Next: Matrices and Tensors, Previous: Algebra, Up: Top [Contents][Index]

- Operator:
**differential***expr* - Operator:
**'***expr* -
The Jacal command

`differential`

computes the derivative of the expression`expr`with respect to a generic derivation. It is generic in the sense that nothing is assumed about its effect on the individual variables. The derivation is denoted by a right quote.e6 : differential(x^2+y^3); 2 e6: 2 x x' + 3 y y' e7 : (x^2+y^3)'; 2 e7: 2 x x' + 3 y y'

- Command:
**diff***expr var1 …* -
The Jacal command

`diff`

computes the derivative of the expression`expr`with respect to`var1`, ….e6 : diff(x^2+y^3,y); 2 e6: 3 y

- Command:
**partial***expr var1 …* -
The Jacal command

`partial`

computes the partial derivative of the expression`expr`with respect to`var1`, ….e6 : partial(x^2+@1^3,1); 2 e6: 3 @1

- Command:
**PolyDiff***poly var1 …* -
The Jacal command

`PolyDiff`

computes the derivative of the expression`poly`with respect to`var1`, …. It is faster than`diff`

but`poly`must be a polynomial.

- Command:
**integrate***expr var* -
Returns the indefinite integral of rational expression

`expr`, if that integral is a rational expression containing at most one radical involving`var`.e1 : integrate((3+x^2)*(1+x^2)^(2/3)/(3+6*x^2+3*x^4),x); 2 2/3 x (1 + x ) e1: ------------- 2 1 + x e2 : integrate((1+x^2)^(2/3),x); ;;; could-not-find-algebraic-anti-derivative non-decreasing-rxd 2 vs 0 e2 : integrate(x*(1+x^2)^(2/3),x); 2 2 2/3 (3 + 3 x ) (1 + x ) e2: ---------------------- 10

- Command:
**integrate***expr var a b* -
If the indefinite integral of rational expression

`expr`is a rational expression (optionally including a radical involving`var`), then`integrate`

returns the difference of that integral evaluated at`b`and`a`.e3 : integrate(x*(1+x^2)^(2/3),x,0,1); 2/3 -3 + 6 2 e3: ----------- 10

Next: Matrices and Tensors, Previous: Algebra, Up: Top [Contents][Index]