
SIMSYNCH
Digital Circuit Simulator

Version 1c5

Aubrey Jaffer

This manual documents SIMSYNCH 1c5 (released June 2010), a digital logic simulator
written in SCM.

Copyright c© 1997, 1998, 1999, 2000, 2001, 2002, 2003 Aubrey Jaffer

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the author.

i

Table of Contents

1 Overview . 1

2 Infrastructure . 2

3 Blocks and Chips . 4

4 Signals and Pins . 6

5 Signal Names and Types . 8

6 Macros for Signals and Pins 9

7 Models . 11

8 Functional Design . 12

9 Translation . 16

10 Simulation Output . 18

Procedure and Macro Index . 22

Variable Index . 23

Concept and Feature Index . 24

Chapter 1: Overview 1

1 Overview

SIMSYNCH is a digital logic simulator. The design files are comprised of Scheme definitions
and expressions. These design files can be run as a Scheme program at high speed. The
design files can also be translated into formats suitable for logic compilers.

SIMSYNCH simulates blocks of synchronous logic, signals whose states change simultane-
ously on a clock signal transition. Each block also has a reset signal, which forces all signals
to the state specified in the design file. SIMSYNCH can simultaneously simulate multiple
blocks with different clocks and resets.

Blocks can contain multiple devices; Devices can contain multiple blocks.

For a list of the features that have changed since the last SIMSYNCH release, see the file
‘ANNOUNCE’. For a list of the features that have changed over time, see the file ‘ChangeLog’.

The author can be reached as ‘agj@alum.mit.edu’. The most recent information about
SIMSYNCH can be found on SIMSYNCH’s WWW home page:

http://people.csail.mit.edu/jaffer/SIMSYNCH.html.

http://people.csail.mit.edu/jaffer/SIMSYNCH.html

Chapter 2: Infrastructure 2

2 Infrastructure

SIMSYNCH unpacks into a directory called ‘synch’. I set up design directories as peers of
‘synch’; that is, both are subdirectories of the same directory. I find it useful to put related
designs in one directory. I use short design names which prefix all SIMSYNCH files which
comprise that design. For instance, a design comprised of files ‘foo.scm’, ‘fooio.scm’, and
‘foojtag.scm’ having a block named ‘xp’ would compile into ‘foo-xp.pds’.

In order to load SIMSYNCH files, you need to create a local SLIB catalog (named ‘usercat’)
within the design directory or your HOME directory. This catalog translates symbols to
the pathnames of SIMSYNCH files.

;;; "usercat": SLIB catalog additions for SIMSYNCH. -*-scheme-*-

(

(simsynch . "../synch/simsynch.scm")

(run . "../synch/run.scm")

(models . "../synch/models.scm")

(logic . "../synch/logic.scm")

(machxl . "../synch/scm2mach.scm")

(verilog . "../synch/scm2vrlg.scm")

(vhdl . "../synch/scm2vhdl.scm")

)

My design files can then load SIMSYNCH with the expression:

(require ’simsynch)

[Function]Time-stamp: time-string
The Time-stamp: procedure is named to exploit a feature of the Emacs text edi-
tor. The Emacs command ‘M-x time-stamp’ updates the string in the Time-stamp:

expression to the current time and author.

If Time-stamp: is not called, the default time-stamp is #f; the default author is me.

[Function]Revision-stamp: obj
[Function]Configuration-stamp: obj
[Function]Company-stamp: company-name-string

The rest of these stamps are not supported by Emacs.

All of these information fields are used in creating the headers for logic compiler
design files. This information can also be used to in creating identification fields for
programmable logic devices.

(Time-stamp: "97/10/17 14:31:24 jaffer")

(Company-stamp: "Bipolar Technologies")

(Revision-stamp: 0)

[Function]create-board board-name dbtype
Creates an SLIB relational database of type dbtype as file ‘board-name.db’. The re-
turned open database has empty tables for describing the pin and signal arrangements
for a design.

After all calls have been made to define-synchronous-system, do the following to
commit the database file:

Chapter 2: Infrastructure 3

(solidify-database *board*)

If the database file ‘board-name.db’ was not closed, solidified, or synced from a
previous run, create-board will fail with the error:

; loading SIMSYNCH 1b7

;While loading "../synch/simsynch.scm", line 219:

;loaded from "uart.scm", line 24:

;ERROR: "uart.db" locked by "jaffer@aubrey.jaffer.3837:1056316195"

In order to proceed, delete the ‘.#board-name.db’ and/or ‘~$board-name.db’ files:

36 Jun 22 17:09 .#uart.db -> jaffer@aubrey.jaffer.3837:1056316195

162 Jun 22 17:09 ~$uart.db

[Variable]*design*
This symbol names the design. *design* should be set before loading SIMSYNCH
files. The design name is used in constructing filenames. The default value for
design is test.

[Variable]*board*
When loaded, the file ‘simsynch.scm’ sets the identifier *board* to the database
created by (create-board *design* ’alist-table).

[Function]comment string1 . . .
Appends string1 . . . to the strings given as arguments to previous calls comment.

[Function]comment
Returns the (appended) strings given as arguments to previous calls comment and
empties the current string collection.

[Read syntax]#;text-till-end-of-line
Behaves as (comment "text-till-end-of-line").

synch:register-ptag, synch:register-block, synch:define-pin, and synch:define-

signal capture the documentation strings specified before them by ‘#;’ or calls to comment.

Chapter 3: Blocks and Chips 4

3 Blocks and Chips

[Function]synch:register-block block-name
[Function]synch:register-block block-name clock-name
[Function]synch:register-block block-name clock-name reset-name

The arguments block-name, clock-name, and reset-name are symbols. clock-name
names the signal on which all the registered signals in block-name change to their
next values. The default value of clock-name is block-name-clock.

reset-name names the signal which disables all the registered signals in block-name.
Until reset-name deasserts, all the registered signals have their initial values. The
default value of reset-name is block-name-reset-.

If reset-name is a list with first element ‘synchronous’, then the reset state is un-
specified if no clock is present during reset; and the second element of reset-name
otherwise.

Subsequent SIMSYNCH definitions until the next synch:register-block will per-
tain to the block block-name.

[Function]synch:register-ptag tag device-type
[Function]synch:register-ptag tag device-type signature

Registers the symbol tag as a component of the string device-type. The optional
signature argument associates data with tag for use when compiling to firmware,
hardware, or microcode.

[Macro]define-synchronous-system block-name . . . body
define-synchronous-system collects all the signals defined in block-name and de-
fines block-name-sim to a procedure of one argument, the number of cycles to sim-
ulate.

When the returned procedure, block-name-sim, is called, it sets the queued count
for block block-name to the argument if it is larger than that already queued. block-
name-sim then calls simulate!, which runs a cycle of each non-reset block with
queued cycles.

define-synchronous-system also defmacros block-name to an accessor for all
registered signals in block-name:

[Macro]<block-name> registered-signal
Returns the value of identifier registered-signal in block <block-name> if that
block is running; eval of registered-signal’s initial-value-expression if <block-
name> is reset.

The block-name macro provides signal connections between blocks. In addition,
the block-name macro provides easy access to simulation state from interactive
sessions.

When the simulation is run from an interactive Scheme session, inputting any char-
acter will stop the simulation with a breakpoint which can be resumed by (bk).

Chapter 3: Blocks and Chips 5

synch:register-ptag and synch:register-block store the documentation strings spec-
ified before them by ‘#;’ or calls to comment.

Chapter 4: Signals and Pins 6

4 Signals and Pins

These functions are the “pure” interface to defining signals and pins. They were created
after the macro interface of the next section.

[Function]synch:insert-check expr
Adds the scheme expression expr to the body of the *block* simulator. Check ex-
pressions are evaluated once per clock cycle of their block while the block’s reset is
deasserted.

Check expressions are evaluated in the order in which they are defined by
synch:insert-check.

[Function]synch:define-pin ptag signal pin-type pin-name output-enable
paired-input

Associates all of the physical attributes of the symbol signal. Describing the signal
flow of signal, pin-type is one of

• output

• input/output

• wire-and

• wire-or

• clock

• input

• unused

• internal

[Function]synch:define-signal signal defining-ptag signal-type reset-state
next-function

Associates the initial state and transitions for signal.

reset-state is the value held by this signal while reset-name for this block is asserted.
reset-state should be a boolean for single signals and an integer for vectorized sig-
nals. If reset-name is a list with first element ‘synchronous’, then the reset state is
unspecified if no clock is present during reset; and the second element of reset-name
otherwise. If reset-name is ‘*xxxx*’, then the reset state is unspecified if no clock is
present during reset; next-function otherwise.

The scheme expression next-function determines the values for signal when the block
reset is deasserted.

signal-type is one of

registered

signal will take the value next-function at the next rising edge of this
block’s clock signal.

registered-input

signal will take the value next-function at the next rising edge of this
block’s clock signal. But when compiling into the hardware description
language, signal’s input is the pin named signal.

Chapter 4: Signals and Pins 7

combinatorial

signal follows the value next-function before the next rising edge of this
block’s clock signal. combinatorial is not yet implemented.

hidden

macro signal follows the value next-function before the next rising edge of this
block’s clock signal. hidden is used to specify the input side of in-
put/output pins.

synch:define-pin and synch:define-signal store the documentation strings specified
before them by ‘#;’ or calls comment.

[Function]synch:define-bus name float-limit clause1 clause2 . . .
Each clause is a (quoted) list of two expressions, an output-enable signal and a data
value. That data value becomes the value of the bus if its output-enable signal is
non-false.

If the last clause is (#t value), then value is returned whenever no other clause is
active.

synch:define-bus instantiates checks whether name is being driven from multiple
sources to different values. It also creates a check whether name is undriven for
float-limit cycles. If the feature check-turnaround is provided when ‘simsynch.scm’
is loaded, synch:define-bus will also check the at least one cycle separates driving
of name from different sources.

Chapter 5: Signal Names and Types 8

5 Signal Names and Types

Boolean (simple) signals take values of #t and #f. Boolean identifiers start with an
alphabetic character and followed by characters which are alphabetic, numeric,
or

! $ % & * + - / : < = > ? @ ^ _ ~

Vectorized signals represent multiple bits and assume integer values.

Vectorized signal names are written as boolean names followed with two integers
separated by ‘..’ or ‘:’ and encased by square brackets (‘[31..0]’). The two
integers specify an inclusive range. For example, foocnt[0..3] specifies a four-
bit signal. The indexes can be in either order, but little-endian values must not
be assigned to big-endian signals and vice versa.

The even/odd bit of vectorized values is always the lowest bit of the index pair.
The designer is responsible for shifting vectorized signals to align as desired.

Aggregate signals group multiple vectorized signals into arrays.

Chapter 6: Macros for Signals and Pins 9

6 Macros for Signals and Pins

This is the original form of simsynch. It grew over time, so it is poorly organized. But I
have a lot of modules written this way.

[Macro]synch:defcheck expr
Adds the scheme expression expr to the body of the *block* simulator. Check ex-
pressions are evaluated once per clock cycle of their block while the block’s reset is
deasserted.

Check expressions are evaluated in the order in which they are defined by
synch:defcheck.

[Macro]synch:pre signal
Synch:pre is a macro that saves typing. synch:pre retrieves the next-function expres-
sion of signal. Using synch:pre has the same effect of inserting the second argument
of the synch:set! specifying signal.

The following defmacros treat their pin-name, signal, name argument specially. If the
symbol contains a colon (‘:’), the part before the colon is the ptag and the part after is the
signal name. If the colon is the last character, then the name is #f, which is used for signals
which do not connect to pins. If the part after the colon is a number, then the (pin’s) name
is that number.

synch:set!, synch:set/reset!, and synch:pre do not accept ‘:’ encoded signal-names.

If the pin-name argument is ? (question-mark), this indicates that the fitter should assign
a pin(s) for this signal. The assignments for bussed signals can be a range of pin names (eg.
‘addr[12..0]’) or a parenthesized list of pin names or numbers (eg. ‘(34 25 61 12’).

[Macro]synch:defmacro name expression
Defines name to be a signal of type macro whose value is expression. name will
translate to a macro in the hardware description language which replaces name with
expression.

[Macro]synch:defshare ptag:name
[Macro]synch:defshare pin-name ptag:name

Identifies pin-name (or name if single argument) of chip ptag with an already defined
signal name. synch:defshare is used when connecting inputs in one package to
outputs on another. These outputs need not originate from chips which are generated;
they may also come from hidden models.

[Macro]synch:definput pin-name name expression
Defines a pin used only for input. expression is computed as a hidden macro.

[Macro]synch:defreginput pin-name name expression
Defines a pin used only for input, but whose signal is delayed by one clock cycle.

Chapter 6: Macros for Signals and Pins 10

[Macro]synch:define pin-name signal reset-state pin output-enable
[Macro]synch:define pin-name signal reset-state pin output-enable next-function

Defines a synchronous signal and pin. synch:define defines all of the information
synch:define-pin and synch:define-signal do. If next-function is absent, then it
must be supplied by use of synch:set!.

output-enable is a boolean valued expression which controls whether the signal drives
the pin(s). pin is #f or a symbol which names the signal at the pin. Note that the
values of pin will necessarily match the values of signal only while output-enable is
#t. signal and pin can be the same symbol if you have no need to access the (possibly
undriven) signal.

(synch:define #f XP:tl-raw #t #f #f)

defines an internal signal with initial value #t.

(synch:define 36 XP:dloe- #t dloe- #t)

defines an output named dloe-.

(synch:define (34 33 32) XP:stpsz-out[2..0] #.tpsz-tag stpsz[2..0] dloe-)

(synch:defmacro HID:stpsz[2..0]

(cond (dloe- stpsz-out[2..0])

((not last-dloe-) dly:-fo-tag-reg)

(else -1)))

defines bussed pins stpsz[2..0] sometimes driven by the vectorized signal
stpsz-out[2..0], which is always available to the design. HID:stpsz[2..0] emulates the
signals at the pins which can be driven from various sources.

reset-state is the value held by this signal while reset-name for this block is asserted.
reset-state should be a boolean for single signals and an integer for vectorized sig-
nals. If reset-name is a list with first element ‘synchronous’, then the reset state is
unspecified if no clock is present during reset; and the second element of reset-name
otherwise. If reset-name is ‘*xxxx*’, then the reset state is unspecified if no clock is
present during reset; next-function otherwise.

[Macro]synch:set! signal next-function
The scheme expression next-function determines the values for signal while the block’s
reset is deasserted.

[Macro]synch:set/reset! signal turn-on turn-off
is a variant of synch:set! which simulates a clocked set/reset flip-flop. The turn-
off expression overrides turn-on when both are simultaneously true; in which case a
warning is also generated.

[Macro]synch:declare signal flag
Declares a translation-target dependent attribute flag for signal in the current block.

(synch:declare caa[7:0] synchronous-reset)

declares that signal caa[7:0] is synchronous reset (in the HDL translation).

Chapter 7: Models 11

7 Models

(require ’models)

‘models.scm’ contains some simple models of memory. These make- functions should be
called as initial values of signals or as top-level defines. If defined at top level and used (as
initial value) from two different blocks, the memory allocated is shared between the blocks.

[Function]make-ram-array prototype length . . .
Creates a RAM memory of size length. The ram-array memory will be of width
sufficient to hold prototype.

[Function]make-ram length
[Function]make-ram length prototype

Creates a RAM of size length. If an integer prototype is supplied, the RAM will be
of width sufficient to hold prototype.

[Function]make-fifo length
[Function]make-fifo length prototype

Creates a FIFO memory of size length. If an integer prototype is supplied, the FIFO
memory will be of width sufficient to hold prototype.

[Function]fifo:clear fifo
Returns an empty fifo.

[Macro]synch:fifo name length data-source write-strobe read-strobe data-first
fullness empty? full?

Creates a FIFO of size length, who’s (expression) input is data-source enabled by (ex-
pression) write-strobe and emptied by (expression) read-strobe. synch:fifo defines
macros or signals with names data-first, fullness, empty?, and full?.

Chapter 8: Functional Design 12

8 Functional Design

The simultaneous assignment of signals within a block is managed by define-synchronous-
system. The next-function expressions are functional as opposed to imperative; these ex-
pressions should not use set! or other mutators.

See Chapter 7 [Models], page 11 for how to create (RAM) Arrays and FIFOs.

[Function]array-ref array index1 index2 . . .
The procedure array-ref returns the contents of the array location selected by index1
index2

[Function]array-set array new-value index1 index2 . . .
The procedure array-set returns a copy of array with the location selected by index1
index2 . . . replaced by new-value.

[Function]fifo:first fifo
Returns the first item of fifo. This item will be discarded by a call to fifo:remove-

first.

[Function]fifo:remove-first fifo
Returns fifo with its first item discarded. If fifo is already empty, an error is signalled.

[Function]fifo:insert-last fifo datum
Returns fifo with datum added. If fifo is already full, an error is signalled.

[Function]fifo:empty? fifo
Returns #t if fifo is empty; otherwise, #f.

[Function]fifo:full? fifo
Returns #t if fifo is full; otherwise, #f.

[Function]fifo:fullness fifo
Returns the number of items fifo is currently holding.

Bitwise Operations

[Function]logand n1 n1
Returns the integer which is the bit-wise AND of the two integer arguments.

Example:

(number->string (logand #b1100 #b1010) 2)

⇒ "1000"

[Function]logior n1 n2
Returns the integer which is the bit-wise OR of the two integer arguments.

Example:

(number->string (logior #b1100 #b1010) 2)

⇒ "1110"

Chapter 8: Functional Design 13

[Function]number-or name k1 . . .
The arguments to logior must be integers. The k1 . . . arguments to number-or can
be either integers or #f. All the arguments to number-or are evaluated. If more than
one k1 . . . argument is an integer, a warning using name name is issued.

(number-or ’ls[2..0]

(and cc-litx1 #.ls-data)

(and cc-litx2 #.ls-data-x2)

(and cc-litx3 #.ls-data-x3))

[Function]number-check name k
Issues a warning if k is not a number or negative. number-check returns #t.

[Function]logxor n1 n2
Returns the integer which is the bit-wise XOR of the two integer arguments.

Example:

(number->string (logxor #b1100 #b1010) 2)

⇒ "110"

[Function]lognot n
Returns the integer which is the 2s-complement of the integer argument.

Example:

(number->string (lognot #b10000000) 2)

⇒ "-10000001"

(number->string (lognot #b0) 2)

⇒ "-1"

[Function]bitwise-if mask n0 n1
Returns an integer composed of some bits from integer n0 and some from integer n1.
A bit of the result is taken from n0 if the corresponding bit of integer mask is 1 and
from n1 if that bit of mask is 0.

[Function]logtest j k
(logtest j k) ≡ (not (zero? (logand j k)))

(logtest #b0100 #b1011) ⇒ #f

(logtest #b0100 #b0111) ⇒ #t

[Function]= j k
Returns #t if and only if integer j equals integer k.

[Function]zero? j
Returns #t only if integer j is 0.

Bit Within Word

[Function]logbit? index j
Returns #t if bit index of j is 1. Bit 0 is always the low order bit; (logbit? 0

data[31..24]) will be #t only if data[31..24]’s value is odd.

Chapter 8: Functional Design 14

[Function]copy-bit index from bit
Returns an integer the same as from except in the indexth bit, which is 1 if bit is #t
and 0 if bit is #f.

Example:

(number->string (copy-bit 0 0 #t) 2) ⇒ "1"

(number->string (copy-bit 2 0 #t) 2) ⇒ "100"

(number->string (copy-bit 2 #b1111 #f) 2) ⇒ "1011"

Fields of Bits

[Function]bit-field n start end
Returns the integer composed of the start (inclusive) through end (exclusive) bits of
n. The startth bit becomes the low order (even/odd) bit in the result. Note that the
end index is one more than the high order bit index. Thus, (bit-field data[7..0]

0 8) and (bit-field data[31..24] 0 8) are identity functions.

This function was called bit-extract in SYNCH1a1.

[Function]copy-bit-field to from start end
Returns an integer the same as to except possibly in the start (inclusive) through end
(exclusive) bits, which are the same as those of from. The 0-th bit of from becomes
the startth bit of the result.

Example:

(number->string (copy-bit-field #b1101101010 0 0 4) 2)

⇒ "1101100000"

(number->string (copy-bit-field #b1101101010 -1 0 4) 2)

⇒ "1101101111"

(number->string (copy-bit-field #b110100100010000 -1 5 9) 2)

⇒ "110100111110000"

[Function]ash int count
[Function]arithmetic-shift int count

Returns an integer equivalent to (inexact->exact (floor (* int (expt 2

count)))).

Example:

(number->string (ash #b1 3) 2)

⇒ "1000"

(number->string (ash #b1010 -1) 2)

⇒ "101"

Bits shifted below the low-order bit disappear; bits shifted above the high order bit
do not disappear. Remember to mask unused bits using logand.

[Function]booleans-to-number bits
bits should be booleans, taken in order they are the binary representation of the
integer returned.

Example:

Chapter 8: Functional Design 15

(number->string (booleans-to-number #t #f #f))

⇒ "100"

(number->string (booleans-to-number #t #t #f #t))

⇒ "1101"

Chapter 9: Translation 16

9 Translation

SIMSYNCH can translate its register-transfer-level designs to MACHXL, Verilog, or VHDL
formats. The bulk of the work is performed by the files ‘scm2mach’, ‘scm2vrlg’, and
‘scm2vhdl’. The file ‘run.scm’ defines translate, which drives the conversion.

[Function]translate design target-language
The symbol design should correspond to a file named ‘design.scm’, which contains
the definitions.

The symbol target-language can be:

machxl MACHXL 2 is a format devised by AMD for their PLDs. MACHXL 3,
4, and 5 are an unrelated commercial product. MACHXL 2 was available
for free at one time.

translate creates a file named ‘design.pds’ with the MACHXL defini-
tions.

verilog Verilog is a popular High level Design Language. Translate creates a file
named ‘design.v’ with the Verilog definitions; and ‘design.acf’ with
pin-name assignments. The acf format is used by the Altera MAXPLUS2
Version 8 fitter. ACF is not yet supported.

vhdl VHDL is a popular High level Design Language. Translate creates files
named ‘design-tag.vhd’ with the VHDL definitions.

SIMSYNCH translates the following functions:

• array-ref

• array-set

• ash

• arithmetic-shift

• bit-field

• bitwise-if

• copy-bit

• copy-bit-field

• logand

• logbit?

• logior

• lognot

• logtest

• logxor

• make-ram

• zero?

SIMSYNCH translates the following syntaxes. Remember that you are limited to this set
only for signals which will be translated for the benefit of a logic compiler.

Chapter 9: Translation 17

and One vectorized expression can appear as the last argument to and.

or Is recommended for booleans only.

number-or

Use number-or for combining clauses which return only vectorized values or
#f.

if The form is (if <test> <consequent> <alternate>).

case

qase qase is an extension of standard Scheme case: Each clause of a case statement
must begin with a list of literal datums, the corresponding list in a qase state-
ment may contain either literal datums or the names of symbolic constants
preceded by a comma. A qase statement is equivalent to a case statement
in which all symbolic constants preceded by commas have been replaced by
the values of the constants. This use of comma, (or, equivalently, unquote) is
similar to that of quasiquote except that the unquoted expressions must be
symbolic constants.

defconst Symbolic constants are defined using defconst, their values are substituted in
the head of each qase clause during macro expansion. In practice defconst

constants should be defined before use.

synch:fifo

Instantiates a synchronous FIFO memory using make-ram.

synch:pre

Expands to the setter of its argument.

Chapter 10: Simulation Output 18

10 Simulation Output

[Function]synch:info arg1 . . .
synch:info prints a one-line message of all arg1

If arg1 is a printf format string, then printf is applied to arg1 . . . ; otherwise arg1
. . . are printed, numbers in hexadecimal.

[Function]synch:error arg1 . . .
synch:error prints an error message of all arg1 . . . and (up to) 50 lines of the most
recent timing/state for the block calling synch:error, and then stops the simulation.

If arg1 is a printf format string, then printf is applied to arg1 . . . ; otherwise arg1
. . . are printed, numbers in hexadecimal.

The simulation can be unstopped by a call to (synch:reset) or (bk).

[Function]synch:warn arg1 . . .
synch:warn prints a warning message of all arg1 . . . and (up to) 50 lines of the most
recent timing/state for the block calling synch:warn. print-timing is then enabled
for at least the next 50 states.

If arg1 is a printf format string, then printf is applied to arg1 . . . ; otherwise arg1
. . . are printed, numbers in hexadecimal.

[Function]check= name j k
Will print a synch:warn message each cycle when j and k are not equal. check=

returns k.

[Variable]print-chat
While set to #t, all chat messages will be printed. When set to #f, chat messages are
not printed.

[Function]synch:chat msg
Queues the string msg for printing when print-chat is true or when timimg/state
output is generated.

[Variable]synch:count
Within the body of define-syncronous-system, the identifier synch:count is bound
to the number of cycles which that block has completed.

This variable can be used to turn timing output on and off at specified times.

(cond ((eqv? synch:count trigger-start)

(set! print-timing #t))

((eqv? synch:count trigger-stop)

(set! print-timing #f)))

[Variable]print-timing
While set to #t, each simulation block will generate state/timing diagrams as specified
by its synch:print command, as well as chat messages.

Chapter 10: Simulation Output 19

While print-timing is asserted, a line is output along with all the chat messages
since the last line was printed. A line is printed only when if it is different from the
last line printed.

Warning and Error messages are always printed, along with one line of state/timing
diagrams.

[Macro]synch:print signals . . .
Defines the format of the mixed state and timing diagrams (such as produced by logic
analyzers) from the define-syncronous-system in whose body it appears.

Each of the signals can a literal string or character, or a scheme expression. Literal
characters appear on each line of the timing diagram and are used as visual separators.
A literal string is used to give name to the expression which immediately follows it
in signals. If a string does not preceed an expression (such as a symbol), then the
printed representation of the (unevaluated) expression serves as its name. Every 50
cycles of printed output, a header composed of the expression names is printed with
the names rotated 90 degrees. Long expressions without preceeding strings can make
for awkward looking output.

While print-timing is asserted, each scheme expression is evaluated every cycle, and
its value printed in the order of signals.

• Boolean values print as vertical bars (‘|’). For #f, the bar is in the same column
as the name; for #t, the bar is one column to the right from the name.

• Numeric values are printed as two-digit hexadecimal numbers.

• Characters and strings are displayed.

• All other values are writen.

There are a couple of things to notice in this example of the use of synch:print. The char-
acter ‘#\-’ provides a boundary. State information can be printed as two-character strings
or symbols. The use of untranslatable scheme code is not a problem because synch:print
forms are not translated into logic-compiler languages.

(define-synchronous-system Foo

(synch:print

"STATE" named-state

"TL-X" (booleans-to-number

#f tl-x6 tl-x5 tl-x4 tl-x3 tl-x2 tl-x1 tl-x0)

"AMREN" pci-amren

"RDFIFO#" pci-rdfifo-

"RDMT" pci-rdempty

"RDFL" pci-rdfull

"DLOE#" dloe-

"DLRE#" dlre-

"DLWE#" dlwe-

"DL-FULL" dly:-fullness

"look-saf" look-safe

dqoe

hungry

Chapter 10: Simulation Output 20

"TPSZ/s" (string

(if dloe-

(char-upcase (tpsz-char stpsz[2..0]))

(tpsz-char stpsz[2..0]))

(cond (avl4 #\4)

(avl3 #\3)

(avl2 #\2)

(avl1 #\1)

(xping #\0)

(else #\space)))

#\-

"lucy-st" lucy-state))

Here is some output like Foo generates. The text to the right of the ‘lucy-st’ column
is produced by calls to synch:chat. In the first chat line, one call had the argument
‘f601f601’, while the second called with ‘runcd 1’; both appear in the same cycle. The line
starting with ‘WARN’ is produced by a call to synch:warn.

96475

S T A R R R D D D D L D H T L

T L M D D D L L L L O Q U P U

A - R F M F O R W - O O N S C

T X E I T L E E E F K E G Z Y

E N F # # # U - R / -

O L S Y S S

L A T

F

e0 79 | | | | | | | 2a | | | 42 - po

e0 79 | | | | | | | 2a | | | 41 - pd f601f601 runcd 1

e0 7a | | | | | | | 29 | | | 44 - po

e0 7a | | | | | | | 29 | | | 43 - pd runcd 2

e0 7b | | | | | | | 29 | | | 42 - rn

e0 7c | | | | | | | 29 | | | 42 - po

e0 7c | | | | | | | 29 | | | 41 - pd fdfdfbf8 runcd 2

e0 7d | | | | | | | 28 | | | 44 - rn

e0 7e | | | | | | | 28 | | | 44 - po

e0 7e | | | | | | | 28 | | | 43 - pd 4bit*

e0 7f | | | | | | | 28 | | | 42 - bt

sd 40 | | | | | | | 28 | | | 42 - po

sd 40 | | | | | | | 28 | | | 22 - po

sd 40 | | | | | | | 28 | | | 22 - po dqoe

td 40 | | | | | | | 28 | | | 22 - po dqoe

td 40 | | | | | | | 28 | | | 2 - po

td 00 | | | | | | | 28 | | | - - po

td 00 | | | | | | | 28 | | | 4 - po

td 00 | | | | | | | 27 | | | ? - po

td 00 | | | | | | | 26 | | | a - po

Chapter 10: Simulation Output 21

tg 00 | | | | | | | 25 | | | A - po

tg 00 | | | | | | | 25 | | | - - po

tg 00 | | | | | | | 25 | | | t - po

tg 00 | | | | | | | 25 | | | t - po * Z 3Y Tile

e1 00 | | | | | | | 24 | | | 10 - po

e1 00 | | | | | | | 24 | | | 10 - po

e1 00 | | | | | | | 24 | | | 10 - po ffffff9e

e1 00 | | | | | | | 23 | | | 41 - po f0f6fff0

e1 00 | | | | | | | 22 | | | 44 - pd 2xlit 31

e1 01 | | | | | | | 22 | | | 43 - x1

WARN: >>>> First Underrun Occured Here <<<<

e1 02 | | | | | | | 22 | | | 43 - x2

e1 03 | | | | | | | 22 | | | 42 - x1

e1 04 | | | | | | | 22 | | | 42 - x2

e1 05 | | | | | | | 22 | | | 41 - x1

e1 06 | | | | | | | 22 | | | 41 - x2

e1 07 | | | | | | | 22 | | | 40 - x1 fff0f6ff

e1 08 | | | | | | | 21 | | | 44 - x2

e1 09 | | | | | | | 21 | | | 43 - x1

e1 0a | | | | | | | 21 | | | 43 - x2

e1 0b | | | | | | | 21 | | | 42 - x1

e1 0c | | | | | | | 21 | | | 42 - x2

e1 0d | | | | | | | 21 | | | 41 - x1

e1 0e | | | | | | | 21 | | | 41 - x2

e1 0f | | | | | | | 21 | | | 40 - x1 f6fff0f6

e1 10 | | | | | | | 20 | | | 44 - x2

e1 11 | | | | | | | 20 | | | 43 - x1

e1 12 | | | | | | | 20 | | | 43 - x2

e1 13 | | | | | | | 20 | | | 42 - x1

e1 14 | | | | | | | 20 | | | 42 - x2

e1 15 | | | | | | | 20 | | | 41 - x1

Procedure and Macro Index 22

Procedure and Macro Index

#
#;text-till-end-of-line . 3

<
<block-name> . 4

=
= . 13

A
arithmetic-shift . 14
array-ref . 12
array-set . 12
ash . 14

B
bit-field . 14
bitwise-if . 13
booleans-to-number . 14

C
check= . 18
comment . 3
Company-stamp: . 2
Configuration-stamp: . 2
copy-bit . 14
copy-bit-field . 14
create-board . 2

D
define-synchronous-system 4

F
fifo:clear . 11
fifo:empty? . 12
fifo:first . 12
fifo:full? . 12
fifo:fullness . 12
fifo:insert-last . 12
fifo:remove-first . 12

L
logand . 12
logbit? . 13
logior . 12

lognot . 13
logtest . 13
logxor . 13

M
make-fifo . 11
make-ram . 11
make-ram-array . 11

N
number-check . 13
number-or . 13

R
Revision-stamp: . 2

S
synch:chat . 18
synch:declare . 10
synch:defcheck . 9
synch:define . 10
synch:define-bus . 7
synch:define-pin . 6
synch:define-signal . 6
synch:definput . 9
synch:defmacro . 9
synch:defreginput . 9
synch:defshare . 9
synch:error . 18
synch:fifo . 11
synch:info . 18
synch:insert-check . 6
synch:pre . 9
synch:print . 19
synch:register-block . 4
synch:register-ptag . 4
synch:set! . 10
synch:set/reset! . 10
synch:warn . 18

T
Time-stamp: . 2
translate . 16

Z
zero? . 13

Variable Index 23

Variable Index

*
board . 3
design . 3

P
print-chat . 18

print-timing . 18

S

synch:count . 18

Concept and Feature Index 24

Concept and Feature Index

B
block . 2

E
Emacs . 2

H
HOME . 2

S
SLIB . 2

stamp . 2

synch . 2

T
time-stamp . 2

	Overview
	Infrastructure
	Blocks and Chips
	Signals and Pins
	Signal Names and Types
	Macros for Signals and Pins
	Models
	Functional Design
	Translation
	Simulation Output
	Procedure and Macro Index
	Variable Index
	Concept and Feature Index

