
A

Colors –Messengers of Concepts: Visual Design Mining for Learning
Color Semantics

Ali Jahanian, MIT
Shaiyan Keshvari, MIT
S.V.N. Vishwanathan, Purdue University
Jan P. Allebach, Purdue University

We study the concept of color semantics by modeling a dataset of magazine cover designs, evaluating the model via crowd-
sourcing, and demonstrating several prototypes that facilitate color-related design tasks. We investigate a probabilistic gen-
erative modeling framework that expresses semantic concepts as a combination of color and word distributions –color-word
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1. INTRODUCTION
Color conveys meaning. Beyond basic visual perception of color itself, humans classify colors at
higher levels of abstraction into verbal and nonverbal semantic categories [Humphreys and Bruce
1989; Barsalou 1999; Derefeldt et al. 2004]. In practice, designers carefully choose color combina-
tions not only to be appealing, but also to communicate specific concepts, moods, and styles [Eise-
mann 2000; Frascara 2004; Newark 2007; Samara 2007].

Previous work has attempted to understand how colors map onto color names and onto semantic
concepts. For instance, a particular range of hue is called “blue”, and may semantically relate to
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Fig. 1: Application of color semantics in color palette selection, and design example retrieval. See
Sec. 8.

concepts of “coolness” or “potency” [Berlin 1969; Osgood 1971; Ou et al. 2004a; 2004b; 2004c].
Kobayashi’s Color Image Scale is a notable attempt to understand the implications of color se-
mantics in design [Kobayashi 1981; 1991]. Kobayashi used crowdsourcing experiments to collect
ratings of colors and 3-color palettes along 180 meaningful qualities, e.g. “modern” vs “conserva-
tive” or “stylish” vs “rustic”. Using the chromaticity and values of colors as well as the “warm” vs
“cool” and “soft” vs “hard” ratings, he organized the color palettes on a 2D space. He then used the
remaining ratings and factor analysis to define groups corresponding to fashion, product design, and
textile in this space. This color scale, however, suffers several fundamental limitations. Importantly,
there is no rigorous mapping function for adding new concepts. Furthermore, the discriminative
nature of the space precludes combinations of non-adjacent concepts, for instance, “both casual and
modern”.

More recent work addresses some of these shortcomings by using data mining and discrimina-
tive models to automatically classify colors and color palettes into categories practical for product
design [Csurka et al. 2010; Murray et al. 2012]. While certainly a major advance, this approach has
two major shortcomings with respect to design. First, it is highly dependent on context-free, human-
labelled color palettes. People may associate different labels to the same color or color palette
depending on the context, or even use an arbitrary name such as “my-theme” [O’Donovan et al.
2011]. This is particulary relevant for design. For instance, magazine covers must compete with
other magazines on a newsstand, so designers spend many days conceptualizing and creating covers
that attract customers at a glance [Foges 1999]. This requires the designers to carefully choose a
color palette for the cover based on the magazine’s general topic and the specific stories in the issue.
Second, the discriminative approach alone does not allow for generation of novel palettes or palette
combinations for design applications; research has shown that suggesting designs or elements of
design can help users be more creative and productive [Herring et al. 2009].

We bring together probabilistic models and a novel dataset to address these challenges. Specifi-
cally, we adapt LDA-dual, an extension of Latent Dirichlet Allocation (LDA) topic modeling [Shu
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et al. 2009], as a way to discover meaningful color-word combinations, which we call color-word
topics. We simultaneously infer novel color-word topics from the distributions of colors and words
occurring within our corpus of 2,654 magazine covers, which spans 71 distinct titles and 12 gen-
res. Furthermore, our framework harnesses the LDA model’s generated color topics to interactively
create original color combinations, and select perceptually similar 5-color palettes from those color
combinations for design. This link between color, language, and semantic concepts opens the door
to many possible applications in design. The user could, for example, choose color palettes based
on topic words, and use those color palettes to retrieve design examples (Fig. 1).

To verify whether or not users agree with the associations between color combinations and lin-
guistic concepts produced by the model, we conducted a crowdsourcing experiment. We used the
model to generate pairs of word clouds and discretized color palettes. Users viewed the color palettes
and chose the most appropriate corresponding word clouds from 4 alternatives (one of which came
from the model). To complement this evaluation, we conducted a second experiment with the same
setup, but instead showing a word cloud and asking users to match it with color palettes. Based
on the user feedback, we inferred the strength of the association between each color palette and
word cloud in the experiment. This allowed us to test whether the model produced intuitive pairs of
colors and word clouds. This crowdsourcing strategy is a superior way to evaluate the model when
compared to held-out likelihood methods (see [Wallach et al. 2009]), which are suboptimal when
applied to data from semantically meaningful topics [Chang et al. 2009].

Given a verified model of color-word topics that is both inferential and generative, how can we
use it for design? Our rigorous model of color semantics enables many applications, including im-
age retrieval [Solli and Lenz 2010], recommending design alternatives [Jahanian et al. 2013], editing
graphics, and creating color palettes [Heer and Stone 2012]. There are several online communities
for color palette design (e.g. [Adobe Kuler 2016; ColourLovers 2016]), each with thousands to mil-
lions of user-created, named, and rated palettes. Despite the expansive scope, however, it is quite
difficult for users to navigate them to find useful examples. These online services commonly use
sparse, user-labeled keywords to aid search; users are at the mercy of whether a previous user la-
belled a color palette with the concept desired. Furthermore, the open-ended labelling procedure
leads to little agreement between labels, which makes search more noisy. Color semantics, on the
other hand, can provide a meaningful and tractable way to find palettes. We show how we apply our
model’s discovered color-word topics to recommend palettes based on both perceptual similarity
and semantic concepts. The user can then automatically discover the palettes that match their appli-
cation. Importantly, we can retrieve design examples by mapping from recommended palettes to a
pool of magazine covers (Fig. 1). These applications are particularly relevant in light of the emer-
gence of design-by-example, a concept in HCI that enables more creative design by users through
display of related examples [Herring et al. 2009].

The overarching contribution of our work is to provide a novel solution to the “gap” of automati-
cally connecting media to semantic information. This gap has been a major point of discussion for
over a decade [Smeulders et al. 2000; Sethi et al. 2001; Mojsilovic and Rogowitz 2001; Liu et al.
2007] and is considered to be “a major challenge to solve in the multimedia community” ([Lindner
and Süsstrunk 2015]). Our framework tackles the gap directly, taking media in the form of mag-
azine cover designs, and extracting semantic information in the form of color-word histograms.
Furthermore, the flexibility and richness of the model provides a way to traverse the gap in the other
direction, going from semantic information to media. Our work makes the following specific con-
tributions: First, rather than use the typical approach of extracting hand-crafted features or utilizing
supervised learning, we train an unsupervised topic model to discover the inherent relationships
between sets of multiple words and colors found in designs. This approach better reflects the un-
derlying rich associations between colors and words. Second, we provide an intuitive and useful
technique to address the challenge of visualizing compound topics discovered by topic models.
Third, we use crowdsourcing to validate our modeling, unlike typical approaches that instead use
crowdsourcing to drive the modeling. Furthermore, our crowdsourcing study covers a large wide
range of demographics, allowing us to test known variations in color semantics between cultures.
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Finally, we demonstrate how to integrate our approach with typical design applications to support
intuitive interactions. Because our model implements the notion that color is understood different
levels of abstraction, we support the user to select a set of arbitrary words, anything from “red” to
“science” to “dancer”, that describes the purpose or context of their media. Our model’s associations
then link the words to relevant design examples, images, or color palettes.

The flow of this paper is as follows. In Sec. 2, we discuss prior work on both theoretical and
practical aspects of color semantics. In Sec. 3, we introduce the dataset we collected. We then
discuss the inference and generative mechanisms in the LDA-dual modeling framework in Sec. 4.
In Sec. 5, we illustrate how to visualize the discovered semantic topics. We then explain our design
of the crowdsourcing experiment in Sec. 6, and analyze the crowd responses in Sec. 7. In Sec. 8,
we demonstrate a number of applications for color semantics, specifically color palette selection,
design example recommendation, pattern recoloring, image retrieval, and color region selection in
images. We conclude by discussing remaining limitations of our approach, and suggest a number of
avenues for future work in Sec. 9.

2. PRIOR WORK
2.1. Color Cognition
There is more to our experience with color than low level perception; humans classify colors into
multiple progressively higher levels of abstraction. The study of the verbal and semantic cate-
gories associated with colors is called color cognition [Humphreys and Bruce 1989; Barsalou 1999;
Derefeldt et al. 2004]. These verbal and semantic categories enable us to communicate about colors.
For instance, not only can we identify a color as “red”, but we can further describe it as “warm”, or
even more abstractly, as “romantic”. The extent of the linkage between color and meaning, and its
cross-cultural variation, has spurred an entire field of research in color naming, emotional meanings
of colors, and visual communication design.

Color naming refers to associating colors with names like, “blue” or “red”. The early work of
Berlin and Kay [1969] introduced the study of the consistency of color naming between cultures.
They studied many different languages, and concluded that there exists a set of universal 11 basic
color categories, and that any given language always draws its basic color terms from these cate-
gories. Later studies reformulated each of the basic terms as continuous functions of a fuzzy set
to account for evolving terms [Kay and McDaniel 1978]. Other studies, however, have challenged
these universal terms, for example finding two terms for “blue” in Russian language [Winawer et al.
2007]. Cultural semiotics also appear to influence the basic terms [Paramei 2005]. Others have
shown how proposing a list of predefined basic terms in an experiment can influence color cate-
gory judgements [Roberson et al. 2000]. This approach mathematically and computationally limits
models of color categorization [Chuang et al. 2008].

Complementary to color naming, research on color semantics aims to discover the “meaning”
of colors. The first systematic approach to quantifying meanings of linguistic concepts came from
measurement of meaning [Osgood 1952]. Osgood [1952] proposed an affective space based on 12
pairs of bipolar terms (such as happy-sad or kind-cruel). In a later study, Adam and Osgood [1973]
found that while there are differences across cultures between the affective meanings attributed
to the colors, there are also consistencies. For instance, among all the cultures, red is strong and
active. The ability of such bipolar scales to capture semantics continues to be an active line of re-
search [Ou et al. 2004a; 2004b; Ou et al. 2012]. Among these bipolar scales, Kobayashi’s Color
Image Scale [1981; 1991] is relevant to the current study, since it contains multi-color combinations
with associated linguistic concepts. The Color Image Scale is a semantic space of bipolar terms,
augmented with terms from fashion and textile products such as “chic” and “dandy”. This scale
comprises of two dimensions, warm-cool and soft-hard, 180 adjectives (e.g. “festive”, “romantic”,
etc.), and 15 high clusters (e.g. “modern”, “natural”, etc.). Using the chromaticity and values of col-
ors as well as the “warm” vs “cool” and “soft” vs “hard” ratings, he organized the color palettes on a
2D space. He then used the remaining ratings and factor analysis to define groups corresponding to
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fashion, product design, and textile in this space. He conducted several crowdsourcing experiments
where participants rated the similarity between color palettes and descriptive adjectives in order to
map color combinations onto this space. Later cross-cultural studies examined the universality of
the Color Image Scale [Ou et al. 2004a; 2004b; Ou et al. 2012].

2.2. Data Mining Approaches
Our work focuses on mining the association between colors and linguistic concepts in the context
of design. On the other hand, existing machine learning models of color and language have largely
been restricted to the domain of color naming. As color semantics builds on color naming, however,
it is important to examine existing data-driven models of color naming.

Prior work in modeling color naming attempts to fit statistical models to databases of color names.
Specifically, it links a set of labels to the Berlin and Kay basic colors (see Heer and Stone [2012] for
a review of these models). The main limitation is that these labels are combinations of basic color
terms (e.g. “greenish-blue”), and do not necessarily map to real-world objects. Lin et al. [2013a],
and more recently Setlur and Stone [2016], extended this work in the domain of data visualiza-
tion. Both approaches aim to improve user interactions with color by decreasing Stroop Interfer-
ence (see [MacLeod 1991] for a review), or the difficulty observers have when there is a mismatch
between a color-word combination. For example, coloring the word “apple” with blue in a visual-
ization can lead to confusion. Setlur and Stone’s main contribution was to mine Google n-grams
(see [NgramViewer 2016; Michel et al. 2011]) and discover more word context to incorporate word
context with respect to objects and brands.

Researchers in computer vision have approached color naming from a more image-based perspec-
tive. Importantly, they have used large datasets of images and captions from internet search engines
and topic modeling to ascertain the associations between words and basic colors. Weijer et al. [2009]
use Probabilistic Latent Semantic Analysis (PLSA), and Schauerte and Stiefelhagen [2012] use La-
tent Dirichlet Allocation (LDA), to learn these associations. In the case of PLSA, the authors adapt
and extend the model by defining prior Dirichlet distributions for color labels as well as a regular-
ization term to control the shape of the model. Schauerte and Stiefelhagen use a supervised version
of LDA ([Mcauliffe and Blei 2008; Wang et al. 2009]) to learn word-basic color associations. It
is important to note the similarity and two key differences between this LDA model and the one
we present: While both approaches simultaneously learn the co-occurrences of visual features and
words, our model is unsupervised and uses a different graphical model (a mixture of color-word
proportions) to describe the topics. Furthermore, one key aspect of both of these previous modelling
approaches is that they were evaluated by using cross-validation to maximize the likelihood of the
data given the model. This method of cross-validation poses problems when capturing semantically
meaningful topics [Chang et al. 2009]. As we will show, our approach circumvents cross-validation
by using crowdsourcing to validate the inferred topics.

Building towards richer color semantics, researchers have recently modeled more abstract lin-
guistic concepts. Csurka et al. [2010] discuss color moods, while Solli and Lenz [2010] alge-
braically implement Kobayashi’s Color Image Scale. Csurka and colleagues selected 15 linguis-
tic concepts with associated color combinations from [Eisemann 2000] and an online community
called ColourLovers [ColourLovers 2016] to create a vocabulary of labels. They trained a classifier
to associate these linguistic concepts with colors. Furthermore, Murray et al. [2012] utilized this
framework for transferring color moods to images. In image retrieval, Solli and Lenz define a math-
ematical framework for Kobayashi’s Color Image Scale. Their goal was to index any given image
based on the proportions of Kobayahsi’s 3-color combinations that it contains. Given its effective-
ness, we previously utilized this framework in a system for designing alternative and customized
magazine covers (see [Jahanian et al. 2013]). A notable difference between Csurka and colleagues’
approach and the current study is that our inferred clusters take into account the proportions of the
colors and not simply their presence. Importantly, as mentioned earlier, the online color palettes used
by Csurka and colleagues are potentially noisy and do not necessarily indicate context [O’Donovan
et al. 2011].
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Attempting to outperform the typical method of finding palettes by querying words on Adobe
Kuler [Adobe Kuler 2016], Lindner and Süsstrunk [2013] suggested a method to automatically
generate color palettes based on users’ input words. First, they constructed a database of the 100,000
most frequent words in a subset of Google n-gram text [Google n-grams 2016]. Next, for each
of these words, they found the top 60 images returned by Google image search. For each image,
they extracted a set of 5-color palettes using four different “harmonious templates” (Adobe Kuler,
Matsuda [1995]), and designed a tool that delivered the best palette from each template at a user’s
request. Finally, they tested their results using a small set (30) of color palettes and found that
average users preferred their palettes better (but not statistically significant) than those retrieved
from Adobe Kuler. Our work is different in three important ways. First, our approach discovers
the color-word associations made by designers in a corpus of magazine covers. Using our corpus
is beneficial because it gives us a large diversity of data, while avoiding the potential pitfalls of
using the top Google search results. Namely, search results can be influenced by particulars of
the search algorithm, e.g. time and location. Second, in contrast with the single word to multiple
palettes mapping discovered by Lindner and Süsstrunk [2013], we find the relationships between
sets of multiple words and sets of multiple colors. These many-to-many associations underlie the
true semantic nature of media, but can be complex to analyze; modeling them effectively requires
the use of flexible models. LDA-dual is particularly well suited for this task. Finally, since our
model internally uses a richer representation of colors than a simple 5-color palette, we enable
ranking color palettes both extracted from our dataset as well as those from any existing database
of palettes, like Adobe Kuler or ColourLovers.

3. DATA COLLECTION
Our dataset of magazine covers includes 2,654 covers from 71 magazine titles and 12 genres, span-
ning 14 years, from 2000 to 2013 (and one cover from 1998). We collected approximately 1,500 of
these covers by scanning them from magazines held by libraries and newsstands in our university.
The rest of the cover images were downloaded from the Internet. Although we developed a web
crawler tool to collect magazine covers, because many magazine publishers do not provide archives
with high quality images, in half of the cases we had to collect online images by hand1. We at-
tempted to collect roughly 12 different genres of magazines to capture different contexts of design.
These genres include Art, Business, Education, Entertainment, Family, Fashion, Health, Nature,
Politics, Science, Sports, and Technology. To this end, we obtained category labels from the Dewey
Classification method [OCLC 2016a], the WorldCat indexing system [OCLC 2016b], suggestions
from our librarians, as well as the description of the magazine by the publishers. We used overlap-
ping methods to disambiguate categories like “general”, which were sometimes assigned to titles
by the Dewey method. Table III in the appendix contains a summary of our dataset. Note that the
genres are fluid and could change depending on use.

3.1. Preprocessing of Images
The preprocessing of cover images was performed using the Matlab Image Processing toolbox2. For
the scanned images, gamma correction was applied. We use 512 basic colors obtained by quantiz-
ing the sRGB color space with 8 bins in each channel. Given this color basis, each magazine cover
(image) is then a histogram of these colors. We chose sRGB mostly for processing convenience, as
it has a cubic space and is thus readily divided into bins. Conceivably, we could use the CIELab
color space, which is considered more perceptually uniform but creates computational challenges.
Importantly, whenever we compare colors (for finding palettes close to color histograms, etc.) we do
convert to the CIELab color space and subjects see color palettes that are closest to their respective

1The preprocessed data is available at https://github.com/ali-design/ColorSemantics.git. Note however that copyright con-
cerns prevent us from distributing the raw data freely in many locales. Please contact us if you would like to make use of the
raw data in your own work.
2The MathWorks, Inc., Natick, MA.
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color word topics in CIELab space rather than sRGB. This dual approach is common practice in
color applications; for example, Soli and Lenz [2010] use sRGB for quantization prior to imple-
menting applications in the CIELab color space. To feed the images to LDA-dual, we scale them to
300×200 pixels using bicubic interpolation. The down-sizing was done to reduce the computation
without affecting the distribution of the colors in the images.

3.2. Creating the Word Vocabulary
To capture the words to be associated with color distributions of the magazine covers, the words
on the covers were transcribed by hand. To create a word vocabulary, we first prune the transcribed
words (as described below) and then create a histogram of words. Because a more meaningful
vocabulary results in more meaningful topics, we filter out special characters, numbers, common
stop words3 (e.g. articles and lexical words), and an additional handcrafted list of stop words (see
Table IV in the appendix). Compound words formed with a hyphen or dash are decomposed; both
the separated words and the original compound word are included. In this fashion, we defined a
vocabulary of 9,929 words. A version of the Porter Stemming algorithm [Porter 1980] is used to
equate different forms of a word, for instance “elegant” and “elegance.” Finally, a mapping from
month to season is applied. In order to include the context and classes of the magazines with the
associated words, the periodical category to which each magazine title belongs was added to the set
of words. We collected these periodical categories from the WorldCat indexing system, which is the
largest international network of library content and services [OCLC 2016b].

(a) (b) (c) (d)

Fig. 2: Pink is used in all of these designs, despite the fact that each of these designs belongs to a
different context and genre of magazines.

4. STATISTICAL MODEL
When ideating about visual design, the designer takes into account the topic or the context within
which he or she is asked to convey his or her message. For instance, when the context is politics, the
designer may tend to use darker, “heavier” and more “formal” colors. However this is not the only
factor, the words in the design also influence the designer’s choice of colors. Figure 2 illustrates
that pink –which may be stereotypically associated with feminity– has been used in a variety of
magazines from different genres. This observation suggests that each design’s theme might be a
combination of words and color distributions; and each design may include a proportion of various
themes. Our goal is to model these combinations of words and colors, and infer proportions of these
combinations in magazine cover designs. A similar intuition has been argued in statistical topic
modeling, specifically LDA [Blei et al. 2003], for modeling word distributions in documents as
proportions of different word topics.

LDA (Latent Dirichlet Allocation) is an intuitive approach to infer topics from text data. As Blei
et al. [2003; 2012] describe, instead of categorizing and exploring documents using tools such as
keywords, we may first categorize documents based on topics. This allows us to explore topics of

3Provided by MySQL database, available at https://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html.
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interest and find related documents. For example, a document about sociology may include different
topics, such as biology, evolution, history, and statistics, with different proportions. Each of these
individual topics can be viewed as a multinomial distribution over a fixed vocabulary of words.
Accordingly, each document, which can be viewed as a bag of words, is a combination of these
topics with some proportions. Typically, a value for the number of topics is chosen by hand. The
latent topics, as well as the topic proportions of each document, are inferred by LDA using the
observed data, which are the words in the documents.

Just as word topics are distributions over words, one may think of color topics as distributions
over colors. This way, we can model the associations between the color topics and word topics and
infer combined color-word topics, as we show in the next section. Jointly inferring topics between
two different domains requires the LDA framework to be extended. Such an extension was recently
proposed by Shu et al. [2009], for identifying unique authors in bibliography databases.

4.1. LDA-dual Model for Color Semantics
In this section, we explain how to adapt the LDA-dual model proposed by Shu et al. [2009] for
color semantics. Our implementation4 of the model is an adaptation of the Matlab Topic Modeling
toolbox [Steyvers and Griffiths 2014; Griffiths and Steyvers 2004] for use in LDA (see [Jahanian
2014] for relevant derivations).

Assume that there are K color-word topics denoted by k1, k2, ..., kK and D magazine covers
denoted by d1, d2, ..., dD. Let W denote the number of words in the vocabulary and C denote the
number of color swatches, where each swatch is a patch of color defined by using its sRGB values5.
Moreover, let Md denote the number of words and Nd denote the number of color swatches in
magazine cover dd. Let wd,m denote the m-th word in the d-th document and cd,n denote the n-th
color swatch in the d-th document. Each magazine cover includes some proportion of each word
topic, as well as each color topic. Let yd,m denote the word topic assignment to the word wd,m

and zd,n denote the color topic assignment to the color swatch cd,n. Note that these assignments
are latent. Also let ψyd,m

and φzd,n denote the multinomial distributions of the word topics and the
color topics, respectively.

Each magazine cover includes some proportion of the color-word topics. These proportions are
latent, and one may use the K dimensional probability vector θd to denote the corresponding multi-
nomial distribution for a document dd.

Let β, γ, and α be the hyper-parameters of the three Dirichlet distributions for the color topics,
word topics, and the proportions θd, respectively. Let Dirichlet(·) denote the Dirichlet distribu-
tion, and Discrete(Dirichlet(·)) denote the discrete distribution that is drawn from a Dirichlet
distribution.

Given the above notation, the generative model for LDA-dual can be written as follows:
(1) Draw K word topics ψk ∼ Dirichlet(γ).
(2) Draw K color topics φk ∼ Dirichlet(β).
(3) For each document dd ∈ {d1, d2, . . . , dD}:

— Draw θd ∼ Dirichlet(α).
— For each word wd,m with m = 1, . . . ,Md

— Draw yd,m ∼ Discrete(θd)
— Draw wd,m ∼ Discrete(ψyd,m

)
— For each color cd,n with n = 1, . . . , Nd

— Draw zd,n ∼ Discrete(θd)
— Draw cd,n ∼ Discrete(φzd,n)

A graphical model for this generative process is illustrated in Fig. 3, where the shaded nodes
denote observed random variables and the unshaded nodes are latent random variables.

4Available at https://github.com/ali-design/ColorSemantics.git.
5Recall that we discretize and use 8 values for each of the three sRGB color channels. Therefore, C = 512.
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III. STATISTICAL MODEL

LDA is an intuitive approach to infer topics from text
data. As Blei [9] describes, a document can be viewed as
a proportion of different topics. For example, a document
about sociology may include different topics such as biology,
evolution, history, and statistics with different proportions.
Each of these individual topics can be viewed as a multinomial
distribution over a fixed vocabulary of words. Accordingly,
each document, as a bag of words, is a combination of these
topics with some proportions. A similar intuition is observed
in magazine covers: each cover might be a combination of
word topics and color distributions (topics); and each cover,
as a bag of words and colors, may include a proportion of
various word and color topics (e.g., see Fig 1).

θdα

zd,n

yd,m

cd,n

wd,m

φk β

ψk γ

n = 1, . . . , Nd

m = 1, . . . ,Md

d = 1, . . . , D

k = 1, . . . ,K

Fig. 2: Hierarchical Bayesian plate model for the biLDA
model, which combines color and word topics. D is the
number of magazine covers; K is the number of color-word
topics; Nd and Md are the number of pixels and words,
respectively, on the d-th magazine cover.

A. BiLDA Model

Assume there are K color-word topics denoted by
k1, k2, ..., kK and D magazine covers denoted by
d1, d2, ..., dD. Let W denote the number of words in
the vocabulary and C denote the number of color swatches,
where each swatch is a patch of color defined by using
its sRGB values. Moreover, let Nd denote the number of
words and Md denote the number of color swatches in
magazine cover dd. Let wd,n denote the n-th word in the d-th
document and cd,m denote the m-th color swatch in the d-th
document. Each magazine cover includes some proportion
of the color-word topics. These proportions are latent, and
we use the K dimensional probability vector θd to denote
the corresponding multinomial distribution for a document
dd. Let α, β, and γ be hyper-parameters of the Dirichlet
distribution.

Given the above notation, the generative model for biLDA
can be written as follows:

1) Draw K word topics φk ∼ Dirichlet(β).
2) Draw K color topics ψk ∼ Dirichlet(γ).
3) For each document dd ∈ {d1, d2, . . . , dD}:

• Draw θd ∼ Dirichlet(α).

• For each word wd,n with n = 1, . . . , Nd

– Draw zd,n ∼ Discrete(θd).
– Draw wd,n ∼ Discrete(φzd,n).

• For each color cd,m with m = 1, . . . ,Md

– Draw yd,m ∼ Discrete(θd).
– Draw cd,n ∼ Discrete(ψyd,m

).
A graphical model for this generative process is illustrated

in Fig 2, where the shaded nodes denote observed random
variables and the unshaded nodes are latent random variables.

If we let φ = {φ1, . . . , φK}, ψ = {ψ1, . . . , ψK},
θ = {θ1, . . . , θD}, zd = {zd,1, . . . , zd,Nd

}, yd =
{yd,1, . . . , yd,Md

}, z = {z1, . . . , zD}, y = {y1, . . . , yD},
w = {w1, . . . , wd}, and c = {c1, . . . , cd}, then the joint
distribution corresponding to the biLDA model above can be
written as p (φ,ψ,θ, z, c,y,w) =

K∏

i=1

p (φi|β) · p (ψi|γ) ·
D∏

d=1

p (θd|α)

·
(

N∏

n=1

p (zd,n|θd) p (cd,n|φ, zd,n)

)

·
(

M∏

m=1

p (yd,m|θd) p (wd,m|ψ, yd,m)

)
. (1)

Fig 3 provides a graphical illustration of the generative mech-
anism and the inference procedure described below.
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Fig. 3: LDA is both a generative and an inference model. This
image is inspired by [10]. We use the inference process for
extracting color-word topics from the magazine covers. We
then use the generative process to visualize the inferred color-
word topics (see Fig 4).

B. Inference

Since c and w are observed, inference entails computing

p (φ,ψ,θ, z,y|c,w) =
p (φ,ψ,θ, z,y, c,w)

p (c,w)
. (2)

Theoretically, the above distribution can be obtained by
computing the joint probability distribution of the latent and
the observed variables, and then computing the marginal

Fig. 3: Hierarchical Bayesian plate model for the LDA-dual model, which combines color and word
topics. Here, D is the number of magazine covers; K is the number of color-word topics; and Nd

and Md are the number of color swatches and words, respectively, in the d-th magazine cover.

If we let φ = {φ1, . . . , φK}, ψ = {ψ1, . . . , ψK}, θ = {θ1, . . . , θD}, zd = {zd,1, . . . , zd,Nd
},

yd = {yd,1, . . . , yd,Md
}, z = {z1, . . . , zD}, y = {y1, . . . , yD}, w = {w1, . . . , wd}, and c =

{c1, . . . , cd}, then the joint distribution corresponding to the LDA-dual model above can be written
as

p (φ,ψ,θ, z, c,y,w) =

K∏

i=1

p (φi|β) · p (ψi|γ) ·
D∏

d=1

p (θd|α) ·
(

N∏

n=1

p (zd,n|θd) p (cd,n|φ, zd,n)

)

·
(

M∏

m=1

p (yd,m|θd) p (wd,m|ψ, yd,m)

)
. (1)

Figure 4 provides a graphical illustration of the generative mechanism and the inference proce-
dure described below. This figure is a symbolic representation of the model. In each sub-figure, a
cylinder represents a color-word topic. Each arrow represents the probability of each cover being
drawn from a given color-word topic. Each cover includes a histogram of colors and a list of words
(each word is superscripted by its corresponding color-word topic). In the generative process, we
know the distribution of the color-word topics, and can produce the distribution of the colors and
words on the magazine covers. For instance, “Cover 1” is completely (with probability 1.0) gener-
ated by color-word topic 1. “Cover 2” is generated by equal distributions of both “color-word topic
1” and “color-word topic 2”. In the statistical inference mechanism, we only know the distribution
of the colors and the words for each cover. We do not know (represented by question marks) the
color-word topics, their proportions, and the assignments of the colors and words of each cover to
these color-word topics.

4.2. Inference
Since c and w are observed, inference entails computing

p (φ,ψ,θ, z,y|c,w) =
p (φ,ψ,θ, z,y, c,w)

p (c,w)
. (2)

Theoretically, the above distribution can be obtained by computing the joint probability distri-
bution of the latent and the observed variables, and then computing the marginal probability of
the observations. In practice, however, topic modeling algorithms approximate the result to bypass
the computational complexity of the solution. There are often two approaches for this approxima-
tion [Blei 2012]: variational inference [Jordan et al. 1999; Teh et al. 2006] and Markov chain Monte
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Fig. 4: LDA is both a generative and inference model. This image is inspired by [Steyvers and
Griffiths 2007].

Carlo (MCMC) sampling [Andrieu et al. 2003; Griffiths 2002]. We adapted MCMC collapsed Gibbs
sampling from the Matlab Topic Modeling Toolbox [Griffiths and Steyvers 2004; Steyvers and Grif-
fiths 2014].

In this paper, we set the number of topics to K = 12, with hyper-parameters α = 0.8, and
β = γ = 0.1. We chose β and γ to match the values used in the original version of LDA applied
to text documents [Griffiths and Steyvers 2004]. Also, we assume a symmetrical distribution for the
topics, and thus a higher value for α means each cover is a mixture of most of the topics. Note that
the 12 general categories (genres) of magazines and the 12 topics (K = 12) are independent. There
is no a priori relationship between the number of genres (determined by the methods in Sec. 3)
and the topics produced by LDA-dual. Furthermore, note that the choice of hyper-parameters in
probabilistic models, such as the hyper-parameters of a Dirichlet Process Model, affect the result-
ing model. It is possible to select parameters that maximize data likelihood [Wallach et al. 2009].
However, other studies have shown this does not necessarily discover topics that correspond to hu-
man intuitions [Chang et al. 2009]. In this paper, we present our approach for validating the results
according to human judgement. Importantly, given our parameter choices, a reader should readily
be able to reproduce our findings.

Figure 5 illustrates the 12 color-word topics inferred by the model for the given parameters.
Note that because each color-word topic includes proportions of the color basis and the vocabulary
words, in this figure, we visualize a topic as a pair of colors and words histograms. The visualized
histograms just illustrate the principal components.

Note that in this figure, next to each word topic (e.g. “Word Topic 1”), there is a distribution
over some colors representing the associated color topic. Each word topic and color topic has some
proportion in the entire dataset (e.g. 0.0483 for “Word Topic 1”). The summation of all the 12
word topics proportions is 1. Similarly, all the 12 color topic proportions add up to 1. Here, just for
visualization, we show the length of each color topic based on its ratio to the “Color Topic 4” (in
color-word topic k4), which has the largest proportion.
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security 0.015 beautiful 0.014 shop 0.02 products 0.012 art 0.009 time 0.01
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shop 0.012 life 0.013 home-economics 0.016 gardens 0.011 style 0.008 stars 0.01
microcomputers 0.012 body 0.013 sex 0.013 commercial 0.011 natural 0.008 humanities 0.009
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Fig. 5: Color-word topics inferred by the LDA-dual model. Illustration of the 12 color topics in
the middle, and their corresponding 12 word topics; 6 on top for the first 6 color histograms from
left, and the other 6 on the bottom. Note that for visualization, only the principal elements in the
histograms are shown. Also note that the numerical weight of each word topic is shown next to
heading of each word topic histogram.
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Figures 6 (a), (b), and (c) illustrate the proportions of each of the inferred color-word topics for
three magazine title designs in the dataset. For instance, note that Vogue as a fashion magazine has
k8 and k9 as two of the dominant color-word topics. As can be seen, k8 and k9 contain words such as
“women”, “fashion”, “love”, and “beauty”, while the corresponding color histograms contain pastel
and pink colors, which are often associated with fashion magazines. On the other hand, Horticulture,
which is a nature magazine, has the highest proportion of k1, which pre-dominantly contains shades
of green. The words in k1 include gardening-related words such as “gardens”, “landscapes”, and
“plants”. See Fig. 16 for all 71 magazine titles. Additionally, Table II in the appendix illustrates the
proportions of the top 10 magazine titles in the color-word topics.

(a) Horticulture (b) Time (c) Vogue

Fig. 6: Proportions of each of the inferred color-word topics for three sample magazine title designs
in the dataset. (a) Horticulture, (b) Time, and (c) Vogue magazines (including all the issues in the
dataset) are shown. Note that k’s are the same as in Fig. 5 (and Fig. 8). See Fig. 16 for all of the
magazines.

5. INTERPRETING THE MODEL OUTPUT
Visualizing the results of LDA is a topic of research [Chaney and Blei 2012; Chuang et al. 2012].
Chaney and Blei [2012], for example, suggest a visualization mechanism for exploring and navi-
gating through inferred topics from LDA and their corresponding documents. Although their work
does not completely address the usability evaluation of this mechanism, it inspired our visualiza-
tion mechanism for our user study. In order to evaluate the color semantics hypothesis, we need to
display both the color histogram and the word histogram to the participants in our user study in a
comprehensive, yet unbiased fashion. We address this via a two-step process. The word histograms
are converted to word clouds, while the color histograms are converted to 5-color palettes. Figure 7
illustrates the visualization process. We discuss our choices for colors and words, and describe our
implementions for each decision in the two following sections.

5.1. From Color Histograms to Color Palettes
We use 5-color palettes as proxies to represent each of the color histograms in Fig. 5. That is, we
chose to match 5-swatch color palettes to the 512-bin color histogram returned by the model. This
was for several key reasons. First, a 512-bin color histogram is perceptually hard to be shown to the
participants, given that many colors might be invisible at each level of visualization. In other words,
such a color histogram encapsulates too much of information to be comprehended. On the other
hand, it is not practical to show the entire histogram to a user for his/her usage in an application.
Therefore, we need to downsample the histogram. Second, 5-color palettes are standard in the design
industry and prior computer science work, and thus can be easily obtained ([Murray et al. 2012; Lin
and Hanrahan 2013; Adobe Kuler 2016; ColourLovers 2016], etc.). Designers argue that using more
than 5 can lead to clutter (e.g. see [Samara 2007]), and most magazines use 2-3 additional colors
(e.g. for typography and bells-and-whistles) beyond those contained in the images (from interviews
with designers [Jahanian 2011]).
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Fig. 7: Visualization process for the inferred color-word topics. To visualize the color-word topic
histograms inferred by the model (see Fig. 5), we use 5-color palettes and word clouds as proxies to
color histograms and word histograms, respectively. (a) The magazine cover dataset. (b) Applying
the LDA-dual model on the dataset. (c) Output of the LDA-dual –color-word topics. (d) Extracting
color palettes from the dataset to be used in Eq. (3) for finding the closest color palettes to each color
topic histogram. *See Sec. 5.1 for the color theme extraction details. (e) The closest color palettes
(here only two), to the color histogram, and the word cloud for the word histogram.

The corresponding color palettes of the color histograms are drawn from a pool of 5-color
palettes, one for each magazine cover in the dataset. To extract color palettes from the images,
we used the color theme extraction code provided by [Lin and Hanrahan 2013]. In their implemen-
tation, the algorithm requires a saliency map of the given image (they used the code from [Judd et al.
2009]), as well as the segmentation of the given image (they used the code from [Felzenszwalb and
Huttenlocher 2004]). In our work, we however used the saliency map code from [Harel et al. 2007],
since it was easily accessible. Note that these color palettes are not the input to the model; they are
only used to visualize the inferred color histograms.

In order to find the 5-color palettes that are closest to the color topic histograms, we define a
similarity metric as follows: Let S512 denote a color topic histogram with the 512 color basis defined
earlier, and S5 denote a 5-color palette. An intuitive similarity metric is the Euclidean distance
between color swatches of S512 and S5. Among the possible color spaces, we choose the CIELab
color space with a D65 reference white point. It is considered to be a perceptually uniform space,
where ∆E around 2.3 (the distance between two colors) corresponds to one JND (Just Noticeable
Difference) [Sharma 2002].

Defining the color similarity distance problem as a bipartite graph matching between S512 and
S5 with 512 and 5 nodes, respectively, we find the minimum distance cost of this graph using
the Hungarian method [Kuhn 1955]. Equation 3 defines the weighted Euclidean distances dWED

between the nodes of these two graphs. Here, the weight wi corresponds to the weight of the i-th
color in the color topic histogram S512, and

∥∥S512
i − S5

j

∥∥
2

denotes the distance in CIELab between
the i-th color from S512 and the j-th color from S5. This metric can be thought as a version of The
Earth Mover’s distance suggested by Rubner et al. [Rubner et al. 2000] for image retrieval, with the
weight vector representing color importance.

dWED =

512∑

i=1

1

wi

5∑

j=1

∥∥S512
i − S5

j

∥∥
2
. (3)
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Fig. 8: Alternative visualization of the 12 color-word topics shown in Fig. 5. In each color-word
topic (e.g. k1), the top panel shows the color histogram and the second and third color panels show
the top two color palettes we extracted from this histogram. The word topics are visualized in the
bottom panel as word clouds, with the size of a word being proportional to its weight.

Computing dWED for a given color topic histogram and all 5-color palettes, we can choose the
closest of them as proxies to the histogram (see Fig. 7). In the user study, we present two series of
questions for the first and the second closest color palettes, because just one color palette may not
provide an adequate visualization of the entire topic histogram. See Fig. 8 for the entire color-word
topics.

Note that we could have simply chosen the top 5 colors represented in the histogram, but this has
a few shortcomings. First, this would not take into account the variability in color distributions. One
could use k-means clustering to get a representative set of “average” colors, but simply averaging
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color values often results in perceptually different (and thus non-representative) colors [Lin and
Hanrahan 2013]. Another approach might be to choose 5 peaks or modes in the histogram, according
to some measure. This suffers the same problem of picking the top 5, since there is no guarantee of
capturing the natural perceptual variability in the color distributions.

5.2. From Weighted Bag of Words to Word Clouds
Figure 7 illustrates how we visualize each word topic histogram with a word cloud. The word
cloud (or tag cloud) is a visualization technique used to show the relative weights of words through
different font sizes. The weights resemble frequency of occurrence or importance of the words in a
word dataset. A suite of word cloud algorithms and their usabilities are discussed in [Seifert et al.
2008]. Because of the popularity of word clouds in visualizing categories, and the fact that words
are randomly scattered over a layout, we used this technique in our user study. Using wordle6, we
generated black and white word clouds to avoid introducing any color bias. Note that whereas we
chose two color palettes for each color topic, we developed only one word cloud for each word topic.
This is because we are downsampling the color histograms a lot more than the word histograms, and
it makes sense to test the colors with a stronger test (two palettes per color histogram).

6. USER STUDY
The main aim of this section is to validate the output of the probabilistic topic model7. In particular,
we want to understand if casual users (who are not necessarily designers) agree with the association
between color combinations and linguistic concepts produced by our model. We conducted two
experiments to study how users match a given color palette with the 12 word clouds –Experiment I
(color palette to word cloud direction)– and vise versa –Experiment II (word cloud to color palette
direction). Since Experiment I was our main survey with a larger number of participants, we discuss
our evaluation framework through this experiment. We then use the same framework and notation
to report Experiment II. We conducted the second experiment to complement the first experiment;
however, we note that it has a relatively smaller number of participants.

None of the above

Demographic
questions

None of the above

YesAnother
set?

No

Randomly selected Shuffled

8 times 8 times

Q: From your opinion, 
which of these word 
clouds represent this 
color palette? Choose 
as many as apply.

Q: From your opinion, 
which of these word 
clouds represent this 
color palette? Choose 
as many as apply.

Fig. 9: Flow of the user study.

6http://www.wordle.net
7The data collected for the experiments is available at https://github.com/ali-design/ColorSemantics.git.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 A. Jahanian et al.

6.1. Experiment I
6.1.1. Stimuli and Procedure. Figure 9 illustrates the flow of the survey. In order to simulate a

matching experiment between pairs of color and word topics, we designed a question as follows:
one 5-color palette was shown in the left side of the screen, and three shuffled and randomly chosen
word clouds, as well as a “None of the above” option were shown on the right side arranged in
vertical order. Each question was a multiple choice (represented by multiple checkboxes). For each
question, we asked the participant to choose as many word clouds, as in his/her opinion applied to
the 5-color palette shown. If the participant felt that none of the word clouds applied to the 5-color
palette, he/she could choose “None of the above”. Among the three randomly drawn word clouds,
one was the word cloud inferred from the model.

The survey was divided into two subsets of questions. The reason for this is that, if otherwise,
some participants may lose interest in finishing the experiment. This observation was made in the
pilot experiment8. More specifically, we created 24 questions for the first and second closest 5-color
palettes corresponding to the 12 inferred color topics. However to avoid exhausting the participants,
we randomly drew 8 questions from the 12 questions of the closest color palettes and asked the
participants to answer them. Then we asked the participants if they would like to continue by tak-
ing another set of 8 questions (this time drawn from the 12 questions of the second closest color
palettes). Of all participants, 61.35% of the users chose to continue, and answered all 16 questions.

6.1.2. Participants. Our survey9 was advertised through social networks and universities (Purdue
and MIT) email networks. Because trials were randomly ordered, we included all completed tri-
als from all participants (except the few exceptions listed below), regardless of how many trials a
participant completed. This survey attracted 1091 participants. The data from 8 participants were
removed because they left comments that claimed they had trouble viewing the images on their
display. In the early stages of the survey, for the first 177 participants, the “correct” word cloud was
not always shown as a possible answer (the word cloud derived from the same topic as the color
palette on that trial). We fixed this error for the rest of the participants, and removed 167 trials in
which this condition happened. This resulted in 846 participants who completed at least one trial.
Over all of these participants, a total of 9,098 trials were completed. Of those trials, 5,523 were in
the first subset of questions, and 3,575 in the second.

We collected 846 responses from 481 (56.86%) females, 361 (42.67%) males, and 4 others
(0.47%), in the range of 18 to 80 years (with mean = 31.04 and standard deviation = 12.10). The
participants are from 70 countries and natively speak 66 different languages, with the majority from
the U.S. (60.05%). There are 340 (40.19%) participants who have lived in more than one coun-
try. There are 346 (40.90%) participants with college degrees, 445 (52.6%) with graduate degrees
(graduate school, PhD, postdoctoral), and 55 others (pre-high school, high school, and professional
degree). The majority of the participants, 705 (83.33%) are non-designers. In contrast, there are 129
(15.25%) participants with three or more years of experience in visual design (including graphic
design, interior design, and textiles.) Participants spent on average 6.27 (standard deviation = 3.00)
hours per day on the Internet.

6.2. Experiment II
6.2.1. Stimuli and Procedure. We used the same procedure as we did for Experiment I. The only

difference was that we showed a word cloud in each question and examined the color palettes in
the multiple options for the answers. That is, one word cloud was shown in the left side of the
screen, and three shuffled and randomly chosen 5-color palettes (including the correct one), as well
as a “None of the above” option were shown on the right side arranged in vertical order. Each
question was a multiple choice (represented by multiple checkboxes). For each question, we asked
the participant to choose as many 5-color palettes, as in his/her opinion applied to the word cloud

8This pilot experiment is hosted at https://purdue.qualtrics.com/jfe/form/SV 7WmxYF575nFx7DL.
9https://purdue.qualtrics.com/jfe/form/SV 1AqhT38FJKZ5Vrf.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.



Colors –Messengers of Concepts: Visual Design Mining for Learning Color Semantics A:17

shown. If the participant felt that none of the word clouds applied to the world cloud, he/she could
choose “None of the above”.

6.2.2. Participants. This survey10 attracted 447 participants. The data from 4 participants were
excluded based on comments claiming they either had trouble viewing the images or were severely
visually impaired. Of the remaining participants, 378 completed at least one trial. In the end, 4,447
trials were kept. Of those, 2,772 trials in subset 1 and 1,675 in subset 2 were completed by all
participants.

We collected 378 responses, with 39.15% male, 60.05% female, and 0.79% others, in the age
range of 18 to 70 years (with average 24.53, and standard deviation 8.22). The participants are
from 35 countries and natively speak 41 different languages, with the majority from the U.S.
(75.13%). There are 118 (31.22%) participants who have lived in more than one country. There
are 179 (47.35%) participants with college degrees, 166 (43.92%) with graduate degrees (graduate
school, PhD, postdoctoral), and 33 others (pre-high school, high school, and professional degree).
The majority of the participants, 332 (87.83%) are non-designers. In contrast, there are 36 (9.52%)
participants with three or more years of experience in visual design (including graphic design, inte-
rior design, and textiles.) Participants spent on average 5.80 (standard deviation = 2.66) hours per
day on the Internet.

7. INTERPRETING THE USER STUDY
In this section we explain the statistical inference mechanism that we used to understand the user
responses for Experiment I. We then use the same framework and notation to report the responses
of Experiment II.

Table I: Permutation test results.
Color-word 

topic 

Ratio of observed “correct” responses 
to prediction from random guessing 

Experiment I Experiment II 
𝑘𝑘1 2.66* 3.26* 
𝑘𝑘2 0.69 0.91 
𝑘𝑘3 1.59* 1.40* 
𝑘𝑘4 1.49* 1.33* 
𝑘𝑘5 1.63* 1.51* 
𝑘𝑘6 2.03* 1.69* 
𝑘𝑘7 1.74* 1.80* 
𝑘𝑘8 1.49* 1.48* 
𝑘𝑘9 2.58* 2.40* 
𝑘𝑘10 1.63* 1.96* 
𝑘𝑘11 1.61* 1.63* 
𝑘𝑘12 1.01 1.00 

average 1.68* 1.70* 
 

* indicates significantly greater than random guessing at p < 5× 10−4, two-sided permutation test.

7.1. Summary of Basic Statistics on Correct Responses
Before accounting for detailed statistical results, we first show the basic strength of the associations
between palettes and their corresponding word clouds in the participant data. In this section, by
“correct” response, we mean the participant’s choice agreeing with the model’s output.

Participants in Experiment I, pooled over both subsets, were 1.68 times more likely than random
guessing to choose the “correct” word cloud for a given color palette. This is the ratio of how many
times participants chose the correct word cloud to how many would be expected if each participant’s

10https://jfe.qualtrics.com/form/SV 8B9qc7nqnUKPuEl.
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per-trial responses were randomized (using the same number, but not order, of choices per trial).
This effect is highly significant (p < 5 × 10−4, two-sided permutation test) for all but two color-
word topics (topics k2 and k12 were not significantly above chance). The results are summarized in
Table I.

Analogously to Experiment I, participants in Experiment II were 1.70 times more likely to choose
the “correct” color palette for a given word cloud than chance. This effect is significant for all topics
(p < 5×10−4, two-sided permutation test) except topics k2 and k12. These results are also available
in Table I.

7.2. Statistical Model
In order to interpret the results in more detail, we present a statistical analysis. First, we define some
notation. Let ci denote the event that the i-th color palette was displayed. Also, let wj denote the
event that the user selected (clicked on) the j-th word cloud, and uij denote the probability that the
j-th word cloud was selected by the user in response to the i-th color palette. In order to compute
uij we note that

uij = Pr(wj |ci). (4)

There are three possible positions p ∈ {1, 2, 3} at which a word cloud can be displayed. Let djp
denote the event that the j-th word cloud was displayed at position p, and let wjp denote the event
that the user selected the j-th word cloud which was displayed at the p-th position. Then

uij =
∑

p∈{1,2,3}
Pr(wjp|djp, ci) · Pr(djp|ci). (5)

If dj denotes the event that the j-th word cloud was selected for display and dpj the event that it was
displayed at position p, then

Pr(djp|ci) = Pr(dj |ci) · Pr(dpj |ci). (6)

According to our experimental design, each word cloud has an equal probability of appearing in any
one of the three positions. Therefore

Pr(dpj |ci) =
1

3
. (7)

On the other hand, we always select the i-th word cloud (the true word cloud according to our
model) for the i-th color palette. The other two slots are filled by selecting any two of the remaining
11 word clouds uniformly at random. Therefore

Pr(dj |ci) =

{
1 if i = j
2
11 otherwise.

(8)

All that remains is to estimate Pr(wjp|djp, ci). To estimate this quantity, we utilize the technique
known as “cascade click modeling” [Govindaraj et al. 2014]. Cascade click modeling was originally
introduced to model a user’s back and forth clicks on a list of URLs (resulting from an online search
query), regardless of their content. This model allows us to simultaneously estimate two quantities:
the first is position bias bp, the probability that the p-th position is examined by a user; the second
is rij , the intrinsic relevance of the word cloud j to the color palette i. In other words,

Pr(wjp|djp, ci) = rij · bp, (9)

and by using (5) and letting qij =
∑

p∈{1,2,3} Pr(djp|ci) · bp, we can write

uij = rij ·
∑

p∈{1,2,3}
Pr(djp|ci) · bp = rij · qij . (10)
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Note that bp can be pre-computed as follows:

bp =
mp

m
, (11)

where m denotes the total number of trials (each question in our survey is equivalent to one trial),
and mp denotes the number of times the word cloud at position p was selected in any of the trials.
In Experiment I, we found the position bias of the options (in vertical order) for the first set of the
questions to be 0.3308, 0.3797, 0.3473, 0.147, and 0.4254, 0.3932, 0.3564, 0.1269 for the second
set of the questions. Note that for each set, these numbers do not sum up to 1, because of the fact
that the participant could choose more than one word cloud. The position bias for Experiment II is
0.337, 0.4173, 0.3465, 0.1083 for the first set of the questions, and 0.4641, 0.3654, 0.3434, 0.1319
for the second set of the questions.

These numbers indicate that the position bias for each option is not equal, and even though we
shuffled the three choices of word clouds in the first three vertical positions, we need to account for
the position bias. We note that the fourth option –“None of the above”– is clicked less than the other
options. This indicates that our participants wished to provide an answer, as well as they may have
not thought that the associations between the word clouds and the colors were too abstract. We also
note that in the second set of the questions, the fourth number is lower than the one in the first set
of questions. This perhaps means that the participants who chose to participate in one more set of
the questions in the survey were more confident with their conclusions.

As the last step, let mi denote the number of trials in which the i-th color palette was displayed,
and mij denote the number of trials in which the i-th color palette was displayed and the j-th word
cloud was selected. We can assume that the trials are independent, and therefore the probability of
observing this data under model (10) can be written as

Pr(mi,mij) = (rij · qij)mij (1− rij · qij)mi−mij . (12)

The maximum likelihood estimate for rij · qij is simply mij

mi
, from which we can infer r̂ij , the

maximum likelihood estimate for rij , as

r̂ij =
mij

mi · qij
. (13)

7.3. Analyzing the Results for Experiment I
Figure 10 illustrates two relevance matrices. The matrices corresponds to the inferred relevance
of the first and second closest color palette, respectively, to the word cloud produced by LDA-
dual. The rows correspond to color palettes, as proxies to color topics histograms, and the columns
correspond to word clouds. The (i, j)-th elements of these matrices are the intrinsic relevance values
r̂ij , computed from the observed responses of the participants using the model described in the
previous section. Higher values of r̂ij mean that the users found a high correlation between the i-th
color palette and the j-th word cloud. If the participants find the word cloud produced by our model
to be the most relevant for a given color palette, then the diagonal entries, marked in blue, should
contain the highest values. Whenever an off-diagonal entry is larger than the corresponding diagonal
entry in its row, it is marked yellow in the figure.

Note that for the first set of 12 color palettes, participants selected the “None of the above” option
on average for 14.70% of the trials. The minimum was 6.21%, which occurred for k1; and the
maximum was 27.54%, which occurred for k2. For the second set of 12 color palettes, the average
was 12.69%. The minimum was 1.34%, which occurred for k1; and the maximum was 21.81%,
which occurred for k2. Frequent selection of the “None of the above” option for a given color palette
suggests that participants had more difficulty associating this palette with the word clouds that were
shown. In the relevance matrices, we do not compute the numbers for each color palette against the
“None of the above” option. Thus the matrices do not contain the 13-th column. However, if the
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𝑅𝑅�1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12   𝑅𝑅�2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12 
𝑐𝑐1 2.14 0.33 1.38 0.39 0.49 0.38 0.26 0.39 0.28 0.81 0.40 0.30   𝑐𝑐1 2.23 0.24 1.45 0.48 1.06 0.47 0.56 0.51 0.29 1.01 0.49 0.45 
𝑐𝑐2 0.58 0.27 0.56 0.63 1.18 0.38 0.36 1.80 1.86 0.70 0.68 1.45   𝑐𝑐2 0.05 0.97 0.77 0.81 0.74 0.45 0.41 1.10 1.57 0.58 0.89 1.07 
𝑐𝑐3 0.14 1.25 1.53 0.84 0.87 0.89 1.18 0.52 0.28 0.68 1.04 0.34   𝑐𝑐3 0.31 1.17 1.18 1.04 1.40 0.95 1.31 0.60 0.66 0.85 1.38 0.48 
𝑐𝑐4 0.03 1.62 1.16 1.29 0.71 1.18 1.65 0.12 0.26 0.64 1.39 0.27   𝑐𝑐4 0.20 1.19 0.91 1.31 0.96 1.16 1.52 0.29 0.43 0.80 0.92 0.63 
𝑐𝑐5 0.39 1.23 1.46 1.09 1.45 1.05 1.61 0.43 0.36 0.93 1.13 0.53   𝑐𝑐5 0.65 0.93 1.56 0.94 1.31 0.84 0.78 0.49 0.56 1.10 1.40 0.74 
𝑐𝑐6 0.74 0.99 1.09 0.74 0.54 1.84 0.98 0.27 0.10 0.61 1.01 0.41   𝑐𝑐6 0.19 1.32 1.16 0.79 0.46 1.81 1.29 0.18 0.24 0.54 1.40 0.37 
𝑐𝑐7 0.13 1.31 1.23 1.00 1.11 1.01 1.63 0.29 0.48 0.39 1.05 0.48   𝑐𝑐7 0.05 1.19 0.97 1.24 1.03 1.38 1.38 0.25 0.70 0.73 1.20 0.36 
𝑐𝑐8 0.51 0.34 0.60 0.41 1.49 0.40 0.34 1.79 1.31 1.03 0.48 1.07   𝑐𝑐8 1.21 0.84 1.79 0.90 1.42 0.92 0.75 0.62 0.65 1.25 0.83 0.88 
𝑐𝑐9 0.44 0.03 0.07 0.30 1.30 0.07 0.11 1.96 2.06 0.63 0.34 1.20   𝑐𝑐9 0.26 0.09 0.13 0.32 0.92 0.09 0.13 1.65 2.42 0.47 0.18 1.20 
𝑐𝑐10 1.06 0.25 0.73 0.58 1.82 0.34 0.18 1.54 1.00 1.43 0.61 1.18   𝑐𝑐10 0.74 0.36 0.60 0.70 1.98 0.35 0.45 0.95 0.82 1.29 0.61 1.00 
𝑐𝑐11 0.30 1.68 0.91 1.41 0.48 1.23 1.52 0.23 0.23 0.74 1.37 0.37   𝑐𝑐11 0.09 1.62 0.99 1.11 0.57 1.20 1.40 0.05 0.00 0.63 1.43 0.10 
𝑐𝑐12 0.99 0.50 1.58 0.94 0.87 1.53 0.64 0.57 0.63 1.09 1.09 0.58   𝑐𝑐12 0.53 0.42 1.21 0.96 0.87 0.66 0.62 0.89 0.98 0.91 0.49 1.11 

(a)
 

𝑅𝑅�1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12   𝑅𝑅�2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12 
𝑐𝑐1 2.14 0.33 1.38 0.39 0.49 0.38 0.26 0.39 0.28 0.81 0.40 0.30   𝑐𝑐1 2.23 0.24 1.45 0.48 1.06 0.47 0.56 0.51 0.29 1.01 0.49 0.45 
𝑐𝑐2 0.58 0.27 0.56 0.63 1.18 0.38 0.36 1.80 1.86 0.70 0.68 1.45   𝑐𝑐2 0.05 0.97 0.77 0.81 0.74 0.45 0.41 1.10 1.57 0.58 0.89 1.07 
𝑐𝑐3 0.14 1.25 1.53 0.84 0.87 0.89 1.18 0.52 0.28 0.68 1.04 0.34   𝑐𝑐3 0.31 1.17 1.18 1.04 1.40 0.95 1.31 0.60 0.66 0.85 1.38 0.48 
𝑐𝑐4 0.03 1.62 1.16 1.29 0.71 1.18 1.65 0.12 0.26 0.64 1.39 0.27   𝑐𝑐4 0.20 1.19 0.91 1.31 0.96 1.16 1.52 0.29 0.43 0.80 0.92 0.63 
𝑐𝑐5 0.39 1.23 1.46 1.09 1.45 1.05 1.61 0.43 0.36 0.93 1.13 0.53   𝑐𝑐5 0.65 0.93 1.56 0.94 1.31 0.84 0.78 0.49 0.56 1.10 1.40 0.74 
𝑐𝑐6 0.74 0.99 1.09 0.74 0.54 1.84 0.98 0.27 0.10 0.61 1.01 0.41   𝑐𝑐6 0.19 1.32 1.16 0.79 0.46 1.81 1.29 0.18 0.24 0.54 1.40 0.37 
𝑐𝑐7 0.13 1.31 1.23 1.00 1.11 1.01 1.63 0.29 0.48 0.39 1.05 0.48   𝑐𝑐7 0.05 1.19 0.97 1.24 1.03 1.38 1.38 0.25 0.70 0.73 1.20 0.36 
𝑐𝑐8 0.51 0.34 0.60 0.41 1.49 0.40 0.34 1.79 1.31 1.03 0.48 1.07   𝑐𝑐8 1.21 0.84 1.79 0.90 1.42 0.92 0.75 0.62 0.65 1.25 0.83 0.88 
𝑐𝑐9 0.44 0.03 0.07 0.30 1.30 0.07 0.11 1.96 2.06 0.63 0.34 1.20   𝑐𝑐9 0.26 0.09 0.13 0.32 0.92 0.09 0.13 1.65 2.42 0.47 0.18 1.20 
𝑐𝑐10 1.06 0.25 0.73 0.58 1.82 0.34 0.18 1.54 1.00 1.43 0.61 1.18   𝑐𝑐10 0.74 0.36 0.60 0.70 1.98 0.35 0.45 0.95 0.82 1.29 0.61 1.00 
𝑐𝑐11 0.30 1.68 0.91 1.41 0.48 1.23 1.52 0.23 0.23 0.74 1.37 0.37   𝑐𝑐11 0.09 1.62 0.99 1.11 0.57 1.20 1.40 0.05 0.00 0.63 1.43 0.10 
𝑐𝑐12 0.99 0.50 1.58 0.94 0.87 1.53 0.64 0.57 0.63 1.09 1.09 0.58   𝑐𝑐12 0.53 0.42 1.21 0.96 0.87 0.66 0.62 0.89 0.98 0.91 0.49 1.11 

(b)

Fig. 10: Relevance matrices R̂1 and R̂2 for the first and second set of questions, respectively. For
the first set of questions, the participants were shown the closest palettes identified by LDA-dual.
For the second set of questions, the participants were shown the second closest palettes identified
by LDA-dual. The elements of these matrices are the estimated intrinsic relevance of associations
between colors and words, calculated from the participants’ responses. The higher the value, the
greater the intrinsic relevance associated by the users. Ideally, the diagonals should contain the
highest values. Whenever an off-diagonal entry is larger than the corresponding diagonal entry in
its row, it is marked yellow in the figure.

participant has selected “None of the above” as well as other options, we take into account those
options, effectively treating the “None of the above” response as a vote of lower confidence.

The relevance matrices in Fig. 10 show that most diagonal elements are larger than their corre-
sponding off-diagonal ones. This indicates a strong correlation between the results of our application
of LDA-dual and participants’ opinions (also see the next section for an aggregate measure). It is in-
teresting to note that not all diagonal elements have the same value. r̂111, for example, has the largest
diagonal value, suggesting that “green” and “garden” are closely associated by most participants.

There are a few color palettes such as c2 in R̂1 where the users assign higher relevance to word
clouds other than the one produced by the LDA-dual model. To understand this, note that in Fig. 8
(b), the first 5-color palette which is c2 predominantly contains shades of red and black. Users assign
higher relevance to word clouds w8 and w9, which are about “sex” and “beauty.” In our dataset
however, the red and black color combinations are often used by news magazines such as Time
and The Economist, and computer magazines such as PC Magazine. One can compare other color
palettes such as c12 in R̂1 and c8 in R̂2 to infer why there is a mismatch between the model output
and the relevance values assigned by the users. Moreover, these results illustrate the importance of
conducting a user study; domain specific color palettes and their associated linguistic concepts may
not always transfer to a general context.

To understand differences between female versus male and non-U.S. versus U.S. participants,
we computed the corresponding relevance matrices (see Fig. 19). Comparing these matrices with
Fig. 10, we do not observe any striking differences. This suggests that our results do not depend
strongly on the gender or cultural background of the users. When we compare designers versus
non-designers, however, we find that there are more zero values in the off-diagonals for designers.
This indicates that designers are more consistent with each other in color-word associations, perhaps
because of their training [Whitfield and Wiltshire 1982]. We directly compare the populations (male
vs female, U.S. vs non-U.S., designer vs non-designer) in Fig. 21 in the appendix.

7.4. Aggregate Measures
We have defined two different measures to assess the strength of the relationships of elements in a
matrix as indicated by the magnitude of the diagonal elements relative to the off-diagonal elements
in each row.
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For each N by N relevance matrix R̂1 and R̂2, let rij be the (i, j)-th element. The first measure
is the diagonal dominanceD. For each row, it is simply the ratio of the diagonal element in that row
to the average value of the off-diagonal elements in that row:

Di =
rii
¯́ri
, (14)

where rii is a diagonal element, and ¯́ri is the mean of off-diagonal elements:

¯́ri =
1

N − 1

N∑

j=1
j 6=i

rij . (15)

To get a summary assessment, we can average the diagonal dominance over all the rows of the
matrix:

D̄ =
1

N

N∑

i=1

Di. (16)

For the two matrices R̂1 and R̂2 in Fig.10, the average diagonal dominances are 2.06 and 1.99,
respectively (see Fig. 11). So on average, the diagonal element is about twice as large as the other
elements in the row. This suggests that despite the wide variability of the data in the matrices, the
diagonal elements tend to dominate.

 
 𝐷𝐷� 𝑆𝑆̅ 
𝑅𝑅�1 2.06 1.71 
𝑅𝑅�2 1.99 1.52 

Fig. 11: Aggregated measures for relevance matrices R̂1 and R̂2. Column D̄ is the diagonal dom-
inance measure computed according to (16). Column S̄ is the diagonal separation computed ac-
cording to (19). Overall, these two separate measures support the conclusion that on average, the
diagonal elements in the relevance matrices are stronger than the off-diagonal elements.

The second measurement is the diagonal separation S. It is also defined for each row, and is also
a ratio:

Si =
rii − ¯́ri

rσ́i
. (17)

The numerator is the difference between the diagonal element and the mean of the off-diagonal
elements in that row. The denominator is the standard deviation of the off-diagonal elements in that
row:

rσ́i =




1

N − 1

N∑

j=1
j 6=i

(
rij − ¯́ri

)2




1
2

. (18)

To get a summary assessment, we can again average the diagonal separation over all the rows of
the matrix:

S̄ =
1

N

N∑

i=1

Si. (19)
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As Fig. 11 summarizes, for matrix R̂1 (Fig. 10 (a)), the average diagonal separation is 1.71.
Thus, on average, the diagonal element is more than one and a half standard deviations away from
the mean of the off-diagonal elements. For the second matrix, R̂2 (Fig. 10 (b)), the average diagonal
separation is 1.52. While this is smaller than it is for the first matrix, it still indicates good separation.

Overall, these two separate measures support the conclusion that on average, the diagonal ele-
ments are indeed stronger than the off-diagonal elements.

7.5. Analyzing the Results for Experiment II
Figure 12 illustrates the relevance matrices of the responses in Experiment II. For the first set of
12 color palettes, participants selected the “None of the above” option on average for 10.81% of
the trials. The minimum was 4.27%, which occurred for k1; and the maximum was 17.57%, which
occurred for k12. For the second set of 12 color palettes, the average was 13.18%. The minimum
was 1.44%, which occurred for k1; and the maximum was 29.79%, which occurred for k8. For the
two matrices R̂1 and R̂2 in Fig.12, the average diagonal dominances are 2.36 and 2.61, respectively.
This indicates that on average, the diagonal element is more than twice as large as the other elements
in the row; the diagonal elements do tend to dominate. For matrix R̂1 (Fig. 12 (a)), the average
diagonal separation is 2.38. For the second matrix, R̂2 (Fig. 12 (b)), the average diagonal separation
is 2.17, suggesting a high level of separation between diagonal and off-diagonal elements for both
of the matrices. Overall, these two separate measures support the conclusion that on average, the
diagonal elements are stronger than the off-diagonal elements. Therefore, these aggregate statistics
show that for both Experiments I and II, participants favored the color-word associations discovered
by our model.

𝑅𝑅�1 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 𝑐𝑐7 𝑐𝑐8 𝑐𝑐9 𝑐𝑐10 𝑐𝑐11 𝑐𝑐12   𝑅𝑅�2 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 𝑐𝑐7 𝑐𝑐8 𝑐𝑐9 𝑐𝑐10 𝑐𝑐11 𝑐𝑐12 
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𝑤𝑤2 0.30 0.64 1.46 1.81 1.75 1.16 1.07 0.82 0.43 0.43 1.63 0.65   𝑤𝑤2 0.28 1.05 1.16 1.32 0.86 0.86 1.59 0.55 0.19 0.68 1.16 0.55 
𝑤𝑤3 2.00 0.30 1.49 0.56 0.83 0.86 1.12 0.70 0.19 0.68 0.50 0.80   𝑤𝑤3 2.06 0.39 0.94 0.88 1.09 0.98 1.23 1.03 0.40 1.12 0.83 0.91 
𝑤𝑤4 1.04 0.57 1.10 1.24 1.16 0.70 1.02 0.82 0.42 0.72 0.94 0.56   𝑤𝑤4 1.58 0.76 0.87 1.15 1.52 1.25 1.06 0.77 0.20 0.94 1.07 0.98 
𝑤𝑤5 1.13 1.01 0.73 0.96 1.28 0.37 1.06 1.32 1.08 1.78 0.41 0.49   𝑤𝑤5 1.52 0.44 0.34 1.02 1.19 0.54 0.86 0.76 1.31 1.85 0.47 1.09 
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Fig. 12: Relevance matrices R̂1 and R̂2 for the first and second set of questions, respectively, in
Experiment II. For the first set of questions, in each question, the participants were shown a word
cloud versus its associated closest palettes identified by LDA-dual. For the second set of questions,
for each question, the participants were shown a word cloud versus its second closest palettes iden-
tified by LDA-dual. The elements of these matrices are estimated intrinsic relevance of associations
between words (rows) and colors (columns), calculated from the participants’ responses, using the
same statistical model described in 7.2.

It is interesting to note that some participants in Experiment II mentioned preferring certain
palettes over others, based purely on aesthetics and not the task. Any effects of such preferences
are not readily observed in the data, however. Furthermore, just as for Experiment I, we compared
the data from subpopulations (male vs female, non-U.S. vs U.S., designer vs non-designer) of par-
ticipants in Experiment II (Fig 21). We did not find any striking differences between the subgroups.
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8. APPLICATIONS
Understanding of color semantics as represented by color-word topic modeling could be useful
for a number of real-world applications. Here we give some examples. Note that we have not yet
conducted formal user studies with these applications; our informal use, however, has shown them
to be useful. Although they are by no means “finished”, we argue that they demonstrate the value of
color semantics and motivate future development of tools. We have implemented these applications
(except pattern recoloring, see Sec. 8.1.2) as prototypes in Matlab.

8.1. From Semantics to Color Palettes
Effectively selecting color palettes is important for many domains, including product design, image
recoloring based on color mood, image retrieval, and visual feature-based recommendation systems.
In visual design, for instance, the user needs a color combination that is both appealing and aligned
with the purpose of design [Samara 2007]. This is particularly important for a non-designer, who
may have little training in how to choose a good color palette. Nonetheless designers may also
prefer to use automatically generated examples as inspiration (e.g. see [Starmer 2005]). There exist
several online communities for color palette design (e.g. [Adobe Kuler 2016; ColourLovers 2016]),
each with millions of user-created, named, and rated palettes. As we mention in the second-to-last
paragraph of the Introduction section, current online palette design communities only have sparse,
user-created labels, that usually lack semantic information [O’Donovan et al. 2011]. Understanding
the associations between colors and linguistic concepts provides a more meaningful and tractable
way to find palettes. Since LDA-dual relates sets of colors to sets of words, we can map user-input
words to retrieve color palettes for use in design.

8.1.1. Recommending Color Palettes. Our model’s inferred color semantics can be applied di-
rectly to color palette recommendation. Consider a scenario in which the user wishes to find a color
palette for a tech magazine’s edition on how developments in material engineering change what
manufacturers are using to make dresses. Figure 1 illustrates such a scenario, where the user queries
for “technology” and “fashion”. The user can also provide weights to each word, e.g. 80% to “tech-
nology” and 20% to “fashion”. This enables a richer and more customized way to find semantically
appropriate palettes. As discussed in Sec. 2, unlike the current state of the art in color palette rec-
ommendation, we incorporate the knowledge embedded in designers’ work and rank palettes both
extracted from our dataset as well as those from any existing database of palettes, like Adobe Kuler
or ColourLovers.

The text-input query is mapped to the word topics, and then to their corresponding color topics.
We weight and map these color topics to a ranked set of color palettes in a pool of color palettes (see
Fig. 1) created from the magazine dataset (see Sec. 3.1). The user can then choose his/her preferred
color palettes from the recommended set.

In short, the tool works by creating a color histogram which is the weighted sum of the color
histograms from color-word topics discovered by LDA-dual. There are two sets of weights. The
first is a weighting based on how often the input word occurs in the word histogram of each color-
word topic. For example, if the word “technology” occurs twice as often in topic 1 than topic 2, the
color histogram from topic 1 will be weighted twice relative to topic 2. These weighted histograms
are combined to create a histogram for each user-input word. The resulting histograms are then
themselves weighted based on the user-input weight per word. If the user input a weight 80% for
“technology” and 20% for “fashion”, the “technology” color histogram would be weighted four
times that of the “fashion” histogram, and they would then be combined into one color histogram.
The tool then computes the Euclidean distance of the weighted color histogram to each color in the
5-color palettes from our database, using [Lin and Hanrahan 2013], just as described in Sec. 5.1.
The weighted color histogram has 512 elements, most of which are negligible. For this reason,
prior to finding the nearest palettes to the weighted color histogram, we truncate the weighted color
histogram to include only the 10% largest color bins, as this gives us nearly identical results using
the whole histogram, but is an order of magnitude faster to compute.
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Furthermore, because the color palettes are derived from magazine covers, we can easily retrieve
the covers that correspond to a set of recommended palettes determined from the above method (see
Fig. 1). Such design examples can be utilized in creativity support tools [Shneiderman 2009] and to
facilitate design prototyping [Dow et al. 2010].

8.1.2. Recoloring Patterns. Designers regularly modify color themes of existing designs to im-
part new meanings. Part of this color modification may involve recoloring an image [Lin et al.
2013b], transferring a color theme to an image [Murray et al. 2012], or enhancing the color theme
of an image [Wang et al. 2010]. We suggest an application of color semantics for pattern recoloring
(Fig. 13), based on techniques introduced by Lin et al. [Lin et al. 2013b]. Figure 13 (a) illustrates
an original magazine cover from the Science magazine. Using the associations embedded in our
color-word topics, we are able to accept a user query, map it to the word topics, and use a 5-color
palette as a representative of this color topic to recolor the original pattern. Figure 13 illustrates the
results of recoloring the original pattern using “shop” (b) and (c), and “sport” (d) and (e) queries,
respectively.

(a) (b) (c) (d) (e)

Fig. 13: Pattern recoloring using color semantics. We removed the cover lines of a Science magazine
cover in (a) and recolored it with color palettes derived from the terms “shop” (b) and (c), “sport”
(d) and (e), and added thematic titles. The recoloring method is from [Lin et al. 2013b].

8.2. Image Retrieval
As discussed in Sec. 1, our work targets the “gap” of automatically connecting media to semantic
information. Image retrieval is a way to showcase how we traverse the gap in the opposite di-
rection: going from semantic information in the form of text to media in the form of images. Our
approach provides a natural way to incorporate high level image features into current image retrieval
algorithms. Figure 12 illustrates an application of our inferred color semantics in image retrieval.
Consider a scenario in which the user makes a query in an image search community, e.g Pinter-
est.com [Pinterest 2016], Flickr.com [Flickr 2016], etc. about “interior design”. The site will almost
invariably suggest an overwhelming number of images. In order to explore and navigate through the
retrieved images, however, the user can request a subset of “gardens”-inspired images; using color
semantics, we are able to map this query to the color-word topics. We can then map the combined
color histograms to rank the already retrieved images based on how well they represent “gardens”,
similarly to how we retrieve palettes and design examples in the previous section. We show the
results of this application in Fig 14 for “beach” and “gardens” images related to interior design.

8.3. Color Selection
Users could utilize color semantics to more intuitively select regions of color within an image. As
Heer and Stone [2012] note, the image editing community often uses tools to select subsets pixels
of a certain color or color distribution. They suggest tools for selecting colors in images using color
name queries. Building upon this concept, we extend the idea one step further and demonstrate
the usage of our inferred color semantics for this type of color selection tool. In our case, we use
the user’s query and map it to the set of pixels that are relevant to not just the queried word, but
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(a)

(b)

Fig. 14: Image retrieval using color semantics. (a) “beach” inspired images in a dataset of interior
design images. (b) “gardens” inspired images in the same dataset. The interior design dataset is
retrieved from scraping the House & Garden website [House&Garden 2016].

also other semantically related words. Figure 15 illustrates this kind of interaction. Figure 15 (a)
is the original image, a screenshot of a travel agency website [TripAdvisor 2014]. A user may be
interested to know what color regions have contributed to the concepts of “travel” and “trip” in
this image. Figure 15 (b) represents the pixels selected by our algorithm for these regions, while
turning the other regions to grayscale. Note that in order to find these color regions, we map the
users queries to the word topics, and preserve their associated color topics in the image, similar to
the previous applications.

9. CONCLUSION AND FUTURE WORK
The goal of visual design is both to convey a message and to be aesthetically appealing. We used
data mining to investigate how designers associate colors with linguistic concepts. We collected high
quality examples of professional designs, resulting in the largest dataset to date of magazine covers
with associated text transcription. We then adapted LDA-dual, an extension of the popular LDA
topic model, to simultaneously model designers’ choice of both colors and words for the magazine
covers. We used a crowdsourcing experiment to verify the model’s color-word topics. The results
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(a) (b)

Fig. 15: Image color selection using color semantics. (a) The original image, (b) colors that
contribute to “travel” and “trip” in the original image. Image from the home page of Tripadvi-
sor.com [TripAdvisor 2014].

confirm that our model is able to successfully discover the association between colors and linguistic
concepts. This closes the loop of our design mining system, from data to inference to validation.

Our work demonstrates a new methodological approach to color semantics and design. As this
is a first pass at using probabilistic models to formalize designers’ intuitions about color, we made
several assumptions in order to get tangible results; future work should study in more detail and
optimize these assumptions. For the purposes of this study, we consider semantics to be the asso-
ciations that designers create between and within groups of colors and words. Our instantiation of
LDA-dual does not explicitly model higher-order semantic relationships, such as the word order in
a cover line or the spatial distributions of various colors, that exist in design examples. Future work
extending the model to cover more variables is required to uncover these structures. For instance,
our method for generating 5-color palettes from the magazine covers explicitly uses a measure of
color saliency [Harel et al. 2007], which in turn affects the color-proportion weighting (Eq. 3) used
by the model. This method, however, does not capture the spatial layout of color or how color is
used differently for foreground and background elements. One extension of our model could be to
explicitly represent the saliency of colors or words as an independent input to the model.

Furthermore, since LDA-dual can combine words and topics into an arbitrary number of clusters,
one must choose the number of clusters. It is not obvious a priori how many clusters to choose, nor
how to optimize this number. Larger numbers of clusters generally result in higher levels of gran-
ularity. We found that for our data, 12 topics produced an intuitively parsimonious set of clusters.
In the appendix we show the results of finding 6 topics (Fig. 18 in the appendix), and 24 topics
online11. Ultimately one could create interactive tools for changing the number of topics. Another
assumption we made was our choice of hyper-parameters used in training the model. They were
chosen to be in line with previous modeling work [Griffiths and Steyvers 2004]. However, even
given these assumptions, our validation study strongly suggests that the intuitions discovered by the
model are shared by designers and non-designers alike.

A key feature of our work is the development of an extensive database of magazine colors span-
ning 14 years of publication. Because the present study is meant to be a demonstration of the concept
of color semantics, we evaluated all of the covers together, not taking into account how designs may
have changed over the years. There clearly exist trends in design, and such trends might be inter-
esting and important to study. One might want to know, for instance, how the association between
pink hues and terms like “women” and “fashion” has developed over time, or one might want to
know what color-word associations exist in designs from the last year. Extensions to our present
work could tease out the formation and evolution of such trends. A potential approach might be to
use a predictive model that represents time, e.g. logistic regression, in conjunction with LDA-dual.

11https://github.com/ali-design/ColorSemantics.git.
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Our validation study shows that users across different countries, genders, and age groups largely
agree with the colors and linguistic concept associations discovered by our model. This is not to
say that the results are completely general across all subsets of the population; participants all read
English, were mostly college-educated, and had access to the Internet. An important scientific ex-
tension would be to study color semantics in different cultures (similar to how [Reinecke and Gajos
2014] study aesthetics of low level color features). Our methodology could easily be generalized
to uncover how different communities might agree or disagree on the meanings of colors. There is
already extensive and comprehensive research on color naming across cultures [Kay et al. 2009],
and we argue that investigating agreement on color semantics is a natural next step. Interestingly,
we were contacted by participants who had color vision deficiency but still wished to perform the
task. While we did not include those participants in this study, various color blind communities
might have different conceptions of color semantics, and there are clearly applications for design
accessibility (e.g. [Flatla et al. 2013]).

Finally, we presented a number of applications for color semantics to illustrate how it can en-
able more meaningful user interactions, and perhaps help non-designers generate more creative and
appealing designs. We specifically demonstrated color palette selection, design example recommen-
dation, image retrieval, color region selection in images, and pattern recoloring. We demonstrated
an initial pass at instantiating these applications, which we hope to develop and test in terms of user
experience and performance. Future work will hopefully incorporate these applications into current
design creation tools and extend this first step towards a broader goal of making design accessible
to the general public.
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APPENDIX

Fig. 16: Topics vs. titles. The proportion of each of the 12 color-word topics, k1 to k12 (see Fig. 5
and Fig. 8) for each magazine title including all the issues in the dataset (see Table III) is illustrated.
Note that the colors here are just legends for the purpose of visualization, and are not related to the
color-word topics.
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Table II: Magazine titles’ proportions in the color-work topics.

k 1 prop k 2 prop k 3 prop
Horticulture 0.0684 Time 0.0693 National Geographic 0.0609
Garden Design 0.0670 PC World 0.0361 Aviation Week 0.0404
Golf World 0.0513 Technology Review 0.0341 Nature 0.0395
BBC Wildlife 0.0401 Newsweek 0.0283 Language Arts 0.0355
Organic Gardening 0.0399 Popular Science 0.0280 Science Illustrated 0.0302
The Progressive 0.0386 Wired 0.0277 Wired 0.0282
The Reading Teacher 0.0380 Language Arts 0.0259 Sports Illustrated 0.0280
Language 0.0310 The Economist 0.0258 PC World 0.0268
Natural Health 0.0293 Astronomy 0.0258 Science 0.0249
Science 0.0254 Health 0.0251 Interior Design 0.0236
k 4 prop k 5 prop k 6 prop
Harvard Business Review 0.0392 Interior Design 0.0465 Live Design 0.0376
ID 0.0353 Runner's World 0.0431 Esquire 0.0351
The American Scholar 0.0297 Conde Nast Traveler 0.0419 Entrepreneur 0.0306
Health 0.0253 Bicycling 0.0403 Nature 0.0304
Popular Mechanics 0.0245 Popular Science 0.0374 Science Illustrated 0.0283
Language Arts 0.0239 Golf Digest 0.0344 Astronomy 0.0279
Women's Health 0.0220 Science and Children 0.0275 Science 0.0279
Car and Driver 0.0211 Techniques 0.0261 Forbes 0.0265
Money 0.0211 Organic Gardening 0.0244 The Atlantic 0.0251
Jet 0.0208 Aviation Week 0.0240 Rolling Stone 0.0236
k 7 prop k 8 prop k 9 prop
The Economist 0.0780 The American Scholar 0.0468 Good Housekeeping 0.0589
Conde Nast Traveler 0.0493 Vogue 0.0362 Shop Smart 0.0555
PC World 0.0463 Science and Children 0.0361 Vogue 0.0544
Runner's World 0.0323 Psychology Today 0.0356 Glamour 0.0484
Language 0.0302 House Beautiful 0.0325 House and Garden 0.0470
Interior Design 0.0296 Glamour 0.0311 ARTnews 0.0440
Money 0.0275 Essence 0.0286 Language Arts 0.0398
Golf World 0.0274 The New Yorker 0.0284 Health 0.0363
Science Illustrated 0.0250 Teaching Exceptional Children 0.0272 Women's Health 0.0357
Good Housekeeping 0.0232 People 0.0272 Parenting 0.0349
k 10 prop k 11 prop k 12 prop
Teaching Exceptional Children 0.0588 Wired 0.0355 Social Studies and the Young Lea0.0409
National Geographic 0.0345 House and Garden 0.0332 Smithsonian 0.0368
Science Illustrated 0.0331 Garden Design 0.0256 Essence 0.0348
Language Arts 0.0331 Entrepreneur 0.0250 Runner's World 0.0310
Astronomy 0.0281 Popular Science 0.0249 Teaching Exceptional Children 0.0268
Shop Smart 0.0273 Nature 0.0243 Rolling Stone 0.0242
Better Homes and Gardens 0.0266 Popular Mechanics 0.0240 Live Design 0.0240
Art in America 0.0264 BBC Wildlife 0.0239 Sports Illustrated 0.0237
HOW 0.0261 Sports Illustrated 0.0237 Art in America 0.0231
Techniques 0.0246 Smithsonian 0.0235 The Reading Teacher 0.0229

Proportions (denoted by prop) of magazine titles in the color-work topics (k1, k2, ..., k12). Only the
top 10 titles in each color-word topic are shown.

ACM Transactions on Computer-Human Interaction, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 A. Jahanian et al.

Table III: Summary of Our Magazine Covers Dataset.

Magazine Title # collected Magazine Title # collected Magazine Title # collected
ARTNews 50 Entrepreneur 52 Social Studies and the 50
Interior Design 50 Bloomberg 

Businessweek
50 The Science 

Teacher
50

The New Yorker 50 Forbes 50 Techniques 48
Art in America 49 Harvard Business 

Review
50 Academe 40

HOW 41 Money 48 Language 36
Live Design 9 The Economist 29 The American scholar 3
ID 1 The Reading Teacher 3

Language Arts 2
Teaching Exceptional 
Children

2

Art Total: 250 Business Total: 279 Education Total: 234

Magazine Title # collected Magazine Title # collected Magazine Title # collected
Conde Nast Traveler 50 Good Housekeeping 61 Essence 50
Jet 50 Parenting 51 Glamour 50
People 50 House Beautiful 50 GQ 50
Rolling Stone 50 ShopSmart 40 Vogue 50
National Geographic 44 Better Homes and 

Gardens
30 Esquire 11

Entertainment Total: 244 Family Total: 232 Fashion Total: 211

Magazine Title # collected Magazine Title # collected Magazine Title # collected
Men's Health 50 Garden Design 35 Newsweek 50
Women's Health 50 BBC Wildlife 25 Time 50
Health 17 Organic Gardening 17 Human Rights 42
Natural Health 17 House & Garden 15 The Atlantic 25

The Progressive 22
Health Total: 134 Nature Total: 92 Politics Total: 189

Magazine Title # collected Magazine Title # collected Magazine Title # collected
Science 119 Sports Illustrated 50 PC World 50
Nature 50 Sporting News 44 Aviation Week 45
Smithsonian 38 Car and Driver 29 Wired 45
Science Illustrated 30 Golf Digest 26 Popular Mechanics 34
Popular Science 29 Golf World 24 Technology Review 17
Astronomy 10 Bicycling 22
Science and Children 5 Runner's World 22
Science Total: 281 Sports Total: 217 Technology Total: 191

Art Business Education

Family FashionEntertainment

Health Nature Politics

Science Sports Technology

1998 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

636

458 448

80

426

246

136
67

242821252181

Fig. 17: Histogram of the number of collected magazine covers per year.
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Table IV: Handcrafted Stop Word List.

amazing britain easy great-britain johns minutes rated special tells ups
america canada essence green julie mitt real spring things wanted
american change exclusive grows kate month red states tips ways
annual china eye guide klein nation reveals steve today week
autumn colors faces i lost needed romney stop top white
avoiding cte falling inside makeover obama ryan stories trick winning
awards cutting frances issue making ons secret stuff u.s. work
back day free italy matter pages share summer ultimate world
bad design good japan meaning perfect shows super undos year
big dos great jennifer meet picks simple takes united
black double great joe minute preview small talking united-states

Note that these words are inspected and excluded by manually visiting the first 30 words in the word
topics inferred by the model.

Word Topic 1 0.0868 Word Topic 2 0.0784 Word Topic 3 0.1179 Word Topic 4 0.2232 Word Topic 5 0.2880 Word Topic 6 0.2057

gardens 0.0517 news 0.0207 science 0.0150 women 0.0199 health 0.0123 men 0.0166
plants 0.0146 pc 0.0183 travel 0.0099 beautiful 0.0149 business 0.0120 science 0.0127

art 0.0120 ibm 0.0131 interior 0.0096 fashion 0.0141 home 0.0078 sport 0.0097
landscape 0.0116 microcomputers 0.0116 decorating 0.0087 life 0.0112 hygiene 0.0063 business 0.0089

horticulture 0.0105 computing 0.0107 teach 0.0085 loves 0.0112 products 0.0062 popular 0.0066
business 0.0099 test 0.0093 economic 0.0076 body 0.0088 sex 0.0058 college 0.0064

save 0.0092 food 0.0085 report 0.0071 sex 0.0082 economic 0.0058 music 0.0062
education 0.0090 fast 0.0085 save 0.0065 style 0.0078 person 0.0058 natural 0.0060

living 0.0079 geography 0.0085 finance 0.0065 hair 0.0073 architecture 0.0056 entrepreneur 0.0056
science 0.0077 products 0.0081 education 0.0063 celebrates 0.0072 test 0.0054 success 0.0053

𝒌𝒌𝟏𝟏

𝒌𝒌𝟔𝟔

Fig. 18: Color-word topics inferred by the LDA-dual model. Illustration of the 6 color topics. Note
that for visualization, only the principal elements in the histograms are shown. Also note that the
numerical weight of each word topic is shown next to heading of each word topic histogram.
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�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.21 0.12 1.69 0.29 0.32 0.48 0.28 0.35 0.23 0.77 0.50 0.19
𝑐𝑐2 0.44 0.28 0.40 0.65 1.21 0.38 0.31 1.90 1.87 0.90 0.62 1.50
𝑐𝑐3 0.13 1.31 1.57 0.92 0.94 1.18 1.41 0.56 0.34 0.74 0.94 0.32
𝑐𝑐4 0.05 1.80 1.12 1.36 0.87 1.32 1.59 0.20 0.16 0.50 1.41 0.18
𝑐𝑐5 0.27 1.11 1.41 1.20 1.47 0.93 1.69 0.48 0.48 0.88 1.21 0.30
𝑐𝑐6 0.60 1.00 1.01 0.78 0.51 1.92 1.08 0.24 0.10 0.67 1.12 0.27
𝑐𝑐7 0.10 1.01 1.29 0.84 1.36 0.94 1.54 0.25 0.54 0.42 0.80 0.43
𝑐𝑐8 0.72 0.28 0.56 0.51 1.01 0.18 0.21 1.76 1.27 1.14 0.38 1.21
𝑐𝑐9 0.36 0.06 0.00 0.29 1.22 0.13 0.06 2.09 2.11 0.63 0.19 1.03
𝑐𝑐10 1.04 0.28 0.67 0.52 1.80 0.33 0.16 1.33 0.95 1.44 0.66 1.25
𝑐𝑐11 0.27 1.71 1.01 1.48 0.55 1.11 1.80 0.11 0.33 0.76 1.49 0.45
𝑐𝑐12 0.85 0.43 1.73 1.02 0.86 1.34 0.61 0.22 0.63 1.17 1.04 0.52

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.29 0.31 1.52 0.41 1.04 0.57 0.70 0.32 0.17 0.96 0.38 0.55
𝑐𝑐2 0.06 1.16 0.67 0.95 0.67 0.38 0.47 0.81 1.38 0.67 0.74 1.04
𝑐𝑐3 0.32 1.23 1.17 1.19 1.35 1.03 1.40 0.63 0.72 0.92 1.33 0.43
𝑐𝑐4 0.16 1.31 0.94 1.37 1.18 0.91 1.52 0.27 0.53 0.86 1.07 0.45
𝑐𝑐5 0.66 0.55 1.74 1.08 1.23 0.95 0.96 0.56 0.43 1.26 1.25 0.70
𝑐𝑐6 0.18 1.68 1.13 0.85 0.42 1.82 1.27 0.13 0.28 0.42 1.26 0.22
𝑐𝑐7 0.00 1.11 1.02 1.29 1.08 1.19 1.34 0.24 0.72 0.81 1.28 0.26
𝑐𝑐8 1.21 0.92 2.04 0.93 1.23 0.82 0.96 0.56 0.70 1.29 0.95 0.76
𝑐𝑐9 0.36 0.07 0.18 0.31 1.00 0.07 0.08 1.53 2.41 0.44 0.28 0.90
𝑐𝑐10 0.78 0.45 0.62 0.66 1.92 0.52 0.50 0.79 0.79 1.29 0.72 0.94
𝑐𝑐11 0.07 1.81 0.81 1.12 0.54 1.17 1.38 0.07 0.00 0.62 1.52 0.00
𝑐𝑐12 0.59 0.49 1.17 0.77 0.77 0.58 0.76 0.78 1.10 0.76 0.41 1.10

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.07 0.60 0.95 0.45 0.82 0.28 0.24 0.38 0.36 0.86 0.26 0.43
𝑐𝑐2 0.77 0.27 0.74 0.59 1.14 0.39 0.42 1.67 1.84 0.37 0.70 1.43
𝑐𝑐3 0.15 1.15 1.48 0.73 0.78 0.56 0.99 0.47 0.18 0.61 1.16 0.37
𝑐𝑐4 0.00 1.48 1.20 1.21 0.50 0.99 1.72 0.00 0.43 0.80 1.36 0.37
𝑐𝑐5 0.58 1.39 1.50 0.97 1.42 1.25 1.54 0.35 0.10 1.05 1.05 0.80
𝑐𝑐6 0.88 0.97 1.25 0.69 0.58 1.73 0.84 0.30 0.09 0.53 0.92 0.61
𝑐𝑐7 0.18 1.69 1.09 1.25 0.80 1.10 1.75 0.37 0.42 0.36 1.40 0.54
𝑐𝑐8 0.23 0.39 0.66 0.29 2.09 0.66 0.54 1.82 1.37 0.89 0.58 0.83
𝑐𝑐9 0.54 0.00 0.19 0.32 1.42 0.00 0.17 1.71 2.00 0.64 0.53 1.51
𝑐𝑐10 1.06 0.21 0.80 0.67 1.90 0.35 0.22 1.81 1.13 1.41 0.55 1.06
𝑐𝑐11 0.33 1.61 0.74 1.30 0.28 1.33 1.26 0.39 0.08 0.71 1.21 0.26
𝑐𝑐12 1.19 0.56 1.28 0.84 0.88 1.82 0.67 0.81 0.62 0.97 1.20 0.67

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.09 0.00 1.23 0.63 1.12 0.22 0.30 1.00 0.44 1.11 0.73 0.19
𝑐𝑐2 0.00 0.59 0.93 0.47 0.92 0.65 0.27 1.65 2.13 0.34 1.13 1.12
𝑐𝑐3 0.31 0.95 1.23 0.62 1.50 0.77 1.16 0.54 0.55 0.53 1.58 0.59
𝑐𝑐4 0.27 1.01 0.86 1.18 0.46 1.52 1.50 0.33 0.26 0.51 0.63 1.08
𝑐𝑐5 0.63 1.44 1.33 0.57 1.49 0.53 0.35 0.33 0.95 0.85 1.69 0.80
𝑐𝑐6 0.21 0.81 1.24 0.70 0.53 1.78 1.30 0.30 0.15 0.79 1.91 0.64
𝑐𝑐7 0.21 1.43 0.78 1.07 0.83 1.61 1.46 0.27 0.66 0.59 1.09 0.48
𝑐𝑐8 1.24 0.67 1.34 0.83 1.93 1.14 0.44 0.73 0.52 1.22 0.50 1.14
𝑐𝑐9 0.00 0.16 0.00 0.35 0.74 0.12 0.21 1.85 2.44 0.58 0.00 1.72
𝑐𝑐10 0.66 0.00 0.56 0.80 2.10 0.00 0.35 1.41 0.89 1.29 0.42 1.15
𝑐𝑐11 0.13 1.18 1.21 1.08 0.73 1.24 1.44 0.00 0.00 0.66 1.25 0.32
𝑐𝑐12 0.36 0.28 1.29 1.31 1.03 0.88 0.30 1.13 0.50 1.39 0.69 1.12

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 1.97 0.70 1.30 0.50 0.30 0.35 0.24 0.44 0.40 0.97 0.34 0.17
𝑐𝑐2 0.65 0.28 0.76 0.49 1.27 0.20 0.44 1.77 1.73 0.83 0.58 1.74
𝑐𝑐3 0.12 1.17 1.46 0.79 0.91 0.74 1.19 0.74 0.39 0.94 0.87 0.52
𝑐𝑐4 0.00 1.69 1.25 1.15 0.95 1.09 1.54 0.08 0.35 1.04 1.34 0.22
𝑐𝑐5 0.47 0.84 1.55 1.15 1.43 1.15 1.46 0.36 0.24 1.25 1.23 0.75
𝑐𝑐6 0.81 1.15 0.93 0.70 0.65 1.74 0.89 0.29 0.12 0.66 0.74 0.79
𝑐𝑐7 0.15 1.27 1.05 1.11 1.20 0.79 1.84 0.43 0.40 0.35 1.32 0.53
𝑐𝑐8 0.09 0.27 0.92 0.43 1.54 0.72 0.39 1.93 0.98 1.03 0.53 1.28
𝑐𝑐9 0.58 0.00 0.10 0.20 1.43 0.11 0.20 1.88 1.93 0.51 0.47 1.24
𝑐𝑐10 0.60 0.42 0.81 0.66 1.71 0.49 0.00 1.46 0.97 1.40 0.53 0.92
𝑐𝑐11 0.45 1.71 0.65 1.31 0.53 1.41 1.02 0.38 0.43 0.65 1.24 0.33
𝑐𝑐12 0.90 0.51 1.26 1.02 0.55 1.50 0.73 0.66 0.39 1.24 0.94 0.59

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.43 0.48 1.44 0.38 1.10 0.26 0.50 0.57 0.18 0.90 0.30 0.48
𝑐𝑐2 0.00 0.80 0.91 1.13 0.92 0.50 0.33 1.28 1.96 0.45 0.67 1.34
𝑐𝑐3 0.25 0.91 1.43 0.60 1.33 0.85 1.74 0.16 0.42 0.87 1.64 0.29
𝑐𝑐4 0.49 1.47 0.73 1.26 0.75 0.95 1.60 0.18 0.32 1.10 0.61 0.83
𝑐𝑐5 0.41 1.15 1.69 0.72 1.27 1.42 0.44 0.57 0.44 0.72 2.14 0.77
𝑐𝑐6 0.24 1.16 1.20 0.29 0.77 1.93 1.54 0.21 0.00 0.57 1.35 0.29
𝑐𝑐7 0.15 1.18 0.44 1.53 0.84 1.66 1.50 0.19 0.95 0.80 1.18 0.64
𝑐𝑐8 1.03 0.89 1.42 0.83 1.44 1.38 0.42 0.70 0.00 1.37 0.75 0.85
𝑐𝑐9 0.00 0.15 0.41 0.42 1.29 0.14 0.57 1.92 2.34 0.48 0.16 1.08
𝑐𝑐10 0.90 0.29 0.51 0.20 2.39 0.15 0.36 1.25 1.53 1.40 0.28 0.41
𝑐𝑐11 0.00 1.27 1.14 1.02 0.41 1.14 1.37 0.00 0.00 0.86 1.31 0.00
𝑐𝑐12 0.44 0.40 1.28 1.21 0.32 0.45 1.14 0.43 1.36 0.46 0.78 1.00

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.25 0.15 1.44 0.34 0.53 0.40 0.28 0.35 0.22 0.71 0.45 0.38
𝑐𝑐2 0.53 0.27 0.45 0.69 1.14 0.45 0.32 1.81 1.94 0.64 0.73 1.28
𝑐𝑐3 0.15 1.29 1.58 0.88 0.85 0.98 1.17 0.40 0.21 0.56 1.17 0.22
𝑐𝑐4 0.05 1.57 1.11 1.35 0.58 1.23 1.70 0.15 0.20 0.35 1.44 0.29
𝑐𝑐5 0.34 1.48 1.40 1.06 1.47 0.99 1.67 0.46 0.45 0.77 1.09 0.41
𝑐𝑐6 0.68 0.92 1.19 0.75 0.47 1.89 1.03 0.25 0.09 0.58 1.22 0.23
𝑐𝑐7 0.12 1.32 1.31 0.94 1.07 1.13 1.52 0.20 0.52 0.41 0.88 0.46
𝑐𝑐8 0.75 0.38 0.37 0.40 1.46 0.25 0.31 1.71 1.50 1.03 0.45 0.95
𝑐𝑐9 0.37 0.05 0.05 0.36 1.22 0.05 0.05 2.04 2.15 0.69 0.24 1.19
𝑐𝑐10 1.33 0.15 0.68 0.53 1.90 0.22 0.24 1.57 1.01 1.45 0.64 1.36
𝑐𝑐11 0.21 1.66 1.03 1.47 0.46 1.14 1.78 0.17 0.10 0.79 1.45 0.40
𝑐𝑐12 1.03 0.49 1.74 0.91 1.09 1.55 0.58 0.49 0.74 1.01 1.19 0.57

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.16 0.18 1.45 0.50 1.04 0.52 0.58 0.49 0.33 1.11 0.60 0.44
𝑐𝑐2 0.06 1.02 0.73 0.74 0.69 0.44 0.43 1.04 1.46 0.64 0.94 0.97
𝑐𝑐3 0.32 1.25 1.09 1.21 1.44 0.98 1.17 0.79 0.79 0.85 1.31 0.56
𝑐𝑐4 0.12 1.11 0.97 1.32 1.04 1.27 1.49 0.33 0.47 0.64 1.06 0.54
𝑐𝑐5 0.72 0.83 1.52 1.03 1.32 0.70 0.88 0.47 0.59 1.19 1.13 0.73
𝑐𝑐6 0.18 1.40 1.14 1.04 0.33 1.76 1.21 0.17 0.29 0.53 1.42 0.42
𝑐𝑐7 0.00 1.20 1.12 1.13 1.12 1.31 1.34 0.27 0.62 0.71 1.20 0.30
𝑐𝑐8 1.28 0.83 2.02 0.90 1.41 0.79 0.92 0.59 0.80 1.21 0.84 0.89
𝑐𝑐9 0.34 0.07 0.06 0.28 0.74 0.07 0.00 1.57 2.45 0.47 0.19 1.24
𝑐𝑐10 0.68 0.37 0.64 0.85 1.81 0.45 0.49 0.84 0.58 1.26 0.77 1.19
𝑐𝑐11 0.13 1.73 0.93 1.14 0.62 1.21 1.42 0.06 0.00 0.52 1.47 0.14
𝑐𝑐12 0.55 0.43 1.18 0.87 1.10 0.71 0.44 1.12 0.86 1.02 0.39 1.13

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.11 0.40 1.40 0.31 0.53 0.34 0.29 0.41 0.27 0.84 0.41 0.30
𝑐𝑐2 0.61 0.30 0.49 0.71 1.21 0.34 0.39 1.80 1.97 0.75 0.62 1.41
𝑐𝑐3 0.16 1.24 1.51 0.82 0.97 0.97 1.05 0.50 0.28 0.58 1.04 0.33
𝑐𝑐4 0.04 1.66 1.14 1.26 0.65 1.20 1.70 0.12 0.28 0.65 1.47 0.35
𝑐𝑐5 0.43 1.29 1.52 1.11 1.45 1.10 1.67 0.42 0.38 0.93 1.07 0.52
𝑐𝑐6 0.74 1.02 1.06 0.66 0.57 1.87 0.92 0.23 0.12 0.60 1.11 0.43
𝑐𝑐7 0.13 1.34 1.24 1.00 1.04 0.97 1.67 0.30 0.44 0.45 0.99 0.41
𝑐𝑐8 0.49 0.30 0.53 0.47 1.35 0.42 0.34 1.80 1.39 1.03 0.47 1.00
𝑐𝑐9 0.48 0.04 0.09 0.28 1.29 0.08 0.12 1.99 2.04 0.46 0.41 1.25
𝑐𝑐10 1.00 0.28 0.69 0.53 1.81 0.35 0.22 1.53 1.09 1.42 0.59 1.15
𝑐𝑐11 0.28 1.66 0.96 1.33 0.39 1.17 1.58 0.26 0.27 0.69 1.40 0.42
𝑐𝑐12 0.96 0.55 1.53 0.99 0.82 1.61 0.52 0.61 0.65 1.11 1.10 0.57

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.23 0.26 1.52 0.44 1.08 0.43 0.36 0.47 0.23 0.99 0.46 0.38
𝑐𝑐2 0.00 0.99 0.83 0.76 0.80 0.40 0.44 1.13 1.55 0.54 0.95 0.94
𝑐𝑐3 0.25 1.17 1.18 1.01 1.42 0.82 1.34 0.64 0.71 0.82 1.43 0.46
𝑐𝑐4 0.12 1.16 0.98 1.28 0.97 1.15 1.48 0.30 0.40 0.67 0.88 0.58
𝑐𝑐5 0.70 0.85 1.60 1.00 1.33 0.95 0.81 0.64 0.56 0.94 1.55 0.73
𝑐𝑐6 0.12 1.44 1.15 0.87 0.46 1.83 1.39 0.15 0.25 0.54 1.54 0.45
𝑐𝑐7 0.06 1.15 0.93 1.13 1.07 1.46 1.36 0.29 0.83 0.89 1.12 0.45
𝑐𝑐8 1.32 0.78 1.75 0.92 1.52 1.02 0.69 0.64 0.69 1.25 0.79 1.00
𝑐𝑐9 0.30 0.11 0.10 0.36 0.82 0.11 0.17 1.62 2.40 0.47 0.10 1.17
𝑐𝑐10 0.78 0.44 0.54 0.67 1.99 0.43 0.38 0.95 0.74 1.23 0.61 0.92
𝑐𝑐11 0.12 1.56 0.86 1.08 0.52 1.29 1.27 0.00 0.00 0.57 1.43 0.00
𝑐𝑐12 0.54 0.45 1.13 1.06 0.95 0.62 0.63 1.01 1.07 0.90 0.50 1.11

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.37 0.00 1.18 0.71 0.23 0.65 0.00 0.26 0.46 0.63 0.20 0.35
𝑐𝑐2 0.42 0.18 1.56 0.34 0.91 0.45 0.00 1.74 1.43 0.30 1.13 1.74
𝑐𝑐3 0.00 1.31 1.60 0.96 0.25 0.35 1.91 0.69 0.23 1.20 1.15 0.40
𝑐𝑐4 0.00 1.36 1.28 1.47 0.96 1.20 1.45 0.17 0.19 0.62 0.83 0.00
𝑐𝑐5 0.20 1.18 0.94 0.81 1.47 0.69 1.52 0.46 0.24 0.67 1.51 0.65
𝑐𝑐6 0.72 0.82 1.28 1.13 0.43 1.70 1.04 0.46 0.00 0.68 0.85 0.36
𝑐𝑐7 0.14 1.25 1.13 0.89 1.47 1.13 1.39 0.23 0.60 0.17 1.21 0.91
𝑐𝑐8 0.55 0.52 0.89 0.17 2.77 0.28 0.37 1.73 0.93 0.70 0.40 1.39
𝑐𝑐9 0.26 0.00 0.00 0.43 1.31 0.00 0.00 1.71 2.25 1.21 0.00 0.81
𝑐𝑐10 1.36 0.00 0.81 0.90 1.87 0.30 0.00 1.60 0.75 1.48 0.77 1.55
𝑐𝑐11 0.42 1.80 0.39 1.82 0.93 1.57 1.37 0.00 0.00 0.86 1.24 0.20
𝑐𝑐12 1.06 0.00 1.91 0.88 1.22 0.83 1.08 0.28 0.60 1.09 1.22 0.61

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.21 0.19 1.00 0.69 0.98 0.64 1.95 0.73 0.67 1.10 0.45 0.68
𝑐𝑐2 0.24 0.89 0.55 0.94 0.56 0.66 0.27 0.87 1.78 0.90 0.42 1.53
𝑐𝑐3 0.81 1.13 1.17 1.24 1.31 1.32 1.18 0.54 0.40 0.99 1.20 0.62
𝑐𝑐4 0.57 1.37 0.67 1.39 0.94 1.41 1.89 0.00 0.54 1.19 1.29 0.90
𝑐𝑐5 0.39 1.20 1.18 0.00 1.21 0.41 0.81 0.00 0.34 1.83 0.58 1.10
𝑐𝑐6 0.60 0.81 1.19 0.60 0.26 1.77 0.37 0.31 0.22 0.57 0.78 0.00
𝑐𝑐7 0.00 1.37 1.10 1.81 0.93 0.45 1.47 0.00 0.24 0.24 1.54 0.00
𝑐𝑐8 0.88 1.17 1.90 0.81 0.95 0.00 1.19 0.53 0.40 1.24 0.98 0.61
𝑐𝑐9 0.16 0.00 0.35 0.20 1.36 0.00 0.00 1.71 2.50 0.55 0.82 1.35
𝑐𝑐10 0.33 0.00 0.63 0.88 1.65 0.00 0.80 1.13 0.94 1.57 0.42 1.25
𝑐𝑐11 0.00 1.79 1.94 1.29 0.63 0.90 1.88 0.19 0.00 0.77 1.42 0.31
𝑐𝑐12 0.50 0.27 1.59 0.48 0.53 0.68 0.55 0.31 0.67 1.01 0.42 1.13

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 19: Relevance matrices R̂1 and R̂2 for Experiment I, for the first (left) and second (right) set
of questions, respectively, computed for: (a) females, (b) males, (c) non-U.S. participants, (d) U.S.
participants, (e) non-designers, and (f) designers.
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Colors –Messengers of Concepts: Visual Design Mining for Learning Color Semantics A:33

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.04 0.40 0.15 0.28 0.00 0.26 0.12 0.31 0.23 0.70 0.13 0.11
𝑐𝑐2 0.30 0.58 1.52 1.93 1.88 1.07 1.04 0.64 0.36 0.59 1.47 0.67
𝑐𝑐3 2.02 0.21 1.37 0.76 0.75 0.76 0.67 0.77 0.28 0.70 0.45 0.58
𝑐𝑐4 0.97 0.61 1.49 1.27 1.33 0.60 0.79 0.68 0.50 0.67 0.80 0.55
𝑐𝑐5 1.16 0.79 0.74 0.93 1.40 0.32 1.00 1.19 0.91 1.71 0.44 0.32
𝑐𝑐6 1.38 0.60 1.35 1.14 1.02 1.39 1.34 0.35 0.21 0.70 1.15 0.56
𝑐𝑐7 1.04 0.37 0.85 1.44 1.22 1.03 1.68 0.29 0.27 0.11 1.51 0.72
𝑐𝑐8 0.30 1.51 0.42 0.56 0.73 0.10 0.33 1.84 1.55 1.54 0.20 0.23
𝑐𝑐9 0.09 1.07 0.82 0.68 0.46 0.00 0.83 1.05 1.69 1.11 0.34 0.73
𝑐𝑐10 0.77 0.42 1.00 0.38 1.09 0.11 0.42 0.84 0.84 1.96 0.17 0.45
𝑐𝑐11 1.29 0.57 1.36 0.70 1.02 0.77 1.11 0.34 0.32 0.75 1.57 0.76
𝑐𝑐12 0.67 1.16 0.76 0.38 1.46 0.24 0.57 1.89 1.81 1.84 0.77 0.69

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.03 0.14 0.37 0.00 0.35 0.16 0.20 0.50 0.14 0.74 0.36 0.37
𝑐𝑐2 0.35 1.12 1.12 1.07 0.80 1.10 1.60 0.57 0.14 0.94 0.95 0.65
𝑐𝑐3 1.99 0.28 0.79 0.98 1.09 0.63 1.48 1.42 0.31 1.17 0.72 1.40
𝑐𝑐4 1.72 0.64 0.78 1.24 1.46 1.32 1.02 1.31 0.14 0.83 1.11 0.93
𝑐𝑐5 1.25 0.43 0.51 0.97 1.14 0.70 0.90 0.47 1.01 1.90 0.36 1.36
𝑐𝑐6 0.85 0.26 1.22 1.04 1.01 1.86 0.98 0.95 0.16 0.27 1.16 0.52
𝑐𝑐7 0.68 0.37 1.51 0.96 1.16 1.29 1.19 0.84 0.19 0.35 1.52 0.38
𝑐𝑐8 0.54 1.17 0.79 0.76 0.86 0.00 0.87 0.65 1.88 1.20 0.00 1.60
𝑐𝑐9 1.07 1.22 0.85 0.50 1.06 0.66 0.00 0.15 2.31 0.93 0.13 0.49
𝑐𝑐10 2.01 1.10 0.54 0.51 1.21 0.29 0.42 1.81 0.76 1.41 0.00 0.75
𝑐𝑐11 1.04 0.88 1.15 0.69 1.15 1.29 0.83 0.45 0.22 1.43 1.28 0.78
𝑐𝑐12 0.52 0.54 1.41 0.28 1.31 0.78 0.61 0.40 1.52 1.56 0.40 1.10

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.13 0.58 0.13 0.14 0.00 0.49 0.00 0.59 0.00 0.34 0.00 0.74
𝑐𝑐2 0.29 0.70 1.36 1.60 1.53 1.28 1.11 1.08 0.51 0.25 1.78 0.66
𝑐𝑐3 1.95 0.45 1.69 0.18 0.90 1.00 1.50 0.61 0.00 0.63 0.60 1.07
𝑐𝑐4 1.15 0.46 0.67 1.21 0.56 0.82 1.26 0.99 0.21 0.80 1.13 0.57
𝑐𝑐5 1.01 1.28 0.72 0.97 1.14 0.47 1.15 1.56 1.23 1.88 0.43 0.73
𝑐𝑐6 1.13 0.50 0.80 0.94 1.27 1.60 1.04 0.75 0.00 0.52 1.32 1.47
𝑐𝑐7 0.40 0.48 1.14 0.94 1.17 0.33 1.57 0.52 0.00 1.19 1.64 0.89
𝑐𝑐8 0.33 1.35 0.44 0.31 0.62 0.20 0.50 1.46 2.34 1.43 0.00 0.26
𝑐𝑐9 0.00 1.48 0.69 0.22 0.00 0.18 0.35 0.49 1.94 1.25 0.32 0.16
𝑐𝑐10 0.92 0.59 1.06 0.69 0.21 0.66 0.73 0.38 0.91 1.45 0.46 0.57
𝑐𝑐11 1.48 0.58 1.24 0.73 0.91 1.25 1.59 0.58 0.00 0.36 1.65 1.22
𝑐𝑐12 0.61 1.61 1.30 0.97 0.60 0.50 0.37 1.09 1.65 0.99 0.28 0.72

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.26 0.00 0.69 0.00 0.27 0.40 0.25 0.00 0.00 0.00 0.00 0.32
𝑐𝑐2 0.00 0.98 1.26 2.25 1.00 0.00 1.63 0.45 0.32 0.00 1.46 0.00
𝑐𝑐3 2.26 0.67 1.21 0.76 1.06 1.96 0.40 0.00 0.64 1.05 1.04 0.00
𝑐𝑐4 1.45 1.25 1.05 0.86 1.70 1.20 1.10 0.00 0.36 1.11 1.02 1.20
𝑐𝑐5 1.84 0.45 0.00 1.13 1.32 0.43 0.74 1.00 1.80 2.03 0.69 0.55
𝑐𝑐6 0.89 0.97 1.57 0.59 1.47 1.66 1.11 0.35 0.00 1.98 1.27 0.24
𝑐𝑐7 0.69 0.68 0.62 1.43 0.99 0.71 1.44 0.61 0.31 0.30 0.92 0.25
𝑐𝑐8 0.78 2.16 0.51 0.24 0.35 0.27 1.04 0.67 2.79 0.91 0.00 0.92
𝑐𝑐9 1.01 1.75 0.00 0.68 0.92 0.00 0.27 0.00 2.28 1.20 0.38 0.51
𝑐𝑐10 2.18 0.78 0.32 0.91 0.68 0.94 1.43 0.54 0.82 1.40 0.47 0.85
𝑐𝑐11 1.89 1.60 0.90 0.63 1.21 0.40 0.95 0.92 0.61 0.97 1.57 0.35
𝑐𝑐12 0.41 0.60 1.09 0.30 0.81 0.97 0.28 0.68 1.39 2.21 1.08 1.07

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 1.88 0.67 0.00 0.25 0.00 0.76 0.00 0.27 0.30 0.65 0.00 0.23
𝑐𝑐2 0.42 1.04 1.03 1.15 2.21 1.53 0.53 0.63 0.23 0.59 1.37 0.26
𝑐𝑐3 2.55 0.57 1.63 0.46 0.22 0.00 2.00 0.00 0.18 0.62 0.16 0.60
𝑐𝑐4 0.86 0.91 1.03 0.96 1.51 0.00 1.58 0.96 0.63 0.77 1.03 0.30
𝑐𝑐5 1.48 0.89 0.60 0.25 1.35 0.43 0.97 0.72 1.00 1.98 1.33 0.40
𝑐𝑐6 1.08 0.82 0.58 0.75 1.40 1.39 2.59 0.99 0.22 0.46 1.18 1.42
𝑐𝑐7 0.93 0.63 0.00 0.32 0.88 0.60 1.75 0.59 0.41 0.45 1.84 0.70
𝑐𝑐8 0.27 1.26 0.82 0.24 0.52 0.20 0.00 1.67 2.26 1.65 0.00 0.46
𝑐𝑐9 0.00 1.00 0.87 0.00 0.50 0.00 0.65 0.27 2.00 1.37 0.70 0.33
𝑐𝑐10 0.53 0.82 1.13 0.74 1.27 0.21 0.00 0.66 0.84 1.71 0.00 1.21
𝑐𝑐11 1.69 0.49 1.36 0.71 0.72 1.58 1.21 0.00 0.22 0.76 1.45 1.48
𝑐𝑐12 1.03 1.48 1.08 0.42 0.41 0.00 0.00 0.99 1.86 2.00 1.16 0.82

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.08 0.00 0.54 0.00 1.07 0.00 0.00 0.00 0.00 0.00 0.77 0.00
𝑐𝑐2 0.34 1.23 0.91 0.84 1.18 0.93 1.49 0.75 0.00 0.50 1.15 0.00
𝑐𝑐3 2.43 0.81 1.15 0.00 1.53 1.27 1.58 0.34 0.00 1.25 0.34 0.73
𝑐𝑐4 2.07 0.31 1.22 1.01 2.53 1.69 1.22 1.04 0.31 0.89 1.29 2.53
𝑐𝑐5 1.08 0.00 0.45 2.24 1.12 0.89 0.00 0.54 1.19 1.96 0.90 0.39
𝑐𝑐6 0.49 0.83 1.84 1.58 0.96 1.81 0.84 1.19 0.00 0.86 0.41 0.82
𝑐𝑐7 0.77 0.45 0.90 1.34 0.67 0.90 1.12 0.67 0.54 0.00 2.01 0.67
𝑐𝑐8 0.50 1.91 0.86 1.03 0.60 0.00 0.61 0.40 1.62 1.44 0.00 1.75
𝑐𝑐9 0.89 0.81 0.65 0.75 1.53 0.00 0.00 0.00 1.95 1.62 0.00 0.79
𝑐𝑐10 1.67 1.15 0.45 0.67 1.20 0.90 1.34 0.67 1.53 1.30 0.00 0.54
𝑐𝑐11 1.29 0.79 1.44 0.64 1.17 0.40 0.73 1.22 0.71 2.00 1.56 0.00
𝑐𝑐12 0.00 0.64 1.32 0.35 1.75 0.61 0.00 0.96 1.77 2.37 1.20 0.76

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.15 0.35 0.17 0.19 0.00 0.25 0.09 0.45 0.09 0.52 0.08 0.39
𝑐𝑐2 0.25 0.51 1.59 1.93 1.55 1.10 1.24 0.93 0.50 0.39 1.72 0.76
𝑐𝑐3 1.88 0.23 1.45 0.57 1.06 1.12 0.90 0.83 0.20 0.69 0.71 0.90
𝑐𝑐4 1.11 0.48 1.12 1.32 1.03 0.84 0.84 0.78 0.37 0.71 0.89 0.63
𝑐𝑐5 0.98 1.06 0.79 1.21 1.26 0.35 1.10 1.65 1.11 1.73 0.32 0.51
𝑐𝑐6 1.36 0.47 1.25 1.18 1.10 1.51 0.98 0.40 0.10 0.76 1.21 0.78
𝑐𝑐7 0.65 0.38 1.14 1.54 1.33 0.82 1.57 0.31 0.08 0.63 1.49 0.84
𝑐𝑐8 0.32 1.49 0.31 0.51 0.73 0.09 0.49 1.74 1.64 1.43 0.17 0.17
𝑐𝑐9 0.09 1.25 0.74 0.77 0.29 0.10 0.60 0.99 1.71 1.12 0.19 0.51
𝑐𝑐10 0.94 0.29 1.03 0.48 0.68 0.41 0.63 0.69 0.87 1.77 0.32 0.18
𝑐𝑐11 1.23 0.60 1.28 0.71 1.15 0.72 1.30 0.53 0.17 0.56 1.66 0.72
𝑐𝑐12 0.50 1.19 0.91 0.67 1.45 0.43 0.59 1.69 1.70 1.39 0.43 0.68

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.09 0.14 0.43 0.00 0.14 0.29 0.27 0.40 0.13 0.54 0.00 0.48
𝑐𝑐2 0.25 0.99 1.28 1.57 0.75 0.83 1.61 0.53 0.22 0.73 1.17 0.67
𝑐𝑐3 1.95 0.26 0.86 1.05 0.96 0.84 1.18 1.28 0.45 1.07 1.02 1.02
𝑐𝑐4 1.40 0.95 0.80 1.18 1.39 1.19 1.01 0.67 0.15 0.97 1.02 0.78
𝑐𝑐5 1.64 0.57 0.30 0.61 1.22 0.43 0.98 0.90 1.36 1.73 0.41 1.36
𝑐𝑐6 1.19 0.30 1.38 0.78 1.25 1.77 0.97 0.66 0.13 0.48 1.56 0.36
𝑐𝑐7 0.64 0.61 1.26 0.91 1.18 1.12 1.29 0.78 0.14 0.45 1.31 0.26
𝑐𝑐8 0.67 1.32 0.65 0.45 0.79 0.12 1.05 0.72 2.22 0.99 0.00 1.36
𝑐𝑐9 1.08 1.54 0.80 0.52 0.85 0.51 0.11 0.14 2.41 0.73 0.32 0.47
𝑐𝑐10 2.20 0.95 0.42 0.64 0.84 0.29 0.57 1.43 0.45 1.43 0.15 0.87
𝑐𝑐11 1.16 0.98 0.88 0.69 1.18 1.05 1.04 0.57 0.30 1.14 1.33 0.72
𝑐𝑐12 0.59 0.54 1.25 0.26 0.99 0.95 0.63 0.35 1.41 1.32 0.29 1.21

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.04 0.49 0.16 0.15 0.00 0.37 0.08 0.48 0.17 0.62 0.07 0.32
𝑐𝑐2 0.26 0.64 1.44 1.68 1.92 1.19 1.08 0.87 0.35 0.38 1.65 0.68
𝑐𝑐3 1.98 0.26 1.52 0.52 0.83 1.00 1.09 0.62 0.24 0.72 0.41 0.78
𝑐𝑐4 1.11 0.43 1.02 1.23 1.27 0.70 1.02 0.79 0.48 0.70 1.02 0.58
𝑐𝑐5 1.24 0.99 0.80 0.88 1.26 0.38 1.09 1.25 1.06 1.80 0.41 0.48
𝑐𝑐6 1.37 0.34 1.05 1.18 0.96 1.52 1.25 0.52 0.16 0.74 1.22 0.97
𝑐𝑐7 0.79 0.43 1.03 1.33 1.12 0.72 1.58 0.35 0.08 0.60 1.59 0.89
𝑐𝑐8 0.31 1.41 0.45 0.40 0.70 0.13 0.35 1.73 1.78 1.48 0.15 0.28
𝑐𝑐9 0.07 1.26 0.73 0.48 0.41 0.09 0.68 0.62 1.82 1.08 0.25 0.55
𝑐𝑐10 0.84 0.53 0.97 0.45 0.92 0.39 0.51 0.54 0.76 1.79 0.30 0.48
𝑐𝑐11 1.34 0.60 1.27 0.75 1.07 0.99 1.35 0.48 0.14 0.66 1.56 0.93
𝑐𝑐12 0.73 1.20 0.97 0.58 1.13 0.42 0.60 1.43 1.71 1.47 0.55 0.70

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.08 0.13 0.50 0.00 0.25 0.26 0.25 0.42 0.12 0.39 0.13 0.42
𝑐𝑐2 0.30 1.03 1.22 1.22 0.92 0.66 1.60 0.68 0.20 0.78 1.22 0.57
𝑐𝑐3 2.08 0.41 0.96 0.84 0.91 0.96 1.23 1.07 0.26 0.98 0.91 0.92
𝑐𝑐4 1.62 0.78 0.87 1.17 1.52 1.25 1.05 0.78 0.13 1.07 0.97 0.97
𝑐𝑐5 1.42 0.54 0.43 1.07 1.12 0.42 1.12 0.77 1.42 2.08 0.28 0.99
𝑐𝑐6 1.00 0.48 1.49 0.90 1.15 1.70 1.18 0.90 0.11 0.56 1.43 0.46
𝑐𝑐7 0.74 0.57 1.13 1.03 0.91 0.99 1.32 0.81 0.14 0.41 1.13 0.25
𝑐𝑐8 0.61 1.69 0.50 0.61 0.79 0.12 0.82 0.60 1.95 1.15 0.00 1.35
𝑐𝑐9 1.16 1.46 0.85 0.55 1.13 0.45 0.10 0.00 2.23 0.90 0.24 0.64
𝑐𝑐10 2.09 1.03 0.47 0.68 0.90 0.39 0.74 1.29 0.68 1.38 0.13 0.63
𝑐𝑐11 1.08 0.93 0.97 0.89 1.07 0.78 0.94 0.67 0.39 1.17 1.47 0.58
𝑐𝑐12 0.47 0.59 1.46 0.24 1.25 0.93 0.61 0.55 1.68 1.59 0.51 1.04

�𝑅𝑅1 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.40 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝑐𝑐2 0.00 0.64 1.78 2.71 1.28 0.62 1.20 0.55 0.68 2.84 1.36 0.51
𝑐𝑐3 2.93 1.32 1.20 2.93 0.85 0.35 0.98 1.20 0.00 0.43 1.47 1.47
𝑐𝑐4 0.51 2.04 1.20 1.47 0.55 0.89 0.89 1.20 0.00 0.84 0.51 0.53
𝑐𝑐5 0.00 0.94 0.50 2.64 1.55 0.00 0.69 2.64 1.70 1.32 0.56 0.00
𝑐𝑐6 0.65 2.05 1.30 0.00 2.74 1.47 1.30 0.00 0.00 0.42 1.06 0.65
𝑐𝑐7 0.43 0.55 0.00 0.89 1.75 1.30 2.11 0.55 0.43 0.00 1.78 0.00
𝑐𝑐8 0.43 1.98 0.00 0.47 0.00 NaN 0.00 1.70 1.20 1.39 0.00 0.00
𝑐𝑐9 0.00 1.16 NaN 1.15 0.00 0.00 0.00 2.89 1.68 1.47 0.48 0.00
𝑐𝑐10 0.53 0.29 1.59 1.02 0.00 0.00 2.84 1.22 1.89 1.47 0.00 0.89
𝑐𝑐11 1.26 0.00 1.70 0.00 0.66 0.91 0.66 0.34 0.91 0.00 1.89 0.00
𝑐𝑐12 0.00 1.89 0.91 0.66 1.08 0.00 0.00 1.98 2.16 2.64 0.54 0.66

�𝑅𝑅2 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12
𝑐𝑐1 2.06 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00 1.23 1.30 0.00
𝑐𝑐2 0.00 1.26 0.00 2.47 0.00 2.20 2.33 0.00 0.00 0.00 0.73 0.00
𝑐𝑐3 1.80 NaN 0.92 1.23 1.80 NaN 0.76 0.00 0.99 2.26 0.00 1.16
𝑐𝑐4 0.00 0.61 1.23 0.99 2.76 0.79 1.38 0.00 0.00 0.00 1.84 1.23
𝑐𝑐5 2.47 0.00 0.00 0.00 1.68 0.00 0.00 0.69 1.03 0.85 0.89 1.77
𝑐𝑐6 0.00 0.00 NaN 0.73 2.45 2.29 0.00 0.00 0.00 0.00 0.00 0.58
𝑐𝑐7 0.00 NaN 1.71 1.30 2.47 1.71 1.04 0.54 0.52 0.00 2.16 0.85
𝑐𝑐8 0.73 0.00 1.45 NaN 0.00 0.00 1.58 0.74 2.41 0.76 0.00 2.20
𝑐𝑐9 0.76 0.00 0.48 0.00 0.00 0.00 0.00 0.46 2.61 1.23 0.00 0.00
𝑐𝑐10 1.30 0.85 0.00 NaN 0.89 0.89 1.23 1.30 1.27 1.47 0.00 1.14
𝑐𝑐11 2.20 0.92 0.00 0.00 2.20 1.38 2.20 2.76 0.00 1.84 0.99 1.23
𝑐𝑐12 NaN 0.00 0.53 0.79 0.00 0.48 0.00 0.00 1.23 2.32 1.57 1.02

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 20: Relevance matrices R̂1 and R̂2 for Experiment II, for the first (left) and second (right) set
of questions, respectively, computed for: (a) females, (b) males, (c) non-U.S. participants, (d) U.S.
participants, (e) non-designers, and (f) designers.
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Fig. 21: Comparison of diagonal elements of relevance matrices between demographic subsets. The
first row of plots is data from color palette to word clouds (Experiment I), and the second row is word
cloud to color palettes (Experiment II). Orange indicates elements compared between diagonals of
R̂1 matrices while blue indicates R̂2 matrices. Each number refers to a color-word topic. Notice that
the values are quite close to the diagonal, indicating high similarity between the color palette-word
cloud associations between demographic groups. Over all comparisons in Experiment I (considering
all data points in the first row), the R2 of the identity line (y = x) is 0.89, and for Experiment II
(all data points in second row) it is 0.71. There is possibly one point, the blue “2” in the top left
(male vs female), where males made a slightly weaker association than women between the colors
and words in topic k2. Given the relatively small number of comparisons in this plot, however, this
finding is unlikely to be statistically significant. The overall variance in the second row is larger, due
to the smaller amount of data collected in Experiment II.
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