higher-order Arglists
	Typing and Constants

	About Hobbit
	The Aims of Developing Hobbit
	Manifest
	Author and Contributors
	Future Improvements
	Release History

	Index

