SCM

Scheme Implementation
Version 5f3

Aubrey Jaffer

This manual is for SCM (version 5f3, February 2020), an implementation of the algorithmic
language Scheme.

Copyright (©) 1990-2007 Free Software Foundation, Inc.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

Table of Contents

1 Overview.............. 1
1.1 Features. e 1
1.2 Authors 1
1.3 Copyright 2

1.3.1 The SCM LiCense.ovuuiiieii i 2
1.3.2 SIOD copyrightoovoi e 2
1.3.3 GNU Free Documentation License 3
1.4 Bibliographyo 10

2 Installing SCM, 12
2.1 Distributions 12
2.2 GNU configure and make............ ..o, 12

221 Making scmlitco 13
2.2.2 Makefile targets ... 14
2.3 Building SCM 15
2.3.1 Invoking Build........ ..o i 15
2.3.2 Build Optionst 17
2.3.3 Compiling and Linking Custom Files...................... 22
2.4 Saving Executable Images i 23
2.5 Imstallation....... ..o 24
2.6 Troubleshooting and Testing............... ... i, 24
2.6.1 Problems Compiling 24
2.6.2 Problems Linking.............c i 25
2.6.3 TesStingcouuiiiiiimi 25
2.6.4 Problems Startingo 26
2.6.5 Problems Running..........o i 26
2.6.6 Reporting Problems i 27

3 Operational Features........................... 28
3.1 Invoking SCM. ... e 28
3.2 OPLIONS ottt 28
3.3 Invocation Exampleso i i 30
3.4 Environment Variables i 31
3.5 Scheme Variables. ... 31
3.6 SCM SESSIOMN .+« ottt ettt ettt e 31
3.7 Editing Scheme Code....... ... 32
3.8 Debugging Scheme Code. ..., 33
3.9 Debugging Continuations.............cooiiiiiiiiiiiiiea . 35
310 Brrors. .o 36
3.11 Memoized EXpressions.o 38
3.12 Internal Stateo 39

3.12.1 Executable path........... 40

313 SCrIP I . v et e 41
3.13.1 Unix Scheme ScriptS.........c.coviiiiiiiiiii .. 41
3.13.2 MS-DOS Compatible Scripts........cooiiiiiii ... 42
3.13.3 Unix Shell Scriptscooiui 43

The Language i, 44

4.1 Standards Compliance.............cooiiiiiiiiiiiiiiiennnn.. 44

B | 103 == < PP 46

4.3 TIE . oot 46

44 InberruptsS .. oo 47

4.5 Process Synchronizationo, 48

4.6 Filesand Ports........oo i 49
4.6.1 Opening and Closingcooiiiiiiiiiinnnn, 49
4.6.2 Port Properties........ ... 50
4.6.3 Port Redirection.......... ..o, 51
4.6.4 Soft Portso 52

4.7 Evaland Load......o i i 52
4.7.1 Line NUmberst 53

4.8 Lexical Conventionsuiuiiiteiiin i, 54
4.8.1 Common-Lisp Read Syntax................ ...l 54
4.8.2 Load Syntax.......oouueeeeii 55
4.8.3 Documentation and Comments 55
4.8.4 Modifying Read Syntax............coiviiiiiiiiinan.. 56

4.9 SYNBAX ¢ oottt 56
4.9.1 Defineand Set..........coiiiiii 56
4.9.2 Defmacro. 58
4.9.3 Syntax-Rules....... ... o i 58
4.9.4 Macro Primitives 59
4.9.5 Environment Frames............. L. 60
4.9.6 Syntactic Hooks for Hygienic Macros...................... 61
4.9.7 Use of Synthetic Identifierso L. 62

Packages 65

5.1 Dynamic Linking........... o i 65

B.2 DU ..o 66

5.3 NUMETIC. . oot 68

D ATTaYS 69
5.4.1 Conventional Arrays..........ccoiuiiiiiiiiiianen. 70
5.4.2 Uniform Array....... ..o 71
5.4.3 Bit Vectors. 72
5.4.4 Array Mapping.........o.ouuiiiiii e 73

5.5 Recordso 74

5.6 I/O-ExXtensions..............ooiiiiiiiiiiiiiiiiiiiiiiii, 74

5.7 Posix EXtensionscoooiiiiiiiiiiiii i 78

5.8 Unix EXtensions.........c.oiiiiiiiiiiiiiiii 82

5.9 Sequence COMPATISON .« .. .vvvtt ettt 83

5.10 Regular Expression Pattern Matching......................... 83

ii

5.11 Line Editing. ... 85
D12 CUISES - vttt ettt ettt e e e e e 85
5.12.1 Output Options Setting ..., 86
5.12.2 Terminal Mode Setting ..., 86
5.12.3 Window Manipulation................co.iiiiiii 87
B5.12.4 OULPUL .« v et 89
5.12.5 Inputb. ...t 90
5.12.6 Curses Miscellany 90
5.13 Sockets. ..o 91
5.13.1 Host and Other Inquirieso 91
5.13.2 Internet Addresses and Socket Names.................... 92
5.13.3 SOCKE . ..ottt 93
5.14 SCMDB. ... 96
5.15 XIDSCIL. .ottt 96
5.16 Hobbit 96
The Implementation........................... 97
6.1 Data Types 97
6.1.1 Immediates. 97
6.1.2 Cells ..o 99
6.1.3 Header Cells. ... 100
6.1.4 Subr Cells. ...t 102
6.1.5 Defining Subrs. ... 103
6.1.6 Ptob Cells. ... 104
6.1.7 Defining Ptobs i 105
6.1.8 Smob Cells. ... 106
6.1.9 Defining Smobs....... ... 107
6.1.10 Data Type Representations............................. 108
6.2 Operationsoouuie et 110
6.2.1 Garbage Collectiono, 110
6.2.1.1 Marking Cellsco i, 110
6.2.1.2 Sweepingthe Heapiii... 111

6.2.2 Memory Management for Environments.................. 111
6.2.3 Dynamic Linking Support 113
6.2.4 Configure Module Catalog.................... 113
6.2.5 Automatic C Preprocessor Definitions.................... 114
6.2.6 Signals.........oo i 116
6.2.7 G MACTOS. « « e ottt et et e 116
6.2.8 Changing Scm.t 117
6.2.9 Allocating memoryc.ouuiiiieiiiiieiean.. 119
6.2.10 Embedding SCMo i 120
6.2.11 Callbacks . ..ot 123
6.2.12 Type Conversionsc..oeeuuuiniiiniienieennnen.. 124
6.2.13 Continuationsccouiiiiiiiii ... 125
6.2.14 Evaluationo 127
6.3 Program Self-Knowledge.............. ..o i i 128
6.3.1 File-System Habitat, 128

6.3.2 Executable Pathname 129

iii

6.3.3 Script Support
6.4 Improvements To Make
6.4.1 VMS Dynamic Linking

Procedure and Macro Index

Variable Index

Type Index

Concept Index

v

1 Overview

SCM is a portable Scheme implementation written in C. SCM provides a machine inde-
pendent platform for [JACAL], a symbolic algebra system. SCM supports and requires the
SLIB Scheme library. SCM, SLIB, and JACAL are GNU projects.

The most recent information about SCM can be found on SCM’s WWW home page:

http://people.csail.mit.edu/jaffer/SCM

1.1 Features

Conforms to Revised~5 Report on the Algorithmic Language Scheme [R5RS] and the
[IEEE] P1178 specification.

Support for [SICP], [R2RS], [R3RS], and [R5RS] scheme code.

Runs under Amiga, Atari-ST, MacOS, MS-DOS, OS/2, NOS/VE, Unicos, VMS, Unix
and similar systems. Supports ASCII and EBCDIC character sets.

Is fully documented in TEXinfo form, allowing documentation to be generated in info,
TEX, html, nroff, and troff formats.

Supports inexact real and complex numbers, 30 bit immediate integers and large pre-
cision integers.

Many Common Lisp functions: logand, logor, logxor, lognot, ash, logcount,
integer-length, bit-extract, defmacro, macroexpand, macroexpandl, gentemp,
defvar, force-output, software-type, get-decoded-time, get-internal-run-
time, get-internal-real-time, delete-file, rename-file, copy-tree, acons,
and eval.

Char-code-1limit, most-positive-fixnum, most-negative-fixnum, and
internal-time-units-per-second constants. slib:features and *load-pathname*
variables.

Arrays and bit-vectors. String ports and software emulation ports. I/O extensions
providing ANSI C and POSIX.1 facilities.

Interfaces to standard libraries including REGEX string regular expression matching
and the CURSES screen management package.

Available add-on packages including an interactive debugger, database, X-window
graphics, BGI graphics, Motif, and Open-Windows packages.

The Hobbit compiler and dynamic linking of compiled modules.

User definable responses to interrupts and errors, Process-syncronization primitives.
Setable levels of monitoring and timing information printed interactively (the verbose
function). Restart, quit, and exec.

1.2 Authors

Aubrey Jaffer (agj@alum.mit.edu)

Most of SCM.

Radey Shouman

Arrays, gsubrs, compiled closures, records, Ecache, syntax-rules macros, and
safeports.

http://people.csail.mit.edu/jaffer/SCM

Chapter 1: Overview 2

Jerry D. Hedden
Real and Complex functions. Fast mixed type arithmetics.

Hugh Secker-Walker
Syntax checking and memoization of special forms by evaluator. Storage allo-
cation strategy and parameters.

George Carrette
Siod, written by George Carrette, was the starting point for SCM. The major
innovations taken from Siod are the evaluator’s use of the C-stack and being
able to garbage collect off the C-stack (see Section 6.2.1 [Garbage Collection)],
page 110).

There are many other contributors to SCM. They are acknowledged in the file ChangeLog,
a log of changes that have been made to scm.

1.3 Copyright
Authors have assigned their SCM copyrights to:

Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111, USA

1.3.1 The SCM License

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

1.3.2 SIOD copyright

COPYRIGHT @© 1989 BY
PARADIGM ASSOCIATES INCORPORATED, CAMBRIDGE, MASSACHUSETTS.
ALL RIGHTS RESERVED

Permission to use, copy, modify, distribute and sell this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the name of Paradigm Associates Inc not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission.

PARADIGM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
IN NO EVENT SHALL PARADIGM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING

http://www.gnu.org/licenses/

Chapter 1: Overview 3

FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CON-
TRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

gjc@paradigm.com
Phone: 617-492-6079

Paradigm Associates Inc
29 Putnam Ave, Suite 6
Cambridge, MA 02138

1.3.3 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

http://fsf.org/

Chapter 1: Overview 4

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such

Chapter 1: Overview 5

as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

Chapter 1: Overview 6

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Chapter 1: Overview 7

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

Chapter 1: Overview 8

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Chapter 1: Overview 9

10.

11.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Chapter 1: Overview 10

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled °‘GNU

Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

1.4 Bibliography

[IEEE] IEEE Standard 1178-1990. IEEE Standard for the Scheme Programming Lan-
guage. IEEE, New York, 1991.

[R4RS] William Clinger and Jonathan Rees, Editors. Revised(4) Report on the Algo-
rithmic Language Scheme. ACM Lisp Pointers Volume IV, Number 3 (July-
September 1991), pp. 1-55.

[R5RS] Richard Kelsey and William Clinger and Jonathan (Rees, editors) Revised(5)
Report on the Algorithmic Language Scheme. Higher-Order and Symbolic
Computation Volume 11, Number 1 (1998), pp. 7-105, and ACM SIGPLAN
Notices 33(9), September 1998.

[Exrename]
William Clinger Hygienic Macros Through Explicit Renaming Lisp Pointers
Volume IV, Number 4 (December 1991), pp 17-23.

[SICP] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and
Interpretation of Computer Programs. MIT Press, Cambridge, 1985.

[Simply] Brian Harvey and Matthew Wright. Simply Scheme: Introducing Computer
Science MIT Press, 1994 ISBN 0-262-08226-8

[SchemePrimer]
e$B8$;tBgoe(B(Dai Inukai) ce$ BF~ Lgae(BScheme 1999ce$BG /oe(B120e$BTn=iHGee(B
ISBN4-87966-954-7

[SLIB] Todd R. Eigenschink, Dave Love, and Aubrey Jaffer. SLIB, The Portable
Scheme Library. Version 2¢8, June 2000.

11

[JACAL] Aubrey Jaffer. JACAL Symbolic Mathematics System. Version 1b0, Sep 1999.

scm.texi
scm.info Documentation of scm extensions (beyond Scheme standards). Documentation
on the internal representation and how to extend or include scm in other pro-

grams.

Xlibscm.texi
Xlibscm.info
Documentation of the Xlib - SCM Language X Interface.

12

2 Installing SCM

SCM runs on a wide variety of platforms. “Distributions” is the starting point for all
platforms. The process described in “GNU configure and make” will work on most Unix
and GNU/Linux platforms. If it works for you, then you may skip the later sections of
“Installing SCM”.

2.1 Distributions

The SCM homepage contains links to precompiled binaries and source distributions.

Downloads and instructions for installing the precompiled binaries are at http://people.
csail.mit.edu/jaffer/SCM#QuickStart.

If there is no precompiled binary for your platform, you may be able to build from the
source distribution. The rest of these instructions deal with building and installing SCM
and SLIB from sources.

Download (both SCM and SLIB of) either the last release or current development snapshot
from http://people.csail.mit.edu/jaffer/SCM#BuildFromSource.

Unzip both the SCM and SLIB zips. For example, if you are working in /usr/local/src/,
this will create directories /usr/local/src/scm/ and /usr/local/src/slib/.

2.2 GNU configure and make

scm/configure and slib/configure are Shell scripts which create the files
scm/config.status and slib/config.status on Unix and MinGW systems.

The config.status files are used (included) by the Makefile to control where the packages
will be installed by make install. With GNU shell (bash) and utilities, the following
commands should build and install SCM and SLIB:

bash$ (cd slib; ./configure --prefix=/usr/local/)
bash$ (cd scm

> ./configure --prefix=/usr/local/

> make scmlit

> sudo make all

> sudo make install)

bash$ (cd slib; sudo make install)

If the install commands worked, skip to Section 2.6.3 [Testing], page 25.

If configure doesn’t work on your system, make scm/config.status and
slib/config.status be empty files.

For additional help on using the configure script, run ‘./configure —-help’.

‘make all’ will attempt to create a dumped executable (see Section 2.4 [Saving Executable
Images], page 23), which has very small startup latency. If that fails, it will try to compile
an ordinary ‘scm’ executable.

Note that the compilation output may contain error messages; be concerned only if the
‘make install’ transcripts contain errors.

http://people.csail.mit.edu/jaffer/SCM#QuickStart
http://people.csail.mit.edu/jaffer/SCM#QuickStart
http://people.csail.mit.edu/jaffer/SCM#BuildFromSource

Chapter 2: Installing SCM 13

‘sudo’ runs the command after it as user root. On recent GNU/Linux systems, dumping
requires that ‘make all’ be run as user root; hence the use of ‘sudo’.

‘make install’ requires root privileges if you are installing to standard Unix locations as
specified to (or defaulted by) ‘./configure’. Note that this is independent of whether you
did ‘sudo make all’ or ‘make all’.

2.2.1 Making scmlit

The SCM distribution Makefile contains rules for making scmlit, a “bare-bones” version
of SCM sufficient for running build. build is a Scheme program used to compile (or create
scripts to compile) full featured versions of SCM (see Section 2.3 [Building SCM], page 15).
To create scmlit, run ‘make scmlit’ in the scm/ directory.

Makefiles are not portable to the majority of platforms. If you need to compile SCM without
‘scmlit’, there are several ways to proceed:

e Use the build (http://people.csail.mit.edu/jaffer/buildscm.html) web page to
create custom batch scripts for compiling SCM.

e Use SCM on a different platform to run build to create a script to build SCM;
e Use another implementation of Scheme to run build to create a script to build SCM;

e Create your own script or Makefile.

Finding SLIB

If you didn’t create scmlit using ‘make scmlit’, then you must create a file named
scm/require.scm. For most installations, scm/require.scm can just be copied from
scm/requires.scm, which is part of the SCM distribution.

If, when executing ‘scmlit’ or ‘scm’, you get a message like:
ERROR: "LOAD couldn’t find file " "/usr/local/src/scm/require"

then create a file require.scm in the SCM implementation-vicinity (this is the same direc-
tory as where the file Init5£3.scm is). require.scm should have the contents:

(define (library-vicinity) "/usr/local/lib/slib/")

where the pathname string /usr/local/lib/slib/ is to be replaced by the pathname into
which you unzipped (or installed) SLIB.

Alternatively, you can set the (shell) environment variable SCHEME_LIBRARY_PATH to the
pathname of the SLIB directory (see Section 3.4 [Environment Variables], page 31). If set,
this environment variable overrides scm/require.scm.

Absolute pathnames are recommended here; if you use a relative pathname, SLIB can get
confused when the working directory is changed (see Section 5.6 [I/O-Extensions|, page 74).
The way to specify a relative pathname is to append it to the implementation-vicinity, which
is absolute:

(define library-vicinity
(let ((1lv (string-append (implementation-vicinity) "../slib/")))
(lambda () 1v)))

http://people.csail.mit.edu/jaffer/buildscm.html

Chapter 2: Installing SCM 14

2.2.2 Makefile targets

Each of the following four ‘make’ targets creates an executable named scm. Each target
takes its build options from a file with an ‘.opt’ suffix. If that options file doesn’t exist,
making that target will create the file with the ‘-F’ features: cautious, bignums, arrays,
inexact, engineering-notation, and dynamic-linking. Once that ‘.opt’ file exists, you can
edit it to your taste and it will be preserved.

make scmd Produces a R4RS executable named scm lacking hygienic macros (but with def-
macro). The build options are taken from scm4.opt. If build or the executable
fails, try removing ‘dynamic-linking’ from scm4.opt.

make scmb RBHRS; like ‘make scm4’ but with ‘~F macro’. The build options are taken from
scmb.opt. If build or the executable fails, try removing ‘dynamic-linking’
from scmb.opt.

make dscmé4
Produces a R4RS executable named udscm4, which it starts and dumps to a
low startup latency executable named scm. The build options are taken from
udscmé4. opt.

If the build fails, then ‘build scmé’ instead. If the dumped executable fails to
run, then send me a bug report (and use ‘build scm4’ until the problem with
dump is corrected).

make dscmb
Like ‘make dscm4’ but with ‘-F macro’. The build options are taken from
udscmb. opt.

If the build fails, then ‘build scmb’ instead. If the dumped executable fails to
run, then send me a bug report (and use ‘build scmb’ until the problem with
dump is corrected).

If the above builds fail because of ‘~F dynamic-linking’, then (because they can’t be
dynamically linked) you will likely want to add some other features to the build’s ¢.opt’
file. See the ‘~F’ build option in Section 2.3.2 [Build Options]|, page 17.

If dynamic-linking is working, then you will likely want to compile most of the modules as
DLLs. The build options for compiling DLLs are in d11s.opt.

)

make x.so The X1ib module; Section “SCM Language X Interface ” in Xlibscm.

make myturtle
Creates a DLL named turtlegr.so which is a simple graphics APIL.

make wbscm.so
The wb module; Section “B-tree database implementation ” in wb. Compiling
this requires that wb source be in a peer directory to scm.

make dlls Compiles all the distributed library modules, but not wbscm.so. Many of the
module compiles are recursively invoked in such a way that failure of one (which
could be due to a system library not being installed) doesn’t cause the top-level
‘make dlls’ to fail. If ‘make d11s’ fails as a whole, it is time to submit a bug
report (see Section 2.6.6 [Reporting Problems|, page 27).

Chapter 2: Installing SCM 15

2.3 Building SCM

The file build loads the file build.scm, which constructs a relational database of how to
compile and link SCM executables. build.scm has information for the platforms which
SCM has been ported to (of which I have been notified). Some of this information is old,
incorrect, or incomplete. Send corrections and additions to agj@alum.mit.edu.

2.3.1 Invoking Build

This section teaches how to use build, a Scheme program for creating compilation scripts
to produce SCM executables and library modules. The options accepted by ‘build’ are
documented in Section 2.3.2 [Build Options], page 17.

Use the any method if you encounter problems with the other two methods (MS-DOS,
Unix).

MS-DOS From the SCM source directory, type ‘build’ followed by up to 9 command line

arguments.

Unix From the SCM source directory, type ‘./build’ followed by command line ar-
guments.

any From the SCM source directory, start ‘scm’ or ‘scmlit’ and type (load

"build"). Alternatively, start ‘scm’ or ‘scmlit’ with the command line
argument ‘-ilbuild’. This method will also work for MS-DOS and Unix.

After loading various SLIB modules, the program will print:

type (b "build <command-line>") to build
type (b*) to enter build command loop

The ‘b*’ procedure enters into a build shell where you can enter commands
(with or without the ‘build’). Blank lines are ignored. To create a build script
with all defaults type ‘build’.

If the build-shell encouters an error, you can reenter the build-shell by typing
“(b*)’. To exit scm type ‘(quit)’.

Here is a transcript of an interactive (b*) build-shell.

bash$ scmlit

SCM version 5e7, Copyright (C) 1990-2006 Free Software Foundation.
SCM comes with ABSOLUTELY NO WARRANTY; for details type ‘(terms)’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘(terms)’ for details.

> (load "build")

;loading build

; loading /home/jaffer/slib/getparam

; loading /home/jaffer/slib/coerce

; done loading build.scm

type (b "build <command-line>") to build
type (b*) to enter build command loop
;done loading build

#<unspecified>

Chapter 2: Installing SCM 16

> (b*)

;loading /home/jaffer/slib/comparse

;done loading /home/jaffer/slib/comparse.scm
build> -t exe

#! /bin/sh

unix (linux) script created by SLIB/batch Wed Oct 26 17:14:23 2011
[-p linux]

= Write file with C defines

rm -f scmflags.h

echo ’#define IMPLINIT "Initbe7.scm"’>>scmflags.h
echo ’#define BIGNUMS’>>scmflags.h

echo ’#define FLOATS’>>scmflags.h

echo ’#define ARRAYS’>>scmflags.h

== = Compile C source files

gcc -c continue.c scm.c scmmain.c findexec.c script.c time.c repl.c scl.c eval.c sys.c
Link C object files

gcc -rdynamic -o scm continue.o scm.o scmmain.o findexec.o script.o time.o repl.o scl.
"SCIII"

build> -t exe -w myscript.sh

"SCI’n"

build> (quit)

No compilation was done. The ‘-t exe’ command shows the compile script. The ‘-t exe
-w myscript.sh’ line creates a file myscript.sh containing the compile script. To actually
compile and link it, type ‘. /myscript.sh’.

Invoking build without the ‘-F’ option will build or create a shell script with the arrays,
inexact, and bignums options as defaults. Invoking ‘build’ with ‘-F 1it -o scmlit’ will
make a script for compiling ‘scmlit’.

bash$./build

_|

#! /bin/sh

unix (linux) script created by SLIB/batch
Write file with C defines

rm -f scmflags.h

echo ’#define IMPLINIT "Initbf3.scm"’>>scmflags.h
echo ’#define BIGNUMS’>>scmflags.h

echo ’#define FLOATS’>>scmflags.h

echo ’#define ARRAYS’>>scmflags.h

Compile C source files
gcc -02 -c continue.c scm.c scmmain.c findexec.c script.c time.c repl.c scl.c eval.c s
================ Link C object files

gcc -rdynamic -o scm continue.o scm.o scmmain.o findexec.o script.o time.o repl.o scl.

To cross compile for another platform, invoke build with the ‘-p’ or ‘~-platform=" option.
This will create a script for the platform named in the ‘-p’ or ‘~-platform=’ option.

bash$./build -o scmlit -p darwin -F lit
_|

Chapter 2: Installing SCM 17

#! /bin/sh
unix (darwin) script created by SLIB/batch
= Write file with C defines

rm -f scmflags.h
echo ’#define IMPLINIT "Initbf3.scm"’>>scmflags.h

Compile C source files
cc -03 -c continue.c scm.c scmmain.c findexec.c script.c time.c repl.c scl.c eval.c sy
= Link C object files

mv -f scmlit scmlit”
cc -o scmlit continue.o scm.o scmmain.o findexec.o script.o time.o repl.o scl.o eval.o

2.3.2 Build Options

The options to build specify what, where, and how to build a SCM program or dynamically
linked module. These options are unrelated to the SCM command line options.

-p platform-name [Build Option]

-—--platform=platform-name [Build Option]
specifies that the compilation should be for a computer/operating-system combination
called platform-name. Note The case of platform-name is distinguised. The current
platform-names are all lower-case.

The platforms defined by table platform in build.scm are:

Table: platform

name processor operating-system compiler
#£ processor-family operating-system #f
symbol processor-family operating-system symbol
symbol symbol symbol symbol
unknown *unknownx* unix cc
acorn-unixlib acorn *unknownx cc

aix powerpc aix cc
alpha-elf alpha unix cc
alpha-linux alpha linux gcc
amiga-aztec m68000 amiga cc
amiga-dice-c m68000 amiga dcc
amiga-gcc m68000 amiga gcc
amiga-sas m68000 amiga 1lc
atari-st-gcc m68000 atari-st gcc
atari-st-turbo-c m68000 atari-st tcc
borland-c 18086 ms—dos bcc
darwin powerpc unix cc
djgpp i386 ms-dos gcc
freebsd *unknownx* unix cc

gec *unknownx* unix gcc
gnu-win32 i386 unix gcc
highc i386 ms—dos hc386

hp-ux hp-risc hp-ux cc

Chapter 2: Installing SCM 18

irix mips irix gcc
linux *unknownx linux gcc
linux-aout 1386 linux gcc
linux-ia64 ia64 linux gcc
microsoft-c i8086 ms—dos cl
microsoft-c-nt i386 ms—dos cl
microsoft—-quick-c i8086 ms—dos qcl
ms-dos i8086 ms-dos cc
netbsd *unknownx* unix gcce
openbsd *unknownx* unix gcc
os/2-cset 1386 0s/2 icc
os/2-emx i386 os/2 gcc
osfl alpha unix cc
plan9-8 i386 plan9 8c
sunos sparc sunos cc
svr4 *unknownx unix cc
svr4-gcc-sun-1ld sparc sunos gcc
turbo-c 18086 ms-dos tcc
unicos cray unicos cc
unix *unknownx unix cc
vms vax vms cc
vms-gcc vax vms gcc
watcom-9.0 1386 ms-dos wcc386p
-f pathname [Build Option]

specifies that the build options contained in pathname be spliced into the argu-
ment list at this point. The use of option files can separate functional features from
platform-specific ones.

The Makefile calls out builds with the options in ‘.opt’ files:

dlls.opt Options for Makefile targets dlls, myturtle, and x.so.
gdb.opt Options for udgdbscm and gdbscm.

libscm.opt
Options for libscm.a.

pg.opt Options for pgscm, which instruments C functions.

udscmé4.opt
Options for targets udscm4 and dscm4 (scm).

udscmb.opt
Options for targets udscmb and dscmb (scm).

The Makefile creates options files it depends on only if they do not already exist.

-o filename [Build Option]

-—-outname=filename [Build Option]
specifies that the compilation should produce an executable or object name of
filename. The default is ‘scm’. Executable suffixes will be added if neccessary, e.g.
‘scm’ = ‘scm.exe’.

Chapter 2: Installing SCM 19

-1 libname ... [Build Option]

---libraries=1ibname [Build Option]
specifies that the libname should be linked with the executable produced. If compile
flags or include directories (‘-I’) are needed, they are automatically supplied for
compilations. The ‘c’ library is always included. SCM features specify any libraries
they need; so you shouldn’t need this option often.

-D definition ... [Build Option]

—---defines=definition [Build Option]
specifies that the definition should be made in any C source compilations. If compile
flags or include directories (‘-I’) are needed, they are automatically supplied for
compilations. SCM features specify any flags they need; so you shouldn’t need this
option often.

--—-compiler-options=flag [Build Option]
specifies that that flag will be put on compiler command-lines.

—-—-linker-options=flag [Build Option]
specifies that that flag will be put on linker command-lines.

-s pathname [Build Option]

---scheme-initial=pathname [Build Option]

specifies that pathname should be the default location of the SCM initialization file
Init5£f3.scm. SCM tries several likely locations before resorting to pathname (see
Section 6.3.1 [File-System Habitat], page 128). If not specified, the current directory
(where build is building) is used.

-c pathname ... [Build Option]
---c-source-files=pathname [Build Option]
specifies that the C source files pathname . .. are to be compiled.
-j pathname . .. [Build Option]
—---object-files=pathname [Build Option]
specifies that the object files pathname . .. are to be linked.
-i call ... [Build Option]
---initialization=call [Build Option]
specifies that the C functions call ... are to be invoked during initialization.
-t build-what [Build Option]
---type=build-what [Build Option]
specifies in general terms what sort of thing to build. The choices are:
‘exe’ executable program.
‘1ib’ library module.
‘dlls’ archived dynamically linked library object files.
‘d1l’ dynamically linked library object file.

The default is to build an executable.

Chapter 2: Installing SCM 20

-h batch-syntax [Build Option]
--batch-dialect=batch-syntax [Build Option]
specifies how to build. The default is to create a batch file for the host system. The
SLIB file batch.scm knows how to create batch files for:
e unix
e dos
e vms
e amigaos (was amigados)
e system
This option executes the compilation and linking commands through the use of
the system procedure.

e *unknown*

This option outputs Scheme code.

-w batch-filename [Build Option]

--script-name=batch-filename [Build Option]
specifies where to write the build script. The default is to display it on
(current-output-port).

-F feature ... [Build Option]
-—--features=feature [Build Option]
specifies to build the given features into the executable. The defined features are:

array Alias for ARRAYS

array-for-each
array-map! and array-for-each (arrays must also be featured).

arrays Use if you want arrays, uniform-arrays and uniform-vectors.
bignums Large precision integers.
byte Treating strings as byte-vectors.

byte-number
Byte/number conversions

careful-interrupt-masking
Define this for extra checking of interrupt masking and some simple checks
for proper use of malloc and free. This is for debugging C code in sys.c,
eval.c, repl.c and makes the interpreter several times slower than usual.

cautious Normally, the number of arguments arguments to interpreted closures
(from LAMBDA) are checked if the function part of a form is not a
symbol or only the first time the form is executed if the function part
is a symbol. defining ‘reckless’ disables any checking. If you want to
have SCM always check the number of arguments to interpreted closures
define feature ‘cautious’.

Chapter 2: Installing SCM 21

cheap-continuations
If you only need straight stack continuations, executables compile with
this feature will run faster and use less storage than not having it. Ma-
chines with unusual stacks need this. Also, if you incorporate new C
code into scm which uses VMS system services or library routines (which
need to unwind the stack in an ordrly manner) you may need to use this
feature.

compiled-closure
Use if you want to use compiled closures.

curses For the curses screen management package.

debug Turns on the features ‘cautious’ and ‘careful-interrupt-masking’;
uses —-g flags for debugging SCM source code.

differ Sequence comparison

dont-memoize-locals
SCM normally converts references to local variables to ILOCs, which
make programs run faster. If SCM is badly broken, try using this option
to disable the MEMOIZE_LOCALS feature.

dump Convert a running scheme program into an executable file.

dynamic-linking
Be able to load compiled files while running.

edit-line interface to the editline or GNU readline library.

engineering-notation
Use if you want floats to display in engineering notation (exponents always
multiples of 3) instead of scientific notation.

generalized-c-arguments
make_gsubr for arbitrary (< 11) arguments to C functions.

i/o-extensions
Commonly available I/O extensions: exec, line I/O, file positioning, file
delete and rename, and directory functions.

inexact Use if you want floating point numbers.
lit Lightweight — no features
macro C level support for hygienic and referentially transparent macros (syntax-

rules macros).
mysql Client connections to the mysql databases.

no-heap-shrink
Use if you want segments of unused heap to not be freed up after garbage
collection. This may increase time in GC for *very™* large working sets.

none No features

pOsix Posix functions available on all Unix-like systems. fork and process func-
tions, user and group IDs, file permissions, and link.

Chapter 2: Installing SCM 22

reckless If your scheme code runs without any errors you can disable almost all
error checking by compiling all files with ‘reckless’.

record The Record package provides a facility for user to define their own record
data types. See SLIB for documentation.

regex String regular expression matching.

rev2-procedures
These procedures were specified in the Revised™2 Report on Scheme but
not in R4RS.

sicp Use if you want to run code from:

Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure
and Interpretation of Computer Programs. The MIT Press, Cambridge,
Massachusetts, USA, 1985.

Differences from R5RS are:
o (ca? () #)
e (define a 25) returns the symbol a.
e (set! a 36) returns 36.

single-precision-only
Use if you want all inexact real numbers to be single precision. This only
has an effect if SINGLES is also defined (which is the default). This does
not affect complex numbers.

socket BSD socket interface. Socket addr functions require inexacts or bignums
for 32-bit precision.

tick-interrupts
Use if you want the ticks and ticks-interrupt functions.

turtlegr Turtle graphics calls for both Borland-C and X11 from sjm@ee.tut.fi.

unix Those unix features which have not made it into the Posix specs: nice,
acct, Istat, readlink, symlink, mknod and sync.

wb WB database with relational wrapper.

wb-no-threads
no-comment

windows Microsoft Windows executable.
X Alias for Xlib feature.

xlib Interface to Xlib graphics routines.

2.3.3 Compiling and Linking Custom Files
A correspondent asks:

How can we link in our own c files to the SCM interpreter so that we can add
our own functionality? (e.g. we have a bunch of tcp functions we want access
to). Would this involve changing build.scm or the Makefile or both?

Chapter 2: Installing SCM 23

(see Section 6.2.8 [Changing Scm], page 117, has instructions describing the C code format).
Suppose a C file foo.c has functions you wish to add to SCM. To compile and link your file
at compile time, use the ‘-c’ and ‘-i’ options to build:

bash$./build -c foo.c -i init_foo

_|

#! /bin/sh

rm -f scmflags.h

echo ’#define IMPLINIT "/home/jaffer/scm/Initb5f3.scm"’>>scmflags.h

echo ’#define COMPILED_INITS init_foo();’>>scmflags.h

echo ’#define BIGNUMS’>>scmflags.h

echo ’#define FLOATS’>>scmflags.h

echo ’#define ARRAYS’>>scmflags.h

gcc -02 -c continue.c scm.c findexec.c script.c time.c repl.c scl.c \
eval.c sys.c subr.c unif.c rope.c foo.c

gcc -rdynamic -o scm continue.o scm.o findexec.o script.o time.o \
repl.o scl.o eval.o sys.o subr.o unif.o rope.o foo.o -1lm -lc

To make a dynamically loadable object file use the -t d11 option:

bash$./build -t dll -c foo.c

4|

#! /bin/sh

rm -f scmflags.h

echo ’#define IMPLINIT "/home/jaffer/scm/Init5f3.scm"’>>scmflags.h

echo ’#define BIGNUMS’>>scmflags.h

echo ’#define FLOATS’>>scmflags.h

echo ’#define ARRAYS’>>scmflags.h

echo ’#define DLL’>>scmflags.h

gcc -02 -fpic -c foo.c

gcc -shared -o foo.so foo.o -1Im -lc
Once foo.c compiles correctly (and your SCM build supports dynamic-loading), you can
load the compiled file with the Scheme command (load "./foo.so"). See Section 6.2.4
[Configure Module Catalog], page 113, for how to add a compiled dll file to SLIB’s catalog.

2.4 Saving Executable Images

In SCM, the ability to save running program images is called dump (see Section 5.2 [Dump],
page 66). In order to make dump available to SCM, build with feature ‘dump’. dumped
executables are compatible with dynamic linking.

Most of the code for dump is taken from emacs-19.34/src/unex*.c. No modifications to
the emacs source code were required to use unexelf.c. Dump has not been ported to all
platforms. If unexec.c or unexelf.c don’t work for you, try using the appropriate unex*.c
file from emacs.

The ‘dscmé’ and ‘dscmb’ targets in the SCM Makefile save images from udscm4 and udscmb
executables respectively.

Address space layout randomization interferes with dump. Here are the fixes for various
operating-systems:

Chapter 2: Installing SCM 24

Fedora-Core-1
Remove the ‘#” from the line ‘#SETARCH = setarch i386’ in the Makefile.

Fedora-Core-3
http: / / jamesthornton . com / writing / emacs-compile . html [For FC3]
combreloc has become the default for recent GNU Id, which breaks the
unexec/undump on all versions of both Emacs and XEmacs...
Override by adding the following to udscm5.opt: ‘--linker-options="-z
nocombreloc"’

Linux Kernels later than 2.6.11

http://www.opensubscriber.com/message/emacs-devel@gnu.org/1007118.html
mentions the exec-shield feature. Kernels later than 2.6.11 must do (as root):

echo 0 > /proc/sys/kernel/randomize_va_space

before dumping. Makefile has this randomize_va_space stuffing scripted for
targets ‘dscm4’ and ‘dscmb’. You must either set randomize_va_space to 0 or
run as root to dump.

0S-X 10.6

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/manl/dyld.1

The dynamic linker uses the following environment variables. They
affect any program that uses the dynamic linker.
DYLD_NO_PIE

Causes dyld to not randomize the load addresses of images in a process where
the main executable was built position independent. This can be helpful when
trying to reproduce and debug a problem in a PIE.

2.5 Installation
Once scmlit, scm, and dlls have been built, these commands will install them to the
locations specified when you ran ‘./configure’:

bash$ (cd scm; make install)
bash$ (cd slib; make install)

Note that installation to system directories (like ‘/usr/bin/’) will require that those com-
mands be run as root:

bash$ (cd scm; sudo make install)
bash$ (cd slib; sudo make install)

2.6 Troubleshooting and Testing

2.6.1 Problems Compiling

FILE PROBLEM / MESSAGE HOW TO FIX
*c include file not found. Correct the status of STDC_HEADERS in
scmfig.h.

http://jamesthornton.com/writing/emacs-compile.html
http://www.opensubscriber.com/message/emacs-devel@gnu.org/1007118.html
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/man1/dyld.1.html

Chapt

sCm.cC

time.c

subr.c
Sys.c

Sys.cC
scl.c

er 2: Installing SCM 25

fix #include statement or add
#define for system type to scmfig.h.
Function should return a value. Ignore.
Parameter is never used.
Condition is always false.
Unreachable code in function.

assignment between incompatible Change SIGRETTYPE in scm.c.
types.
CLK_TCK redefined. incompatablility between <stdlib.h>

and <sys/types.h>.
Remove STDC_HEADERS in scmfig.h.
Edit <sys/types.h> to remove

incompatability.
Possibly incorrect assignment in func- Ignore.
tion lged.
statement not reached. Ignore.
constant in conditional expression.
undeclared, outside of functions. #undef STDC_HEADERS in scmfig.h.
syntax error. #define SYSTNAME to your system

type in scl.c (softtype).

2.6.2 Problems Linking

PROBLEM HOW TO FIX
_sin etc. missing. Uncomment LIBS in makefile.

2.6.3 Testing

Loading r4rstest.scm in the distribution will run an [R4RS] conformance test on scm.

> (load "r4rstest.scm")

_|

;loading rdrstest.scm

SECTION(2 1)

SECTION(3 4)

#<primitive-procedure boolean?>
#<primitive-procedure char?>

#<primitive-procedure null?>
#<primitive-procedure number?>

Loading pi.scm in the distribution will enable you to compute digits of pi.

> (load "pi.scm")

;loading pi.scm

;done loading pi.scm

#<unspecified>

> (pi 100 5)

00003 14159 26535 89793 23846 26433 83279 50288 41971 69399
37510 58209 74944 59230 78164 06286 20899 86280 34825 34211

Chapter 2: Installing SCM

70679

26

;Evaluation took 550 ms (60 in gc) 36976 cells work, 1548.B other

#<unspecified>

Performance

Loading bench.scm will compute and display performance statistics of SCM running

pi.scm.

‘make bench’ or ‘make benchlit’ appends the performance report to the file

BenchLog, facilitating tracking effects of changes to SCM on performance.

2.6.4 Problems Starting

PROBLEM

/bin/bash: scm: program not found
/bin/bash: /usr/local/bin/scm: Permission
denied

Opening message and then machine crashes.

Input hangs.
ERROR: heap: need larger initial.

ERROR: Could not allocate.

remove <FLAG> in scmfig.h and recompile
scm.

add <FLAG> in scmfig.h and recompile scm.
ERROR: Init5f3.scm not found.

WARNING: require.scm not found.

2.6.5 Problems Running
PROBLEM

HOW TO FIX
Is ‘scm’ in a ‘$PATH’ directory?
chmod +x /usr/local/bin/scm

Change memory model option to C com-
piler (or makefile).

Make sure sizet definition is correct in
scmfig.h.

Reduce the size of HEAP_SEG_SIZE in
setjump.h.

#define NOSETBUF

Increase initial heap allocation using -
a<kb> or INIT_HEAP_SIZE.

Check sizet definition.

Use 32 bit compiler mode.

Don’t try to run as subproccess.

Do so and recompile files.

Assign correct IMPLINIT in makefile or

scmfig.h.

Define environment variable
SCM_INIT_PATH to be the full
pathname of Init5f3.scm.

Define environment variable
SCHEME_LIBRARY_PATH to be the
full pathname of the scheme library
[SLIB].

Change library-vicinity in Init5f3.scm
to point to library or remove.
Make sure the value of
(library-vicinity) has a trail-
ing file separator (like / or \).

HOW TO FIX

Chapter 2: Installing SCM

Runs some and then machine crashes.

Runs some and then ERROR: . ..

(after a GC

has happened).

Some symbol names print incorrectly.

ERROR: Rogue pointer in Heap.
Newlines don’t appear correctly in output

files.

Spaces or control characters appear in symbol
names.

Negative numbers turn positive.

;ERROR: bignum: numerical overflow

VMS: Couldn’t unwind stack.

VAX: botched longjmp.

2.6.

6 Reporting Problems

27

See above under machine crashes.

Remove optimization option to C compiler
and recompile.

#define SHORT_ALIGN in scmfig.h.
Change memory model option to C com-
piler (or makefile).

Check that HEAP_SEG_SIZE fits within
sizet.

Increase size
INIT_HEAP_SIZE
HEAP_SEG_SIZE)
See above under machine crashes.
Check file mode (define OPEN_...
Init5£3.scm).

Check character defines in scmfig.h.

of HEAP_SEG_SIZE (or
if it is smaller than

in

Check SRS in scmfig.h.

Increase NUMDIGS_MAX in scmfig.h
and recompile.

#define CHEAP_CONTINUATIONS
scmfig.h.

in

Reported problems and solutions are grouped under Compiling, Linking, Running, and

Testing.

If you don’t find your problem listed there, you can send a bug report to

agj@alum.mit.edu or scm-discuss@gnu.org. The bug report should include:

1.

AR ol S

The version of SCM (printed when SCM is invoked with no arguments).

The type of computer you are using.

The name and version of your computer’s operating system.
The values of the environment variables SCM_INIT_PATH and SCHEME_LIBRARY_PATH.

The name and version of your C compiler.

If you are using an executable from a distribution, the name, vendor, and date of that
distribution. In this case, corresponding with the vendor is recommended.

28

3 Operational Features

3.1 Invoking SCM

scm [-a kbytes| [-muvbiq] [~version| [~help]
[[-]-no-init-file] [--no-symbol-case-fold]
[-p int] [-r feature] [-h feature]
[-d filename] [-f filename] [-1 filename]
[-c expression] [-e expression] [-o dumpname]
[-- | = | -8] [filename] [arguments ...]

Upon startup scm loads the file specified by by the environment variable SCM_INIT_PATH.

If SCM_INIT_PATH is not defined or if the file it names is not present, scm tries to find
the directory containing the executable file. If it is able to locate the executable, scm looks
for the initialization file (usually Init5f3.scm) in platform-dependent directories relative
to this directory. See Section 6.3.1 [File-System Habitat], page 128, for a blow-by-blow
description.

As a last resort (if initialization file cannot be located), the C compile parameter IMPLINIT
(defined in the makefile or scmfig.h) is tried.

Unless the option -no-init-file or -—no-init-file occurs in the command line, or if scm
is being invoked as a script, Init5f3.scm checks to see if there is file ScmInit.scm in the
path specified by the environment variable HOME (or in the current directory if HOME is
undefined). If it finds such a file, then it is loaded.

Init5£3.scm then looks for command input from one of three sources: From an option on
the command line, from a file named on the command line, or from standard input.

This explanation applies to SCMLIT or other builds of SCM.

Scheme-code files can also invoke SCM and its variants. See Section 4.8 [Lexical Conven-
tions], page 54.

3.2 Options

The options are processed in the order specified on the command line.

-a k [Command Option]
specifies that scm should allocate an initial heapsize of k kilobytes. This option,
if present, must be the first on the command line. If not specified, the default
is INIT_HEAP_SIZE in source file setjump.h which the distribution sets at

25000%*sizeof (cell).
-no-init-file [Command Option]
---no-init-file [Command Option]

Inhibits the loading of ScmInit.scm as described above.

--no-symbol-case-fold [Command Option]
Symbol (and identifier) names will be case sensitive.

Chapter 3: Operational Features 29

—-—-help [Command Option]

prints usage information and URI; then exit.

—---version [Command Option]

prints version information and exit.

-r feature [Command Option]

P

-V

requires feature. This will load a file from [SLIB] if that feature is not already pro-
vided. If feature is 2, 2rs, or r2rs; 3, 3rs, or rdrs; 4, 4rs, or rdrs; 5, 5rs, or rbrs; scm
will require the features neccessary to support [R2RS]; [R3RS]; [R4RS]; or [R5RS],
respectively.

feature [Command Option]

provides feature.

filename [Command Option]
filename [Command Option]

loads filename. Scm will load the first (unoptioned) file named on the command line
if no -c, -e, -f, -1, or —s option preceeds it.

filename [Command Option]

Loads SLIB databases feature and opens filename as a database.

expression [Command Option]
expression [Command Option]

specifies that the scheme expression expression is to be evaluated. These options
are inspired by perl and sh respectively. On Amiga systems the entire option and
argument need to be enclosed in quotes. For instance ‘"-e(newline)"’.

dumpname [Command Option]

saves the current SCM session as the executable program dumpname. This option
works only in SCM builds supporting dump (see Section 5.2 [Dump]|, page 66).

If options appear on the command line after ‘~o dumpname’, then the saved session

will continue with processing those options when it is invoked. Otherwise the (new)
command line is processed as usual when the saved image is invoked.

level [Command Option]

sets the prolixity (verboseness) to level. This is the same as the scm command (verobse
level).

[Command Option]
(verbose mode) specifies that scm will print prompts, evaluation times, notice of
loading files, and garbage collection statistics. This is the same as -p3.

[Command Option]
(quiet mode) specifies that scm will print no extra information. This is the same as

-pO0.

Chapter 3: Operational Features 30

-

-u

3.3

[Command Option]
specifies that subsequent loads, evaluations, and user interactions will be with syntax-
rules macro capability. To use a specific syntax-rules macro implementation from
[SLIB] (instead of [SLIB|’s default) put -r macropackage before -m on the command
line.

[Command Option]
specifies that subsequent loads, evaluations, and user interactions will be without
syntax-rules macro capability. Syntax-rules macro capability can be restored by a
subsequent -m on the command line or from Scheme code.

[Command Option]
specifies that scm should run interactively. That means that scm will not terminate
until the (quit) or (exit) command is given, even if there are errors. It also sets
the prolixity level to 2 if it is less than 2. This will print prompts, evaluation times,
and notice of loading files. The prolixity level can be set by subsequent options. If
scm is started from a tty, it will assume that it should be interactive unless given a
subsequent -b option.

[Command Option]
specifies that scm should run non-interactively. That means that scm will terminate
after processing the command line or if there are errors.

[Command Option]
specifies, by analogy with sh, that scm should run interactively and that further
options are to be treated as program aguments.

[Command Option]
[Command Option]
specifies that further options are to be treated as program aguments.

Invocation Examples

% scm foo.scm

Loads and executes the contents of foo.scm and then enters interactive session.

% scm -f foo.scm argl arg2 arg3

Parameters argl, arg2, and arg3 are stored in the global list *argv+; Loads
and executes the contents of foo.scm and exits.

% scm -s foo.scm argl arg?2

Sets *argv* to ("foo.scm" "argl" "arg2") and enters interactive session.

% scm —e ‘(write (list-ref *argv* *optind*))’ bar

Prints ‘"bar"’.

% scm -rpretty-print -r format -i

Loads pretty-print and format and enters interactive session.

% scm -r5 Loads dynamic-wind, values, and syntax-rules macros and enters interactive

(with macros) session.

Chapter 3: Operational Features 31

% scm -r5 -rd
Like above but rev4-optional-procedures are also loaded.

3.4 Environment Variables

SCM_INIT_PATH [Environment Variable]
is the pathname where scm will look for its initialization code. The default is the file
Init5f3.scm in the source directory.

SCHEME_LIBRARY_PATH [Environment Variable]
is the [SLIB] Scheme library directory.

HOME [Environment Variable]
is the directory where Init5f3.scm will look for the wuser initialization file
ScmInit.scm.

EDITOR [Environment Variable]
is the name of the program which ed will call. If EDITOR is not defined, the default
is ‘ed’.

3.5 Scheme Variables

xargvk [Variable]
contains the list of arguments to the program. *argv* can change during argument
processing. This list is suitable for use as an argument to [SLIB| getopt.

xsyntax-rulesx [Variable]
controls whether loading and interaction support syntax-rules macros. Define this
in ScmInit.scm or files specified on the command line. This can be overridden by
subsequent -m and —u options.

xinteractivex [Variable]
controls interactivity as explained for the -i and -b options. Define this in
ScmInit.scm or files specified on the command line. This can be overridden by
subsequent —-i and -b options.

3.6 SCM Session

e Options, file loading and features can be specified from the command line. See Section
“System interface” in SCM. See Section “Require” in SLIB.

e Typing the end-of-file character at the top level session (while SCM is not waiting for
parenthesis closure) causes SCM to exit.

e Typing the interrupt character aborts evaluation of the current form and resumes the
top level read-eval-print loop.

quit [Function]
quit n [Function]
exit [Function]

Chapter 3: Operational Features 32

exit n [Function]
Aliases for exit (see Section “System” in SLIB). On many systems, SCM can also
tail-call another program. See Section 5.6 [I/O-Extensions], page 74.

boot-tail dumped? [Callback procedure]
boot-tail is called by scm_top_level just before entering interactive top-level. If
boot-tail calls quit, then interactive top-level is not entered.

program-arguments [Function]
Returns a list of strings of the arguments scm was called with.

getlogin [Function]
Returns the (login) name of the user logged in on the controlling terminal of the
process, or #f if this information cannot be determined.

For documentation of the procedures getenv and system See Section “System Interface”
in SLIB.

SCM extends getenv as suggested by draft SRFI-98:

getenv name [Function]
Looks up name, a string, in the program environment. If name is found a string of
its value is returned. Otherwise, #f is returned.

getenv [Function]
Returns names and values of all the environment variables as an association-list.

(getenv) =
(("PATH" . "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin")
("USERNAME" . "taro"))

vms-debug [Function]
If SCM is compiled under VMS this vms-debug will invoke the VMS debugger.

3.7 Editing Scheme Code

ed argl ... [Function]
The value of the environment variable EDITOR (or just ed if it isn’t defined) is invoked
as a command with arguments argl

ed filename [Function]
If SCM is compiled under VMS ed will invoke the editor with a single the single
argument filename.

Gnu Emacs:
Editing of Scheme code is supported by emacs. Buffers holding files ending in
.scm are automatically put into scheme-mode.

If your Emacs can run a process in a buffer you can use the Emacs com-
mand ‘M-x run-scheme’ with SCM. Otherwise, use the emacs command ‘M-x
suspend-emacs’; or see “other systems” below.

Chapter 3: Operational Features 33

Epsilon (MS-DOS):
There is lisp (and scheme) mode available by use of the package ‘LISP.E’. It
offers several different indentation formats. With this package, buffers holding
files ending in ‘.L’, *.LSP’, *.8’, and ‘.SCM’ (my modification) are automatically
put into lisp-mode.

It is possible to run a process in a buffer under Epsilon. With Epsilon 5.0 the
command line options ‘-e512 -m0’ are neccessary to manage RAM properly.
It has been reported that when compiling SCM with Turbo C, you need to
‘#define NOSETBUF’ for proper operation in a process buffer with Epsilon 5.0.

One can also call out to an editor from SCM if RAM is at a premium; See
“under other systems” below.

other systems:
Define the environment variable ‘EDITOR’ to be the name of the editing program
you use. The SCM procedure (ed argl ...) will invoke your editor and return
to SCM when you exit the editor. The following definition is convenient:

(define (e) (ed "work.scm") (load "work.scm"))

Typing ‘(e)’ will invoke the editor with the file of interest. After editing, the
modified file will be loaded.

3.8 Debugging Scheme Code

The cautious option of build (see Section 2.3.2 [Build Options|, page 17) supports debug-
ging in Scheme.

CAUTIOUS
If SCM is built with the ‘CAUTIOUS’ flag, then when an error occurs, a stack
trace of certain pending calls are printed as part of the default error response.
A (memoized) expression and newline are printed for each partially evaluated
combination whose procedure is not builtin. See Section 3.11 [Memoized Ex-
pressions], page 38, for how to read memoized expressions.

Also as the result of the ‘CAUTIOUS’ flag, both error and user-interrupt
(invoked by C-c) to print stack traces and conclude by calling breakpoint (see
Section “Breakpoints” in SLIB) instead of aborting to top level. Under either
condition, program execution can be resumed by (continue).

In this configuration one can interrupt a running Scheme program with C-c,
inspect or modify top-level values, trace or untrace procedures, and continue
execution with (continue).

If verbose (see Section 3.12 [Internal State|, page 39) is called with an argument greater
than 2, then the interpreter will check stack size periodically. If the size of stack in use
exceeds the C #define STACK_LIMIT (default is HEAP_SEG_SIZE), SCM generates a ‘stack’
segment violation.

There are several SLIB macros which so useful that SCM automatically loads the appro-
priate module from SLIB if they are invoked.

trace procl ... [Macro]
Traces the top-level named procedures given as arguments.

Chapter 3: Operational Features 34

trace [Macro]
With no arguments, makes sure that all the currently traced identifiers are traced
(even if those identifiers have been redefined) and returns a list of the traced identifiers.

untrace procl ... [Macro]
Turns tracing off for its arguments.

untrace [Macro]
With no arguments, untraces all currently traced identifiers and returns a list of these
formerly traced identifiers.

The routines I use most frequently for debugging are:

print argl ... [Function]
Print writes all its arguments, separated by spaces. Print outputs a newline at the
end and returns the value of the last argument.

One can just insert ‘(print ’<label>’ and ‘)’ around an expression in order to see
its values as a program operates.

pprint argl ... [Function]
Pprint pretty-prints (see Section “Pretty-Print” in SLIB) all its arguments, separated
by newlines. Pprint returns the value of the last argument.

One can just insert ‘(pprint ’<label>’ and ‘)’ around an expression in order to see
its values as a program operates. Note pretty-print does not format procedures.

When typing at top level, pprint is not a good way to see nested structure because it will
return the last object pretty-printed, which could be large. pp is a better choice.

pp argl ... [Procedure]
Pprint pretty-prints (see Section “Pretty-Print” in SLIB) all its arguments, separated
by newlines. pp returns #<unspecified>.

print-args name [Syntax]

print-args [Syntax]
Writes name if supplied; then writes the names and values of the closest lexical
bindings enclosing the call to Print-args.

(define (foo a b) (print-args foo) (+ a b))

(foo 3 6)
-4 In foo: a = 3; b = 6;
= 9

Sometimes more elaborate measures are needed to print values in a useful manner. When
the values to be printed may have very large (or infinite) external representations, Section
“Quick Print” in SLIB, can be used.

When trace is not sufficient to find program flow problems, SLIB-PSD, the Portable Scheme
Debugger offers source code debugging from GNU Emacs. PSD runs slowly, so start by
instrumenting only a few functions at a time.

http://groups.csail.mit.edu/mac/ftpdir/scm/slib-psd1-3.tar.gz

Chapter 3: Operational Features 35

ftp.maths.tcd.ie:pub/bosullvn/jacal/slib-psdi-3.tar.gz
ftp.cs.indiana.edu:/pub/scheme-repository/utl/slib-psdl-3.tar.gz

3.9 Debugging Continuations

These functions are defined in debug.c, all operate on captured continuations:

frame-trace cont n [Procedure]
Prints information about the code being executed and the environment scopes active
for continuation frame n of continuation CONT. A "continuation frame" is an entry
in the environment stack; a new frame is pushed when the environment is replaced
or extended in a non-tail call context. Frame 0 is the top of the stack.

frame->environment cont n [Procedure]
Prints the environment for continuation frame n of continuation cont. This contains
just the names, not the values, of the environment.

scope-trace env [Procedure]
will print information about active lexical scopes for environment env.

frame-eval cont n expr [Procedure]
Evaluates expr in the environment defined by continuation frame n of continuation
CONT and returns the result. Values in the environment may be returned or SET!.

Section 3.10 [Errors|, page 36, also now accepts an optional continuation argument.
stack-trace differs from frame-trace in that it truncates long output using safeports
and prints code from all available frames.

(define k #f)
(define (foo x y)
(set! k (call-with-current-continuation identity))

#£)

(let ((a 3) (b 4))
(foo a b)
#£)

(stack-trace k)

_|

; STACK TRACE

1; ((#@set! #O@k (#OGcall-with-current-continuation #Q@identity)) #f
2; (#0let ((a 3) (b 4)) (#@foo #Qa #G@b) #f)

#t

(frame-trace k 0)

_|

(#0@call-with-current-continuation #@identity)
; 1n scope:

; (x y) procedure foo#<unspecified>

(frame-trace k 1)
_|

Chapter 3: Operational Features 36

((#0@set! #0@k (#@call-with-current-continuation #Qidentity)) #f)
; in scope:
; (x y) procedure foo#<unspecified>

(frame-trace k 2)

_|

(#0let ((a 3) (b 4)) (#@foo #0a #Ob) #f)
; in scope:

; (a b . #0@let)#<unspecified>

(frame-trace k 3)

_|

(#0let ((a 3) (b 4)) (#@foo #@a #Qb) #f)
; in top level environment.

(frame->environment k 0)
_|
((x y) 2 foo)

(scope-trace (frame->environment k 0))
_|

; in scope:

; (xy) procedure foo#<unspecified>

(frame-eval k¥ 0 ’x) = 3

(frame-eval k 0 ’(set! x 8))
(frame-eval k¥ 0 ’x) = 8

3.10 Errors

A computer-language implementation designer faces choices of how reflexive to make the
implementation in handling exceptions and errors; that is, how much of the error and
exception routines should be written in the language itself. The design of a portable imple-
mentation is further constrained by the need to have (almost) all errors print meaningful
messages, even when the implementation itself is not functioning correctly. Therefore, SCM
implements much of its error response code in C.

The following common error and conditions are handled by C code. Those with callback
names after them can also be handled by Scheme code (see Section 4.4 [Interrupts|, page 47).
If the callback identifier is not defined at top level, the default error handler (C code) is
invoked. There are many other error messages which are not treated specially.

ARGn Wrong type in argument

ARGI1 Wrong type in argument 1
ARG2 Wrong type in argument 2
ARG3 Wrong type in argument 3
ARG4 Wrong type in argument 4
ARG5S Wrong type in argument 5

Chapter 3: Operational Features 37

WNA Wrong number of args
OVFLOW

numerical overflow

OUTOFRANGE
Argument out of range

NALLOC (out-of-storage)
THRASH GC is (thrashing)

EXIT (end-of-program)
HUP_SIGNAL

(hang-up)
INT_SIGNAL

(user-interrupt)
FPE_SIGNAL

(arithmetic-error)
BUS_SIGNAL

bus error

SEGV_SIGNAL

segment violation

ALRM_SIGNAL

(alarm-interrupt)

VTALRM_SIGNAL

(virtual-alarm-interrupt)

PROF_SIGNAL
(profile-alarm-interrupt)

errobj [Variable]
When SCM encounters a non-fatal error, it aborts evaluation of the current form,
prints a message explaining the error, and resumes the top level read-eval-print loop.
The value of errobj is the offending object if appropriate. The builtin procedure
error does not set errobj.

errno and perror report ANSI C errors encountered during a call to a system or library
function.

errno [Function]

errno n [Function]
With no argument returns the current value of the system variable errno. When given
an argument, errno sets the system variable errno to n and returns the previous
value of errno. (errno 0) will clear outstanding errors. This is recommended after
try-load returns #f since this occurs when the file could not be opened.

Chapter 3: Operational Features 38

perror string [Function]
Prints on standard error output the argument string, a colon, followed by a space,
the error message corresponding to the current value of errno and a newline. The
value returned is unspecified.

warn and error provide a uniform way for Scheme code to signal warnings and errors.

warn argl arg2 arg3 ... [Function]
Alias for Section “System” in SLIB. Outputs an error message containing the argu-
ments. warn is defined in Init5£3.scm.

error argl arg2 arg3 ... [Function]
Alias for Section “System” in SLIB. Outputs an error message containing the argu-
ments, aborts evaluation of the current form and resumes the top level read-eval-print
loop. Error is defined in Init5f3.scm.

If SCM is built with the ‘CAUTIOUS’ flag, then when an error occurs, a stack trace of certain
pending calls are printed as part of the default error response. A (memoized) expression and
newline are printed for each partially evaluated combination whose procedure is not builtin.
See Section 3.11 [Memoized Expressions|, page 38, for how to read memoized expressions.

Also as the result of the ‘CAUTIOUS’ flag, both error and user-interrupt (invoked by
C-c) are defined to print stack traces and conclude by calling breakpoint (see Section
“Breakpoints” in SLIB). This allows the user to interract with SCM as with Lisp systems.

stack-trace [Function]
Prints information describing the stack of partially evaluated expressions.
stack-trace returns #t if any lines were printed and #f otherwise. See Init5f3.scm
for an example of the use of stack-trace.

3.11 Memoized Expressions

SCM memoizes the address of each occurence of an identifier’s value when first encountering
it in a source expression. Subsequent executions of that memoized expression is faster
because the memoized reference encodes where in the top-level or local environment its
value is.

When procedures are displayed, the memoized locations appear in a format different from
references which have not yet been executed. I find this a convenient aid to locating bugs
and untested expressions.

e The names of memoized lexically bound identifiers are replaced with #Q<m>-<n>,
where <m> is the number of binding contours back and <n> is the index of the value
in that binding countour.

e The names of identifiers which are not lexiallly bound but defined at top-level have #@Q
prepended.
For instance, open-input-file is defined as follows in Init5f3.scm:

(define (open-input-file str)
(or (open-file str open_read)

Chapter 3: Operational Features 39

(and (procedure? could-not-open) (could-not-open) #f)
(error "OPEN-INPUT-FILE couldn’t open file " str)))

If open-input-file has not yet been used, the displayed procedure is similar to the original
definition (lines wrapped for readability):

open-input-file =

#<CLOSURE (str) (or (open-file str open_read)
(and (procedure? could-not-open) (could-not-open) #f)
(error "OPEN-INPUT-FILE couldn’t open file " str))>

If we open a file using open-input-file, the sections of code used become memoized:

(open-input-file "r4rstest.scm") = #<input-port 3>

open-input-file =

#<CLOSURE (str) (#Qor (#Qopen-file #Q0+0 #Qopen_read)
(and (procedure? could-not-open) (could-not-open) #f)
(error "OPEN-INPUT-FILE couldn’t open file " str))>

If we cause open-input-file to execute other sections of code, they too become memoized:

(open-input-file "foo.scm") =

ERROR: No such file or directory
ERROR: OPEN-INPUT-FILE couldn’t open file "foo.scm"

open-input-file =

#<CLOSURE (str) (#Q@or (#Qopen-file #@0+0 #Qopen_read)
(#0@and (#@procedure? #Q@could-not-open) (could-not-open) #f)
(#@error "OPEN-INPUT-FILE couldn’t open file " #@0+0))>

3.12 Internal State

*interactivex [Variable]
The variable *interactive® determines whether the SCM session is interactive, or
should quit after the command line is processed. *interactive® is controlled directly
by the command-line options ‘-b’, ‘-i’, and ‘-s’ (see Section 3.1 [Invoking SCM],
page 28). If none of these options are specified, the rules to determine interactivity
are more complicated; see Init5f3.scm for details.

abort [Function]
Resumes the top level Read-Eval-Print loop.

restart [Function]
Restarts the SCM program with the same arguments as it was originally invoked. All
‘-1’ loaded files are loaded again; If those files have changed, those changes will be
reflected in the new session.

Note When running a saved executable (see Section 5.2 [Dump], page 66), restart
is redefined to be exec-self.

Chapter 3: Operational Features 40

exec-self [Function]
Exits and immediately re-invokes the same executable with the same arguments. If
the executable file has been changed or replaced since the beginning of the current
session, the new executable will be invoked. This differentiates exec-self from

restart.
verbose n [Function]
Controls how much monitoring information is printed. If n is:
0 no prompt or information is printed.
>=1 a prompt is printed.
>= 2 messages bracketing file loading are printed.
>=3 the CPU time is printed after each top level form evaluated; notifications
of heap growth printed; the interpreter checks stack depth periodically.
=1 a garbage collection summary is printed after each top level form evalu-
ated;
>=5 a message for each GC (see Section 6.2.1 [Garbage Collection], page 110)
is printed; warnings issued for top-level symbols redefined.
gc [Function]
Scans all of SCM objects and reclaims for further use those that are no longer acces-
sible.
gc #t [Function]
Garbage-collects only the ecache.
room [Function]
room #t [Function]

Prints out statistics about SCM’s current use of storage. (room #t) also gives the
hexadecimal heap segment and stack bounds.

*xscm-versionxk [Constant|
Contains the version string (e.g. 5£3) of SCM.

3.12.1 Executable path

In order to dump a saved executable or to dynamically-link using DLD, SCM must know
where its executable file is. Sometimes SCM (see Section 6.3.2 [Executable Pathname],
page 129) guesses incorrectly the location of the currently running executable. In that case,
the correct path can be set by calling execpath with the pathname.

execpath [Function]
Returns the path (string) which SCM uses to find the executable file whose invocation
the currently running session is, or #f if the path is not set.

execpath #f [Function]
execpath newpath [Function]
Sets the path to #f or newpath, respectively. The old path is returned.

For other configuration constants and procedures See Section “Configuration” in SLIB.

Chapter 3: Operational Features 41

3.13 Scripting

3.13.1 Unix Scheme Scripts

In reading this section, keep in mind that the first line of a script file has (different) meanings
to SCM and the operating system (execve).

#! interpreter \ ... [file]
On unix systems, a Shell-Script is a file (with execute permissions) whose first two
characters are ‘#!’. The interpreter argument must be the pathname of the program
to process the rest of the file. The directories named by environment variable PATH
are not searched to find interpreter.

When executing a shell-script, the operating system invokes interpreter with a single
argument encapsulating the rest of the first line’s contents (if not just whitespace),
the pathname of the Scheme Script file, and then any arguments which the shell-script
was invoked with.

Put one space character between ‘#!” and the first character of interpreter (‘/’). The
interpreter name is followed by ‘ \’; SCM substitutes the second line of file for ‘\’
(and the rest of the line), then appends any arguments given on the command line
invoking this Scheme-Script.

When SCM executes the script, the Scheme variable *script* will be set to the script
pathname. The last argument before ‘!# on the second line should be ‘=’; SCM will
load the script file, preserve the unprocessed arguments, and set *argv* to a list of
the script pathname and the unprocessed arguments.

Note that the interpreter, not the operating system, provides the ‘\’ substitution; this
will only take place if interpreter is a SCM or SCSH interpreter.

#! ignored |# [Read syntax]
When the first two characters of the file being loaded are #! and a ‘\’ is present before
a newline in the file, all characters up to ‘!#’ will be ignored by SCM read.

This combination of interpretatons allows SCM source files to be used as POSIX shell-scripts
if the first line is:

#! /usr/local/bin/scm \
The following Scheme-Script prints factorial of its argument:

#! /usr/local/bin/scm \ %0 %x*
- 1#

(define (fact.script args)
(cond ((and (= 1 (length args))
(string->number (car args)))
=> (lambda (n) (print (fact n)) #t))
(else (fact.usage))))

(define (fact.usage)
(print *argv*)

Chapter 3: Operational Features 42

(display "\
Usage: fact N
Returns the factorial of N.
(current-error-port))
#1)

(define (fact n) (if (< n 2) 1 (*x n (fact (+ -1 n)))))

(if *script* (exit (fact.script (list-tail *argv* *optind*))))

./fact 32
=
263130836933693530167218012160000000

If the wrong number of arguments is given, fact prints its argv with usage information.

./fact 3 2
_|
(ll./factll II3II ll2ll)
Usage: fact N
Returns the factorial of N.

3.13.2 MS-DOS Compatible Scripts

It turns out that we can create scheme-scripts which run both under unix and MS-DOS.
To implement this, I have written the MS-DOS programs: #!.bat and !#.exe, which are
available from: http://groups.csail.mit.edu/mac/ftpdir/scm/sharpbang.zip

With these two programs installed in a PATH directory, we have the following syntax for
<program>.BAT files.

#! interpreter \ %0 %* [file]
The first two characters of the Scheme-Script are ‘#!’. The interpreter can be either a
unix style program path (using ‘/’ between filename components) or a DOS program
name or path. The rest of the first line of the Scheme-Script should be literally
‘\ %0 %*’, as shown.

If interpreter has ‘/’ in it, interpreter is converted to a DOS style filename (‘/’ =
4\7)'

In looking for an executable named interpreter, #! first checks this (converted) file-
name; if interpreter doesn’t exist, it then tries to find a program named like the string
starting after the last ‘\’ (or ‘/’) in interpreter. When searching for executables, #!
tries all directories named by environment variable PATH.

Once the interpreter executable path is found, arguments are processed in the manner
of scheme-shell, with all the text after the ‘\’ taken as part of the meta-argument.
More precisely, #! calls interpreter with any options on the second line of the Scheme-
Script up to ‘!'#’, the name of the Scheme-Script file, and then any of at most 8
arguments given on the command line invoking this Scheme-Script.

The previous example Scheme-Script works in both MS-DOS and unix systems.

http://groups.csail.mit.edu/mac/ftpdir/scm/sharpbang.zip

Chapter 3: Operational Features 43

3.13.3 Unix Shell Scripts

Scheme-scripts suffer from two drawbacks:

e Some Unixes limit the length of the ‘#!” interpreter line to the size of an object file
header, which can be as small as 32 bytes.

e A full, explicit pathname must be specified, perhaps requiring more than 32 bytes and
making scripts vulnerable to breakage when programs are moved.

The following approach solves these problems at the expense of slower startup. Make ‘#!
/bin/sh’ the first line and prepend every subsequent line to be executed by the shell with
:;. The last line to be executed by the shell should contain an exec command; exec tail-calls
its argument.

/bin/sh is thus invoked with the name of the script file, which it executes as a *sh script.
Usually the second line starts ‘: ;exec scm -£$0’, which executes scm, which in turn loads
the script file. When SCM loads the script file, it ignores the first and second lines, and
evaluates the rest of the file as Scheme source code.

The second line of the script file does not have the length restriction mentioned above.
Also, /bin/sh searches the directories listed in the ‘PATH’ environment variable for ‘scm’,
eliminating the need to use absolute locations in order to invoke a program.

The following example additionally sets *script* to the script argument, making it compat-
ible with the scheme code of the previous example.

#! /bin/sh
:;exec scm -e"(set! *script* \"$0\")" -1$0 "ge"

(define (fact.script args)
(cond ((and (= 1 (length args))
(string->number (car args)))
=> (lambda (n) (print (fact n)) #t))
(else (fact.usage))))

(define (fact.usage)
(print *argvx)
(display "\
Usage: fact N
Returns the factorial of N.
(current-error-port))
#£)

(define (fact n) (if (< n 2) 1 (*x n (fact (+ -1 n)))))

(if *script* (exit (fact.script (list-tail *argv* *optind*))))

./fact 6
= 720

44

4 The Language

4.1 Standards Compliance

Scm conforms to the IEEE Standard 1178-1990. IEEE Standard for the Scheme Program-
ming Language. (see Section 1.4 [Bibliography], page 10), and Revised(5) Report on the
Algorithmic Language Scheme. All the required features of these specifications are sup-
ported. Many of the optional features are supported as well.

Optionals of [R5RS] Supported by SCM

- and / of more than 2 arguments
exp
log
sin
cos
tan
asin
acos
atan
sqrt
expt
make-rectangular
make-polar
real-part
imag-part
magnitude
angle
exact->inexact
inexact->exact
See Section “Numerical operations” in Revised(5) Scheme.

with-input-from-file
with-output-to-file
See Section “Ports” in Revised(5) Scheme.

load
transcript-on
transcript-off
See Section “System interface” in Revised(5) Scheme.

Optionals of [R5RS] not Supported by SCM

numerator
denominator
rationalize
See Section “Numerical operations” in Revised(5) Scheme.

Chapter 4: The Language

[SLIB| Features of SCM and SCMLIT

delay
full-continuation
ieee-pl1178
object-hash
rev4-report

source See SLIB file Template.scm.

current-time
See Section

defmacro See Section

getenv
system See Section
hash See Section

logical See Section

multiarg-apply
See Section

multiarg/and-
See Section

“Time and Date” in SLIB.
“Defmacro” in SLIB.

“System Interface” in SLIB.
“Hashing” in SLIB.
“Bit-Twiddling” in SLIB.

“Multi-argument Apply” in SLIB.

“Multi-argument / and -” in SLIB.

rev4-optional-procedures

See Section

string-port
See Section

tmpnam See Section

transcript
See Section

vicinity See Section

with-file
See Section

“Rev4 Optional Procedures” in SLIB.

“String Ports” in SLIB.
“Input/Output” in SLIB.

“Transcripts” in SLIB.
“Vicinity” in SLIB.

“With-File” in SLIB.

[SLIB] Features of SCM

array See Section

array-for-each
See Section

bignum

complex

inexact

rational

real See Section

“Arrays” in SLIB.

“Array Mapping” in SLIB.

“Require” in SLIB.

45

Chapter 4: The Language 46

4.2 Storage

vector-set-length! object length [Function]
Change the length of string, vector, bit-vector, or uniform-array object to length. If
this shortens object then the remaining contents are lost. If it enlarges object then
the contents of the extended part are undefined but the original part is unchanged.
It is an error to change the length of literal datums. The new object is returned.

copy-tree obj [Function]
Qcopy-tree obj [Function]
See Section “Tree Operations” in SLIB. This extends the SLIB version by also copying
vectors. Use @copy-tree if you depend on this feature; copy-tree could get redefined.

acons objl obj2 obj3 [Function]
Returns (cons (cons objl obj2) obj3).

(set! a-list (acons key datum a-list))

Adds a new association to a-list.

gc-hook ... [Callback procedure]
Allows a Scheme procedure to be run shortly after each garbage collection. This
procedure will not be run recursively. If it runs long enough to cause a garbage
collection before returning a warning will be printed.

To remove the gc-hook, (set! gc-hook #f).

add-finalizer object finalizer [Function]
object may be any garbage collected object, that is, any object other than an immedi-
ate integer, character, or special token such as #f or #t, See Section 6.1.1 [Immediates],
page 97. finalizer is a thunk, or procedure taking no arguments.

finalizer will be invoked asynchronously exactly once some time after object becomes
eligible for garbage collection. A reference to object in the environment of finalizer
will not prevent finalization, but will delay the reclamation of object at least until
the next garbage collection. A reference to object in some other object’s finalizer will
necessarily prevent finalization until both objects are eligible for garbage collection.

Finalizers are not run in any predictable order. All finalizers will be run by the time
the program ends.

This facility was based on the paper by Simon Peyton Jones, et al, “Stretching the
storage manager: weak pointers and stable names in Haskell”, Proc. 11th Interna-
tional Workshop on the Implementation of Functional Languages, The Netherlands,
September 7-10 1999, Springer-Verlag LNCS.

4.3 Time

internal-time-units-per-second [Constant|
Is the integer number of internal time units in a second.

Chapter 4: The Language 47

get-internal-run-time [Function]
Returns the integer run time in internal time units from an unspecified starting time.
The difference of two calls to get-internal-run-time divided by internal-time-
units-per-second will give elapsed run time in seconds.

get-internal-real-time [Function]
Returns the integer time in internal time units from an unspecified starting time.
The difference of two calls to get-internal-real-time divided by internal-time-
units-per-second will give elapsed real time in seconds.

current-time [Function]
Returns the time since 00:00:00 GMT, January 1, 1970, measured in seconds. See
Section “Time and Date” in SLIB. current-time is used in Section “Time and Date”
in SLIB.

4.4 Interrupts

ticks n [Function]
Returns the number of ticks remaining till the next tick interrupt. Ticks are an
arbitrary unit of evaluation. Ticks can vary greatly in the amount of time they
represent.

If nis 0, any ticks request is canceled. Otherwise a ticks-interrupt will be signaled
n from the current time. ticks is supported if SCM is compiled with the ticks flag
defined.

ticks-interrupt ... [Callback procedure]
Establishes a response for tick interrupts. Another tick interrupt will not occur unless
ticks is called again. Program execution will resume if the handler returns. This
procedure should (abort) or some other action which does not return if it does not
want processing to continue.

alarm secs [Function]
Returns the number of seconds remaining till the next alarm interrupt. If secs is 0,
any alarm request is canceled. Otherwise an alarm-interrupt will be signaled secs
from the current time. ALARM is not supported on all systems.

milli-alarm millisecs interval [Function]
virtual-alarm millisecs interval [Function]
profile-alarm millisecs interval [Function]

milli-alarm is similar to alarm, except that the first argument millisecs, and the re-
turn value are measured in milliseconds rather than seconds. If the optional argument
interval is supplied then alarm interrupts will be scheduled every interval milliseconds
until turned off by a call to milli-alarm or alarm.

virtual-alarm and profile-alarm are similar. virtual-alarm decrements pro-
cess execution time rather than real time, and causes SIGVTALRM to be signaled.
profile-alarm decrements both process execution time and system execution time
on behalf of the process, and causes SIGPROF to be signaled.

Chapter 4: The Language 48

milli-alarm, virtual-alarm, and profile-alarm are supported only on systems
providing the setitimer system call.

user-interrupt ... [Callback procedure]

alarm-interrupt ... [Callback procedure]

virtual-alarm-interrupt ... [Callback procedure]

profile-alarm-interrupt ... [Callback procedure]
Establishes a response for SIGINT (control-C interrupt) and SIGALRM, SIGVTALRM,
and SIGPROF interrupts. Program execution will resume if the handler returns. This
procedure should (abort) or some other action which does not return if it does not
want processing to continue after it returns.

Interrupt handlers are disabled during execution system and ed procedures.

To unestablish a response for an interrupt set the handler symbol to #f. For instance,
(set! user-interrupt #f).

out-of-storage ... [Callback procedure]

could-not-open ... [Callback procedure]

end-of-program ... [Callback procedure]

hang-up ... [Callback procedure]

arithmetic-error ... [Callback procedure]
Establishes a response for storage allocation error, file opening error, end of pro-
gram, SIGHUP (hang up interrupt) and arithmetic errors respectively. This proce-
dure should (abort) or some other action which does not return if it does not want
the default error message to also be displayed. If no procedure is defined for hang-up
then end-of-program (if defined) will be called.

To unestablish a response for an error set the handler symbol to #f. For instance,
(set! could-not-open #f).

4.5 Process Synchronization

An exchanger is a procedure of one argument regulating mutually exclusive access to a
resource. When a exchanger is called, its current content is returned, while being replaced
by its argument in an atomic operation.

make-exchanger obj [Function]
Returns a new exchanger with the argument obj as its initial content.

(define queue (make-exchanger (list a)))

A queue implemented as an exchanger holding a list can be protected from reentrant
execution thus:

(define (pop queue)
(let ((1st #£))
(dynamic-wind
(lambda () (set! 1st (queue #f)))
(lambda () (and 1lst (not (null? 1lst))
(let ((ret (car 1st)))
(set! 1lst (cdr 1st))

Chapter 4: The Language 49

ret)))
(lambda () (and 1lst (queue 1st))))))

(pop queue) = a
(pop queue) = #f
make-arbiter name [Function]

Returns an object of type arbiter and name name. Its state is initially unlocked.

try-arbiter arbiter [Function]
Returns #t and locks arbiter if arbiter was unlocked. Otherwise, returns #f.

release-arbiter arbiter [Function]
Returns #t and unlocks arbiter if arbiter was locked. Otherwise, returns #f.

4.6 Files and Ports

These procedures generalize and extend the standard capabilities in Section “Ports” in
Revised(5) Scheme.

4.6.1 Opening and Closing

open-file string modes [Function]

try-open-file string modes [Function]
Returns a port capable of receiving or delivering characters as specified by the modes
string. If a file cannot be opened #f is returned.

Internal functions opening files callback to the SCM function open-file. You can
extend open-file by redefining it. try-open-file is the primitive procedure; Do
not redefine try-open-file!

open_read [Constant|
open_write [Constant]
open_both [Constant|

Contain modes strings specifying that a file is to be opened for reading, writing, and
both reading and writing respectively.

Both input and output functions can be used with io-ports. An end of file must be
read or a two-argument file-position done on the port between a read operation and
a write operation or vice-versa.

_ionbf modestr [Function]
Returns a version of modestr which when open-file is called with it as the second
argument will return an unbuffered port. An input-port must be unbuffered in order
for char-ready? and wait-for-input to work correctly on it. The initial value of
(current-input-port) is unbuffered if the platform supports it.

Chapter 4: The Language 50

_tracked modestr [Function]
Returns a version of modestr which when open-file is called with it as the second
argument will return a tracked port. A tracked port maintains current line and column
numbers, which may be queried with port-line and port-column.

_exclusive modestr [Function]
Returns a version of modestr which when open-file is called with it as the second
argument will return a port only if the named file does not already exist. This func-
tionality is provided by calling try-create-file See Section 5.6 [I/O-Extensions],
page 74, which is not available for all platforms.

open-ports [Function]
Returns a list of all currently open ports, excluding string ports, see See Section
“String Ports” in SLIB. This may be useful after a fork See Section 5.7 [Posix Exten-
sions], page 78, or for debugging. Bear in mind that ports that would be closed by
gc will be kept open by a reference to this list.

close-port port [Function]
Closes port. The same as close-input-port and close-output-port.

4.6.2 Port Properties

port-closed? port [Function]
Returns #t if port is closed.

port-type obj [Function]
If obj is not a port returns false, otherwise returns a symbol describing the port type,
for example string or pipe.

port-filename port [Function]
Returns the filename port was opened with. If port is not open to a file the result is
unspecified.

file-position port [Function]

file-position port #f [Function]

Returns the current position of the character in port which will next be read or
written. If port is open to a non-file then #f is returned.

file-position port k [Function]
Sets the current position in port which will next be read or written. If successful, #f
is returned. If port is open to a non-file, then file-position returns #f.

port-line port [Function]

port-column port [Function]
If port is a tracked port, return the current line (column) number, otherwise return
#f. Line and column numbers begin with 1. The column number applies to the next
character to be read; if that character is a newline, then the column number will be
one more than the length of the line.

Chapter 4: The Language 51

freshline port [Function]
Outputs a newline to optional argument port unless the current output column num-
ber of port is known to be zero, ie output will start at the beginning of a new line.
port defaults to current-output-port. If port is not a tracked port freshline is
equivalent to newline.

isatty? port [Function]
Returns #t if port is input or output to a serial non-file device.

char-ready? [procedure]

char-ready? port [procedure]
Returns #t if a character is ready on the input port and returns #f otherwise. If
char-ready? returns #t then the next read-char operation on the given port is
guaranteed not to hang. If the port is at end of file then char-ready? returns #t. Port
may be omitted, in which case it defaults to the value returned by current-input-
port.

Rationale Char-ready? exists to make it possible for a program to accept characters
from interactive ports without getting stuck waiting for input. Any input editors
associated with such ports must ensure that characters whose existence has been
asserted by char-ready? cannot be rubbed out. If char-ready? were to return #f
at end of file, a port at end of file would be indistinguishable from an interactive port
that has no ready characters.

wait-for-input x [procedure]

wait-for-input x portl ... [procedure]
Returns a list those ports portl ... which are char-ready?. If none of portl ...
become char-ready? within the time interval of x seconds, then #f is returned. The
portl ... arguments may be omitted, in which case they default to the list of the
value returned by current-input-port.

4.6.3 Port Redirection

current-error-port [Function]
Returns the current port to which diagnostic output is directed.

with-error-to-file string thunk [Function]
thunk must be a procedure of no arguments, and string must be a string naming a file.
The file is opened for output, an output port connected to it is made the default value
returned by current-error-port, and the thunk is called with no arguments. When the
thunk returns, the port is closed and the previous default is restored. With-error-to-
file returns the value yielded by thunk.

with-input-from-port port thunk [Function]
with-output-to-port port thunk [Function]
with-error-to-port port thunk [Function]

These routines differ from with-input-from-file, with-output-to-file, and with-error-
to-file in that the first argument is a port, rather than a string naming a file.

Chapter 4: The Language 52

call-with-outputs thunk proc [Function]
Calls the thunk procedure while the current-output-port and current-error-port are
directed to string-ports. If thunk returns, the proc procedure is called with the
output-string, the error-string, and the value returned by thunk. If thunk does not
return a value (perhaps because of error), proc is called with just the output-string
and the error-string as arguments.

4.6.4 Soft Ports

A soft-port is a port based on a vector of procedures capable of accepting or delivering
characters. It allows emulation of I/O ports.

make-soft-port vector modes [Function]
Returns a port capable of receiving or delivering characters as specified by the modes
string (see Section 4.6 [Files and Ports|, page 49). vector must be a vector of length
5. Its components are as follows:

procedure accepting one character for output
procedure accepting a string for output
thunk for flushing output

thunk for getting one character

- W= o

thunk for closing port (not by garbage collection)

For an output-only port only elements 0, 1, 2, and 4 need be procedures. For an
input-only port only elements 3 and 4 need be procedures. Thunks 2 and 4 can
instead be #f if there is no useful operation for them to perform.

If thunk 3 returns #f or an eof-object (see Section “Input” in Revised(5) Scheme)
it indicates that the port has reached end-of-file. For example:

If it is necessary to explicitly close the port when it is garbage collected, (see
Section 4.4 [Interrupts|, page 47).

(define stdout (current-output-port))
(define p (make-soft-port
(vector
(lambda (c) (write c stdout))
(lambda (s) (display s stdout))
(lambda () (display "." stdout))
(lambda () (char-upcase (read-char)))
(lambda () (display "@" stdout)))
"rw"))

(write p p) = #<input-output-soft#\spaced45d10#\>

4.7 Eval and Load

try-load filename [Function]
If the string filename names an existing file, the try-load procedure reads Scheme
source code expressions and definitions from the file and evaluates them sequentially

Chapter 4: The Language 53

and returns #t. If not, try-load returns #f. The try-load procedure does not affect
the values returned by current-input-port and current-output-port.

load-pathnamex [Variable]
Is set to the pathname given as argument to load, try-load, and dyn:link (see
Section “Compiling And Linking” in Hobbit). *load-pathname* is used to compute
the value of Section “Vicinity” in SLIB.

eval obj [Function]
Alias for Section “System” in SLIB.

eval-string str [Function]
Returns the result of reading an expression from str and evaluating it. eval-string
does not change *load-pathname* or line-number.

load-string str [Function]
Reads and evaluates all the expressions from str. As with load, the value returned is
unspecified. load-string does not change *load-pathname* or line-number.

line-number [Function]
Returns the current line number of the file currently being loaded.

4.7.1 Line Numbers

Scheme code defined by load may optionally contain line number information. Currently
this information is used only for reporting expansion time errors, but in the future run-time
error messages may also include line number information.

try-load pathname reader [Function]
This is the primitive for loading, pathname is the name of a file containing Scheme
code, and optional argument reader is a function of one argument, a port. reader
should read and return Scheme code as list structure. The default value is read,
which is used if reader is not supplied or is false.

Line number objects are disjoint from integers or other Scheme types. When evaluated or
loaded as Scheme code, an s-expression containing a line-number in the car is equivalent
to the cdr of the s-expression. A pair consisting of a line-number in the car and a vector
in the cdr is equivalent to the vector. The meaning of s-expressions with line-numbers in
other positions is undefined.

read-numbered port [Function]
Behaves like read, except that

bullet Load (read) sytnaxes are enabled.

bullet every s-expression read will be replaced with a cons of a line-number object and
the sexp actually read. This replacement is done only if port is a tracked port
See See Section 4.6 [Files and Ports|, page 49.

integer->line-number int [Function]
Returns a line-number object with value int. int should be an exact non-negative
integer.

Chapter 4: The Language 54

line-number->integer linum [Function]
Returns the value of line-number object linum as an integer.

line-number? obj [Function]
Returns true if and only if obj is a line-number object.

read-for-load port [Function]
Behaves like read, except that load syntaxes are enabled.

load-readerx [Variable]

slib-load-readerx [Variable]
The value of *1load-reader* should be a value acceptable as the second argument to
try-load (note that #f is acceptable). This value will be used to read code during
calls to scm:1load. The value of *slib-load-reader* will similarly be used during
calls to s1lib:load and require.

In order to disable all line-numbering, it is sufficient to set! *load-reader* and
slib-load-reader to #f.

4.8 Lexical Conventions
4.8.1 Common-Lisp Read Syntax

#\token [Read syntax]
If token is a sequence of two or more digits, then this syntax is equivalent to
#. (integer->char (string->number token 8)).

If token is C-, c—, or ~ followed by a character, then this syntax is read as a control
character. If token is M- or m- followed by a character, then a meta character is read.
c- and m- prefixes may be combined.

#+ feature form [Read syntax]
If feature is provided? then form is read as a scheme expression. If not, then form is
treated as whitespace.

Feature is a boolean expression composed of symbols and and, or, and not of boolean
expressions.

For more information on provided?, See Section “Require” in SLIB.

#- feature form [Read syntax]
is equivalent to #+(not feature) expression.

#| any thing | # [Read syntax]
Is a balanced comment. Everything up to the matching |# is ignored by the read.
Nested #]| ... |# can occur inside any thing.

Load sytax is Read syntax enabled for read only when that read is part of loading a file
or string. This distinction was made so that reading from a datafile would not be able to
corrupt a scheme program using ‘#.’.

Chapter 4: The Language 55

#. expression [Load syntax]
Is read as the object resulting from the evaluation of expression. This substitution
occurs even inside quoted structure.

In order to allow compiled code to work with #. it is good practice to define those

symbols used inside of expression with #. (define ...). For example:
#.(define foo 9) = #<unspecified>
>(#.foo #.(+ foo foo)) = (9 18)
#° form [Load syntax]

is equivalent to form (for compatibility with common-lisp).

4.8.2 Load Syntax

#! is the unix mechanism for executing scripts. See Section 3.13.1 [Unix Scheme Scripts],
page 41, for the full description of how this comment supports scripting.

#71line [Load syntax]
#7column [Load syntax]
Return integers for the current line and column being read during a load.

#7file [Load syntax]
Returns the string naming the file currently being loaded. This path is the string
passed to load, possibly with ‘.scm’ appended.

4.8.3 Documentation and Comments

procedure-documentation proc [procedure]
Returns the documentation string of proc if it exists, or #£f if not.

If the body of a 1ambda (or the definition of a procedure) has more than one expression,
and the first expression (preceeding any internal definitions) is a string, then that
string is the documentation string of that procedure.

(procedure-documentation (lambda (x) "Identity" x)) = "Identity"
(define (square x)
"Return the square of X."
(x x x))
= #<unspecified>
(procedure-documentation square) = "Return the square of X."

comment stringl ... [Function]
Appends stringl ... to the strings given as arguments to previous calls comment.
comment [Function]

Returns the (appended) strings given as arguments to previous calls comment and
empties the current string collection.

#;text-till-end-of-line [Load syntax]
Behaves as (comment "text-till-end-of-1ine").

Chapter 4: The Language 56

4.8.4 Modifying Read Syntax

read:sharp c port [Callback procedure]
If a # followed by a character (for a non-standard syntax) is encountered by read,
read will call the value of the symbol read:sharp with arguments the character and
the port being read from. The value returned by this function will be the value of
read for this expression unless the function returns #<unspecified> in which case
the expression will be treated as whitespace. #<unspecified> is the value returned
by the expression (if #f #f).

load:sharp c port [Callback procedure]
Dispatches like read:sharp, but only during loads. The read-syntaxes handled
by load:sharp are a superset of those handled by read:sharp. load:sharp calls
read:sharp if none of its syntaxes match c.

char:sharp token [Callback procedure]
If the sequence #\ followed by a non-standard character name is encountered by read,
read will call the value of the symbol char:sharp with the token (a string of length
at least two) as argument. If the value returned is a character, then that will be the
value of read for this expression, otherwise an error will be signaled.

Note When adding new # syntaxes, have your code save the previous value of load:sharp,
read:sharp, or char:sharp when defining it. Call this saved value if an invocation’s syntax
is not recognized. This will allow #+, #-, and Section 5.4.2 [Uniform Array|, page 71s to
still be supported (as they dispatch from read:sharp).

4.9 Syntax

SCM provides a native implementation of defmacro. See Section “Defmacro” in SLIB.

When built with ‘~F macro’ build option (see Section 2.3.2 [Build Options|, page 17) and
‘*syntax-rules* is non-false, SCM also supports [R5RS] syntax-rules macros. See
Section “Macros” in Revised(5) Scheme.

Other Scheme Syntax Extension Packages from SLIB can be employed through the use of
‘macro:eval’ and ‘macro:load’; Or by using the SLIB read-eval-print-loop:

(require ’repl)
(repl:top-level macro:eval)

With the appropriate catalog entries (see Section “Library Catalogs” in SLIB), files using
macro packages will automatically use the correct macro loader when ‘require’d.

4.9.1 Define and Set

defined? symbol [Special Form]
Equivalent to #t if symbol is a syntactic keyword (such as if) or a symbol with a
value in the top level environment (see Section “Variables and regions” in Revised(5)
Scheme). Otherwise equivalent to #f.

Chapter 4: The Language 57

defvar identifier initial-value [Special Form]

If identifier is unbound in the top level environment, then identifier is defined to
the result of evaluating the form initial-value as if the defvar form were instead the
form (define identifier initial-value) . If identifier already has a value, then
initial-value is not evaluated and identifier’s value is not changed. defvar is valid
only when used at top-level.

defconst identifier value [Special Form]

set!

gase

If identifier is unbound in the top level environment, then identifier is defined to
the result of evaluating the form value as if the defconst form were instead the form
(define identifier value) . If identifier already has a value, then value is not
evaluated, identifier’s value is not changed, and an error is signaled. defconst is
valid only when used at top-level.

(variablel variable2 . ..) <expression> [Special Form]
The identifiers variablel, variable2, . . . must be bound either in some region enclosing
the ‘set!’ expression or at top level.

<Expression> is evaluated, and the elements of the resulting list are stored in the
locations to which each corresponding variable is bound. The result of the ‘set!’
expression is unspecified.

(define x 2)
(define y 3)

+ xy) = 5
(set! (x y) (list 4 5)) = unspecified
+ xy) = 9
key clausel clause2 . . . [Special Form]

gase is an extension of standard Scheme case: Each clause of a qase statement must
have as first element a list containing elements which are:

e literal datums, or
e a comma followed by the name of a symbolic constant, or

e a comma followed by an at-sign (@) followed by the name of a symbolic constant
whose value is a list.

A gase statement is equivalent to a case statement in which these symbolic con-
stants preceded by commas have been replaced by the values of the constants, and all
symbolic constants preceded by comma-at-signs have been replaced by the elements
of the list values of the constants. This use of comma, (or, equivalently, unquote) is
similar to that of quasiquote except that the unquoted expressions must be symbolic
constants.

Symbolic constants are defined using defconst, their values are substituted in the
head of each qase clause during macro expansion. defconst constants should be
defined before use. gqase can be substituted for any correct use of case.

(defconst unit ’1)
(defconst semivowels ’(w y))
(gqase (x 2 3)

Chapter 4: The Language 58

((2 35 7) ’prime)

((,unit 4 6 8 9) ’composite)) ==> composite
(qase (car ’(c d))

((a) ’a)

((b) ’b)) ==> unspecified

(qase (car ’(c d))
((a e i ou) ’vowel)
((,0@semivowels) ’semivowel)
(else ’consonant)) ==> consonant

4.9.2 Defmacro

SCM supports the following constructs from Common Lisp: defmacro, macroexpand,
macroexpand-1, and gentemp. See Section “Defmacro” in SLIB.

SCM defmacro is extended over that described for SLIB:
(defmacro (macro-name . arguments) body)

is equivalent to
(defmacro macro-name arguments body)

As in Common Lisp, an element of the formal argument list for defmacro may be a possibly
nested list, in which case the corresponding actual argument must be a list with as many
members as the formal argument. Rest arguments are indicated by improper lists, as in
Scheme. It is an error if the actual argument list does not have the tree structure required
by the formal argument list.

For example:

(defmacro (letl ((name value)) . body)
‘((lambda (,name) ,@body) ,value))

(let1 ((x (fo0))) (print x) x) = ((lambda (x) (print x) x) (foo))

(letl not legal syntax) not "does not match" ((name value))

4.9.3 Syntax-Rules
SCM supports [R5RS] syntax-rules macros See Section “Macros” in Revised(5) Scheme.

The pattern language is extended by the syntax (... <obj>), which is identical to <obj>
except that ellipses in <obj> are treated as ordinary identifiers in a template, or as literals
in a pattern. In particular, (... ...) quotes the ellipsis token . .. in a pattern or template.

For example:

(define-syntax check-tree
(syntax-rules ()
((_ (7pattern (... ...)) Tobj)
(let loop ((obj 7obj))
(or (null? obj)

Chapter 4: The Language 59

(and (pair? obj)
(check-tree 7pattern (car obj))
(loop (cdr obj))))))
((_ (?first . 7rest) 7obj)
(let ((obj 7obj))
(and (pair? obj)
(check-tree 7first (car obj))
(check-tree 7rest (cdr obj)))))
((_ 7atom 7obj) #t)))

(check-tree ((a b) ...) ((1 2) (34) (56))) = #t

(check-tree ((a b) ...) ’((1 2) (3 4) not-a-2list) = #f

Note that although the ellipsis is matched as a literal token in the defined macro it is not
included in the literals list for syntax-rules.

The pattern language is also extended to support identifier macros. A reference to an
identifier macro keyword that is not the first identifier in a form may expand into Scheme
code, rather than raising a “keyword as variable” error. The pattern for expansion of such
a bare macro keyword is a single identifier, as in other syntax rules the identifier is ignored.

For example:

(define-syntax eight
(syntax-rules ()

(_ 8)))

(+ 3 eight) = 11
(eight) = ERROR
(set! eight 9) = ERROR

4.9.4 Macro Primitives

procedure->syntax proc [Function]
Returns a macro which, when a symbol defined to this value appears as the first
symbol in an expression, returns the result of applying proc to the expression and
the environment.

procedure->macro proc [Function]
procedure->memoizing-macro proc [Function]
procedure->identifier-macro [Function]

Returns a macro which, when a symbol defined to this value appears as the first
symbol in an expression, evaluates the result of applying proc to the expression
and the environment. The value returned from proc which has been passed to
PROCEDURE->MEMOIZING-MACRO replaces the form passed to proc. For example:

(defsyntax trace
(procedure->macro
(lambda (x env) ‘(set! ,(cadr x) (tracef ,(cadr x) ’,(cadr x))))))

Chapter 4: The Language 60

(trace foo) = (set! foo (tracef foo ’foo0)).

PROCEDURE->IDENTIFIER-MACRO is similar to PROCEDURE->MEMOIZING-MACRO except
that proc is also called in case the symbol bound to the macro appears in an expression
but not as the first symbol, that is, when it looks like a variable reference. In that
case, the form passed to proc is a single identifier.

defsyntax name expr [Special Form]
Defines name as a macro keyword bound to the result of evaluating expr, which should
be a macro. Using define for this purpose may not result in name being interpreted
as a macro keyword.

4.9.5 Environment Frames

An environment is a list of frames representing lexical bindings. Only the names and scope
of the bindings are included in environments passed to macro expanders — run-time values
are not included.

There are several types of environment frames:
((lambda (variablel ...) ...) valuel ...)
(let ((variablel valuel) (variable2 value2) ...) ...)

(letrec ((variablel valuel) ...) ...)
result in a single enviroment frame:

(variablel variable2 ...)

(let ((variablel valuel)) ...)
(let* ((variablel valuel) ...) ...)
result in an environment frame for each variable:

variablel variable2 ...

(let-syntax ((keyl macrol) (key2 macro2)) ...)

(letrec-syntax ((keyl valuel) (key2 value2)) ...)
Lexically bound macros result in environment frames consisting of a marker
and an alist of keywords and macro objects:

(<env-syntax-marker> (keyl . valuel) (key2 . value2))

Currently <env-syntax-marker> is the integer 6.

line numbers
Line numbers (see Section 4.7.1 [Line Numbers|, page 53) may be included
in the environment as frame entries to indicate the line number on which a
function is defined. They are ignored for variable lookup.

#<line 8>

Chapter 4: The Language 61

miscellaneous
Debugging information is stored in environments in a plist format: Any exact
integer stored as an environment frame may be followed by any value. The
two frame entries are ignored when doing variable lookup. Load file names,
procedure names, and closure documentation strings are stored in this format.

<env-filename-marker> "foo.scm" <env-procedure-name-marker> foo ...

Currently <env-filename-marker> is the integer 1 and <env-procedure-name-
marker> the integer 2.

@apply procedure argument-list [Special Form]
Returns the result of applying procedure to argument-list. @apply differs from apply
when the identifiers bound by the closure being applied are set!; setting affects
argument-list.

(define 1st (list ’a ’b ’c))
(@apply (lambda (v1 v2 v3) (set! vl (coms v2 v3))) lst)
1st = ((b . c) bc)

Thus a mutable environment can be treated as both a list and local bindings.

4.9.6 Syntactic Hooks for Hygienic Macros

SCM provides a synthetic identifier type for efficient implementation of hygienic macros (for
example, syntax-rules see Section “Macros” in Revised(5) Scheme) A synthetic identifier
may be inserted in Scheme code by a macro expander in any context where a symbol would
normally be used. Collectively, symbols and synthetic identifiers are identifiers.

identifier? obj [Function]
Returns #t if obj is a symbol or a synthetic identifier, and #f otherwise.

If it is necessary to distinguish between symbols and synthetic identifiers, use the predicate
symbol?.

A synthetic identifier includes two data: a parent, which is an identifier, and an environment,
which is either #f or a lexical environment which has been passed to a macro expander (a
procedure passed as an argument to procedure->macro, procedure->memoizing-macro,
or procedure->syntax).

renamed-identifier parent env [Function]
Returns a synthetic identifier. parent must be an identifier, and env must either be #f
or a lexical environment passed to a macro expander. renamed-identifier returns
a distinct object for each call, even if passed identical arguments.

There is no direct way to access all of the data internal to a synthetic identifier, those
data are used during variable lookup. If a synthetic identifier is inserted as quoted data
then during macro expansion it will be repeatedly replaced by its parent, until a symbol is
obtained.

Chapter 4: The Language 62

identifier->symbol id [Function]
Returns the symbol obtained by recursively extracting the parent of id, which must
be an identifier.

4.9.7 Use of Synthetic Identifiers

renamed-identifier may be used as a replacement for gentemp:

(define gentemp
(let ((name (string->symbol "An unlikely variable")))
(lambda ()
(renamed-identifier name #f))))

If an identifier returned by this version of gentemp is inserted in a binding position as
the name of a variable then it is guaranteed that no other identifier (except one produced
by passing the first to renamed-identifier) may denote that variable. If an identifier
returned by gentemp is inserted free, then it will denote the top-level value bound to its
parent, the symbol named “An unlikely variable”. This behavior, of course, is meant to be
put to good use:

(define top-level-foo
(procedure->memoizing-macro
(lambda (exp env)
(renamed-identifier ’foo #f))))

Defines a macro which may always be used to refer to the top-level binding of foo.

(define foo ’top-level)
(let ((foo ’local))
(top-level-foo)) = top-level

In other words, we can avoid capturing foo.

If a lexical environment is passed as the second argument to renamed-identifier then if
the identifier is inserted free its parent will be looked up in that environment, rather than
in the top-level environment. The use of such an identifier must be restricted to the lexical
scope of its environment.

There is another restriction imposed for implementation convenience: Macros passing their
lexical environments to renamed-identifier may be lexically bound only by the special
forms let-syntax or letrec-syntax. No error is signaled if this restriction is not met, but
synthetic identifier lookup will not work properly.

In order to maintain referential transparency it is necessary to determine whether two
identifiers have the same denotation. With synthetic identifiers it is not necessary that two
identifiers be eq? in order to denote the same binding.

identifier-equal? idl id2 env [Function]
Returns #t if identifiers id1 and id2 denote the same binding in lexical environment
env, and #f otherwise. env must either be a lexical environment passed to a macro
transformer during macro expansion or the empty list.

For example,

(define top-level-foo?

Chapter 4: The Language 63

(procedure->memoizing-macro
(let ((foo-name (renamed-identifier ’foo #f)))
(lambda (exp env)
(identifier-equal? (cadr exp) foo-name env)))))

(top-level-foo? foo) = #t

(let ((foo ’local))
(top-level-foo? foo)) = #f

@Omacroexpandl expr env [Function]
If the car of expr denotes a macro in env, then if that macro is a primitive, expr
will be returned, if the macro was defined in Scheme, then a macro expansion will be
returned. If the car of expr does not denote a macro, the #f is returned.

extended-environment names values env [Function]
Returns a new environment object, equivalent to env, which must either be an envi-
ronment object or null, extended by one frame. names must be an identifier, or an
improper list of identifiers, usable as a formals list in a lambda expression. values
must be a list of objects long enough to provide a binding for each of the identifiers
in names. If names is an identifier or an improper list then vals may be, respectively,
any object or an improper list of objects.

syntax-quote obj [Special Form]
Synthetic identifiers are converted to their parent symbols by quote and quasiquote
so that literal data in macro definitions will be properly transcribed. syntax-quote
behaves like quote, but preserves synthetic identifier intact.

the-macro mac [Special Form]
the-macro is the simplest of all possible macro transformers: mac may be a syntactic
keyword (macro name) or an expression evaluating to a macro, otherwise an error is
signaled. mac is evaluated and returned once only, after which the same memoizied
value is returned.

the-macro may be used to protect local copies of macros against redefinition, for
example:

(@let-syntax ((let (the-macro let)))
;; code that will continue to work even if LET is redefined.

)

renaming-transformer proc [Special Form]|
A low-level “explicit renaming” macro facility very similar to that proposed by
W. Clinger [Exrename| is supported. Syntax may be defined in define-syntax,
let-syntax, and letrec-syntax using renaming-transformer instead of
syntax-rules. proc should evaluate to a procedure accepting three arguments:
expr, rename, and compare. expr is a representation of Scheme code to be expanded,
as list structure. rename is a procedure accepting an identifier and returning an
identifier renamed in the definition environment of the new syntax. compare accepts

64

two identifiers and returns true if and only if both denote the same binding in the
usage environment of the new syntax.

65

5 Packages

5.1 Dynamic Linking

If SCM has been compiled with dynl.c then the additional properties of load and ([SLIB])
require specified here are supported. The require form is preferred.

require feature [Function]
If the symbol feature has not already been given as an argument to require, then
the object and library files associated with feature will be dynamically-linked, and
an unspecified value returned. If feature is not found in *catalog*, then an error is
signaled.

usr:1ib lib [Function]
Returns the pathname of the C library named Iib. For example: (usr:1ib "m")
returns "/usr/1lib/libm.a", the path of the C math library.

x:1ib Iib [Function]
Returns the pathname of the X library named lib. For example: (x:1ib "X11")
returns "/usr/X11/1ib/1ibX11.sa", the path of the X11 library.

load filename libl . .. [Function]
In addition to the [R5RS] requirement of loading Scheme expressions if filename
is a Scheme source file, load will also dynamically load/link object files (produced
by compile-file, for instance). The object-suffix need not be given to load. For
example,

(load (in-vicinity (implementation-vicinity) "sc2"))

or (load (in-vicinity (implementation-vicinity) "sc2.0"))
or (require ’rev2-procedures)

or (require ’rev3-procedures)

will load/link sc2.o0 if it exists.

The Iibl ... pathnames specify additional libraries which may be needed for object
files not produced by the Hobbit compiler. For instance, crs is linked on GNU/Linux
by
(load (in-vicinity (implementation-vicinity) "crs.o")
(usr:1ib "ncurses") (usr:lib "c"))
or (require ’curses)

Turtlegr graphics library is linked by:

(load (in-vicinity (implementation-vicinity) "turtlegr")
(usr:1lib "X11") (usr:1lib "c") (usr:lib "m"))
or (require ’turtle-graphics)

And the string regular expression (see Section 5.10 [Regular Expression Pattern
Matching], page 83) package is linked by:

(load (in-vicinity (implementation-vicinity) "rgx") (usr:lib "c"))

Chapter 5: Packages 66

or

(require ’regex)

The following functions comprise the low-level Scheme interface to dynamic linking. See
the file Link.scm in the SCM distribution for an example of their use.

dyn:link filename [Function]
filename should be a string naming an object or archive file, the result of C-compiling.
The dyn:link procedure links and loads filename into the current SCM session. If
successfull, dyn:link returns a link-token suitable for passing as the second argument
to dyn:call. If not successful, #£ is returned.

dyn:call name link-token [Function]
link-token should be the value returned by a call to dyn:1link. name should be the
name of C function of no arguments defined in the file named filename which was
succesfully dyn:linked in the current SCM session. The dyn:call procedure calls
the C function corresponding to name. If successful, dyn:call returns #t; If not
successful, #f is returned.

dyn:call is used to call the init_... function after loading SCM object files. The

init_. .. function then makes the identifiers defined in the file accessible as Scheme
procedures.
dyn:main-call name link-token argl . .. [Function]

link-token should be the value returned by a call to dyn:1link. name should be the
name of C function of 2 arguments, (int argc, const char **argv), defined in the
file named filename which was succesfully dyn:1linked in the current SCM session.
The dyn:main-call procedure calls the C function corresponding to name with argv
style arguments, such as are given to C main functions. If successful, dyn:main-call
returns the integer returned from the call to name.

dyn:main-call can be used to call a main procedure from SCM. For example, I link
in and dyn:main-call a large C program, the low level routines of which callback
(see Section 6.2.11 [Callbacks], page 123) into SCM (which emulates PCI hardware).

dyn:unlink link-token [Function]
link-token should be the value returned by a call to dyn:1ink. The dyn:unlink pro-
cedure removes the previously loaded file from the current SCM session. If successful,
dyn:unlink returns #t; If not successful, #f is returned.

5.2 Dump

Dump, (also known as unexec), saves the continuation of an entire SCM session to an
executable file, which can then be invoked as a program. Dumped executables start very
quickly, since no Scheme code has to be loaded.

There are constraints on which sessions are savable using dump

e Saved continuations are invalid in subsequent invocations; they cause segmentation
faults and other unpleasant side effects.

Chapter 5: Packages 67

e Although DLD (see Section 5.1 [Dynamic Linking], page 65) can be used to load com-
piled modules both before and after dumping, ‘SUN_DL’ ELF systems can load compiled
modules only after dumping. This can be worked around by compiling in those features
you wish to dump.

e Ports (other than current-input-port, current-output-port, current-error-
port), X windows, etc. are invalid in subsequent invocations.

This restriction could be removed; See Section 6.4 [Improvements To Make], page 131.

e Dump should only be called from a loading file when the call to dump is the last expres-
sion in that file.

e Dump can be called from the command line.

dump newpath [Function]

dump newpath #f [Function]

dump newpath #t [Function]

dump newpath thunk [Function]
e Calls gc.

e Creates an executable program named newpath which continues the state of the
current SCM session when invoked. The optional argument thunk, if provided,
should be a procedure of no arguments; boot-tail will be set to this procedure,
causing it to be called in the restored executable.

If the optional argument is missing or a boolean, SCM’s standard command line
processing will be called in the restored executable.

If the second argument to dump is #t, argument processing will continue from
the command line passed to the dumping session. If the second argument is
missing or #f then the command line arguments of the restoring invocation will
be processed.

e Resumes the top level Read-Eval-Print loop. This is done instead of continuing
normally to avoid creating a saved continuation in the dumped executable.

dump may set the values of boot-tail, *argv*, restart, and *interactive*. dump
returns an unspecified value.

When a dumped executable is invoked, the variable *interactive™ (see Section 3.12 [Internal
State], page 39) has the value it possessed when dump created it. Calling dump with a single
argument sets *interactive® to #f, which is the state it has at the beginning of command
line processing.

The procedure program-arguments returns the command line arguments for the curent
invocation. More specifically, program-arguments for the restored session are not saved
from the dumping session. Command line processing is done on the value of the identifier
*argvk.
The following example shows how to create ‘rscm’, which is like regular scm, but which
loads faster and has the ‘random’ package alreadly provided.

bash$ scm -rrandom

> (dump "rscm")
#<unspecified>

Chapter 5: Packages 68

> (quit)

bash$./rscm -lpi.scm -e"(pi (random 200) 5)"

00003 14159 26535 89793 23846 26433 83279 50288 41971 69399
37510 58209 74944 59230 78164 06286 20899 86280 34825 34211
70679 82148 08651 32823 06647 09384 46095 50582 23172 53594
08128 48111 74502 84102 70193 85211 05559 64462 29489

bash$

This task can also be accomplished using the
[SCM Options|, page 28).

bash$ scm -rrandom -o rscm

> (quit)

bash$./rscm -lpi.scm -e"(pi (random 200) 5)"

00003 14159 26535 89793 23846 26433 83279 50288 41971 69399
37510 58209 74944 59230 78164 06286 20899 86280 34825 34211
70679 82148 08651 32823 06647 09384 46095 50582 23172 53594
08128 48111 74502 84102 70193 85211 05559 64462 29489

bash$

‘-0’ command line option (see Section 3.2

5.3 Numeric

most-positive-fixnum [Constant|
The immediate integer closest to positive infinity. See Section “Configuration” in
SLIB.

most-negative-fixnum [Constant|

The immediate integer closest to negative infinity.

$pi [Constant)]
pi [Constant|
The ratio of the circumference to the diameter of a circle.

These procedures are in addition to those in See Section “Irrational Integer Functions” in
SLIB.

exact-round x [Function]

exact-floor x [Function]

exact-ceiling x [Functlon]

exact-truncate x []
Return exact integers.

These procedures augment the standard capabilities in Section “Numerical operations” in
Revised(5) Scheme. Many are from See Section “Irrational Real Functions” in SLIB.

pix z [Function]
(x pi z)

pi/ z [Function]
(/ pi 2)

Chapter 5: Packages 69

sinh z [Function]
cosh z [Function]
tanh z [Function]

Return the hyperbolic sine, cosine, and tangent of z

asinh z [Function]
acosh z [Function]
atanh z [Function]

Return the inverse hyperbolic sine, cosine, and tangent of z

real-sqrt x [Function]
real-exp x [Function]
real-1ln x [Function]
real-sin x [Function]
real-cos x [Function]
real-tan x [Function]
real-asin x [Function]
real-acos x [Function]
real-atan x [Function]
atan y x [Function]
real-sinh x [Function]
real-cosh x [Function]
real-tanh x [Function]
real-asinh x [Function]
real-acosh x [Function]
real-atanh x [Function]

Real-only versions of these popular functions. The argument x must be a real number.
It is an error if the value which should be returned by a call to these procedures is
not real.

real-logl0 x [Function]
Real-only base 10 logarithm.

$atan2 y x [Function]
Computes (angle (make-rectangular x y)) for real numbers y and x.

real-expt xI x2 [Function]
Returns real number x1 raised to the real power x2. It is an error if the value which
should be returned by a call to real-expt is not real.

infinite? z [Function]

finite? z [Function]
All TEEE-754 numbers except positive and negative infinity and NaN (non-a-number)
are finite.

5.4 Arrays

Chapter 5: Packages 70

5.4.1 Conventional Arrays

The following syntax and procedures are SCM extensions to feature array in Section “Ar-
rays” in SLIB.

Arrays read and write as a # followed by the rank (number of dimensions) followed by the
character #\a or #\A and what appear as lists (of lists) of elements. The lists must be
nested to the depth of the rank. For each depth, all lists must be the same length.

(make-array ’#(ho) 4 3) =
#2A((ho ho ho) (ho ho ho) (ho ho ho) (ho ho ho))

Unshared, conventional (not uniform) 0-based arrays of rank 1 are equivalent to (and can’t
be distinguished from) scheme vectors.

(make-array ’#(ho) 3) = #(ho ho ho)

transpose-array array dim0 diml . .. [Function]
Returns an array sharing contents with array, but with dimensions arranged in a
different order. There must be one dim argument for each dimension of array. dim0,
diml, ... should be integers between 0 and the rank of the array to be returned.
Each integer in that range must appear at least once in the argument list.

The values of dim0, diml, ... correspond to dimensions in the array to be returned,
their positions in the argument list to dimensions of array. Several dims may have
the same value, in which case the returned array will have smaller rank than array.

examples:

(transpose-array ’#2A((a b) (c d)) 1 0) = #2A((a ¢c) (b d))

(transpose-array ’#2A((a b) (c 4)) 0 0) = #1A(a d)

(transpose-array ’#3A(((a b c) (de £f)) ((1 23) (456))) 110)
#2A((a 4) (b 5) (c 6))

enclose-array array dim0O diml . .. [Function]
dim0, dim1 ... should be nonnegative integers less than the rank of array. enclose-
array returns an array resembling an array of shared arrays. The dimensions of
each shared array are the same as the dimth dimensions of the original array, the
dimensions of the outer array are the same as those of the original array that did not
match a dim.

An enclosed array is not a general Scheme array. Its elements may not be set using
array-set!. Two references to the same element of an enclosed array will be equal?
but will not in general be eq?. The value returned by array-prototype when given an
enclosed array is unspecified.

examples:

(enclose-array '#3A(((abc) (def)) ((123)(456))) 1) =
#<enclosed-array (#1A(a d) #1A(b e) #1A(c f)) (#1A(1 4) #1A(2 5) #1A(3 6))>

(enclose-array '#3A(((abc) (def)) ((123)(456))) 10) =
#<enclosed-array #2A((a 1) (d 4)) #2A((b 2) (e 5)) #2A((c 3) (f6))>

Chapter 5: Packages 71

array->list array [Function]
Returns a list consisting of all the elements, in order, of array. In the case of a rank-0
array, returns the single element.

array-contents array [Function]

array-contents array strict [Function]
If array may be unrolled into a one dimensional shared array without changing their
order (last subscript changing fastest), then array-contents returns that shared
array, otherwise it returns #f. All arrays made by make-array may be unrolled, some
arrays made by make-shared-array may not be.

If the optional argument strict is provided, a shared array will be returned only if its

elements are stored internally contiguous in memory.

5.4.2 Uniform Array

Uniform Arrays and vectors are arrays whose elements are all of the same type. Uniform
vectors occupy less storage than conventional vectors. Uniform Array procedures also work
on vectors, uniform-vectors, bit-vectors, and strings.

SLIB now supports uniform arrys. The primary array creation procedure is make-array,
detailed in See Section “Arrays” in SLIB.

Unshared uniform character 0-based arrays of rank 1 (dimension) are equivalent to (and
can’t be distinguished from) strings.

(make-array "" 3) = "$q2"

Unshared uniform boolean 0-based arrays of rank 1 (dimension) are equivalent to (and can’t
be distinguished from) Section 5.4.3 [Bit Vectors|, page 72.

(make-array ’#lat() 3) = #x*000

#1At (#f #f #f) = #x000

prototype arguments in the following procedures are interpreted according to the table:

prototype type display prefix
O conventional vector #A

+641i complex (double precision) #A:£10C64Db
64.0 double (double precision) #A:f1oR64b
32.0 float (single precision) #A:f10R32b
32 unsigned integer (32-bit) #A:£ixN32b
-32 signed integer (32-bit) #A:fixZ32b
-16 signed integer (16-bit) #A:£ixZ16b
#\a char (string) #A:char

#t boolean (bit-vector) #A:bool

Other uniform vectors are written in a form similar to that of general arrays, except that
one or more modifying characters are put between the #\A character and the contents list.
For example, *#1A:£ixZ32b(3 5 9) returns a uniform vector of signed integers.

array? obj prototype [Function]
Returns #t if the obj is an array of type corresponding to prototype, and #£ if not.

Chapter 5: Packages 72

array-prototype array [Function]
Returns an object that would produce an array of the same type as array, if used as
the prototype for 1list->uniform-array.

list->uniform-array rank prot Ist [Function]
Returns a uniform array of the type indicated by prototype prot with elements the
same as those of Ist. Elements must be of the appropriate type, no coercions are done.

In, for example, the case of a rank-2 array, Ist must be a list of lists, all of the same
length. The length of Ist will be the first dimension of the result array, and the length
of each element the second dimension.

If rank is zero, Ist, which need not be a list, is the single element of the returned

array.
uniform-array-read! ura [Function]
uniform-array-read! ura port [Function]

Attempts to read all elements of ura, in lexicographic order, as binary objects from
port. If an end of file is encountered during uniform-array-read! the objects up to
that point only are put into ura (starting at the beginning) and the remainder of the
array is unchanged.

uniform-array-read! returns the number of objects read. port may be omitted, in
which case it defaults to the value returned by (current-input-port).

uniform-array-write ura [Function]

uniform-array-write ura port [Function]
Writes all elements of ura as binary objects to port. The number of of objects actually
written is returned. port may be omitted, in which case it defaults to the value
returned by (current-output-port).

logaref array indexl index?2 ... [Function]
If an index is provided for each dimension of array returns the indexl, index2, .. .’th
element of array. If one more index is provided, then the last index specifies bit
position of the twos-complement representation of the array element indexed by the
other indexs returning #t if the bit is 1, and #£ if 0. It is an error if this element is
not an exact integer.

(logaref ’#(#b1101 #b0010) 0) = #b1101
(logaref ’#(#b1101 #b0010) O 1) = #f
(logaref ’#2((#b1101 #b0010)) 0 0) = #b1101
logaset! array val indexl index2 . .. [Function]
If an index is provided for each dimension of array sets the indexl, index2, ...’th

element of array to val. If one more index is provided, then the last index specifies
bit position of the twos-complement representation of an exact integer array element,
setting the bit to 1 if val is #t and to 0 if val is #£. In this case it is an error if the
array element is not an exact integer or if val is not boolean.

5.4.3 Bit Vectors

Bit vectors can be written and read as a sequence of 0s and 1s prefixed by #*.

Chapter 5: Packages 73

#1At (#f #f #f #t #f #t #f) = #*x0001010

Some of these operations will eventually be generalized to other uniform-arrays.

bit-count bool bv [Function]
Returns the number of occurrences of bool in bv.

bit-position bool bv k [Function]
Returns the minimum index of an occurrence of bool in bv which is at least k. If no
bool occurs within the specified range #£ is returned.

bit-invert! bv [Function]
Modifies bv by replacing each element with its negation.

bit-set*! bv uve bool [Function]
If uve is a bit-vector, then bv and uve must be of the same length. If bool is #t, then
uve is OR’ed into bv; If bool is #f£, the inversion of uve is AND’ed into bv.

If uve is a unsigned integer vector, then all the elements of uve must be between 0
and the LENGTH of bv. The bits of bv corresponding to the indexes in uve are set to
bool.

The return value is unspecified.

bit-count* bv uve bool [Function]
Returns

(bit-count (bit-set*! (if bool bv (bit-invert! bv)) uve #t) #t).

bv is not modified.

5.4.4 Array Mapping
(require ’array-for-each)

SCM has some extra functions in feature array-for-each:

array-fill! array fill [Function]
Stores fill in every element of array. The value returned is unspecified.

serial-array:copy! destination source [Function]
Same as array:copy! but guaranteed to copy in row-major order.

array-equal? array0 arrayl ... [Function]
Returns #t iff all arguments are arrays with the same shape, the same type, and have
corresponding elements which are either equal? or array-equal?. This function
differs from equal? in that a one dimensional shared array may be array-equal? but
not equal? to a vector or uniform vector.

array-map! array0 proc arrayl ... [Function]
If arrayl, ... are arrays, they must have the same number of dimensions as array0
and have a range for each index which includes the range for the corresponding index
in array0. If they are scalars, that is, not arrays, vectors, or strings, then they will
be converted internally to arrays of the appropriate shape. proc is applied to each

Chapter 5: Packages 74

tuple of elements of arrayl ... and the result is stored as the corresponding element
in array0. The value returned is unspecified. The order of application is unspecified.

Handling non-array arguments is a SCM extension of Section “Array Mapping” in

SLIB

serial-array-map! array0 proc arrayl ... [Function]
Same as array-map!, but guaranteed to apply proc in row-major order.

array-map prototype proc arrayl array?2 ... [Function]
array2, ... must have the same number of dimensions as arrayl and have a range for
each index which includes the range for the corresponding index in arrayl. proc is
applied to each tuple of elements of arrayl, array2, . .. and the result is stored as the
corresponding element in a new array of type prototype. The new array is returned.
The order of application is unspecified.

scalar->array scalar array prototype [Function]

scalar->array scalar array [Function]
Returns a uniform array of the same shape as array, having only one shared element,
which is eqv? to scalar. If the optional argument prototype is supplied it will be used
as the prototype for the returned array. Otherwise the returned array will be of the
same type as array if that is possible, and a conventional array if it is not. This
function is used internally by array-map! and friends to handle scalar arguments.

5.5 Records

SCM provides user-definable datatypes with the same interface as SLIB, see See Section
“Records” in SLIB, with the following extension.

record-printer-set! rtd printer [Function]
Causes records of type rtd to be printed in a user-specified format. rtd must be a
record type descriptor returned by make-record-type, printer a procedure accepting
three arguments: the record to be printed, the port to print to, and a boolean which
is true if the record is being written on behalf of write and false if for display. If
printer returns #f, the default record printer will be called.

A printer value of #f means use the default printer.

Only the default printer will be used when printing error messages.

5.6 I/O-Extensions

If >i/o-extensions is provided (by linking in iocext.o), Section “Line I/O” in SLIB, and
the following functions are defined:

stat <port-or-string> [Function]
Returns a vector of integers describing the argument. The argument can be either
a string or an open input port. If the argument is an open port then the returned
vector describes the file to which the port is opened; If the argument is a string then
the returned vector describes the file named by that string. If there exists no file with

Chapter 5: Packages 75

the name string, or if the file cannot be accessed #f is returned. The elements of the
returned vector are as follows:

0 st_dev ID of device containing a directory entry for this file

1 st_ino Inode number

2 st_mode File type, attributes, and access control summary

3 st_nlink Number of links

4 st_uid User ID of file owner

5 st_gid Group ID of file group

6 st_rdev Device ID; this entry defined only for char or blk spec files
7 st_size File size (bytes)

8 st_atime Time of last access

9 st_mtime
Last modification time

10 st_ctime
Last file status change time

getpid [Function]
Returns the process ID of the current process.

try-create-file name modes perms [Function]
If the file with name name already exists, return #f, otherwise try to create and
open the file like try-open-file, See Section 4.6 [Files and Ports], page 49. If the
optional integer argument perms is provided, it is used as the permissions of the new
file (modified by the current umask).

reopen-file filename modes port [Function]
Closes port port and reopens it with filename and modes. reopen-file returns #t
if successful, #£ if not.

duplicate-port port modes [Function]
Creates and returns a duplicate port from port. Duplicate unbuffered ports share one
file position. modes are as for Section 4.6 [Files and Ports]|, page 49.

redirect-port! from-port to-port [Function]
Closes to-port and makes to-port be a duplicate of from-port. redirect-port! re-
turns to-port if successful, #f if not. If unsuccessful, to-port is not closed.

opendir dirname [Function]
Returns a directory object corresponding to the file system directory named dirname.
If unsuccessful, returns #£.

readdir dir [Function]
Returns the string name of the next entry from the directory dir. If there are no more
entries in the directory, readdir returns a #f.

Chapter 5: Packages 76

rewinddir dir [Function]
Reinitializes dir so that the next call to readdir with dir will return the first entry
in the directory again.

closedir dir [Function]
Closes dir and returns #t. If dir is already closed,, closedir returns a #f.

directory-for-each proc directory [Function]
proc must be a procedure taking one argument. ‘Directory-For-Each’ applies proc
to the (string) name of each file in directory. The dynamic order in which proc is
applied to the filenames is unspecified. The value returned by ‘directory-for-each’
is unspecified.

directory-for-each proc directory pred [Function]
Applies proc only to those filenames for which the procedure pred returns a non-false
value.

directory-for-each proc directory match [Function]

Applies proc only to those filenames for which (filename:match?? match) would
return a non-false value (see Section “Filenames” in SLIB).

(require ’directory)

(directory-for-each print "." "[A-Z]*.scm")
_|

"Init.scm"

"Iedline.scm"

"Link.scm"

"Macro.scm"

"Transcen.scm"

"Init5£3.scm"

directory*-for-each proc path-glob [Function]
path-glob is a pathname whose last component is a (wildcard) pattern (see
Section “Filenames” in SLIB). proc must be a procedure taking one argument.
‘directory*-for-each’ applies proc to the (string) name of each file in the current
directory. The dynamic order in which proc is applied to the filenames is unspecified.
The value returned by ‘directory*-for-each’ is unspecified.

mkdir path mode [Function]
The mkdir function creates a new, empty directory whose name is path. The integer
argument mode specifies the file permissions for the new directory. See Section “The
Mode Bits for Access Permission” in Gnu C Library, for more information about this.

mkdir returns if successful, #f if not.

rmdir path [Function]
The rmdir function deletes the directory path. The directory must be empty before
it can be removed. rmdir returns if successful, #£ if not.

Chapter 5: Packages 7

chdir filename [Function]
Changes the current directory to filename. If filename does not exist or is not a
directory, #f is returned. Otherwise, #t is returned.

getcwd [Function]
The function getcwd returns a string containing the absolute file name representing
the current working directory. If this string cannot be obtained, #f is returned.

rename-file oldfilename newfilename [Function]
Renames the file specified by oldfilename to newfilename. If the renaming is successful,
#t is returned. Otherwise, #£ is returned.

copy-file oldfilename newfilename [Function]
Copies the file specified by oldfilename to newfilename. If the copying is successful,
#t is returned. Otherwise, #£ is returned.

chmod file mode [Function]
The function chmod sets the access permission bits for the file named by file to mode.
The file argument may be a string containing the filename or a port open to the file.

chmod returns if successful, #£ if not.

utime pathname acctime modtime [Function]
Sets the file times associated with the file named pathname to have access time
acctime and modification time modtime. utime returns if successful, #f if not.

umask mode [Function]
The function umask sets the file creation mask of the current process to mask, and
returns the previous value of the file creation mask.

fileno port [Function]
Returns the integer file descriptor associated with the port port. If an error is de-
tected, #f is returned.

access pathname how [Function]
Returns #t if the file named by pathname can be accessed in the way specified by the
how argument. The how argument can be the logior of the flags:

0. File-exists?
1. File-is-executable?
2. File-is-writable?

4. File-is-readable?

Or the how argument can be a string of 0 to 3 of the following characters in any
order. The test performed is the and of the associated tests and file-exists?.

X File-is-executable?
W File-is-writable?

r File-is-readable?

Chapter 5: Packages 78

execl command arg0 . .. [Function]
execlp command arg0 . .. [Function]
Transfers control to program command called with arguments arg0 For execl,

command must be an exact pathname of an executable file. execlp searches for
command in the list of directories specified by the environment variable PATH. The
convention is that arg0 is the same name as command.

If successful, this procedure does not return. Otherwise an error message is printed
and the integer errno is returned.

execv command arglist [Function]
execvp command arglist [Function]
Like execl and execlp except that the set of arguments to command is arglist.

putenv string [Function]
adds or removes definitions from the environment. If the string is of the form
‘NAME=VALUE’, the definition is added to the environment. Otherwise, the string
is interpreted as the name of an environment variable, and any definition for this
variable in the environment is removed.

Names of environment variables are case-sensitive and must not contain the character
=. System-defined environment variables are invariably uppercase.

Putenv is used to set up the environment before calls to execl, execlp, execv,
execvp, system, or open-pipe (see Section 5.7 [Posix Extensions|, page 78).

To access environment variables, use getenv (see Section “System Interface” in SLIB).

5.7 Posix Extensions

If *posix is provided (by linking in posix.o), the following functions are defined:

open-pipe string modes [Function]
If the string modes contains an r, returns an input port capable of delivering charac-
ters from the standard output of the system command string. Otherwise, returns an
output port capable of receiving characters which become the standard input of the
system command string. If a pipe cannot be created #f is returned.

open-input-pipe string [Function]
Returns an input port capable of delivering characters from the standard output of
the system command string. If a pipe cannot be created #f is returned.

open-output-pipe string [Function]
Returns an output port capable of receiving characters which become the standard
input of the system command string. If a pipe cannot be created #f is returned.

broken-pipe port [Function]
If this function is defined at top level, it will be called when an output pipe is closed
from the other side (this is the condition under which a SIGPIPE is sent). The already
closed port will be passed so that any necessary cleanup may be done. An error is
not signaled when output to a pipe fails in this way, but any further output to the
closed pipe will cause an error to be signaled.

Chapter 5: Packages 79

close-port pipe [Function]
Closes the pipe, rendering it incapable of delivering or accepting characters. This
routine has no effect if the pipe has already been closed. The value returned is

unspecified.

pipe [Function]
Returns (cons rd wd) where rd and wd are the read and write (port) ends of a pipe
respectively.

fork [Function]

Creates a copy of the process calling fork. Both processes return from fork, but
the calling (parent) process’s fork returns the child process’s ID whereas the child
process’s fork returns 0.

For a discussion of IDs See Section “Process Persona” in libc.

getppid [Function]
Returns the process ID of the parent of the current process. For a process’s own ID
See Section 5.6 [I/O-Extensions|, page 74.

getuid [Function]
Returns the real user ID of this process.

getgid [Function]
Returns the real group ID of this process.

getegid [Function]
Returns the effective group ID of this process.

geteuid [Function]
Returns the effective user ID of this process.

setuid id [Function]
Sets the real user ID of this process to id. Returns #t if successful, #£ if not.

setgid id [Function]
Sets the real group ID of this process to id. Returns #t if successful, #£ if not.

setegid id [Function]
Sets the effective group ID of this process to id. Returns #t if successful, #f if not.

seteuid id [Function]
Sets the effective user ID of this process to id. Returns #t if successful, #£ if not.

kill pid sig [Function]
The kill function sends the signal signum to the process or process group specified
by pid. Besides the signals listed in Section “Standard Signals” in GNU C Library,
signum can also have a value of zero to check the validity of the pid.

The pid specifies the process or process group to receive the signal:

>0 The process whose identifier is pid.

Chapter 5: Packages 80

0 All processes in the same process group as the sender. The sender itself
does not receive the signal.

-1 If the process is privileged, send the signal to all processes except for some
special system processes. Otherwise, send the signal to all processes with
the same effective user ID.

<-1 The process group whose identifier is (abs pid).

A process can send a signal to itself with (kill (getpid) signum). If kill is used
by a process to send a signal to itself, and the signal is not blocked, then kill delivers
at least one signal (which might be some other pending unblocked signal instead of
the signal signum) to that process before it returns.

The return value from kill is zero if the signal can be sent successfully. Otherwise,
no signal is sent, and a value of -1 is returned. If pid specifies sending a signal to
several processes, kill succeeds if it can send the signal to at least one of them.
There’s no way you can tell which of the processes got the signal or whether all of
them did.

waitpid pid options [Function]
The waitpid function suspends execution of the current process until a child as
specified by the pid argument has exited, or until a signal is delivered whose action
is to terminate the current process or to call a signal handling function. If a child
as requested by pid has already exited by the time of the call (a so-called zombie
process), the function returns immediately. Any system resources used by the child
are freed.

The value of pid can be:

<-1 which means to wait for any child process whose process group ID is equal
to the absolute value of pid.

-1 which means to wait for any child process; this is the same behaviour
which wait exhibits.

0 which means to wait for any child process whose process group ID is equal
to that of the calling process.

>0 which means to wait for the child whose process ID is equal to the value
of pid.

The value of options is one of the following:

0. Nothing special.

1. (WNOHANG) which means to return immediately if no child is there to be waited
for.

2. (WUNTRACED) which means to also return for children which are stopped, and
whose status has not been reported.

3. Which means both of the above.

The return value normally is the exit status of the child process, including the exit
value along with flags indicating whether a coredump was generated or the child

Chapter 5

: Packages 81

terminated as a result of a signal. If the WNOHANG option was specified and no child
process is waiting to be noticed, the value is zero. A value of #f is returned in case of
error and errno is set. For information about the errno codes See Section “Process
Completion” in libc.

uname
You

[Function]
can use the uname procedure to find out some information about the type of

computer your program is running on.

Returns a vector of strings. These strings are:

0. The name of the operating system in use.
1. The network name of this particular computer.
2. The current release level of the operating system implementation.
3. The current version level within the release of the operating system.
4. Description of the type of hardware that is in use.
Some examples are ‘"i386-ANYTHING"’, ‘"m68k-hp"’, ‘"sparc-sun"’
‘"m68k-sun"’, ‘"m68k-sony"’ and ‘"mips-dec"’.
getpw name [Function]
getpw uid [Function]
getpw [Function]

Returns a vector of information for the entry for NAME, UID, or the next entry if no
argument is given. The information is:

0.

- W N

setpwent

The user’s login name.

The encrypted password string.

The user ID number.

The user’s default group ID number.

A string typically containing the user’s real name, and possibly other information
such as a phone number.

The user’s home directory, initial working directory, or #f, in which case the
interpretation is system-dependent.

The user’s default shell, the initial program run when the user logs in, or #f,
indicating that the system default should be used.

#t [Function]

Rewinds the pw entry table back to the begining.

setpwent
setpwent

#1 [Function]
[Function]

Closes the pw table.

getgr name [Function]
getgr uid [Function]
getgr [Function]

Returns a vector of information for the entry for NAME, UID, or the next entry if no
argument is given. The information is:

0.

The name of the group.

Chapter 5: Packages 82

1. The encrypted password string.
2. The group ID number.

3. A list of (string) names of users in the group.

setgrent #t [Function]
Rewinds the group entry table back to the begining.

setgrent #f [Function]

setgrent [Function]

Closes the group table.

getgroups [Function]
Returns a vector of all the supplementary group IDs of the process.

link oldname newname [Function]
The 1ink function makes a new link to the existing file named by oldname, under the
new name newnamne.

link returns a value of #t if it is successful and #f on failure.

chown filename owner group [Function]
The chown function changes the owner of the file filename to owner, and its group
owner to group.

chown returns a value of #t if it is successful and #f on failure.

ttyname port [Function]
If port port is associated with a terminal device, returns a string containing the file
name of termainal device; otherwise #f.

5.8 Unix Extensions

If >unix is provided (by linking in unix.o), the following functions are defined:

These privileged and symbolic link functions are not in Posix:

symlink oldname newname [Function]
The symlink function makes a symbolic link to oldname named newname.

symlink returns a value of #t if it is successful and #f on failure.

readlink filename [Function]
Returns the value of the symbolic link filename or #£f for failure.

lstat filename [Function]
The 1stat function is like stat, except that it does not follow symbolic links. If
filename is the name of a symbolic link, 1lstat returns information about the link
itself; otherwise, 1stat works like stat. See Section 5.6 [I/O-Extensions], page 74.

nice increment [Function]
Increment the priority of the current process by increment. chown returns a value of
#t if it is successful and #f on failure.

Chapter 5: Packages 83

acct filename [Function]
When called with the name of an exisitng file as argument, accounting is turned on,
records for each terminating process are appended to filename as it terminates. An
argument of #f causes accounting to be turned off.

acct returns a value of #t if it is successful and #f on failure.

mknod filename mode dev [Function]
The mknod function makes a special file with name filename and modes mode for
device number dev.

mknod returns a value of #t if it is successful and #f on failure.

sync [Function]
sync first commits inodes to buffers, and then buffers to disk. sync() only schedules
the writes, so it may return before the actual writing is done. The value returned is
unspecified.

5.9 Sequence Comparison
(require ’diff)

A blazing fast implementation of the sequence-comparison module in SLIB, see See Section
“Sequence Comparison” in SLIB.

5.10 Regular Expression Pattern Matching

These functions are defined in rgx.c using a POSIX or GNU regex library.
If your computer does not support regex, a package is available via ftp from
ftp.gnu.org:/pub/gnu/regex-0.12.tar.gz. For a description of regular expressions,
See Section “syntax” in "regex" regular expression matching library.

regcomp pattern [flags] [Function]
Compile a regular expression. Return a compiled regular expression, or an integer
error code suitable as an argument to regerror.

flags in regcomp is a string of option letters used to control the compilation of the
regular expression. The letters may consist of:

[

n newlines won’t be matched by . or hat lists; ([*...]1)

‘i ignore case.

only when compiled with _.GNU_SOURCE:

‘0’ allows dot to match a null character.
‘£ enable GNU fastmaps.
regerror errno [Function]

Returns a string describing the integer errno returned when regcomp fails.

regexec re string [Function]
Returns #f or a vector of integers. These integers are in doublets. The first of each
doublet is the index of string of the start of the matching expression or sub-expression

Chapter 5: Packages 84

(delimited by parentheses in the pattern). The last of each doublet is index of string
of the end of that expression. #f is returned if the string does not match.

regmatch? re string [Function]
Returns #t if the pattern such that regexp = (regcomp pattern) matches string as a
POSIX extended regular expressions. Returns #£f otherwise.

regsearch re string [start [len]] [Function]

regsearchv re string [start [len] [Function]

regmatch re string [start [len]] [Function]

regmatchv re string [start [len]] [Function]
Regsearch searches for the pattern within the string.

Regmatch anchors the pattern and begins matching it against string.
Regsearch returns the character position where re starts, or #f if not found.
Regmatch returns the number of characters matched, #£f if not matched.

Regsearchv and regmatchv return the match vector is returned if re is found, #£

otherwise.
re may be either:
1. a compiled regular expression returned by regcomp;
2. a string representing a regular expression;
3. a list of a string and a set of option letters.
string The string to be operated upon.
start The character position at which to begin the search or match. If absent,

the default is zero.
Compiled _.GNU_SOURCE and using GNU libregex only

When searching, if start is negative, the absolute value of start will be
used as the start location and reverse searching will be performed.

len The search is allowed to examine only the first Ien characters of string.
If absent, the entire string may be examined.

string-split re string [Function]

string-splitv re string [Function]
String-split splits a string into substrings that are separated by re, returning a
vector of substrings.

String-splitv returns a vector of string positions that indicate where the substrings
are located.

string-edit re edit-spec string [count] [Function]
Returns the edited string.

edit-spec Is a string used to replace occurances of re. Backquoted integers in the
range of 1-9 may be used to insert subexpressions in re, as in sed.

Chapter 5: Packages 85

count The number of substitutions for string-edit to perform. If #t, all occu-
rances of re will be replaced. The default is to perform one substitution.

5.11 Line Editing
(require ’edit-line)
These procedures provide input line editing and recall.

These functions are defined in edline.c and Iedline.scm using the editline or GNU read-
line (see Section “Overview ” in GNU Readline Library) libraries available from:

e ftp.sys.toronto.edu:/pub/rc/editline.shar
e ftp.gnu.org:/pub/gnu/readline-2.0.tar.gz

When edit-line package is initialized, if the current input port is the default input port
and the environment variable EMACS is not defined, line-editing mode will be entered.

default-input-port [Function]
Returns the initial current-input-port SCM was invoked with (stdin).

default-output-port [Function]
Returns the initial current-output-port SCM was invoked with (stdout).

make-edited-line-port [Function]
Returns an input/output port that allows command line editing and retrieval of his-
tory.

line-editing [Function]

Returns the current edited line port or #f.

line-editing bool [Function]
If bool is false, exits line-editing mode and returns the previous value of
(line-editing). If bool is true, sets the current input and output ports to an
edited line port and returns the previous value of (line-editing).

5.12 Curses

These functions are defined in crs.c using the curses library. Unless otherwise noted these
routines return #t for successful completion and #f for failure.

initscr [Function]
Returns a port for a full screen window. This routine must be called to initialize
curses.

endwin [Function]

A program should call endwin before exiting or escaping from curses mode temporar-
ily, to do a system call, for example. This routine will restore termio modes, move
the cursor to the lower left corner of the screen and reset the terminal into the proper
non-visual mode. To resume after a temporary escape, call Section 5.12.3 [Window
Manipulation], page 87.

Chapter 5: Packages 86

5.12.1 Output Options Setting

These routines set options within curses that deal with output. All options are initially #f,
unless otherwise stated. It is not necessary to turn these options off before calling endwin.

clearok win bf [Function]
If enabled (bf is #t), the next call to force-output or refresh with win will clear
the screen completely and redraw the entire screen from scratch. This is useful when
the contents of the screen are uncertain, or in some cases for a more pleasing visual
effect.

idlok win bf [Function]
If enabled (bf is #t), curses will consider using the hardware “insert/delete-line”
feature of terminals so equipped. If disabled (bf is #f), curses will very seldom use
this feature. The “insert/delete-character” feature is always considered. This option
should be enabled only if your application needs “insert/delete-line”, for example, for
a screen editor. It is disabled by default because

“insert/delete-line” tends to be visually annoying when used in applications where
it is not really needed. If “insert/delete-line” cannot be used, curses will redraw the
changed portions of all lines.

leaveok win bf [Function]
Normally, the hardware cursor is left at the location of the window cursor being
refreshed. This option allows the cursor to be left wherever the update happens to
leave it. It is useful for applications where the cursor is not used, since it reduces the

need for cursor motions. If possible, the cursor is made invisible when this option is
enabled.

scrollok win bf [Function]
This option controls what happens when the cursor of window win is moved off the
edge of the window or scrolling region, either from a newline on the bottom line, or
typing the last character of the last line. If disabled (bf is #f), the cursor is left on
the bottom line at the location where the offending character was entered. If enabled
(bf is #t), force-output is called on the window win, and then the physical terminal
and window win are scrolled up one line.

Note in order to get the physical scrolling effect on the terminal, it is also necessary
to call idlok.

nodelay win bf [Function]
This option causes wgetch to be a non-blocking call. If no input is ready, wgetch will
return an eof-object. If disabled, wgetch will hang until a key is pressed.

5.12.2 Terminal Mode Setting

These routines set options within curses that deal with input. The options involve using
ioctl(2) and therefore interact with curses routines. It is not necessary to turn these options
off before calling endwin. The routines in this section all return an unspecified value.

Chapter 5: Packages 87

cbreak [Function]

nocbreak [Function]
These two routines put the terminal into and out of CBREAK mode, respectively. In
CBREAK mode, characters typed by the user are immediately available to the program
and erase/kill character processing is not performed. When in NOCBREAK mode, the
tty driver will buffer characters typed until a LFD or RET is typed. Interrupt and
flowcontrol characters are unaffected by this mode. Initially the terminal may or may
not be in CBREAK mode, as it is inherited, therefore, a program should call cbreak or
nocbreak explicitly. Most interactive programs using curses will set CBREAK mode.

Note cbreak overrides raw. For a discussion of how these routines interact with echo
and noecho See Section 5.12.5 [Input], page 90.

raw [Function]

noraw [Function]
The terminal is placed into or out of RAW mode. RAW mode is similar to CBREAK
mode, in that characters typed are immediately passed through to the user program.
The differences are that in RAW mode, the interrupt, quit, suspend, and flow control
characters are passed through uninterpreted, instead of generating a signal. RAW mode
also causes 8-bit input and output. The behavior of the BREAK key depends on other
bits in the terminal driver that are not set by curses.

echo [Function]

noecho [Function]
These routines control whether characters typed by the user are echoed by read-char
as they are typed. Echoing by the tty driver is always disabled, but initially read-char
is in ECHO mode, so characters typed are echoed. Authors of most interactive programs
prefer to do their own echoing in a controlled area of the screen, or not to echo at
all, so they disable echoing by calling noecho. For a discussion of how these routines
interact with echo and noecho See Section 5.12.5 [Input], page 90.

nl [Function]

nonl [Function]
These routines control whether LFD is translated into RET and LFD on output, and
whether RET is translated into LFD on input. Initially, the translations do occur.
By disabling these translations using nonl, curses is able to make better use of the
linefeed capability, resulting in faster cursor motion.

resetty [Function]

savetty [Function]
These routines save and restore the state of the terminal modes. savetty saves the
current state of the terminal in a buffer and resetty restores the state to what it
was at the last call to savetty.

5.12.3 Window Manipulation

newwin nlines ncols begy begx [Function]
Create and return a new window with the given number of lines (or rows), nlines, and
columns, ncols. The upper left corner of the window is at line begy, column begx. If

Chapter 5: Packages 88

either nlines or ncols is 0, they will be set to the value of LINES-begy and COLS-begx.
A new full-screen window is created by calling newwin(0,0,0,0).

subwin orig nlines ncols begy begx [Function]
Create and return a pointer to a new window with the given number of lines (or rows),
nlines, and columns, ncols. The window is at position (begy, begx) on the screen.
This position is relative to the screen, and not to the window orig. The window is
made in the middle of the window orig, so that changes made to one window will affect
both windows. When using this routine, often it will be necessary to call touchwin
or touchline on orig before calling force-output.

close-port win [Function]
Deletes the window win, freeing up all memory associated with it. In the case of
sub-windows, they should be deleted before the main window win.

refresh [Function]

force-output win [Function]
These routines are called to write output to the terminal, as most other routines
merely manipulate data structures. force-output copies the window win to the
physical terminal screen, taking into account what is already there in order to min-
imize the amount of information that’s sent to the terminal (called optimization).
Unless leaveok has been enabled, the physical cursor of the terminal is left at the
location of window win’s cursor. With refresh, the number of characters output to
the terminal is returned.

mvwin win y x [Function]
Move the window win so that the upper left corner will be at position (y, x). If the
move would cause the window win to be off the screen, it is an error and the window
win is not moved.

overlay srcwin dstwin [Function]

overwrite srcwin dstwin [Function]
These routines overlay srcwin on top of dstwin; that is, all text in srcwin is copied
into dstwin. srcwin and dstwin need not be the same size; only text where the two
windows overlap is copied. The difference is that overlay is non-destructive (blanks
are not copied), while overwrite is destructive.

touchwin win [Function]

touchline win start count [Function]
Throw away all optimization information about which parts of the window win have
been touched, by pretending that the entire window win has been drawn on. This is
sometimes necessary when using overlapping windows, since a change to one window
will affect the other window, but the records of which lines have been changed in the
other window will not reflect the change. touchline only pretends that count lines
have been changed, beginning with line start.

wmove win y x [Function]
The cursor associated with the window win is moved to line (row) y, column x. This
does not move the physical cursor of the terminal until refresh (or force-output)

Chapter 5: Packages 89

is called. The position specified is relative to the upper left corner of the window win,
which is (0, 0).

5.12.4 Output

These routines are used to draw text on windows

display ch win [Function]
display str win [Function]
wadd win ch [Function]
wadd win str [Function]

The character ch or characters in str are put into the window win at the current
cursor position of the window and the position of win’s cursor is advanced. At the
right margin, an automatic newline is performed. At the bottom of the scrolling
region, if scrollok is enabled, the scrolling region will be scrolled up one line.

If ch is a TAB, LFD, or backspace, the cursor will be moved appropriately within
the window win. A LFD also does a wclrtoeol before moving. TAB characters are
considered to be at every eighth column. If ch is another control character, it will be
drawn in the C-x notation. (Calling winch after adding a control character will not
return the control character, but instead will return the representation of the control
character.)

Video attributes can be combined with a character by or-ing them into the parame-
ter. This will result in these attributes also being set. The intent here is that text,
including attributes, can be copied from one place to another using inch and display.
See standout, below.

Note For wadd ch can be an integer and will insert the character of the corresponding
value.

werase win [Function]
This routine copies blanks to every position in the window win.

wclear win [Function]
This routine is like werase, but it also calls Section 5.12.1 [Output Options Setting],
page 86, arranging that the screen will be cleared completely on the next call to
refresh or force-output for window win, and repainted from scratch.

wclrtobot win [Function]
All lines below the cursor in window win are erased. Also, the current line to the
right of the cursor, inclusive, is erased.

wclrtoeol win [Function]
The current line to the right of the cursor, inclusive, is erased.

wdelch win [Function]
The character under the cursor in the window win is deleted. All characters to the
right on the same line are moved to the left one position and the last character on
the line is filled with a blank. The cursor position does not change. This does not
imply use of the hardware “delete-character” feature.

Chapter 5: Packages 90

wdeleteln win [Function]
The line under the cursor in the window win is deleted. All lines below the current
line are moved up one line. The bottom line win is cleared. The cursor position does
not change. This does not imply use of the hardware “deleteline” feature.

winsch win ch [Function]
The character ch is inserted before the character under the cursor. All characters
to the right are moved one SPC to the right, possibly losing the rightmost character
of the line. The cursor position does not change . This does not imply use of the
hardware “insertcharacter” feature.

winsertln win [Function]
A blank line is inserted above the current line and the bottom line is lost. This does
not imply use of the hardware “insert-line” feature.

scroll win [Function]
The window win is scrolled up one line. This involves moving the lines in win’s data
structure. As an optimization, if win is stdscr and the scrolling region is the entire
window, the physical screen will be scrolled at the same time.

5.12.5 Input

read-char win [Function]
A character is read from the terminal associated with the window win. Depending
on the setting of cbreak, this will be after one character (CBREAK mode), or after the
first newline (NOCBREAK mode). Unless noecho has been set, the character will also
be echoed into win.

When using read-char, do not set both NOCBREAK mode (nocbreak) and ECHO mode
(echo) at the same time. Depending on the state of the terminal driver when each
character is typed, the program may produce undesirable results.

winch win [Function]
The character, of type chtype, at the current position in window win is returned.
If any attributes are set for that position, their values will be OR’ed into the value
returned.

getyx win [Function]
A list of the y and x coordinates of the cursor position of the window win is returned

5.12.6 Curses Miscellany

wstandout win [Function]

wstandend win [Function]
These functions set the current attributes of the window win. The current attributes
of win are applied to all characters that are written into it. Attributes are a property
of the character, and move with the character through any scrolling and insert/delete
line/character operations. To the extent possible on the particular terminal, they will
be displayed as the graphic rendition of characters put on the screen.

Chapter 5: Packages 91

wstandout sets the current attributes of the window win to be visibly different from
other text. wstandend turns off the attributes.

box win vertch horch [Function]
A box is drawn around the edge of the window win. vertch and horch are the charac-
ters the box is to be drawn with. If vertch and horch are 0, then appropriate default
characters, ACS_VLINE and ACS_HLINE, will be used.

Note vertch and horch can be an integers and will insert the character (with at-
tributes) of the corresponding values.

unctrl c [Function]
This macro expands to a character string which is a printable representation of the
character c. Control characters are displayed in the C-x notation. Printing characters
are displayed as is.

5.13 Sockets

These procedures (defined in socket.c) provide a Scheme interface to most of the C socket
library. For more information on sockets, See Section “Sockets” in The GNU C Library
Reference Manual.

5.13.1 Host and Other Inquiries

af_inet [Constant|
af _unix [Constant|
Integer family codes for Internet and Unix sockets, respectively.

gethost host-spec [Function]

gethost [Function]
Returns a vector of information for the entry for HOST-SPEC or the next entry if
HOST-SPEC isn’t given. The information is:

0. host name string

1. list of host aliases strings

2. integer address type (AF_INET)

3. integer size of address entries (in bytes)

4. list of integer addresses
sethostent stay-open [Function]
sethostent [Function]

Rewinds the host entry table back to the begining if given an argument. If the
argument stay-open is #f queries will be be done using UDP datagrams. Otherwise, a
connected TCP socket will be used. When called without an argument, the host table

is closed.
getnet name-or-number [Function]
getnet [Function]

Returns a vector of information for the entry for name-or-number or the next entry
if an argument isn’t given. The information is:

Chapter 5: Packages 92

official network name string
list of network aliases strings

integer network address type (AF_INET)

w o= o

. integer network number

setnetent stay-open [Function]
setnetent [Function]
Rewinds the network entry table back to the begining if given an argument. If the
argument stay-open is #£ the table will be closed between calls to getnet. Otherwise,
the table stays open. When called without an argument, the network table is closed.

getproto name-or-number [Function]

getproto [Function]
Returns a vector of information for the entry for name-or-number or the next entry
if an argument isn’t given. The information is:

1. official protocol name string
2. list of protocol aliases strings

3. integer protocol number

setprotoent stay-open [Function]
setprotoent [Function]
Rewinds the protocol entry table back to the begining if given an argument. If the
argument stay-open is #f the table will be closed between calls to getproto. Otherwise,
the table stays open. When called without an argument, the protocol table is closed.

getserv name-or-port-number protocol [Function]
getserv [Function]
Returns a vector of information for the entry for name-or-port-number and protocol
or the next entry if arguments aren’t given. The information is:
0. official service name string
1. list of service aliases strings
2. integer port number

3. protocol

setservent stay-open [Function]

setservent [Function]
Rewinds the service entry table back to the begining if given an argument. If the
argument stay-open is #£f the table will be closed between calls to getserv. Otherwise,
the table stays open. When called without an argument, the service table is closed.

5.13.2 Internet Addresses and Socket Names

inet:string->address string [Function]
Returns the host address number (integer) for host string or #f if not found.

inet:address->string address [Function]
Converts an internet (integer) address to a string in numbers and dots notation.

Chapter 5: Packages 93

inet:network address [Function]
Returns the network number (integer) specified from address or #£ if not found.

inet:local-network-address address [Function]
Returns the integer for the address of address within its local network or #f if not
found.

inet:make-address network local-address [Function]

Returns the Internet address of local-address in network.
The type socket-name is used for inquiries about open sockets in the following procedures:

getsockname socket [Function]
Returns the socket-name of socket. Returns #£f if unsuccessful or socket is closed.

getpeername socket [Function]
Returns the socket-name of the socket connected to socket. Returns #£f if unsuccessful
or socket is closed.

socket-name:family socket-name [Function]
Returns the integer code for the family of socket-name.

socket-name:port-number socket-name [Function]
Returns the integer port number of socket-name.

socket-name:address socket-name [Function]
Returns the integer Internet address for socket-name.

5.13.3 Socket

When a port is returned from one of these calls it is unbuffered. This allows both reading
and writing to the same port to work. If you want buffered ports you can (assuming
sock-port is a socket i/o port):

(require ’i/o-extensions)
(define i-port (duplicate-port sock-port "r"))
(define o-port (duplicate-port sock-port "w"))

make-stream-socket family [Function]

make-stream-socket family protocol [Function]
Returns a SOCK_STREAM socket of type family using protocol. If family has the value
AF_INET, SO_REUSEADDR will be set. The integer argument protocol corresponds to
the integer protocol numbers returned (as vector elements) from (getproto). If the
protocol argument is not supplied, the default (0) for the specified family is used.
SCM sockets look like ports opened for neither reading nor writing.

make-stream-socketpair family [Function]
make-stream-socketpair family protocol [Function]
Returns a pair (cons) of connected SOCK_STREAM (socket) ports of type family using
protocol. Many systems support only socketpairs of the af-unix family. The integer
argument protocol corresponds to the integer protocol numbers returned (as vector

Chapter 5: Packages 94

elements) from (getproto). If the protocol argument is not supplied, the default (0)
for the specified family is used.

socket :shutdown socket how [Function]
Makes socket no longer respond to some or all operations depending on the integer
argument how:

0. Further input is disallowed.
1. Further output is disallowed.

2. Further input or output is disallowed.

Socket : shutdown returns socket if successful, #f if not.

socket:connect inet-socket host-number port-number [Function]

socket:connect unix-socket pathname [Function]
Returns socket (changed to a read /write port) connected to the Internet socket on host
host-number, port port-number or the Unix socket specified by pathname. Returns
#f if not successful.

socket:bind inet-socket port-number [Function]

socket:bind unix-socket pathname [Function]
Returns inet-socket bound to the integer port-number or the unix-socket bound to
new socket in the file system at location pathname. Returns #f if not successful.
Binding a unix-socket creates a socket in the file system that must be deleted by the
caller when it is no longer needed (using delete-file).

socket:listen socket backlog [Function]
The bound (see Section 5.13.3 [Socket], page 93) socket is readied to accept connec-
tions. The positive integer backlog specifies how many pending connections will be
allowed before further connection requests are refused. Returns socket (changed to a
read-only port) if successful, #f if not.

char-ready? listen-socket [Function]
The input port returned by a successful call to socket:listen can be polled for
connections by char-ready? (see Section 4.6 [Files and Ports], page 49). This avoids
blocking on connections by socket:accept.

socket:accept socket [Function]
Accepts a connection on a bound, listening socket. Returns an input/output port for
the connection.

The following example is not too complicated, yet shows the use of sockets for multiple
connections without input blocking.

553 Scheme chat server

;35 This program implements a simple ‘chat’ server which accepts
;35 connections from multiple clients, and sends to all clients any
;33 characters received from any client.

Chapter 5: Packages 95

;33 To connect to chat ‘telnet localhost 8001’

(require ’socket)
(require ’i/o-extensions)

(let ((listener-socket (socket:bind (make-stream-socket af_inet) 8001))
(connections ’()))
(socket:listen listener-socket 5)
(do () (#f)
(let ((actives (or (apply wait-for-input 5 listener-socket connections)
>N
(cond ((null? actives))
((memg listener-socket actives)
(set! actives (cdr (memq listener-socket actives)))
(let ((con (socket:accept listener-socket)))
(display "accepting connection from ")
(display (getpeername con))
(newline)
(set! connections (cons con connections))
(display "connected" con)
(newline con))))
(set! connections
(let next ((con-list connections))
(cond ((null? comn-list) ’())
(else
(let ((con (car con-list)))
(cond ((memq con actives)
(let ((c (read-char comn)))
(cond ((eof-object? c)
(display "closing connection from ")
(display (getpeername con))
(newline)
(close-port con)
(next (cdr con-list)))
(else
(for-each (lambda (con)
(file-position con 0)
(write-char c con)
(file-position con 0))
connections)
(cons con (next (cdr con-list)))))))
(else (cons con (mext (cdr con-list)))))))))))))

You can use ‘telnet localhost 8001’ to connect to the chat server, or you can use a client
written in scheme:

533 Scheme chat client

Chapter 5: Packages 96

;35 this program connects to socket 8001. It then sends all
;33 characters from current-input-port to the socket and sends all
;33 characters from the socket to current-output-port.

(require ’socket)
(require ’i/o-extensions)

(define con (make-stream-socket af_inet))
(set! con (socket:connect con (inet:string->address "localhost") 8001))

(define (go)
(define actives (wait-for-input (* 30 60) con (current-input-port)))
(let ((cs (and actives (memq con actives) (read-char con)))
(ct (and actives (memq (current-input-port) actives) (read-char))))
(cond ((or (eof-object? cs) (eof-object? ct)) (close-port con))
(else (cond (cs (display cs)))
(cond (ct (file-position con 0)
(display ct con)
(file-position con 0)))
(g0)))))
(cond (con (display "Connecting to ")
(display (getpeername con))
(newline)
(go))
(else (display "Server not listening on port 8001")
(newline)))

5.14 SCMDB

(require ’mysql)

SCMDB is an add-on for SCM that ports the MySQL C-library to SCM.
It is available from: http://www.dedecker.net/jessie/scmdb/

5.15 Xlibscm
(require ’X1ib)

See Section “SCM Language X Interface ” in Xlibscm for the SCM interface to the X
Window System.

5.16 Hobbit

(require ’hobbit)
(require ’compile)

See Section “SCM Compiler” in hobbit for a small optimizing scheme-to-C compiler for use
with the SCM interpreter.

http://www.dedecker.net/jessie/scmdb/

97

6 The Implementation

6.1 Data Types

In the descriptions below it is assumed that long ints are 32 bits in length. Acutally, SCM
is written to work with any long int size larger than 31 bits. With some modification,
SCM could work with word sizes as small as 24 bits.

All SCM objects are represented by type SCM. Type SCM come in 2 basic flavors, Immediates
and Cells:

6.1.1 Immediates

An immediate is a data type contained in type SCM (long int). The type codes distinguish-
ing immediate types from each other vary in length, but reside in the low order bits.

IMP x [Macro]

NIMP x [Macro]
Return non-zero if the SCM object x is an immediate or non-immediate type, respec-
tively.

inum [Immediate]

immediate 30 bit signed integer. An INUM is flagged by a 1 in the second to low
order bit position. The high order 30 bits are used for the integer’s value.

INUMP x [Macro]

NINUMP x [Macro]
Return non-zero if the SCM x is an immediate integer or not an immediate
integer, respectively.

INUM x [Macro]
Returns the C long integer corresponding to SCM x.

MAKINUM x [Macro]
Returns the SCM inum corresponding to C long integer x.

INUMO [Immediate Constant]
is equivalent to MAKINUM(O).

Computations on INUMs are performed by converting the arguments to C integers
(by a shift), operating on the integers, and converting the result to an inum. The
result is checked for overflow by converting back to integer and checking the reverse
operation.

The shifts used for conversion need to be signed shifts. If the C implementation does
not support signed right shift this fact is detected in a #if statement in scmfig.h
and a signed right shift, SRS, is constructed in terms of unsigned right shift.

ichr [Immediate]
characters.

Chapter 6: The Implementation 98

ICHRP x [Macro]
Return non-zero if the SCM object x is a character.

ICHR x [Macro]
Returns corresponding unsigned char.

MAKICHR x [Macro]
Given char x, returns SCM character.

iflags [Immediate]
These are frequently used immediate constants.

SCM BOOL_T [Immediate Constant]
#t

SCM BOOL_F [Immediate Constant]
#f

SCM EOL [Immediate Constant)]

(). If SICP is #defined, EOL is #defined to be identical with BOOL_F. In this
case, both print as #f.

SCM EOF_VAL [Immediate Constant]
end of file token, #<eof>.

SCM UNDEFINED [Immediate Constant]
#<undefined> used for variables which have not been defined and absent op-
tional arguments.

SCM UNSPECIFIED [Immediate Constant)]
#<unspecified> is returned for those procedures whose return values are not
specified.

IFLAGP n [Macro]

Returns non-zero if n is an ispcsym, isym or iflag.

ISYMP n [Macro]

Returns non-zero if n is an ispcsym or isym.

ISYMNUM n [Macro]
Given ispcsym, isym, or iflag n, returns its index in the C array isymnames[].

ISYMCHARS n [Macro]
Given ispesym, isym, or iflag n, returns its char * representation (from isymnames[]).

MAKSPCSYM n [Macro]
Returns SCM ispcsym n.

MAKISYM n [Macro]
Returns SCM iisym n.

Chapter 6: The Implementation 99

MAKIFLAG n [Macro]
Returns SCM iflag n.

isymnames [Variable]
An array of strings containing the external representations of all the ispcsym, isym,
and iflag immediates. Defined in repl.c.

NUM_ISPCSYM [Constant]
NUM_ISYMS [Constant|
The number of ispcsyms and ispcsyms+isyms, respectively. Defined in scm.h.

isym [Immediate]
and, begin, case, cond, define, do, if, lambda, let, let*, letrec, or, quote, set!,
#f, #t, #<undefined>, #<eof>, (), and #<unspecified>.

ispcsym [CAR Immediate]
special symbols: syntax-checked versions of first 14 isyms

iloc [CAR Immediate]
indexes to a variable’s location in environment

gloc [CAR Immediate]
pointer to a symbol’s value cell

CELLPTR [Immediate]
pointer to a cell (not really an immediate type, but here for completeness). Since
cells are always 8 byte aligned, a pointer to a cell has the low order 3 bits 0.

There is one exception to this rule, CAR Immediates, described next.

A CAR Immediate is an Immediate point which can only occur in the CARs of evaluated
code (as a result of ceval’s memoization process).

6.1.2 Cells

Cells represent all SCM objects other than immediates. A cell has a CAR and a CDR. Low-
order bits in CAR identify the type of object. The rest of CAR and CDR hold object data. The
number after tc specifies how many bits are in the type code. For instance, tc7 indicates
that the type code is 7 bits.

NEWCELL x [Macro]
Allocates a new cell and stores a pointer to it in SCM local variable x.

Care needs to be taken that stores into the new cell pointed to by x do not create an
inconsistent object. See Section 6.2.6 [Signals|, page 116.

All of the C macros decribed in this section assume that their argument is of type SCM and
points to a cell (CELLPTR).

CAR x [Macro]
CDR x [Macro]
Returns the car and cdr of cell x, respectively.

Chapter 6: The Implementation 100

TYP3 x [Macro]
TYP7 x [Macro]
TYP16 x [Macro]

Returns the 3, 7, and 16 bit type code of a cell.

tc3_cons [Cell]
scheme cons-cell returned by (cons argl arg2).

CONSP x [Macro]
NCONSP x [Macro]
Returns non-zero if x is a tc3_cons or isn’t, respectively.

tc3_closure [Cell]
applicable object returned by (lambda (args) ...). tc3_closures have a pointer to
the body of the procedure in the CAR and a pointer to the environment in the CDR.
Bits 1 and 2 (zero-based) in the CDR indicate a lower bound on the number of required
arguments to the closure, which is used to avoid allocating rest argument lists in the
environment cache. This encoding precludes an immediate value for the CDR: In the
case of an empty environment all bits above 2 in the CDR are zero.

CLOSUREP x [Macro]
Returns non-zero if x is a tc3_closure.

CODE x [Macro]

ENV x [Macro]

Returns the code body or environment of closure x, respectively.

ARGC x [Macro]
Returns the a lower bound on the number of required arguments to closure x,
it cannot exceed 3.

6.1.3 Header Cells

Headers are Cells whose CDRs point elsewhere in memory, such as to memory allocated by
malloc.

spare [Header]
spare tc7 type code

tc7_vector [Header]
scheme vector.

VECTORP x [Macro]

NVECTORP x [Macro]
Returns non-zero if x is a tc7_vector or if not, respectively.

VELTS x [Macro]

LENGTH x [Macro]

Returns the C array of SCMs holding the elements of vector x or its length,
respectively.

Chapter 6: The Implementation 101

tc7_ssymbol [Header]
static scheme symbol (part of initial system)
tc7_msymbol [Header]
malloced scheme symbol (can be GCed)
SYMBOLP x [Macro]
Returns non-zero if x is a tc7_ssymbol or tc7_msymbol.
CHARS x [Macro]
UCHARS x [Macro]
LENGTH x [Macro]
Returns the C array of chars or as unsigned chars holding the elements of
symbol x or its length, respectively.
tc7_string [Header]
scheme string
STRINGP x [Macro]
NSTRINGP x [Macro]
Returns non-zero if x is a tc7_string or isn’t, respectively.
CHARS x [Macro]
UCHARS x [Macro]
LENGTH x [Macro]
Returns the C array of chars or as unsigned chars holding the elements of

string x or its length, respectively.

tc7_Vbool [Header]
uniform vector of booleans (bit-vector)

tc7_V£ixZ32 [Header]
uniform vector of integers

tc7_V£ixN32 [Header|
uniform vector of non-negative integers

tc7_VEixN16 [Header]
uniform vector of non-negative short integers

tc7_VEixZ16 [Header]
uniform vector of short integers

tc7_VEixN8 [Header]
uniform vector of non-negative bytes

tc7_VfixZ8 [Header]
uniform vector of signed bytes

tc7_Vi1loR32 [Header]
uniform vector of short inexact real numbers

Chapter 6: The Implementation 102

tc7_ViloR64 [Header]

uniform vector of double precision inexact real numbers

tc7_VEloC64 [Header]
uniform vector of double precision inexact complex numbers

tc7_contin [Header]
applicable object produced by call-with-current-continuation

tc7_specfun [Header]
subr that is treated specially within the evaluator

apply and call-with-current-continuation are denoted by these objects. Their
behavior as functions is built into the evaluator; they are not directly associated with
C functions. This is necessary in order to make them properly tail recursive.

tcl6_cclo is a subtype of tc7_specfun, a cclo is similar to a vector (and is GCed like
one), but can be applied as a function:
1. the cclo itself is consed onto the head of the argument list

2. the first element of the cclo is applied to that list. Cclo invocation is currently
not tail recursive when given 2 or more arguments.

makcclo proc len [Function]
makes a closure from the subr proc with len-1 extra locations for SCM data.
Elements of a cclo are referenced using VELTS (cclo) [n] just as for vectors.

CCLO_LENGTH cclo [Macro]
Expands to the length of cclo.

6.1.4 Subr Cells

A Subr is a header whose CDR points to a C code procedure. Scheme primitive procedures are
subrs. Except for the arithmetic tc7_cxrs, the C code procedures will be passed arguments
(and return results) of type SCM.

tc7_asubr [Subr]
associative C function of 2 arguments. Examples are +, -, *, /, max, and min.

tc7_subr_0 [Subr]
C function of no arguments.

tc7_subr_1 [Subr]
C function of one argument.

tc7_cxr [Subr]
These subrs are handled specially. If inexact numbers are enabled, the CDR should
be a function which takes and returns type double. Conversions are handled in the
interpreter.

floor, ceiling, truncate, round, real-sqrt, real-exp, real-ln, real-sin,
real-cos, real-tan, real-asin, real-acos, real-atan, real-sinh, real-cosh,

Chapter 6: The Implementation 103

real-tanh, real-asinh, real-acosh, real-atanh, and exact->inexact are
defined this way.

If the CDR is 0 (NULL), the name string of the procedure is used to control traversal
of its list structure argument.

car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar,
cdddr, caaaar, caaadr, caadar, caaddr, cadaar, cadadr, caddar, cadddr, cdaaar,
cdaadr, cdadar, cdaddr, cddaar, cddadr, cdddar, and cddddr are defined this way.

tc7_subr_3 [Subr]
C function of 3 arguments.

tc7_subr_2 [Subr]
C function of 2 arguments.

tc7_rpsubr [Subr]
transitive relational predicate C function of 2 arguments. The C function should
return either BOOL_T or BOOL_F.

tc7_subr_1lo [Subr]
C function of one optional argument. If the optional argument is not present,
UNDEFINED is passed in its place.

tc7_subr_2o [Subr]
C function of 1 required and 1 optional argument. If the optional argument is not
present, UNDEFINED is passed in its place.

tc7_lsubr_2 [Subr]
C function of 2 arguments and a list of (rest of) SCM arguments.

tc7_lsubr [Subr]
C function of list of SCM arguments.

6.1.5 Defining Subrs

If CCLO is #defined when compiling, the compiled closure feature will be enabled. It is
automatically enabled if dynamic linking is enabled.

The SCM interpreter directly recognizes subrs taking small numbers of arguments. In order
to create subrs taking larger numbers of arguments use:

make_gsubr name req opt rest fcn [Function]
returns a cclo (compiled closure) object of name char * name which takes int req
required arguments, int opt optional arguments, and a list of rest arguments if int
rest is 1 (0 for not).

SCM (*fcn) () is a pointer to a C function to do the work.

The C function will always be called with req + opt + rest arguments, optional argu-
ments not supplied will be passed UNDEFINED. An error will be signaled if the subr is
called with too many or too few arguments. Currently a total of 10 arguments may
be specified, but increasing this limit should not be difficult.

/* A silly example, taking 2 required args,

Chapter 6: The Implementation

1 optional, and a list of rest args */
#include <scm.h>

SCM gsubr_211(reql,req2,opt,rst)
SCM reql,req2,opt,rst;

{

lputs("gsubr-2-1-1:\n reql: ", cur_outp);
display(reql,cur_outp);

lputs("\n req2: ", cur_outp);
display(req2,cur_outp);

lputs("\n opt: ", cur_outp);
display(opt,cur_outp);

lputs("\n rest: ", cur_outp);

display(rst,cur_outp) ;
newline(cur_outp) ;
return UNSPECIFIED;

}

void init_gsubr211()

{
make_gsubr ("gsubr-2-1-1", 2, 1, 1, gsubr_211);
}

6.1.6 Ptob Cells

104

A ptob is a port object, capable of delivering or accepting characters. See Section “Ports”
in Revised(5) Report on the Algorithmic Language Scheme. Unlike the types described so
far, new varieties of ptobs can be defined dynamically (see Section 6.1.7 [Defining Ptobs],

page 105). These are the initial ptobs:

tcl6_inport
input port.

tcl6_outport
output port.

tcl6_ioport
input-output port.

tcl6_inpipe
input pipe created by popen().

tcl6_outpipe
output pipe created by popen().

tcl6_strport
String port created by cwos () or cwis().

[ptob]

[ptob]

[ptob]

[ptob]

[ptob]

[ptob]

Chapter 6: The Implementation 105

tcl6_sfport [ptob]

Software (virtual) port created by mksfpt () (see Section 4.6.4 [Soft Ports|, page 52).
PORTP x [Macro]
OPPORTP x [Macro]
OPINPORTP x [Macro]
OPOUTPORTP x [Macro]
INPORTP x [Macro]
OUTPORTP x [Macro]

Returns non-zero if x is a port, open port, open input-port, open output-port, input-
port, or output-port, respectively.

OPENP x [Macro]
CLOSEDP x [Macro]
Returns non-zero if port x is open or closed, respectively.

STREAM x [Macro]
Returns the FILE * stream for port x.

Ports which are particularly well behaved are called fports. Advanced operations like
file-position and reopen-file only work for fports.

FPORTP x [Macro]

OPFPORTP x [Macro]

OPINFPORTP x [Macro]

OPOUTFPORTP x [Macro]
Returns non-zero if x is a port, open port, open input-port, or open output-port,
respectively.

6.1.7 Defining Ptobs

ptobs are similar to smobs but define new types of port to which SCM procedures can read
or write. The following functions are defined in the ptobfuns:

typedef struct {
SCM (*mark)P((SCM ptr));
int (*free)P((FILE *p));
int (*print)P((SCM exp, SCM port, int writing));
SCM (*equalp)P((SCM, SCM));
int (x*fputc)P((int c, FILE #*p));
int (#fputs)P((char *s, FILE *p));
sizet (*fwrite)P((char *s, sizet siz, sizet num, FILE *p));
int (xfflush)P((FILE *stream));
int (xfgetc)P((FILE *p));
int (*fclose)P((FILE #*p));
} ptobfuns;

The .free component to the structure takes a FILE * or other C construct as its argument,
unlike .free in a smob, which takes the whole smob cell. Often, .free and .fclose can
be the same function. See fptob and pipob in sys.c for examples of how to define ptobs.

Chapter 6: The Implementation 106

Ptobs that must allocate blocks of memory should use, for example, must_malloc rather
than malloc See Section 6.2.9 [Allocating memory], page 119.

6.1.8 Smob Cells

A smob is a miscellaneous datatype. The type code and GCMARK bit occupy the lower
order 16 bits of the CAR half of the cell. The rest of the CAR can be used for sub-type or
other information. The CDR contains data of size long and is often a pointer to allocated
memory.

Like ptobs, new varieties of smobs can be defined dynamically (see Section 6.1.9 [Defining
Smobs|, page 107). These are the initial smobs:

tc_free_cell [smob]
unused cell on the freelist.

tcl16_flo [smob]
single-precision float.

Inexact number data types are subtypes of type tc16_flo. If the sub-type is:
0. a single precision float is contained in the CDR.
1. CDR is a pointer to a malloced double.

3. CDR is a pointer to a malloced pair of doubles.

tc_dblr [smob)]
double-precision float.

tc_dblc [smob)]
double-precision complex.

tcl6_bigpos [smob)]
tcl6_bigneg [smob]
positive and negative bignums, respectively.

Scm has large precision integers called bignums. They are stored in sign-magnitude
form with the sign occuring in the type code of the SMOBs bigpos and bigneg. The
magnitude is stored as a malloced array of type BIGDIG which must be an unsigned
integral type with size smaller than long. BIGRAD is the radix associated with BIGDIG.

NUMDIGS_MAX (defined in scmfig.h) limits the number of digits of a bignum to 1000.
These digits are base BIGRAD, which is typically 65536, giving 4816 decimal digits.

Why only 4800 digits? The simple multiplication algorithm SCM uses is O(n"2); this
means the number of processor instructions required to perform a multiplication is
some multiple of the product of the number of digits of the two multiplicands.

digits * digits ==> operations
5 X

50 100 * x
500 10000 * x

5000 1000000 * x

Chapter 6: The Implementation 107

To calculate numbers larger than this, FFT multiplication [O(n*log(n))] and other
specialized algorithms are required. You should obtain a package which specializes in
number-theoretical calculations:

ftp://megrez.math.u-bordeaux.fr/pub/pari/

tcl6_promise [smob)]
made by DELAY. See Section “Control features” in Revised(5) Scheme.

tcl6_arbiter [smob]
synchronization object. See Section 4.5 [Process Synchronization|, page 48.

tcl6_macro [smob)]
macro expanding function. See Section 4.9.4 [Macro Primitives], page 59.

tcl6_array [smob]
multi-dimensional array. See Section 5.4 [Arrays|, page 69.

This type implements both conventional arrays (those with arbitrary data as elements
see Section 5.4.1 [Conventional Arrays|, page 70) and uniform arrays (those with
elements of a uniform type see Section 5.4.2 [Uniform Array|, page 71).

Conventional Arrays have a pointer to a vector for their CDR. Uniform Arrays have a
pointer to a Uniform Vector type (string, Vbool, VfixZ32, VfixN32, VloR32, VloR64,
or VloC64) in their CDR.

6.1.9 Defining Smobs

Here is an example of how to add a new type named foo to SCM. The following lines need
to be added to your code:

long tcl6_foo;
The type code which will be used to identify the new type.

static smobfuns foosmob = {markfoo,freefoo,printfoo,equalpfoo};
smobfuns is a structure composed of 4 functions:

typedef struct {
SCM (*mark)P((SCM)) ;
sizet (xfree)P((CELLPTR));
int (*print)P((SCM exp, SCM port, int writing));
SCM (*equalp)P((SCM, SCM));
} smobfuns;

smob.mark
is a function of one argument of type SCM (the cell to mark) and
returns type SCM which will then be marked. If no further objects
need to be marked then return an immediate object such as BOOL_
F. The smob cell itself will already have been marked. Note This
is different from SCM versions prior to 5¢5. Only additional data
specific to a smob type need be marked by smob.mark.

2 functions are provided:

markcdr (ptr)
returns CDR(ptr).

ftp://megrez.math.u-bordeaux.fr/pub/pari/

Chapter 6: The Implementation 108

markO (ptr)
is a no-op used for smobs containing no additional SCM
data. 0 may also be used in this case.

smob.free

is a function of one argument of type CELLPTR (the cell to collected)
and returns type sizet which is the number of malloced bytes
which were freed. Smob.free should free any malloced storage
associated with this object. The function free0(ptr) is provided
which does not free any storage and returns 0.

smob.print

is 0 or a function of 3 arguments. The first, of type SCM, is the smob
object. The second, of type SCM, is the stream on which to write the
result. The third, of type int, is 1 if the object should be writen, 0
if it should be displayed, and 2 if it should be writen for an error
report. This function should return non-zero if it printed, and zero
otherwise (in which case a hexadecimal number will be printed).

smob.equalp

is 0 or a function of 2 SCM arguments. Both of these arguments
will be of type tc16foo. This function should return BOOL_T if
the smobs are equal, BOOL_F if they are not. If smob.equalp is 0,

equal? will return BOOL_F if they are not eq?.

tcl6_foo = newsmob (&foosmob) ;

Allocates the new type with the functions from foosmob. This line goes in an

init_ routine.

Promises and macros in eval.c and arbiters in repl.c provide examples of SMOBs. There
are a maximum of 256 SMOBs. Smobs that must allocate blocks of memory should use, for
example, must_malloc rather than malloc See Section 6.2.9 [Allocating memory], page 119.

6.1.10 Data Type Representations

IMMEDIATE: B,D,E,F=data bit, C=flag code, P=pointer address bit

inum BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB10
ichr BBBBBBBBBBBBBBBBBBBBBBBB11110100

iflag CCCCCCC101110100
isym CCCCCCC001110100

IMCAR: only in car of evaluated code, cdr has cell’s GC bit
ispcsym 000CCCCO0OCCCC100

iloc ODDDDDDDDDDDEFFFFFFFFFFF11111100
pointer PPPPPPPPPPPPPPPPPPPPPPPPPPPPPO00O
gloc PPPPPPPPPPPPPPPPPPPPPPPPPPPPP(O0O1

HEAP CELL: G=gc_mark; 1 during mark, 0 other times.
1s and 0s here indicate type. G missing means sys (not GC’d)
SIMPLE

Chapter 6: The Implementation

cons SCM car.............. 0
closure SCM code........... 011
HEADERs:
ssymbol long length....G0000101
msymbol long length....GO000111
string long length....G0001101
vector long length....GO001111
VEixN8 long length....G0010101
VEixZ8 long length....G0010111
VEixN16 long length....G0011101
VEixZ16 long length....GO011111
VEixN32 long length....G0100101
VEixZ32 long length....G0100111
VEixN64 long length....G0101101
VEixZ64 long length....GO0101111
VEIoR32 long length....G0110101
VfloC32 long length....G0110111
VfloR64 long length....G0111101
VfloC64 long length....GO111111
Vbool long length....G1000101
contin long length....G1001101
specfun xxxxxxxxG1001111
cclo ..short length..xxxxxx10G1001111
PTOBs
port int portnum.CwroxxxxxxxxG1000111
socket int portnum.CO001xxxxxxxxG1000111
inport int portnum.CO1lxxxxxxxxG1000111
outport int portnum.0101xxxxxxxxG1000111
ioport int portnum.Cl11xxxxxxxxG1000111
fport int portnum.C 00000000G1000111
pipe int portnum.C 00000001G1000111
strport 00000000000.0 00000010G1000111
sfport int portnum.C 00000011G1000111
SUBRs

subr_0 int hpoff..... 01010101
subr_1 int hpoff..... 01010111
CXT ciiiiia int hpoff..... 01011101
subr_3 int hpoff..... 01011111
subr_2 int hpoff..... 01100101
asubr int hpoff..... 01100111
subr_lo int hpoff..... 01101101
subr_20 int hpoff..... 01101111
lsubr_2 int hpoff..... 01110101
lsubr int hpoff..... 01110111
rpsubr int hpoff..... 01111101

short

*chars
**kelts

char *words

*xwords

109

medium *words....

*wyords

long *words

*words
*xwords
*words
*words
*words

*stream..........
*stream..........

Chapter 6: The Implementation 110

free_cell

000000000000000000000000G1111111 *free_cell........ 000
flo 000000000000000000000001G1111111 float num............
dblr 000000000000000100000001G1111111 double *real..........
dblc 000000000000001100000001G1111111 complex *CmpX..........
bignum ...int length...0000001 G1111111 short *digits..........
bigpos ...int length...00000010G1111111 short *digits..........
bigneg ...int length...00000011G1111111 short *digits..........

xxxxxxxXx = code assigned by newsmob();

promise 000000000000000fxxxxxxxxG1111111 SCM val..............
arbiter 0000000000000001xxxxxxxxG1111111 SCM name.............
macro 000000000000000mxxxxxxxxG1111111 SCM name.............
array ...short rank..cxxxxxxxxG1111111 Xarray....ooveenn.nn

6.2 Operations

6.2.1 Garbage Collection

The garbage collector is in the latter half of sys.c. The primary goal of garbage collection
(or GC) is to recycle those cells no longer in use. Immediates always appear as parts of
other objects, so they are not subject to explicit garbage collection.

All cells reside in the heap (composed of heap segments). Note that this is different from
what Computer Science usually defines as a heap.

6.2.1.1 Marking Cells

The first step in garbage collection is to mark all heap objects in use. Each heap cell has a
bit reserved for this purpose. For pairs (cons cells) the lowest order bit (0) of the CDR is
used. For other types, bit 8 of the CAR is used. The GC bits are never set except during
garbage collection. Special C macros are defined in scm.h to allow easy manipulation when
GC bits are possibly set. CAR, TYP3, and TYP7 can be used on GC marked cells as they are.

GCCDR x [Macro]
Returns the CDR of a cons cell, even if that cell has been GC marked.

GCTYP16 x [Macro]
Returns the 16 bit type code of a cell.

We need to (recursively) mark only a few objects in order to assure that all accessible objects
are marked. Those objects are sys_protects[] (for example, dynwinds), the current C-
stack and the hash table for symbols, symhash.

void gc_mark (SCM obj) [Function]
The function gc_mark () is used for marking SCM cells. If obj is marked, gc_mark ()
returns. If obj is unmarked, gc_mark sets the mark bit in obj, then calls gc_mark ()
on any SCM components of obj. The last call to gc_mark() is tail-called (looped).

Chapter 6: The Implementation 111

void mark_locations (STACKITEM x|, sizet len) [Function]
The function mark_locations is used for marking segments of C-stack or saved seg-
ments of C-stack (marked continuations). The argument len is the size of the stack
in units of size (STACKITEM).

Each longword in the stack is tried to see if it is a valid cell pointer into the heap. If
it is, the object itself and any objects it points to are marked using gc_mark. If the
stack is word rather than longword aligned (#define WORD_ALIGN), both alignments
are tried. This arrangement will occasionally mark an object which is no longer used.
This has not been a problem in practice and the advantage of using the c-stack far
outweighs it.

6.2.1.2 Sweeping the Heap
After all found objects have been marked, the heap is swept.

The storage for strings, vectors, continuations, doubles, complexes, and bignums is managed
by malloc. There is only one pointer to each malloc object from its type-header cell in the
heap. This allows malloc objects to be freed when the associated heap object is garbage
collected.

static void gc_sweep () [Function]
The function gc_sweep scans through all heap segments. The mark bit is cleared
from marked cells. Unmarked cells are spliced into freelist, where they can again be
returned by invocations of NEWCELL.

If a type-header cell pointing to malloc space is unmarked, the malloc object is freed.
If the type header of smob is collected, the smob’s free procedure is called to free its
storage.

6.2.2 Memory Management for Environments

e FEcache was designed and implemented by Radey Shouman.

e This documentation of ecache was written by Tom Lord.

The memory management component of SCM contains special features which optimize the
allocation and garbage collection of environments.

The optimizations are based on certain facts and assumptions:

The SCM evaluator creates many environments with short lifetimes and these account of a
large portion of the total number of objects allocated.

The general purpose allocator allocates objects from a freelist, and collects using a
mark /sweep algorithm. Research into garbage collection suggests that such an allocator is
sub-optimal for object populations containing a large portion of short-lived members and
that allocation strategies involving a copying collector are more appropriate.

It is a property of SCM, reflected throughout the source code, that a simple copying collector
can not be used as the general purpose memory manager: much code assumes that the
run-time stack can be treated as a garbage collection root set using conservative garbage
collection techniques, which are incompatible with objects that change location.

Nevertheless, it is possible to use a mostly-separate copying-collector, just for environments.
Roughly speaking, cons pairs making up environments are initially allocated from a small

Chapter 6: The Implementation 112

heap that is collected by a precise copying collector. These objects must be handled specially
for the collector to work. The (presumably) small number of these objects that survive one
collection of the copying heap are copied to the general purpose heap, where they will later
be collected by the mark/sweep collector. The remaining pairs are more rapidly collected
than they would otherwise be and all of this collection is accomplished without having to
mark or sweep any other segment of the heap.

Allocating cons pairs for environments from this special heap is a heuristic that approxi-
mates the (unachievable) goal:

allocate all short-lived objects from the copying-heap, at no extra cost in allo-
cation time.

Implementation Details

A separate heap (ecache_v) is maintained for the copying collector. Pairs are allocated
from this heap in a stack-like fashion. Objects in this heap may be protected from garbage
collection by:

1. Pushing a reference to the object on a stack specially maintained for that purpose.
This stack (scm_estk) is used in place of the C run-time stack by the SCM evaluator
to hold local variables which refer to the copying heap.

2. Saving a reference to every object in the mark/sweep heap which directly references
the copying heap in a root set that is specially maintained for that purpose (scm_egc_
roots). If no object in the mark/sweep heap directly references an object from the
copying heap, that object can be preserved by storing a direct reference to it in the
copying-collector root set.

3. Keeping no other references to these objects, except references between the objects
themselves, during copying collection.

When the copying heap or root-set becomes full, the copying collector is invoked. All
protected objects are copied to the mark-sweep heap. All references to those objects are
updated. The copying collector root-set and heap are emptied.

References to pairs allocated specificly for environments are inaccessible to the Scheme
procedures evaluated by SCM. These pairs are manipulated by only a small number of code
fragments in the interpreter. To support copying collection, those code fragments (mostly
in eval.c) have been modified to protect environments from garbage collection using the
three rules listed above.

During a mark-sweep collection, the copying collector heap is marked and swept almost like
any ordinary segment of the general purpose heap. The only difference is that pairs from
the copying heap that become free during a sweep phase are not added to the freelist.

The environment cache is disabled by adding #define NO_ENV_CACHE to eval.c; all envi-
ronment cells are then allocated from the regular heap.

Relation to Other Work

This work seems to build upon a considerable amount of previous work into garbage collec-
tion techniques about which a considerable amount of literature is available.

Chapter 6: The Implementation 113

6.2.3 Dynamic Linking Support

Dynamic linking has not been ported to all platforms. Operating systems in the BSD
family (a.out binary format) can usually be ported to DLD. The dI library (#define SUN_
DL for SCM) was a proposed POSIX standard and may be available on other machines with
COFF binary format. For notes about porting to MS-Windows and finishing the port to
VMS Section 6.4.1 [VMS Dynamic Linking], page 131.

DLD is a library package of C functions that performs dynamic link editing on GNU /Linux,
VAX (Ultrix), Sun 3 (SunOS 3.4 and 4.0), SPARCstation (SunOS 4.0), Sequent Symmetry
(Dynix), and Atari ST. It is available from:

e ftp.gnu.org:pub/gnu/dld-3.3.tar.gz

These notes about using libdl on SunOS are from gcc.info:

On a Sun, linking using GNU CC fails to find a shared library and reports that
the library doesn’t exist at all.

This happens if you are using the GNU linker, because it does only static
linking and looks only for unshared libraries. If you have a shared library with
no unshared counterpart, the GNU linker won’t find anything.

We hope to make a linker which supports Sun shared libraries, but please don’t
ask when it will be finished—we don’t know.

Sun forgot to include a static version of 1ibdl.a with some versions of SunOS
(mainly 4.1). This results in undefined symbols when linking static binaries
(that is, if you use ‘-static’). If you see undefined symbols ‘_dlclose’,
‘_dlsym’ or ‘_dlopen’ when linking, compile and link against the file
mit/util/misc/dlsym.c from the MIT version of X windows.

6.2.4 Configure Module Catalog

The SLIB module catalog can be extended to define other require-able packages by adding
calls to the Scheme source file mkimpcat.scm. Within mkimpcat.scm, the following proce-
dures are defined.

add-link feature object-file lib1l . .. [Function]
feature should be a symbol. object-file should be a string naming a file containing
compiled object-code. Each libn argument should be either a string naming a library
file or #f£.

If object-file exists, the add-1ink procedure registers symbol feature so that the first
time require is called with the symbol feature as its argument, object-file and the
libl ... are dynamically linked into the executing SCM session.

If object-file exists, add-1ink returns #t, otherwise it returns #f.
For example, to install a compiled dll foo, add these lines to mkimpcat.scm:

(add-1link ’foo
(in-vicinity (implementation-vicinity) "foo"
link:able-suffix))

Chapter 6: The Implementation 114

add-alias alias feature [Function]
alias and feature are symbols. The procedure add-alias registers alias as an alias
for feature. An unspecified value is returned.

add-alias causes (require ’alias) to behave like (require ’feature).

add-source feature filename [Function]
feature is a symbol. filename is a string naming a file containing Scheme source
code. The procedure add-source registers feature so that the first time require is
called with the symbol feature as its argument, the file filename will be loaded. An
unspecified value is returned.

Remember to delete the file slibcat after modifying the file mkimpcat . scm in order to force
SLIB to rebuild its cache.

6.2.5 Automatic C Preprocessor Definitions

These ‘#defines’ are automatically provided by preprocessors of various C compilers. SCM
uses the presence or absence of these definitions to configure include file locations and aliases
for library functions. If the definition(s) corresponding to your system type is missing as
your system is configured, add -Dflag to the compilation command lines or add a #define
flag line to scmfig.h or the beginning of scmfig.h.

#define Platforms:

ARM_ULIB Huw Rogers free unix library for acorn archimedes
AZTEC_C Aztec_C 5.2a

__CYGWIN__ Cygwin

__CYGWIN32__ Cygwin

_DCC Dice C on AMIGA

__GNUC__ Gnu CC (and DJGPP)

__EMX__ Gnu C port (gcc/emx 0.8e) to 0S/2 2.0
__HIGHC__ MetaWare High C

__IBMC__ C-Set++ on 0S/2 2.1

_MSC_VER MS VisualC++ 4.2

MWC Mark Williams C on COHERENT
__MWERKS__ Metrowerks Compiler; Macintosh and WIN32 (7)
_POSIX_SOURCE 77

_QC Microsoft QuickC

__STDC__ ANSI C compliant

__TURBOC__ Turbo C and Borland C

__USE_POSIX 77

__WATCOMC__ Watcom C on MS-DOS

__ZTC__ Zortech C

_AIX AIX operating system

__APPLE__ Apple Darwin

AMIGA SAS/C 5.10 or Dice C on AMIGA
__amigaos__ Gnu CC on AMIGA

atarist ATARI-ST under Gnu CC

Chapter 6: The Implementation

__DragonflyBSD_

__FreeBSD_
GNUDOS
__G032__
hpux

linux
macintosh
MCH_AMIGA
__MACH__
__MINGW32_
MSDOS
_MSDOS
__MSDOS__
__NetBSD__
nosve

__OpenBSD__

SVR2
sun
__SVR4
THINK_C
ultrix
unix
__unix
_UNICOS
vaxc

VAXC
vaxllc
VAX11
_Windows
_WIN32
_WIN32_WCE
vms

__alpha
__alpha_
--hppa__
hp9000s800
__ia64
__ila64__
_LONGLONG
__1i386__
1386
_M_ARM
_M_ARMT
MULTIMAX
ppc
--PpC__

DragonflyBSD
FreeBSD
DJGPP (obsolete in version 1.08)
DJGPP (future?)
HP-UX
GNU/Linux
Macintosh (THINK_C and __MWERKS__ define)
Aztec_c 5.2a on AMIGA
Apple Darwin
MinGW - Minimalist GNU for Windows
Microsoft C 5.10 and 6.00A
Microsoft CLARM and CLTHUMB compilers.
Turbo C, Borland C, and DJGPP
NetBSD
Control Data NOS/VE
OpenBSD
System V Revision 2.
Sun0S
Sun0S
developement environment for the Macintosh
VAX with ULTRIX operating system.
most Unix and similar systems and DJGPP (!7)
Gnu CC and DJGPP
Cray operating system
VAX C compiler
VAX C compiler
VAX C compiler
VAX C compiler
Borland C 3.1 compiling for Windows
MS VisualC++ 4.2 and Cygwin (Win32 API)
MS Windows CE
(and VMS) VAX-11 C under VMS.

DEC Alpha processor

DEC Alpha processor

HP RISC processor

HP RISC processor

GCC on IA64

GCC on IA64

GCC on IA64

DJGPP

DJGPP

Microsoft CLARM compiler defines as 4 for ARM.

Microsoft CLTHUMB compiler defines as 4 for Thumb.

Encore computer
PowerPC
PowerPC

115

Chapter 6: The Implementation 116

pyTr Pyramid 9810 processor
__sgi__ Silicon Graphics Inc.
sparc SPARC processor
sequent Sequent computer

tahoe CCI Tahoe processor
vax VAX processor

__x86_64 AMD Opteron

6.2.6 Signals

init_signals [Function]
(in scm.c) initializes handlers for SIGINT and SIGALRM if they are supported by the
C implementation. All of the signal handlers immediately reestablish themselves by
a call to signal().

int_signal sig [Function]
alrm_signal sig [Function]
The low level handlers for SIGINT and SIGALRM.

If an interrupt handler is defined when the interrupt is received, the code is interpreted.
If the code returns, execution resumes from where the interrupt happened. Call-with-
current-continuation allows the stack to be saved and restored.

SCM does not use any signal masking system calls. These are not a portable feature.
However, code can run uninterrupted by use of the C macros DEFER_INTS and ALLOW_INTS.

DEFER_INTS [Macro]
sets the global variable ints_disabled to 1. If an interrupt occurs during a time
when ints_disabled is 1, then deferred_proc is set to non-zero, one of the global
variables SIGINT_deferred or SIGALRM_deferred is set to 1, and the handler returns.

ALLOW_INTS [Macro]
Checks the deferred variables and if set the appropriate handler is called.

Calls to DEFER_INTS can not be nested. An ALLOW_INTS must happen before another
DEFER_INTS can be done. In order to check that this constraint is satisfied #define
CAREFUL_INTS in scmfig.h.

6.2.7 C Macros

ASRTER cond arg pos subr [Macro]
signals an error if the expression (cond) is 0. arg is the offending object, subr is the
string naming the subr, and pos indicates the position or type of error. pos can be
one of

e ARGn (> 5 or unknown ARG number)
e ARG1
e ARG2
e ARG3
e ARG4

Chapter 6: The Implementation 117

e ARGH

e WNA (wrong number of args)
e QVFLOW

e (QUTOFRANGE

e NALLOC

e EXIT

e HUP_SIGNAL

e INT_SIGNAL

e FPE_SIGNAL

e BUS_SIGNAL

e SEGV_SIGNAL

e ALRM_SIGNAL

e a C string (char *)

Error checking is not done by ASRTER if the flag RECKLESS is defined. An error
condition can still be signaled in this case with a call to wta(arg, pos, subr).

ASRTGO cond label [Macro]
goto label if the expression (cond) is 0. Like ASRTER, ASRTGO does is not active if the
flag RECKLESS is defined.

6.2.8 Changing Scm

When writing C-code for SCM, a precaution is recommended. If your routine allocates a
non-cons cell which will not be incorporated into a SCM object which is returned, you need
to make sure that a SCM variable in your routine points to that cell as long as part of it
might be referenced by your code.

In order to make sure this SCM variable does not get optimized out you can put this assign-
ment after its last possible use:

SCM_dummyl = foo;
or put this assignment somewhere in your routine:
SCM_dummyl = (SCM) &foo;

SCM_dummy variables are not currently defined. Passing the address of the local SCM variable
to any procedure also protects it. The procedure scm_protect_temp is provided for this
purpose.

void scm_protect_temp (SCM *ptr) [Function]
Forces the SCM object ptr to be saved on the C-stack, where it will be traced for
GC.

Also, if you maintain a static pointer to some (non-immediate) SCM object, you must either
make your pointer be the value cell of a symbol (see errobj for an example) or (permanently)
add your pointer to sys_protects using:

Chapter 6: The Implementation 118

SCM scm_gc_protect (SCM obj) [Function]

Permanently adds obj to a table of objects protected from garbage collection. scm_
gc_protect returns obj.

To add a C routine to scm:

choose the appropriate subr type from the type list.
write the code and put into scm.c.

add a make_subr or make_gsubr call to init_scm. Or put an entry into the appropriate
iproc structure.

To add a package of new procedures to scm (see crs.c for example):

1.
2.

create a new C file (foo.c).

at the front of foo.c put declarations for strings for your procedure names.
static char s_twiddle_bits[]="twiddle-bits!";
static char s_bitsp[]="bits?";

choose the appropriate subr types from the type list in code.doc.

. write the code for the procedures and put into foo.c

create one iproc structure for each subr type used in foo.c
static iproc subr3s[]= {
{s_twiddle-bits,twiddle-bits},
{s_bitsp,bitsp},
{0,0} };
create an init_<name of file> routine at the end of the file which calls init_iprocs
with the correct type for each of the iprocs created in step 5.
void init_foo()
{
init_iprocs(subrils, tc7_subr_1);
init_iprocs(subr3s, tc7_subr_3);
}
If your package needs to have a finalization routine called to free up storage, close files,
etc, then also have a line in init_foo like:
add_final (final_foo);
final_foo should be a (void) procedure of no arguments. The finals will be called in
opposite order from their definition.
The line:
add_feature("foo");

will append a symbol ’foo to the (list) value of slib:features.

7. put any scheme code which needs to be run as part of your package into Ifoo.scm.

put an if into Init5f3.scm which loads Ifoo.scm if your package is included:
(if (defined? twiddle-bits!)
(load (in-vicinity (implementation-vicinity)
llIfooll
(scheme-file-suffix))))

Chapter 6: The Implementation 119

or use (provided? ’foo) instead of (defined? twiddle-bits!) if you have added the
feature.

9. put documentation of the new procedures into foo.doc

10. add lines to your Makefile to compile and link SCM with your object file. Add a
init_foo\(\)\; to the INITS=... line at the beginning of the makefile.

These steps should allow your package to be linked into SCM with a minimum of difficulty.
Your package should also work with dynamic linking if your SCM has this capability.

Special forms (new syntax) can be added to scm.
1. define a new MAKISYM in scm.h and increment NUM_ISYMS.
2. add a string with the new name in the corresponding place in isymnames in repl.c.

3. add case clause to ceval() near i_quasiquote (in eval.c).

New syntax can now be added without recompiling SCM by the use of the
procedure->syntax, procedure->macro, procedure->memoizing-macro, and defmacro.
For details, See Section 4.9 [Syntax], page 56.

6.2.9 Allocating memory

SCM maintains a count of bytes allocated using malloc, and calls the garbage collector
when that number exceeds a dynamically managed limit. In order for this to work properly,
malloc and free should not be called directly to manage memory freeable by garbage
collection. The following functions are provided for that purpose:

SCM must_malloc_cell (long len, SCM c, char *what) [Function]

char * must_malloc (long len, char *what) [Function]
len is the number of bytes that should be allocated, what is a string to be used in
error or gc messages. must_malloc returns a pointer to newly allocated memory.
must_malloc_cell returns a newly allocated cell whose car is ¢ and whose cdr is a
pointer to newly allocated memory.

void must_realloc_cell (SCM z, long olen, long len, char *what) [Function]
char * must_realloc (char *where, long olen, long len, char [Function]
*what)

must_realloc_cell takes as argument z a cell whose cdr should be a pointer to a
block of memory of length olen allocated with must_malloc_cell and modifies the
cdr to point to a block of memory of length len. must_realloc takes as argument
where the address of a block of memory of length olen allocated by must_malloc and
returns the address of a block of length len.

The contents of the reallocated block will be unchanged up to the minimum of the
old and new sizes.

what is a pointer to a string used for error and gc messages.

must_malloc, must_malloc_cell, must_realloc, and must_realloc_cell must be called
with interrupts deferred See Section 6.2.6 [Signals], page 116. must_realloc and must_
realloc_cell must not be called during initialization (non-zero errjmp_bad) — the initial
allocations must be large enough.

Chapter 6: The Implementation 120

void must_free (char *ptr, sizet len) [Function]
must_free is used to free a block of memory allocated by the above functions and
pointed to by ptr. len is the length of the block in bytes, but this value is used only
for debugging purposes. If it is difficult or expensive to calculate then zero may be
used instead.

6.2.10 Embedding SCM

The file scmmain.c contains the definition of main(). When SCM is compiled as a library
scmmain. c is not included in the library; a copy of scmmain.c can be modified to use SCM
as an embedded library module.

int main (int argc, char **argv) [Function]
This is the top level C routine. The value of the argc argument is the number of
command line arguments. The argv argument is a vector of C strings; its elements
are the individual command line argument strings. A null pointer always follows the
last element: argv[argc] is this null pointer.

char *execpath [Variable]
This string is the pathname of the executable file being run. This variable can be
examined and set from Scheme (see Section 3.12 [Internal State|, page 39). execpath
must be set to executable’s path in order to use DUMP (see Section 5.2 [Dump],
page 66) or DLD.

Rename main() and arrange your code to call it with an argv which sets up SCM as you
want it.

If you need more control than is possible through argv, here are descriptions of the functions
which main() calls.

void init_sbrk (void) [Function]
Call this before SCM calls malloc(). Value returned from sbrk() is used to gauge how
much storage SCM uses.

r **argv, char [Function]

char * scm_find_execpath (int argc, cha
*script_arg)

argc and argv are as described in main(). script_arg is the pathname of the SCSH-

style script (see Section 3.13 [Scripting], page 41) being invoked; 0 otherwise. scm_

find_execpath returns the pathname of the executable being run; if scm_find_

execpath cannot determine the pathname, then it returns 0.

scm_find_implpath is defined in scmmain.c. Preceeding this are definitions
of GENERIC_NAME and INIT_GETENV. These, along with IMPLINIT and dirsep
control scm_find_implpath()’s operation.

If your application has an easier way to locate initialization code for SCM, then you can
replace scm_find_implpath.

char * scm_find_implpath (char *execpath) [Function]
Returns the full pathname of the Scheme initialization file or 0 if it cannot find it.

Chapter 6: The Implementation 121

The string value of the preprocessor variable INIT_GETENV names an environment
variable (default ‘"SCM_INIT_PATH"’). If this environment variable is defined, its value
will be returned from scm_find_implpath. Otherwise find_impl_file() is called with
the arguments execpath, GENERIC_NAME (default "scm"), INIT_FILE_NAME
(default "Initbf3_scm"), and the directory separator string dirsep. If find_impl_file()
returns 0 and IMPLINIT is defined, then a copy of the string IMPLINIT is returned.

int init_bufO (FILE *inport) [Function]
Tries to determine whether inport (usually stdin) is an interactive input port which
should be used in an unbuffered mode. If so, inport is set to unbuffered and non-zero
is returned. Otherwise, 0 is returned.

init_buf0 should be called before any input is read from inport. Its value can be
used as the last argument to scm_init_from_argv().

void scm_init_from_argv (int argc, char **argv, char [Function]
*script_arg, int iverbose, int bufOstdin)
Initializes SCM storage and creates a list of the argument strings program-arguments
from argv. argc and argv must already be processed to accomodate Scheme Scripts
(if desired). The scheme variable *script* is set to the string script_arg, or #f if
script_arg is 0. iverbose is the initial prolixity level. If bufOstdin is non-zero, stdin is
treated as an unbuffered port.

Call init_signals and restore_signals only if you want SCM to handle interrupts and
signals.

void init_signals (void) [Function]
Initializes handlers for SIGINT and SIGALRM if they are supported by the C imple-
mentation. All of the signal handlers immediately reestablish themselves by a call to
signal().

void restore_signals (void) [Function]
Restores the handlers in effect when init_signals was called.

SCM scm_top_level (char *initpath, SCM (*toplvl_fun)()) [Function]
This is SCM’s top-level. Errors longjmp here. toplvl_fun is a callback function of zero
arguments that is called by scm_top_level to do useful work — if zero, then repl,
which implements a read-eval-print loop, is called.

If toplvl_fun returns, then scm_top_level will return as well. If the return value of
toplvl_fun is an immediate integer then it will be used as the return value of scm_
top_level. In the main function supplied with SCM, this return value is the exit
status of the process.

[

If the first character of string initpath is ‘;’, ‘(" or whitespace, then scm_ldstr() is
called with initpath to initialize SCM; otherwise initpath names a file of Scheme code
to be loaded to initialize SCM.

When a Scheme error is signaled; control will pass into scm_top_level by longjmp,
error messages will be printed to current-error-port, and then toplvl_fun will be
called again. toplvl_fun must maintain enough state to prevent errors from being

Chapter 6: The Implementation 122

resignalled. If toplvl_fun can not recover from an error situation it may simply
return.

void final_scm (int freeall) [Function]
Calls all finalization routines registered with add-_final(). If freeall is non-zero, then
all memory which SCM allocated with malloc() will be freed.

You can call indivdual Scheme procedures from C code in the toplvl_fun argument passed
to scm_top_level(), or from module subrs (registered by an init_ function, see Section 6.2.8
[Changing Scm], page 117).

Use apply to call Scheme procedures from your C code. For example:

/* If this apply fails, SCM will catch the error */
apply (CDR(intern("srv:startup",sizeof ("srv:startup")-1)),
mksproc (srvproc) ,
listofnull);

func = CDR(intern(rpcname,strlen(rpcname)));
retval = apply(func, couns(mksproc(srvproc), args), EOL);

Functions for loading Scheme files and evaluating Scheme code given as C strings are de-
scribed in the next section, (see Section 6.2.11 [Callbacks], page 123).
Here is a minimal embedding program libtest.c:

/* gcc -o libtest libtest.c libscm.a -1d1 -1lm -lc */
#include "scm.h"

/* include patchlvl.h for SCM’s INIT_FILE_NAME. %/
#include "patchlvl.h"

void libtest_init_user_scm()

{
fputs("This is libtest_init_user_scm\n", stderr); fflush(stderr);
sysintern("*the-string*", makfromOstr("hello world\n"));
}
SCM user_main()
{
static int done = O;
if (done++) return MAKINUM(EXIT_FAILURE);
scm_ldstr("(display *the-stringx)");
return MAKINUM(EXIT_SUCCESS);
}

int main(argc, argv)
int argc;
const char **argv;

SCM retval;
char *implpath, *execpath;

Chapter 6: The Implementation 123

init_user_scm = libtest_init_user_scm;

execpath = dld_find_executable(argv[0]);

fprintf (stderr, "dld_find_executable(%s): %s\n", argv[0], execpath);
implpath = find_impl_file(execpath, "scm", INIT_FILE_NAME, dirsep);
fprintf (stderr, "implpath: %s\n", implpath);
scm_init_from_argv(argc, argv, OL, 0, 0);

retval = scm_top_level(implpath, user_main);

final_scm(!0);
return (int)INUM(retval);

_|

dld_find_executable(./libtest): /home/jaffer/scm/libtest
implpath: /home/jaffer/scm/Init5f3.scm

This is libtest_init_user_scm

hello world

6.2.11 Callbacks

SCM now has routines to make calling back to Scheme procedures easier. The source code
for these routines are found in rope.c.

int scm_ldfile (char *file) [Function]
Loads the Scheme source file file. Returns 0 if successful, non-0 if not. This function
is used to load SCM’s initialization file Init5£3.scm.

int scm_ldprog (char *file) [Function]
Loads the Scheme source file (in-vicinity (program-vicinity) file). Returns 0
if successful, non-0 if not.

This function is useful for compiled code init_ functions to load non-compiled Scheme
(source) files. program-vicinity is the directory from which the calling code was
loaded (see Section “Vicinity” in SLIB).

SCM scm_evstr (char *str) [Function]
Returns the result of reading an expression from str and evaluating it.

void scm_ldstr (char *str) [Function]
Reads and evaluates all the expressions from str.

If you wish to catch errors during execution of Scheme code, then you can use a wrapper
like this for your Scheme procedures:

(define (srv:protect proc)
(lambda args
(define result #f) ; put default value here
(call-with-current-continuation

Chapter 6: The Implementation 124

(lambda (cont)
(dynamic-wind (lambda () #t)

(lambda (O
(set! result (apply proc args))
(set! cont #f))

(lambda O
(if cont (cont #£))))))

result))

Calls to procedures so wrapped will return even if an error occurs.

6.2.12 Type Conversions

These type conversion functions are very useful for connecting SCM and C code. Most are
defined in rope.c.

SCM long2num (long n) [Function]

SCM ulong2num (unsigned long n) [Function]
Return an object of type SCM corresponding to the long or unsigned long argument
n. If n cannot be converted, BOOL_F is returned. Which numbers can be converted
depends on whether SCM was compiled with the BIGDIG or FLOATS flags.

To convert integer numbers of smaller types (short or char), use the macro

MAKINUM(n).
long num2long (SCM num, char *pos, char *s_caller) Function
unsigned long numZ2ulong (SCM num, char *pos, char *s_caller) Function

o
short num2short (SCM num, char *pos, char *s_caller) [Function]
[]
[]
[]

unsigned short num2ushort (SCM num, char *pos, char *s_caller) Function
unsigned char numZ2uchar (SCM num, char *pos, char *s_caller) Function
double num2dbl (SCM num, char *pos, char *s_caller) Function

These functions are used to check and convert SCM arguments to the named C type.
The first argument num is checked to see it it is within the range of the destination
type. If so, the converted number is returned. If not, the ASRTER macro calls wta
with num and strings pos and s_caller. For a listing of useful predefined pos macros,
See Section 6.2.7 [C Macros|, page 116.

Note Inexact numbers are accepted only by num2dbl, num2long, and num2ulong (for
when SCM is compiled without bignums). To convert inexact numbers to exact num-
bers, See Section “Numerical operations” in Revised(5) Scheme.

unsigned long scm_addr (SCM args, char *s_name) [Function]
Returns a pointer (cast to an unsigned long) to the storage corresponding to the
location accessed by aref (CAR(args) ,CDR(args)). The string s_name is used in any
messages from error calls by scm_addr.

scm_addr is useful for performing C operations on strings or other uniform arrays
(see Section 5.4.2 [Uniform Array|, page 71).

Chapter 6: The Implementation 125

unsigned long scm_base_addr(SCM ra, char *s_name) [Function]
Returns a pointer (cast to an unsigned long) to the beginning of storage of array ra.
Note that if ra is a shared-array, the strorage accessed this way may be much larger
than ra.

Note While you use a pointer returned from scm_addr or scm_base_addr you must
keep a pointer to the associated SCM object in a stack allocated variable or GC-
protected location in order to assure that SCM does not reuse that storage before
you are done with it. See Section 6.2.8 [Changing Scm]|, page 117.

SCM makfromOstr (char *src) [Function]

SCM makfromstr (char *src, sizet len) [Function]
Return a newly allocated string SCM object copy of the null-terminated string src or
the string src of length len, respectively.

SCM makfromstrs (int argc, char **argv) [Function]
Returns a newly allocated SCM list of strings corresponding to the argc length array
of null-terminated strings argv. If argv is less than 0, argv is assumed to be NULL
terminated. makfromstrs is used by scm_init_from_argv to convert the arguments
SCM was called with to a SCM list which is the value of SCM procedure calls to
program-arguments (see Section 3.6 [SCM Session|, page 31).

char *x makargvfrmstrs (SCM args, char *s_name) [Function]
Returns a NULL terminated list of null-terminated strings copied from the SCM
list of strings args. The string s_.name is used in messages from error calls by

makargvfrmstrs.
makargvfrmstrs is useful for constructing argument lists suitable for passing to main
functions.

void must_free_argv (char **argv) [Function]

Frees the storage allocated to create argv by a call to makargvfrmstrs.

6.2.13 Continuations

The source files continue.h and continue.c are designed to function as an independent
resource for programs wishing to use continuations, but without all the rest of the SCM
machinery. The concept of continuations is explained in Section “Control features” in

Revised(5) Scheme.

The C constructs jmp_buf, setjmp, and longjmp implement escape continuations. On VAX
and Cray platforms, the setjmp provided does not save all the registers. The source files
setjump.mar, setjump.s, and ugsetjump.s provide implementations which do meet this
criteria.

SCM uses the names jump_buf, setjump, and longjump in lieu of jmp_buf, setjmp, and
longjmp to prevent name and declaration conflicts.

CONTINUATION jmpbuf length stkbse other parent [Data type]
is a typedefed structure holding all the information needed to represent a continu-
ation. The other slot can be used to hold any data the user wishes to put there by
defining the macro CONTINUATION_OTHER.

Chapter 6: The Implementation 126

SHORT_ALIGN [Macro]
If SHORT_ALIGN is #defined (in scmfig.h), then the it is assumed that pointers in
the stack can be aligned on short int boundaries.

STACKITEM [Data type]
is a pointer to objects of the size specified by SHORT_ALIGN being #defined or not.

CHEAP_CONTINUATIONS [Macro]
If CHEAP_CONTINUATIONS is #defined (in Scmfig.h) each CONTINUATION has size
sizeof CONTINUATION. Otherwise, all but root CONTINUATIONs have additional stor-
age (immediately following) to contain a copy of part of the stack.

Note On systems with nonlinear stack disciplines (multiple stacks or non-contiguous
stack frames) copying the stack will not work properly. These systems need to #define
CHEAP_CONTINUATIONS in scmfig.h.

STACK_GROWS_UP [Macro]
Expresses which way the stack grows by its being #defined or not.

long thrown_value [Variable]
Gets set to the value passed to throw_to_continuation.

long stack_size (STACKITEM *start) [Function]
Returns the number of units of size STACKITEM which fit between start and the current
top of stack. No check is done in this routine to ensure that start is actually in the
current stack segment.

CONTINUATION * make_root_continuation (STACKITEM [Function]
*stack_base)
Allocates (malloc) storage for a CONTINUATION of the current extent of
stack. This newly allocated CONTINUATION is returned if successful, 0 if not.
After make_root_continuation returns, the calling routine still needs to
setjump(new_continuation->jmpbuf) in order to complete the capture of this
continuation.

CONTINUATION * make_continuation (CONTINUATION [Function]
*parent_cont)
Allocates storage for the current CONTINUATION, copying (or encapsulating) the stack
state from parent_cont->stkbse to the current top of stack. The newly allocated
CONTINUATION is returned if successful, 0q if not. After make_continuation returns,
the calling routine still needs to setjump(new_continuation->jmpbuf) in order to
complete the capture of this continuation.

void free_continuation (CONTINUATION *cont) [Function]
Frees the storage pointed to by cont. Remember to free storage pointed to by
cont->other.

void throw_to_continuation (CONTINUATION *cont, long [Function]
value, CONTINUATION *root_cont)

Sets thrown_value to value and returns from the continuation cont.

Chapter 6: The Implementation 127

If CHEAP_CONTINUATIONS is #defined, then throw_to_continuation does
longjump (cont->jmpbuf, val).

If CHEAP_CONTINUATIONS is not #defined, the CONTINUATION cont contains a
copy of a portion of the C stack (whose bound must be CONT (root_cont)->stkbse).
Then:

e the stack is grown larger than the saved stack, if neccessary.
e the saved stack is copied back into it’s original position.

e longjump(cont->jmpbuf, val);

6.2.14 Evaluation

SCM wuses its type representations to speed evaluation. All of the subr types (see
Section 6.1.4 [Subr Cells], page 102) are tc7 types. Since the tc7 field is in the low order
bit position of the CAR it can be retrieved and dispatched on quickly by dereferencing the
SCM pointer pointing to it and masking the result.

All the SCM Special Forms get translated to immediate symbols (isym) the first time they
are encountered by the interpreter (ceval). The representation of these immediate symbols
is engineered to occupy the same bits as tc7. All the isyms occur only in the CAR of lists.

If the CAR of a expression to evaluate is not immediate, then it may be a symbol. If so,
the first time it is encountered it will be converted to an immediate type ILOC or GLOC (see
Section 6.1.1 [Immediates], page 97). The codes for ILOC and GLOC lower 7 bits distinguish
them from all the other types we have discussed.

Once it has determined that the expression to evaluate is not immediate, ceval need only
retrieve and dispatch on the low order 7 bits of the CAR of that cell, regardless of whether
that cell is a closure, header, or subr, or a cons containing ILOC or GLOC.

In order to be able to convert a SCM symbol pointer to an immediate ILOC or GLOC, the
evaluator must be holding the pointer to the list in which that symbol pointer occurs.
Turning this requirement to an advantage, ceval does not recursively call itself to evaluate
symbols in lists; It instead calls the macro EVALCAR. EVALCAR does symbol lookup and
memoization for symbols, retrieval of values for ILOCs and GLOCs, returns other immediates,
and otherwise recursively calls itself with the CAR of the list.

ceval inlines evaluation (using EVALCAR) of almost all procedure call arguments. When
ceval needs to evaluate a list of more than length 3, the procedure eval_args is called.
So ceval can be said to have one level lookahead. The avoidance of recursive invocations
of ceval for the most common cases (special forms and procedure calls) results in faster
execution. The speed of the interpreter is currently limited on most machines by interpreter
size, probably having to do with its cache footprint. In order to keep the size down, certain
EVALCAR calls which don’t need to be fast (because they rarely occur or because they are
part of expensive operations) are instead calls to the C function evalcar.

symhash [Variable]
Top level symbol values are stored in the symhash table. symhash is an array of lists
of ISYMs and pairs of symbols and values.

Chapter 6: The Implementation 128

ILOC [Immediate]
Whenever a symbol’s value is found in the local environment the pointer to the symbol
in the code is replaced with an immediate object (ILOC) which specifies how many
environment frames down and how far in to go for the value. When this immediate
object is subsequently encountered, the value can be retrieved quickly.

ILOCs work up to a maximum depth of 4096 frames or 4096 identifiers in a frame. Radey
Shouman added FARLOC to handle cases exceeding these limits. A FARLOC consists of a
pair whose CAR is the immediate type IM_FARLOC_CAR or IM_FARLOC_CDR, and whose CDR
is a pair of INUMs specifying the frame and distance with a larger range than ILOCs span.

Adding #define TEST_FARLOC to eval.c causes FARLOCs to be generated for all local iden-
tifiers; this is useful only for testing memoization.

GLOC [Immediate]
Pointers to symbols not defined in local environments are changed to one plus the
value cell address in symhash. This incremented pointer is called a GLOC. The low
order bit is normally reserved for GCmark; But, since references to variables in the
code always occur in the CAR position and the GCmark is in the CDR, there is no
conflict.

If the compile FLAG CAUTIQUS is #defined then the number of arguments is always checked
for application of closures. If the compile FLAG RECKLESS is #defined then they are
not checked. Otherwise, number of argument checks for closures are made only when the
function position (whose value is the closure) of a combination is not an ILOC or GLOC.
When the function position of a combination is a symbol it will be checked only the first
time it is evaluated because it will then be replaced with an ILOC or GLOC.

EVAL expression env [Macro]

SIDEVAL expression env [Macro]
EVAL Returns the result of evaluating expression in env. SIDEVAL evaluates expression
in env when the value of the expression is not used.

Both of these macros alter the list structure of expression as it is memoized and hence
should be used only when it is known that expression will not be referenced again.
The C function eval is safe from this problem.

SCM eval (SCM expression) [Function]
Returns the result of evaluating expression in the top-level environment. eval copies
expression so that memoization does not modify expression.

6.3 Program Self-Knowledge

6.3.1 File-System Habitat

Where should software reside? Although individually a minor annoyance, cumulatively this
question represents many thousands of frustrated user hours spent trying to find support
files or guessing where packages need to be installed. Even simple programs require proper
habitat; games need to find their score files.

Chapter 6: The Implementation 129

Aren’t there standards for this? Some Operating Systems have devised regimes of software
habitats — only to have them violated by large software packages and imports from other
OS varieties.

In some programs, the expected locations of support files are fixed at time of compila-
tion. This means that the program may not run on configurations unanticipated by the
authors. Compiling locations into a program also can make it immovable — necessitating
recompilation to install it.

Programs of the world unite! You have nothing to lose but loss itself.

The function find_impl_file in scm.c is an attempt to create a utility (for inclusion in
programs) which will hide the details of platform-dependent file habitat conventions. It
takes as input the pathname of the executable file which is running. If there are systems
for which this information is either not available or unrelated to the locations of support
files, then a higher level interface will be needed.

char * find_impl_file (char *exec_path, char *generic_name, [Function]
char *initname, char *sep)
Given the pathname of this executable (exec_path), test for the existence of initname
in the implementation-vicinity of this program. Return a newly allocated string of
the path if successful, 0 if not. The sep argument is a null-terminated string of the
character used to separate directory components.

e One convention is to install the support files for an executable program in the same
directory as the program. This possibility is tried first, which satisfies not only programs
using this convention, but also uninstalled builds when testing new releases, etc.

e Another convention is to install the executables in a directory named bin, BIN, exe, or
EXE and support files in a directroy named 1ib, which is a peer the executable direc-
tory. This arrangement allows multiple executables can be stored in a single directory.
For example, the executable might be in ‘/usr/local/bin/’ and initialization file in
‘/usr/local/lib/’.

If the executable directory name matches, the peer directroy 1ib is tested for initname.

e Sometimes 1ib directories become too crowded. So we look in any subdirectories of 1ib
or src having the name (sans type suffix such as ‘.EXE’) of the program we are running.
For example, the executable might be ‘/usr/local/bin/foo’ and initialization file in
‘/usr/local/lib/foo/’.

e But the executable name may not be the usual program name; So also look in any
generic_name subdirectories of 1ib or src peers.

e Finally, if the name of the executable file being run has a (system dependent) suffix
which is not needed to invoke the program, then look in a subdirectory (of the one con-
taining the executable file) named for the executable (without the suffix); And look in
a generic_name subdirectory. For example, the executable might be ‘C:\foo\bar.exe’
and the initialization file in ‘C:\foo\bar\’.

6.3.2 Executable Pathname

For purposes of finding Init5f3.scm, dumping an executable, and dynamic linking, a SCM
session needs the pathname of its executable image.

Chapter 6: The Implementation 130

When a program is executed by MS-DOS, the full pathname of that executable is available
in argv[0]. This value can be passed directly to find_impl_file (see Section 6.3.1 [File-
System Habitat], page 128).

In order to find the habitat for a unix program, we first need to know the full pathname for
the associated executable file.

char * dld_find_executable (const char *command) [Function]
dld_find_executable returns the absolute path name of the file that would be ex-
ecuted if command were given as a command. It looks up the environment variable
PATH, searches in each of the directory listed for command, and returns the absolute
path name for the first occurrence. Thus, it is advisable to invoke d1d_init as:

main (int argc, const char **argv)

{

if (dld_init (dld_find_executable (argv[0]))) {
}

}

Note@: If the current process is executed using the execve call without
passing the correct path name as argument 0, d1d_find_executable
(argv[0]) will also fail to locate the executable file.

dld_find_executable returns zero if command is not found in any of the directories
listed in PATH.

6.3.3 Script Support

Source code for these C functions is in the file script.c. Section 3.13 [Scripting], page 41,
for a description of script argument processing.

script_find_executable is only defined on unix systems.

char * script_find_executable (const char *name) [Function]
script_find_executable returns the path name of the executable which is invoked
by the script file name; name if it is a binary executable (not a script); or 0 if name
does not exist or is not executable.

char ** script_process_argv (int argc; char **argv) [Function]
Given an main style argument vector argv and the number of arguments, argc,
script_process_argv returns a newly allocated argument vector in which the second
line of the script being invoked is substituted for the corresponding meta-argument.

If the script does not have a meta-argument, or if the file named by the argument
following a meta-argument cannot be opened for reading, then 0 is returned.

script_process_argv correctly processes argument vectors of nested script invoca-

tions.

int script_count_argv (char **argv) [Function]
Returns the number of argument strings in argv.

Chapter 6: The Implementation 131

6.4 Improvements To Make

Allow users to set limits for malloc() storage.

Prefix and make more uniform all C function, variable, and constant names. Provide
a file full of #define’s to provide backward compatability.

1gcd () needs to generate at most one bignum, but currently generates more.
divide () could use shifts instead of multiply and divide when scaling.

Currently, dumping an executable does not preserve ports. When loading a dumped
executable, disk files could be reopened to the same file and position as they had when
the executable was dumped.

Copying all of the stack is wasteful of storage. Any time a call-with-current-
continuation is called the stack could be re-rooted with a frame which calls the contin
just created. This in combination with checking stack depth could also be used to
allow stacks deeper than 64K on the IBM PC.

In the quest for speed, there has been some discussion about a "Forth" style Scheme
interpreter.

Provided there is still type code space available in SCM, if we devote some
of the IMCAR codes to "inlined" operations, we should get a significant
performance boost. What is eliminated is the having to look up a GLOC or
ILOC and then dispatch on the subr type. The IMCAR operation would be
dispatched to directly. Another way to view this is that we make available
special form versions of CAR, CDR, etc. Since the actual operation code is
localized in the interpreter, it is much easier than uncompilation and then
recompilation to handle (trace car); For instance a switch gets set which
tells the interpreter to instead always look up the values of the associated
symbols.

Scott Schwartz <schwartzQgalapagos.cse.psu.edu> suggests: One way to tidy up the
dynamic loading stuff would be to grab the code from perl5.

6.4.1 VMS Dynamic Linking

George Carrette (gjc@mitech.com) outlines how to dynamically link on VMS. There is
already some code in dynl.c to do this, but someone with a VMS system needs to finish
and debug it.

1.

Say you have this main.c program:
main()
{init_lisp(Q);

lisp_repl();}
and you have your lisp in files repl.c, gc.c, eval.c and there are some toplevel non-
static variables in use called the_heap, the_environment, and some read-only toplevel
structures, such as the_subr_table.

$ LINK/SHARE=LISPRTL.EXE/DEBUG REPL.0BJ,GC.0BJ,EVAL.0BJ,LISPRTL.OPT/0OPT
where LISPRTL.OPT must contain at least this:

SYS$LIBRARY: VAXCRTL/SHARE
UNIVERSAL=init_lisp

Chapter 6: The Implementation 132

UNIVERSAL=1isp_repl
PSECT_ATTR=the_subr_table,SHR,NOWRT,LCL
PSECT_ATTR=the_heap,NOSHR,LCL
PSECT_ATTR=the_environment ,NOSHR,LCL

Notice The psect (Program Section) attributes.

LCL means to keep the name local to the shared library. You almost always
want to do that for a good clean library.

SHR,NOWRT
means shared-read-only. Which is the default for code, and is also good
for efficiency of some data structures.

NOSHR, LCL
is what you want for everything else.

Note: If you do not have a handy list of all these toplevel variables, do not dispair. Just
do your link with the /MAP=LISPRTL.MAP/FULL and then search the map file,

$SEARCH/OQUT=LISPRTL.LOSERS LISPRTL.MAP ", SHR,NOEXE, RD, WRT"

And use an emacs keyboard macro to muck the result into the proper form. Of course
only the programmer can tell if things can be made read-only. I have a DCL command
procedure to do this if you want it.

4. Now MAIN.EXE would be linked thusly:
$ DEFINE LISPRTL USER$DISK: [JAFFER]LISPRTL.EXE

$LINK MAIN.OBJ,SYS$INPUT:/QOPT
SYS$LIBRARY: VAXCRTL/SHARE
LISPRTL/SHARE

Note the definition of the LISPRTL logical name. Without such a definition you will
need to copy LISPRTL.EXE over to SYS$SHARE (aka SYS$LIBRARY) in order to invoke
the main program once it is linked.

5. Now say you have a file of optional subrs, MYSUBRS.C. And there is a routine INIT_
MYSUBRS that must be called before using it.

$ CC MYSUBRS.C

$ LINK/SHARE=MYSUBRS.EXE MYSUBRS.0BJ,SYS$INPUT:/OPT
SYS$LIBRARY: VAXCRTL/SHARE
LISPRTL/SHARE
UNIVERSAL=INIT_MYSUBRS

Ok. Another hint is that you can avoid having to add the PSECT declaration of
NOSHR,LCL by declaring variables status in the C language source. That works great
for most things.

6. Then the dynamic loader would have to do this:
{void (*init_fcn)();
long retval;
retval = lib$find_image_symbol ("MYSUBRS","INIT_MYSUBRS",&init_fcn,
"SYS$DISK: [].EXE");
if (retval '= SS$_NORMAL) error(...);

133

(*init_fcn))}
But of course all string arguments must be (struct dsc$descriptor *) and the last
argument is optional if MYSUBRS is defined as a logical name or if MYSUBRS.EXE has
been copied over to SYS$SHARE. The other consideration is that you will want to turn
off C-c or other interrupt handling while you are inside most 1ib$ calls.

As far as the generation of all the UNIVERSAL=. .. declarations. Well, you could do
well to have that automatically generated from the public LISPRTL.H file, of course.

VMS has a good manual called the Guide to Writing Modular Procedures or something
like that, which covers this whole area rather well, and also talks about advanced
techniques, such as a way to declare a program section with a pointer to a procedure
that will be automatically invoked whenever any shared image is dynamically activated.
Also, how to set up a handler for normal or abnormal program exit so that you can
clean up side effects (such as opening a database). But for use with LISPRTL you
probably don’t need that hair.

One fancier option that is useful under VMS for LISPLIB.EXE is to define all your
exported procedures through an call vector instead of having them just be pointers
into random places in the image, which is what you get by using UNIVERSAL.

If you set up the call vector thing correctly it will allow you to modify and relink
LISPLIB.EXE without having to relink programs that have been linked against it.

134

Procedure and Macro Index

B 41
B e 55
Bt 54
B 54
B 55
#;text-till-end-of-line..................... 55
HPCOIUMN . ..ot 55
#Bofile. . e 55
BPLine. e 55
HNBOREI . .ot 54
B o 54

$atan2.... ... 69
R 30
A 30
---c-source-files=pathname.................. 19
---compiler-options=flag.................... 19
---defines=definition....................... 19
---features=feature.......................... 20
—==help ... 29
---initialization=call...................... 19
---libraries=libname 19
---linker-options=flag...................... 19
-—-no-init-file.......................... 28
---object-files=pathname.................... 19
---outname=filename.......................... 18
---platform=platform-name................... 17
---scheme-initial=pathname.................. 19
--—type=build-what........................... 19
S mVErSION . L 29
—--batch-dialect=batch-syntax............... 20
--no-symbol-case-fold....................... 28
--script-name=batch-filename............... 20
- Y 28
L2 30
T 19, 29
S 29
D 19
= 29
e 1N 18, 29
e 20
Sho 20, 29
e S 19, 30
S 19
e N 19, 29
e 30
-no-init-fileol 28

T 17, 29
S 29
o 29
B i 19, 30
S 19
F 30
TV e e e 29
W e e e e e 20

QaPPly ..\ttt 61
Qcopy-treet 46
@macroexpandll 63
_eXClUSIVE . o 50

dombE. .. 49
_tracked 50

ADOTE .o 39
ACCESS . vttt 7
ACCE .ttt 83
BCOMS . .ottt et 46
ACOoSh. .. 69
add-alia@sciiiiii 114
add-finalizer 46
add-link...... ... 113
add-=SOUrCe.ottt 114
AlaTm. ..o 47
alarm-interrupt................ 48
ALLOW_INTS e 116
alrm_signal...........coiiiiiiiiiiiiii 116
ARGC. ... 100
arithmetic-error................... 48
array—>list........c.oiiiiiiiii 71
array-contentsol 71
array-equal?......... ...l 73
array-fill!..........l 73
ATTAYMAD -« e vvve ettt 74
array-map! i 73
array-prototypel 72
ATTAY T ettt e 71
asinh.......... ... il 69
ASRTER . ..o 116
ASRTGO ...ttt 117
ALATL. .o 69
atanh......... .. 69

Procedure and Macro Index

B

bit-count......... ... 73
bit-count*......... ... i 73
bit-invert! 73
bit-position.................a 73
bit-set*! 73
boot-tailoiiiiii 32, 67
DO ittt e 91
broken-pipe..........coiiiiiiiiiiiii 78

call-with-outputs............................ 52
CAR .. 99
cbreak..........ol 87
CCLO_LENGTH......... ... i 102
CDR .o 99
char....... ... i 124
char-ready................l 51
char-ready?............... 51, 94
char:sharp..............ol 56
CHARS. ... 101
chdir....... ... T
CHEAP_CONTINUATIONS ..., 126
chmod....... ... o T
chown............. ... 82
Clearok ...ttt 86
€loSe—Port......c.couuiiiiiiiiiiii 50, 79, 88
closediroiiiiiii 76
CLOSEDP ...t 105
CLOSUREPcoii i 100
CODE. ..ottt 100
COMMENT ..ttt it 55
CONSP . .o 100
copy-file....... ... 7
copy-tree........ ..o 46
COSh. . 69
could-not-openl 48
current-error-port..............oiiiiiiiiaa.. 51
current-input-port.................... ... 51
current-time........... ... 47

D

default-input-port........................... 85
default-output-port.......................... 85
defconst ... 57
DEFER_INTS.o 116
defined? 56
defmacro...........ol 58
defsyntax........cooiiiiiiiiiiiiii 60
defvar............o i 57
directory*-for-each.............. ...l 76
directory-for-each..................... 76
display ...cooiiiiii 89
dld_find_executable 130
AUMP . ..o 67

135
dyn:call i 66
dyn:link..........o i 66
dyn:main-calll 66
dyn:unlink............ooiiiiiiii 66
E
ECHO . e 87
B . e 32
eNClOSE=aTTAY « .ot vvvtte et 70
end-of-program................. 48
eNAWIN. ..ot e 85
ENV 100
=3 v o o T 37
3 e 38
eVaAl . 53, 128
eval-string.................. ... 53
EVAL . .o 128
exact-ceilingl 68
exact—floor...... ...t 68
eXaCt—TouUNdovi 68
exact-truncate i 68
exec—self 40
EXEC L. it 78
@XECIP. . 78
execpath.........l 40
=5 =Y 20 A 78
5T < PP 78
EXAt e 31
extended-environment 63
F
file-position ool 50
Fileno. ... 7
final _scm.......... i 122
find_impl _file.......... o 129
findtel . o 69
force-output...........l 88
i o - 79
FPORTP ..ottt e e e 105
frame->environment........................... 35
frame—eval....... ... 35
frame-trace........ ..ot 35
free_continuation................i .. 126
freshline.......... ..o, 51

Procedure and Macro Index

BENTEMP ..\ttt
get-internal-real-time.....................
get-internal-run-time

getEgroupPSo
gethost
getlogin...........................lL

identifier->symbol.............
identifier-equal?...........................

raddress->string ...l

inet:make-address..........,

inet:network........ ... i

inet:string->address
infinite?
init_bufO.....
init_sbrk.o
injt_signals............... ... ool 116,
InitsCr .o
INPORTP ittt

:local-network-address.................

. 62
. 61

92

. 69

121
120

85

136
isatty? ... 51
ISYMCHARS ... o s 98
ISYMNUM ..o s 98
ISYMP. . 98
K
Kill. .o 79
L
1eaveok ... 86
LENGTH.ottt 100, 101
line-editing.............. o i it 85
line-number. ... 53
line-number->integer 54
line-number?......... i 54
link. ..o 82
list->uniform-array..................oooonnn. 72
load. ..o 65
load-string.................l 53
load:sharp.....coviiiiiiiiiiiiiiiiiiiiiii 56
logaref ... 72
logaset! ...t 72
1Ong . 124, 125
long2num.ot 124
Istat. o 82
M
MACTOEXPANA . . .ttt 58
macroexpand-1 58
Main. ... 120
makargvfrmstrs ... 125
MaKCCLO ..ttt 102
make-arbiter..............l 49
make-edited-line-port 85
make-exchangerl 48
make-soft-portol 52
make-stream-socket...............l 93
make-stream-socketpair...................... 93
make_continuation........................... 126
make_gsubr......................oool 103
make_root_continuation..................... 126
makfromOstr............l 125
makfromstr....... 125
makfromstrs.......... ... 125
MAKICHR . ..o e 98
MAKIFLAGo 99
MAKINUM ... e 97
MAKISYM ... e 98
MAKSPCSYM 98
mark_locationsl 111
milli-alarm........c.ouuuuiiiiiinnnnnnnnnnnnnnn 47
mRAIT. ..o 76
MRNOA. ..o ot 83
must_free........... . 120
must_free_argv.................oooa 125

Procedure and Macro Index

must_mallocC.ttt
must_malloc_cell..........,
musSt_realloC e
must_realloc_cell............c.cciiiinnnnn.

NCONSP ..ot e
NEWCELL e

NEWWIIL. oottt e e

nodelayooiiiiiiiiiii i

NOEChO. ..ot

num2long ...
num2short
NVECTORP ..o

O

open-file......... il
open—input-pipe........... i
open-output-pipe............. i
Open-pipet

OPOUTFPORTP. ...
OPOUTPORTP
OPPORTP ...
out-of-storagel
OUTPORTP . .ot
OVETXlay ..ottt
overwrite.............. ... i

P

PaP i

port-column............,

port-filename i il

port-line.......... i

137
<) 34
pPPrint.... 34
PTAnt. . 34
print-args.......... . il 34
procedure->identifier-macro................ 59
Procedure=>mMaCTOottt et enneennnenn 59
procedure->memoizing-macro.................. 59
Procedure=>Syntaxoouuueieinninieeennnn 59
procedure-documentation..................... 55
profile-alarm....................., 47
profile-alarm-interrupt..................... 48
program-arguments............................ 32
PULEDV. ... 78
Q
o T == 57
QUIt. ... 31
R
TAW .« e et ettt et e e e e 87
read-charottt 51, 90
read-for-loadl 54
read-numbered il 53
read:sharp............................LL 56
readdilt 75
readlink 82
TEAL-8COS .\t 69
real-acosh............ ..o 69
real-asin..........coiiiiiiiii 69
real-asinh............. il 69
real-atan.........coiiiiiiiiiii 69
real-atanh............. il 69
TEAL=COS .ottt 69
real-cosh ... 69
real-eXpPoviiiii 69
real-expt ... 69
real-Inot 69
real-loglO.........l 69
real-sin...... ...t 69
real-sinh......... ... i 69
Teal-SQrtt 69
real-tan ...t 69
real-tanh......... i 69
record-printer-set!..........l 74
redirect-port! i 75
refresh i 88
B =Y o) 1« 83
b= <=1 s oo o 83
TEEEXEC o vttt ettt et e e e 83
regmatch........l 84
regmatch?l 84
regmatchv........ ... i 84
regsearch............ il 84
regsearchv................. .. . il 84
release-arbiter............. ol 49

rename-file.......... 7

Procedure and Macro Index

renamed-identifier........... 61
renaming-transformer 63
reopen—-file..........iiiiiiiii i 75
require ... 65
TeSetty oottt 87
restart 39
restore_signals...............oiiiiiinnnnn. 121
rewinddir....... i 76
rmdir. ... 76
TOOM. oottt ittt 40

savetty 87
SCalar—>arTayo 74
SCIM_ VSt ..ottt 123
scm_find_execpath.................... 120
scm_find_implpath............. 120
scm_gc_protect ...l 118
scm_init_from_argv............... ... 121
scm_1dfile. 123
SCM_1dprog.ooit 123
scm_1dstr ... 123
scm_protect_temp................ ...l 117
scm_top_level 121
SCOPe—trace..........ooiiiiiiiiii i 35
script_count_argv........................... 130
script_find_executable..................... 130
SCript_process_argvc.coooiiiiii.. 130
SCToll. ... 90
SCrolloK ...t 86
serial-array-map!.............l 74
serial-array:copy!..........oiiiiiiiiiiia, 73
St 57
setegidl 79
seteuid 79
setgid...... ... 79
setgrent ... 82
sethostent..........l 91
setnetent il 92
setprotoent............. ...l 92
setpwent i 81
setservent........... ...l i 92
setuid...... .. 79
Short. 124
SHORT_ALIGN.ttt 126
SIDEVAL . ..o 128
sinh... ... 69
socket-name:address................... 93
socket-name:family........................... 93
socket-name:port-number..................... 93
socket:accept 94
socket:bind...........ol 94
socket:connectol 94
socket:listen i 94
socket:shutdown 94
stack-trace.............. .. ool 38

stack_size. ... 126

138
STACK_GROWS_UP ...ttt 126
Stat . 74
STREAM 105
string-edit......... i i 84
string-split........... ...l 84
string-splitv........l 84
STRINGP e 101
subwin............ o ool 88
SYMBOLP ... 101
symlink 82
SYIIC . 83
syntax-quote................. .l 63
syntax-rules................l 58
T
tanh.... 69
the-macro......... ..o 63
throw_to_continuation...................... 126
TAICKS . ot 47
ticks-interruptl 47
touchlinecoiiiiiiiiiiiiiiiiiiii 88
touchwin...........l 88
BLaCE . 33, 34
transpose-arrayoiiiiiiia. 70
try-arbiter.......... oL 49
try-create-file............... .., 75
try-load......... ...l 52, 53
try-open-file 49
ttyname ... 82
TYP16. . 100
TYPS . 100
TYPT 100
U
UCHARS ... 101
UIONE2NUM . ..ottt 124
UMASK. ...t 7
UDAME .« e vttt ettt 81
unctrl. 91
uniform-array-read!.............. 72
uniform-array-write................ 72
UNETACEe .. ot 34
user-interrupta 48
usr:lib 65
ULIME. ..t 7
\Va
vector-set-length!..................... 46
VECTORP ... 100
VELTS. . 100
VErbOSe ...t 40
virtual-alarmc.c.oeiiiiiiiiiiiiiiiaan 47
virtual-alarm-interrupt..................... 48
VIS—AebUZ . .. 32
Void.. ..o 111

Procedure and Macro Index

WAAd . .o e 89
wait-for-inputl 51
waitpid ... 80
£ o 38
WCLBaAT . o ottt e 89
welrtobot ... 89
WClrtoeolt 89
wdelch. ..o o 89
wdeletelnooviuiin i 90
WO RS .+ ettt ettt e et et 89

139
WinsSCh. ... e 90
Winsertlnoitiiiiin i 90
with-error-to-file........................... 51
with-error-to-port........................... 51
with-input-from-port 51
with-output-to-port....................... ... 51
WOV e v ettt ettt e et e e et et ettt 88
wstandend 90
wstandout 90
X
X laD . e 65

Variable Index

DL e 68
*

KATEVH . 31
xexecpath...........l 120
xinteractive*................ 31, 39
load-pathname 53
¥load-reader* ...t 54
XSCIM—VerSIOon*ooiuuuiiiiiiinneennnnnn. 40
slib-load-reader........................... 54
syntax-rulesl 31
af _inet 91
af _Undix ... 91
BOOL _F. . 98
BOOL T .t e 98
EDITOR. ..ottt e e e e 31
EOF _VAL ..o 98
EOL .o 98
errobj........ . 37
HOME. .. e 31

140

internal-time-units-per-second............. 46
INUMO. .ot e 97
isymnamesoiiiiiiiiiiiii, 99
most-negative-fixnum.................., 68
most-positive-fixnum........................ 68
NUM_ISPCSYM. ...t 99
NUM_ISYMS ... i 99
open_both..............l 49
open_readiiiiiiiii 49
open_write.......... ..ol 49
Pd 68
SCHEME_LIBRARY_PATH.......................... 31
SCM_INIT_PATHo 31
symhashl 127
thrown_valueiririiininnnnanan.. 126
UNDEFINEDo 98
UNSPECIFIED........coiiiiiiiiiiiiiii 98

Type Index

#

B 41, 42
array-for-each.................... ... 73
CELLPTR . ..ot e 99
CONTINUATION ...ttt 125
CULSES . ot ittt 65
D
dump........oi 66
F

FARLOC 128
BLOC . ..o 99
GLOC. . ot 128
I

i/0-extensionsccoeiiiiie... 93, 95, 96
AChr . 97
iflags.. ... 98
110G . 99
ILOC. oo 128
ANUM. 97
ISPCSYmM ..o 99
B 11 P 99
M

meta-argument..................... ... 41, 130
P

PEOb. . 104
TEZOX o\ttt et 66, 83
rev2-procedures, 65
rev3-procedures, 65

141

S

Scheme Script ... 41, 42
Scheme-Script.......coviiiiiiiiiinnn. 41, 42
=3 111) o TS 106
socket 95, 96
SPAT . e 100
STACKITEM. ..ottt et 126
T

te_dble .. 106
te_dblr ..o 106
tec_free_cell 106
tcl6_arbiter i 107
tCl6 _array. ...ttt 107
tclB_bigneg.............. ..ol 106
tcl6_bigpos..................oLL 106
TC1B _F10 . i 106
tcl6_inpipe......... ... 104
tcl6_inport...............ooiiiiillL L 104
tcl6_doport..............oiiiiilllL 104
TC1B _MACTO . oottt e 107
tcl6_outpipe ...l 104
tcl6_outport il 104
tcl6_promise il 107
tcl6_sfport....... ... il 105
tCl6_Strporto 104
tC3_ClosSure.ovi 100
o2 T oo o ¥ T 100
BCT _@sSUbT .. oot 102
BCT_CoOntin. .ttt 102
P oA o 102
TCT _1SUbT . o 103
BT _1SUbT _ 2. i 103
tc7_msymbol..................ooooiiiiLL 101
te7_rpsubr. 103
tc7_specfun............. ..ol 102
tc7_ssymbol.....................ooooiLL 101
te7_string.....oooiiii 101
BCT_subr_O. 102
T _subr_1. 102
TCT_SuUbr_10. ... it 103
TCT_SUbT_2. .. i 103
TCT_SUDY_20. . it 103
BCT _SUDT _3 . i 103
BCT_Vbool ..ot 101
TCT _VeCtOr . oot 100
TCT _VEixNIG . . o 101
e _VEixN32. . 101
TCT _VEixNB . .o 101
TCT_VEixZ16. .. o 101
TCT_VEixZ32. . o 101
TCT_VEixZ8 . . 101

tc7_VE1oC64.o 102

Type Index 142

£CT_VELORB2. ...\ttt 1w U
tc7_VEIoR64 102 66
turtle-graphics............l 65

Concept Index

!

L 42
e OXe e e 42
B 42
Flbat ..o 42

ATTAY . o v e ettt ettt 20, 70
array-for-each.......... ool 20
ATTAYS + v v vvv ettt 20

B

bignums 20
build ... 15
build.ssem o 15
byte .o 20
byte-number....... i 20

C

callbacks. ... il 123
careful-interrupt-masking 20
Cautiousot 20
cheap-continuations.................c.ooviina.. 21
compiled-closure L 21
continuations ool 125
CUTSES « v vt ettt ettt e e ettt e et e 21

debug. ..o 21
differo 21
documentation string 55
dont-memoize-locals............. 21
dump...... ... 21
dynamic-linking.............. ... 21

E

ecache. i i 111
edit-lineo 21
Embedding SCM ... 120
engineering-notation 21
ENVITONIIENES .« . .\ttt 111
exchanger......... i 48
Exrename.......... ... il 10

Extending Semo 23

143

generalized-c-arguments................, 21
graphics i 65

H

hobbit 65

I

1/0-eXtensions.vuvtii i 21
IEEE ... oo 10
inexact i 21

IMACTO &« v eeee ettt et ettt 21
mMemory managementooveeiennn... 111
mysql. ... 21

no-heap-shrink................................. 21
NO_ENV_.CACHE ... 112
0103 0 L= 21

RARS ..o 10
RORS . 10
reckless. ... i 22
TECOTA .ottt 22
TEEEX ot vttt 22
TeV2-Proceduresvvevitit et 22
0] < 123, 124

Concept Index

S

SchemePrimer o i 10
5 6] 2 PP 22
SICP . . 10, 22
signals. ... 116
SIMPLY . et 10
single-precision-only......... 22
SLIB e 10
SOCKET ..ttt 22
T

tick-interrupts ... 22

turtlegr. ... 22

144
U
TIEX ottt e 22, 82
Unix. .o 82
W 22
wb-no-threads 22
WINAOWS . .o 22
X
X e et e 22, 65
xlib .o 22, 65
xlibsem ... 65
X e 65
XD oo 65
XIEDSCI . oo 65

	Overview
	Features
	Authors
	Copyright
	The SCM License
	SIOD copyright
	GNU Free Documentation License

	Bibliography

	Installing SCM
	Distributions
	GNU configure and make
	Making scmlit
	Makefile targets

	Building SCM
	Invoking Build
	Build Options
	Compiling and Linking Custom Files

	Saving Executable Images
	Installation
	Troubleshooting and Testing
	Problems Compiling
	Problems Linking
	Testing
	Problems Starting
	Problems Running
	Reporting Problems

	Operational Features
	Invoking SCM
	Options
	Invocation Examples
	Environment Variables
	Scheme Variables
	SCM Session
	Editing Scheme Code
	Debugging Scheme Code
	Debugging Continuations
	Errors
	Memoized Expressions
	Internal State
	Executable path

	Scripting
	Unix Scheme Scripts
	MS-DOS Compatible Scripts
	Unix Shell Scripts

	The Language
	Standards Compliance
	Storage
	Time
	Interrupts
	Process Synchronization
	Files and Ports
	Opening and Closing
	Port Properties
	Port Redirection
	Soft Ports

	Eval and Load
	Line Numbers

	Lexical Conventions
	Common-Lisp Read Syntax
	Load Syntax
	Documentation and Comments
	Modifying Read Syntax

	Syntax
	Define and Set
	Defmacro
	Syntax-Rules
	Macro Primitives
	Environment Frames
	Syntactic Hooks for Hygienic Macros
	Use of Synthetic Identifiers

	Packages
	Dynamic Linking
	Dump
	Numeric
	Arrays
	Conventional Arrays
	Uniform Array
	Bit Vectors
	Array Mapping

	Records
	I/O-Extensions
	Posix Extensions
	Unix Extensions
	Sequence Comparison
	Regular Expression Pattern Matching
	Line Editing
	Curses
	Output Options Setting
	Terminal Mode Setting
	Window Manipulation
	Output
	Input
	Curses Miscellany

	Sockets
	Host and Other Inquiries
	Internet Addresses and Socket Names
	Socket

	SCMDB
	Xlibscm
	Hobbit

	The Implementation
	Data Types
	Immediates
	Cells
	Header Cells
	Subr Cells
	Defining Subrs
	Ptob Cells
	Defining Ptobs
	Smob Cells
	Defining Smobs
	Data Type Representations

	Operations
	Garbage Collection
	Marking Cells
	Sweeping the Heap

	Memory Management for Environments
	Dynamic Linking Support
	Configure Module Catalog
	Automatic C Preprocessor Definitions
	Signals
	C Macros
	Changing Scm
	Allocating memory
	Embedding SCM
	Callbacks
	Type Conversions
	Continuations
	Evaluation

	Program Self-Knowledge
	File-System Habitat
	Executable Pathname
	Script Support

	Improvements To Make
	VMS Dynamic Linking

	Procedure and Macro Index
	Variable Index
	Type Index
	Concept Index

