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Abstract

Most state-of-the-art satisfiability algorithms today are variants of the DPLL procedure
augmented with clause learning. The two main bottlenecks for such algorithms are the
amounts of time and memory used. Thus, understanding time and memory requirements
for clause learning algorithms, and how these requirements are related to one another, is
a question of considerable practical importance.

In the field of proof complexity, these resources correspond to the length and space of
resolution proofs for formulas in conjunctive normal form (CNF). There has been a long
line of research investigating these proof complexity measures and relating them to the
width of proofs, another measure which has turned out to be intimately connected with
both length and space. Formally, the length of a resolution proof is the number of lines,
i.e., clauses, the width of a proof is the maximal size of any clause in it, and the space is
the maximal number of clauses kept in memory simultaneously if the proof is only allowed
to infer new clauses from clauses currently in memory.

While strong results have been established for length and width, our understanding of
space has been quite poor. For instance, the space required to prove a formula is known
to be at least as large as the needed width, but it has remained open whether space can
be separated from width or whether the two measures coincide asymptotically. It has also
been unknown whether the fact that a formula is provable in short length implies that it
is also provable in small space (which is the case for length versus width), or whether on
the contrary these measures are “completely unrelated” in the sense that short proofs can
be maximally complex with respect to space.

In this thesis, as an easy first observation we present a simplified proof of the recent
length-space trade-off result for resolution in (Hertel and Pitassi 2007) and show how our
ideas can be used to prove a couple of other exponential trade-offs in resolution.

Next, we prove that there are families of CNF formulas that can be proven in linear
length and constant width but require space growing logarithmically in the formula size,
later improving this exponentially to the square root of the size. These results thus
separate space and width. Using a related but different approach, we then resolve the
question about the relation between space and length by proving an optimal separation
between them. More precisely, we show that there are families of CNF formulas of size
O(n) that have resolution proofs of length O(n) and width O(1) but for which any proof
requires space Ω(n/ log n). All of these results are achieved by studying so-called pebbling
formulas defined in terms of pebble games over directed acyclic graphs (DAGs) and proving
lower bounds on the space requirements for such formulas in terms of the black-white
pebbling price of the underlying DAGs.

Finally, we observe that our optimal separation of space and length is in fact a special
case of a more general phenomenon. Namely, for any CNF formula F and any Boolean
function f : {0, 1}d 7→ {0, 1}, replace every variable x in F by f(x1, . . . , xd) and rewrite
this new formula in CNF in the natural way, denoting the resulting formula F [f ]. Then
if F and f have the right properties, F [f ] can be proven in resolution in essentially the
same length and width as F but the minimal space needed for F [f ] is lower-bounded by
the number of variables that have to be mentioned simultaneously in any proof for F .

Keywords: Proof complexity, resolution, space, length, width, separation, lower bound,
pebble game, pebbling formula
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Sammanfattning
Om man ser på de bästa nu kända algoritmerna för att avgöra satisfierbarhet hos logiska
formler så är de allra flesta baserade på den så kallade DPLL-metoden utökad med klausul-
inlärning. De två viktigaste gränssättande faktorerna för sådana algoritmer är hur mycket
tid och minne de använder, och att förstå sig på detta är därför en fråga som har stor
praktisk betydelse.

Inom området beviskomplexitet svarar tids- och minnesåtgång mot längd och minne
hos resolutionsbevis för formler i konjunktiv normalform (CNF-formler). En lång rad
arbeten har studerat dessa mått och även jämfört dem med bredden av bevis, ett annat
mått som visat sig höra nära samman med både längd och minne. Mer formellt är längden
hos ett bevis antalet rader, dvs. klausuler, bredden är storleken av den största klausulen,
och minnet är maximala antalet klausuler som man behöver komma ihåg samtidigt om
man under bevisets gång bara får dra nya slutsatser från klausuler som finns sparade.

För längd och bredd har man lyckats visa en rad starka resultat men förståelsen av
måttet minne har lämnat mycket i övrigt att önska. Till exempel så är det känt att minnet
som behövs för att bevisa en formel är minst lika stort som den nödvändiga bredden,
men det har varit en öppen fråga om minne och bredd kan separeras eller om de två
måtten mäter “samma sak” i den meningen att de alltid är asymptotiskt lika stora för en
formel. Det har också varit okänt om det faktum att det finns ett kort bevis för en formel
medför att formeln också kan bevisas i litet minne (motsvarande påstående är sant för
längd jämfört med bredd) eller om det tvärtom kan vara så att längd och minne är “helt
orelaterade” på så sätt att även korta bevis kan kräva maximal mängd minne.

I denna avhandling presenterar vi först ett förenklat bevis av trade-off-resultatet för
längd jämfört med minne i (Hertel och Pitassi 2007) och visar hur samma idéer kan
användas för att visa ett par andra exponentiella avvägningar i relationerna mellan olika
beviskomplexitetsmått för resolution.

Sedan visar vi att det finns formler som kan bevisas i linjär längd och konstant bredd
men som kräver en mängd minne som växer logaritmiskt i formelstorleken, vilket vi senare
förbättrar till kvadratroten av formelstorleken. Dessa resultat separerar således minne och
bredd. Genom att använda andra men besläktade idéer besvarar vi därefter frågan om hur
minne och längd förhåller sig till varandra genom att separera dem på starkast möjliga
sätt. Mer precist visar vi att det finns CNF-formler av storlek O(n) som har resolutionbevis
i längd O(n) och bredd O(1) men som kräver minne minst Ω(n/ log n). Det gemensamma
temat för dessa resultat är att vi studerar formler som beskriver stenläggningsspel, eller
pebblingspel, på riktade acykliska grafer. Vi bevisar undre gränser för det minne som
behövs för den så kallade pebblingformeln över en graf uttryckt i det svart-vita pebbling-
priset för grafen i fråga.

Slutligen observerar vi att vår optimala separation av minne och längd i själva verket
är ett specialfall av en mer generell sats. Låt F vara en CNF-formel och f : {0, 1}d 7→ {0, 1}
en boolesk funktion. Ersätt varje variabel x i F med f(x1, . . . , xd) och skriv om denna nya
formel på naturligt sätt som en CNF-formel F [f ]. Då gäller, givet att F och f har rätt
egenskaper, att F [f ] kan bevisas i resolution i väsentligen samma längd och bredd som F ,
men att den minimala mängd minne som behövs för F [f ] är åtminstone lika stor som det
minimala antalet variabler som måste förekomma samtidigt i ett bevis för F .

Nyckelord: Beviskomplexitet, resolution, minne, längd, bredd, separation, undre gräns,
pebblingspel, pebblingformel
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Chapter 1

A Popular Science Introduction

On June 4, 1996, the Ariane 5 rocket exploded less than a minute into its maiden
voyage. The reason was a bug in the onboard navigation and guidance software,
in a piece of program code designed for the predecessor Ariane 4 but useless for
Ariane 5. To quote the inquiry board report, this code had been left in “presumably
based on the view that, unless proven necessary, it was not wise to make changes
in software which worked well on Ariane 4.” In other words, it was an instance of
the old and trusted principle of software design: “if it ain’t broke, don’t fix it.”

It had not been taken into consideration, however, that the flight characteristics
of Ariane 5 in the first 30 seconds of flight differed substantially from that of
Ariane 4. This caused an overflow error, but since there had been a large safety
margin for these values in Ariane 4, no error checking had been included to take
care of a possible overflow. Instead, the program crashed and the ensuing error
message was interpreted by the onboard computer as flight data. As a result, the
rocket made “an abrupt course correction that was not needed, compensating for
a wrong turn that had not taken place” [43], broke up and exploded. As an extra
absurdity, the piece of software containing the bug actually served no purpose even
on Ariane 4 once the rocket was in the air, but had been designed to keep running
during the first 40 seconds or so of the flight as a “special feature”.

At a cost of more than 7 billion US dollars, the first Ariane 5 launch was ar-
guably one of the most expensive firework displays in human history. But although
spectacular, the Ariane 5 failure is just one of many examples of a widespread
problem in the software industry. Large software systems tend to become highly
complex, with intricate interdependencies in the code which makes it hard or im-
possible to analyze them and predict their behaviour. For less dramatic examples
of this we do not have to go further than ourselves. Most of us have probably
experienced, at one time or another, how the computer just “freezes” and refuses
to respond, for instance. This is a symptom of exactly the same problem.

The contemporary hardware industry experiences analogous difficulties. Per-
haps the most well-known illustration of this is the embarrassing flaw in Intel’s

3
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Pentium microprocessor discovered in October 1994: in very rare cases, the pro-
cessor got the answer wrong when dividing two numbers (see, for instance, [58] for
a readable account). After first having tried to downplay the problem, Intel was
later forced to offer replacements to customers at a cost of 475 million US dollars.

Intel has not been alone in having problems. The growing complexity of state-
of-the-art hardware devices is outpacing the capacity of the tools used to check that
they are correct. Making things worse, there is an increasing pressure to keep the
development time of new devices to a minimum to reduce the time-to-market. As
a consequence, components under development are more likely to contain errors,
while less time can be spent on validation, that is, making sure that what has been
built corresponds to the intended design. And no matter how much time is set
aside for simulation and testing, this can never provide full coverage of all possible
cases in increasingly complex designs.

So what can be done? This chapter briefly outlines one approach, and in doing so
describes how I came in contact with this kind of problems while doing my Master’s
thesis [59] at Prover Technology (www.prover.com) and how I subsequently moved
on to do a PhD thesis in proof complexity at the Royal Institute of Technology.

Writing popular science is a tricky task. It involves simplifying and generalizing,
not seldom to the point of stating things that formally are just not true. Thus, the
reader is warned that what is written here is almost, but not quite, entirely unlike
my actual research [1]. The thesis proper starts in Chapter 2. This introductory
chapter is an attempt to tell friends and family, whom I do not expect to read
Chapter 2 onwards, at least something about what I have been doing these years.
The text is intended to be understandable for those with no prior knowledge of
computer science. (I know it does get slightly technical towards the end, though,
but I hope that at least some of you will make it all the way.)

1.1 Let’s Get Formal

How can one master the complexity of large technical systems? One proposed
solution to this problem is the adoption of formal methods in software and hardware
design. The Free On-line Dictionary of Computing (www.foldoc.org) describes
formal methods as:

Mathematically based techniques for the specification, development and
verification of software and hardware systems.

The idea is that if the methods for specifying and designing systems are formalized,
it becomes possible to use mathematical tools to prove that the designed system
conforms to its specification. Formal methods have formerly been the subject of
mainly academic study, but applied research in and usage of formal methods have
increased greatly during the last two decades.

Here comes a very much simplified example: Suppose that we would like to verify
that a processor divides two numbers correctly. All the processor does is to work
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with ones and zeros, corresponding to true and false, and we can therefore describe
its design in mathematical logic. Also, we can certainly describe in mathematical
logic that for any numbers x and y, we want the processor to output x/y and
nothing else. Now we can write all of this as one big mathematical formula with
a lot of variables saying, essentially, “the processor looks like this, and division of
two numbers means this, and the processor just described accurately divides two
numbers.” If this formula is true, we have designed our processor correctly. If it is
not true, then we want to find a concrete counter-example for which values of the
variables the formula turns out to be false. Hopefully, this could give us a clue to
where in the design we made a mistake.

The formulas that one gets in this way are typically huge, so trying to work them
out with pen and paper is generally not a good idea. What we want is a computer
program that takes a formula as input and either confirms that the formula is true
or produces a counter-example. Such a program is called an automated theorem
prover . Formal verification is one area where such programs are useful, but the
list of applications is much larger than hardware and software design analysis and
verification. Automated theorem provers are also used among other things for
scheduling problems, in artificial intelligence research, and even to prove results in
theoretical mathematics.

Needless to say, the above description provides only a very simplistic view, but
we hope that it serves the purpose of conveying the general idea. A nice (and more
accurate, though still informal) introduction to formal methods in Swedish is [66].

1.2 Proving Things Is Complex

So far this seems to be very good news. We start with a hard problem, reformulate
it using some mathematical modelling, and then leave the tedious detail-checking
to the computer. So does this mean that we have now solved the problem?

Well, not quite. The bad news is that proving logical formulas seems to be a
very difficult task for a computer. On the face of it, it might appear obvious what
one should do: just let the computer check all possible cases. Is this not exactly
the kind of monotone routine work at which computers excel? The problem is that
there are just too many cases to check. Suppose that the formula has N variables.
Each variable can be either true or false, so all in all we get 2N different cases. And
if our formula contains, say, one million variables (which could typically be the case
for real-world problems), this means that we get 21000000 cases. This is a number
with more than 300,000 digits. To understand how large this number is, consider
that even if every atom in the universe was a modern supercomputer that had been
running at full speed ever since the beginning of time some 13.7 billion years ago,
all of them together would only have covered a completely negligible fraction of
these cases by now. So we really would not have time to wait for them to finish. . .

Intriguingly, although there are many advanced automated theorem provers that
perform really well most of the time, for all of them there appear to exist very hard
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formulas for which they are not able to do anything essentially better than checking
all cases. What is more, it seems that for any computer program, or algorithm, that
takes a formula as input and checks if it is correct, there will exist formulas that are
just too hard (as we noted above, checking all cases is not a feasible alternative).
We write seems, because no one knows if this is really so or if we just have not
found out yet how to construct smart enough algorithms. In fact, this is one of the
big, deep, open problems in modern mathematics. It has been named one of the
seven challenges for the new millennium by the Clay Mathematics Institute [57]
and it carries a one million dollar reward for whoever solves it.

So proving logical formulas seems to be a hard problem. In proof complexity, we
want to understand better exactly how hard this problem is (not necessarily aiming
for the one million dollars, though). The way we do this is to, perhaps somewhat
unexpectedly, try to get rid of the formula-proving algorithms altogether.

Every automated theorem prover uses some kind of rules when it proves a for-
mula, and it is no restriction to ask the algorithm to write down which rules it uses,
and how, in order to reach its conclusions. The result is that when an algorithm has
proven a formula, there will also be a written proof explaining why the formula is
true. Different algorithms work in different ways, and the way the algorithm works
determines what rules can be used in its proofs. In this way, every automated
theorem prover can be made to correspond to a so-called proof system. In proof
complexity, we are interested in studying proof systems.

What can such proof systems tell us? If a formula that we want to prove is very
small, there might exist small proofs for it. If the formula is large, it seems natural
to expect that the proofs will have to be large as well. What we are interested in
is measuring how fast the proof size grows as a function of the size of the formula.
If there are reasonably small proofs for all formulas measured in terms of formula
size, then maybe we can hope to find these proofs quickly. But if we know that the
minimal proof size grows very rapidly in a proof system, then there is no hope of
being able to prove formulas in an efficient way. How can we know this? Well, even
if the algorithm is lucky and finds the best proof, we know that all proofs—even
this one—must contain a very large number of steps. Hence, the algorithm will
have to run for a very long time before it is done going through all of the steps in
this proof.

In other words, the sizes of proofs in a proof system can tell us something
interesting about the performance of the corresponding automated theorem prover.
Studying proof systems is also interesting for other, more theoretical reasons, but
that is outside the scope of this introduction.

1.3 What Is a Proof?

The discussion of proofs and proof systems in the preceding section somehow turned
out to be very abstract. What is a “proof system”? And what do we mean by a
“proof”? In this section, we try to be more concrete.
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Indeed, what is a proof? This question is almost impossible to answer. For
instance, this thesis is full of (claimed) proofs. Some of them are presented in
painstaking detail, with page after page of technical proof steps. In other proofs,
we just assert that certain statements are “obvious” or “straightforward to verify”
and leave the details to the reader. If one wants to start an animated discussion
among theoretical computer scientists, one good way might be to ask what exactly
is the right level of detail when presenting a proof. There seem to be as many views
on this subject as there are theoretical computer scientists.

Fortunately, we do not have to give an all-encompassing answer to this question.
We just have to provide a definition that works for the very restricted formal systems
that we study in proof complexity. And here it turns out that the right definition
is essentially the following: “A proof is something with the help of which you can
easily verify a statement that you might not otherwise know how to check.”

This thesis deals with proof systems for logic. However, the notation in such
systems can appear intimidating and takes some time to get used to. We want
to give an example that can be understood right away. Therefore we will instead
concentrate on numbers, namely the integers 1, 2, 3, 4, . . .

We start with some facts that are not related to proof complexity, but which
might be interesting anyway. Any integer greater than 1 can be “decomposed”
into a product of integers (also greater than 1). For instance, we can write 77 =
7 · 11 and 30 = 2 · 3 · 5. One of the basic results in mathematics says that if we
decompose a number into “minimal components”, in the sense that the integers
in the product cannot themselves be written as products of other integers, then
this decomposition, or factorization, is unique. This is known as the Fundamental
Theorem of Arithmetic.

In the examples given above, it is easy to check that 2, 3, 5, 7, and 11 cannot be
written as products of smaller integers, so the decompositions are minimal. Now of
course, we can always write 77 = 7 ·11 = 11 ·7 in two different ways, but apart from
this kind of reordering the factorization is unique. The “minimal components” in a
factorization are called prime numbers, and they just “decompose” into a product
of one number, i.e., themselves.

Consider now the following simple problem: we are given an integer N and we
are asked to tell what its factorization is. For concreteness, let us think of the two
numbers N1 = 25957 and N2 = 510510. How can they be written as products of
smaller integers? Or maybe they are prime numbers? (The reader might wish to
have a go at solving these cases before reading on—one of them is easy but the
other is slightly harder.)

Simple as it may look, this problem is at the forefront of current research in
computer science. Enormous amounts of time and money have been invested in
trying to come up with good algorithms for factorization. So far, no one has
succeeded. Or at least, so we believe. It is a well-known secret that governmental
agencies such as the National Defence Radio Establishment (FRA) in Sweden and
the National Security Agency in the US are working hard on this problem as well,
but they do not publish their results.
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Why all this interest? Because many (probably, most) researchers believe that
this problem is so hard that there cannot exist any efficient factorization algorithms.
And although we do not know for sure that this is so, we can construct IT security
systems for which the security rests on the assumption that factorization is hard.
Much of modern cryptography is built in this way. And this is not only theoretical
science. Chances are that, for instance, the security of your Internet bank is based
on the belief that factoring large integers, or solving some similar problem, is so
hard that it is practically impossible to do even on a very powerful computer.

Now back to proof complexity. Let us look at the following variant of the
problem discussed above: We are given integers N and k from a person claiming
that the prime number factorization of N contains exactly k numbers. For instance,
suppose someone tells us that N1 = 25957 is the product of 2 prime numbers. Can
we decide whether this is true? What is a proof that would convince us?

It seems we will have a hard time deciding this on our own since we do not know
how to factor integers efficiently. But since the person we are talking to apparently
knows the factors, we can ask him or her to give a proof simply by listing them. If
as an answer we get the list

101
257

then we can check that this proof is correct fairly easily. First, the list has two
elements, just as claimed. Second, if we multiply them the result is indeed 25957.
Third, we can also verify that neither 101 nor 257 can be written as a product of
smaller integers, that is, they are prime numbers. And if the number N is larger,
so that we cannot work this out by hand, there are efficient algorithms both for
multiplying numbers and for checking prime numbers and we can let a computer
verify the proof for us.

We want to highlight two important features of a proof system. First, we can
never be fooled into accepting a false statement. Suppose the person had instead
told us that 25957 has 6 factors. We ask for the proof, and get, perhaps, the list

2
2
3
3
7

103

This is of course close—the product is 25956, just off by one—but we have no
problems to discover this and reject the purported proof as false.

Second, there is always a proof for true statements. Of course, it happens that
proofs are buggy (though, let us hope, not in this thesis). For example, if someone
says that the two factors of 25957 are

100
258
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we cannot accept this as a proof since it is plainly wrong. But the point is that
since it is in fact true that 25957 has exactly 2 factors, there is another, correct
proof that can convince us that this is so (which in this case is the first proof given
above). Finding such a proof might be wholly another matter, but at least it exists.

Once we have a proof system, we want to understand its properties. Two im-
portant properties, that are the focus of this thesis, are the length and space of
proofs. Consider our second number N2 = 510510, which we claim has 7 factors.
The proof of this is the list

2
3
5
7

11
13
17

which has 7 lines, so we will say that the length of the proof is 7.
The space of a proof is, roughly, the number of things we need to remember

while verifying the proof. To check the proof above, we can multiply the numbers
one by one and remember how many numbers we have multiplied so far. Then all
we need to keep track of is (1) the number of factors so far, (2) the accumulated
product so far, and (3) the factor we are looking at right now. When we are done
going through the list, we check that we have seen 7 factors and that their product
is 510510. If so, everything is in order and we accept the proof. Since we need to
remember 3 things only, the space of the proof is 3.

Note that even though the proof we get may be very long (if the integer has
a large number of factors), all proofs in our proof system will be “simple” in the
sense that we only need space 3 to verify them, no matter how long the proofs are.
For more general proof systems, this will typically not be the case, and it is an
interesting question how length and space are related to one another.

This thesis studies the proof system resolution for logical formulas, which is
important since it is the basis for the best automated theorem provers currently
known. An open question concerning resolution has been the following:

Suppose that a proof is short. Is it then true that the proof is also easy
in the sense that it can be verified in small space? Or can it be that
although the proof is short, it has such intricate structure that one has
to remember essentially the whole proof while verifying it?

The main result in the thesis says that there are formulas that have short proofs,
but where these proofs must by necessity be so complicated that one cannot just
check them “locally” line by line (as we did in our proof system above). Instead,
one has to keep almost the whole proof in memory while verifying it. That is, we
prove what is called a lower bound, in this case a lower bound saying that certain
formulas must always require a lot of space.
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Apart from being interesting in the context of proof complexity, the lower bound
that we prove could possibly have implications for automated theorem provers as
well. It might be interpreted as meaning that there are formulas which are very
easy to prove if you do it “the right way”, but finding this easy proof is a little bit
like looking for a needle in a haystack. However, there are subtleties involved here
that are beyond the scope of this introduction. We refer to Section 12.3 for a more
detailed discussion of these issues.

1.4 Why Is It Hard to Prove Lower Bounds?

Proving lower bounds is a very special endeavour. In most of computer science,
and in science in general, one shows how to actually do things: construct, compute,
prove, invent. . . Establishing a lower bound means showing that something cannot
be done.

For instance, if we want to show that a certain problem can be solved efficiently
on a computer, it is clear what we need to do: come up with an algorithmic idea,
write a computer program, and prove that the solution is correct. In contrast, to
prove that a problem cannot be efficiently solved using computers, we need to show
that no program, no matter how it is constructed, can solve the problem faster than
some specified time bound. Note that we cannot make any assumptions on what
the computer programs might be up to. For all we know, they can be completely
wild. Maybe there is an ingenious solution to our problem out there that no one has
thought of before. Maybe there is a program that does crazy things but somehow
solves the problem very quickly. We cannot assume that this is not the case—we
have to prove it.

In this final section, we present a case study aimed at illustrating some of these
difficulties. Again, we avoid logic since we want an example that is reasonably
accessible without prior knowledge of computer science or higher mathematics.
Instead, we will discuss how to sort numbers efficiently. The problem we want the
computer to solve is the following:

Given a list of N distinct integers in any order, write a list of these
integers in ascending order.

We understand that sorting 1000 numbers will probably have to take longer time
than sorting just 10 numbers. What we are interested in is proving lower bounds on
the time needed expressed as a function of the number of integers N in the problem
input. As a running example when describing different approaches, we will use the
following list

670, 45, 490, 642, 475, 124, 802, 266

of eight numbers to be sorted.
One natural approach, that one can use for instance when one is dealt cards

from a deck of playing cards and want to sort them, is to keep a set of unsorted
cards to the right and then insert the cards one by one into a sorted set of cards on
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1. 670 45 490 642 475 124 802 266
2. 45 670 490 642 475 124 802 266
3. 45 490 670 642 475 124 802 266
4. 45 490 642 670 475 124 802 266
5. 45 475 490 642 670 124 802 266
6. 45 124 475 490 642 670 802 266
7. 45 124 475 490 642 670 802 266
8. 45 124 266 475 490 642 670 802

Figure 1.1: Example of insertion sort (sorted numbers left, unsorted numbers right).

the left. This algorithm is known as insertion sort, and Figure 1.1 illustrates how
it works for our example set of numbers.

How much time does insertion sort take? It is a fast algorithm for small set
of integers, but when the size of the list grows, performance starts to deteriorate.
When we are sorting the last integers in the list, we might have to scan through
a large part of the integers already sorted before finding the right place where the
current one should be inserted. Look, for instance, at stage 8 in Figure 1.1 when we
are sorting the final number 266. Note that the computer has no way of immediately
“seeing” where this number should go. From the computer’s point of view, 266 is
just some pattern of zeros and ones that can be compared with other patterns of
zeros and ones representing other numbers. So we have to scan either from the left
or from the right, and if the needed position is somewhere in the middle this will
take us almost N/2 steps. In can be shown that this can be expected to happen for
a reasonably large fraction of the numbers, and therefore insertion sort takes time
quadratic in the number of integers to be sorted, i.e., time proportional to N2.

But maybe this is the best we can hope for anyway? There are N numbers to
sort, and we need to know how all numbers are related to one another in order to
sort them in the correct order. Since we have N numbers, this means that there are
N(N − 1) ≈ N2 distinct pairs of numbers, so we would expect that we have to do
something like N2 comparisons before we know how all these pairs are related. So,
counting only the comparisons and ignoring other things that the algorithm might
also need to do, we see that a lower bound on the time to sort numbers must be
proportional to N2, right?

Wrong, as it turns out. Let us sketch a completely different algorithmic idea.
Suppose that we instead split our list of number into two halves 670, 45, 490, 642
and 475, 124, 802, 266. Suppose furthermore, using some wishful thinking, that we
can sort these halves quickly to get 45, 490, 642, 670 and 124, 266, 475, 802. Then we
can very efficiently merge these two sorted lists into one larger sorted list. Namely,
we start by looking at the first element in both lists. 45 is smallest, so it goes first.
Now 124 is smaller than 490, so it goes second, and in the same way we pick 266
and 475 from the second list. Then, since 802 is larger than 490, we switch to the
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first list again and remove all numbers from it, since they are all smaller than 802.
Finally, we add 802 to the end of our larger list, which is now sorted. Note that
as opposed to for insertion sort, we could immediately find the right place in the
list for all numbers without having to scan through the list of previously sorted
problems.

Of course, there seems to be a catch here. How do we sort the smaller lists to
begin with? Well, why not use the same idea? Split the first list 670, 45, 490, 642
into two sublists 670, 45 and 490, 642, sort them, and merge. But that is begging
the question—how do we sort these sublists? Well, these sublists only have two
elements, so they are very easy to sort: just swap the numbers if they are in the
wrong order, and otherwise do nothing. And if we keep splitting larger lists into
smaller lists, sooner or later we will get very small lists that we can immediately
sort in this way.

This might seem like a very strange idea, but it works. And not only does it
work, but it is dramatically much faster than insertion sort. This algorithm is called
merge sort for understandable reasons, and although it is far from obvious (and we
will not try to prove it here) it runs in time proportional to N lnN instead of N2.
For large data sets, this difference means seconds instead of hours or days.

Fine, so now we are down from N2 to N lnN for the time needed to do sorting.
Can we sort even faster? Or is N lnN the correct answer? Let us try to prove a
lower bound.

As we noted above, we do not know how the algorithm might work, so let us
focus on something that we know it will have to do, namely, compare the numbers.
Let us just count the comparisons and give a lower bound for the number of such
operations. We can represent all possible outcomes of the comparisons made by
drawing a graph. See Figure 1.2 for an example of an algorithm sorting three
elements. Inside the ellipses we write which comparisons are made, and the branches
show the two possible outcomes. We get what is called a tree in computer science
jargon (although computer scientists insist on drawing their trees upside down).

Any sorting algorithm corresponds to such a tree in the following way. The
algorithm starts by making some comparison, which we indicate at the root of the
tree (which is, consequently, at the top of the figure). Depending on the result of
the comparison, the algorithm can choose to do one of two different things, which
corresponds to moving along either of the two branches. As soon as the algorithm
knows the answer, it stops and outputs the sorted list. We mark this in the tree by
adding a leaf with the corresponding sorting order. Since this tree can be seen as
a help to decide which sorting order is the right one, it is called a decision tree.

We will use this decision tree to prove our lower bound. We do this by making
three observations.

• First, the number of comparisons that the algorithm will make in the worst
case is the longest path to a leaf along branches in the tree. The list of
integers can be presented to us in any order, so all paths in the decision tree
are possible outcomes for the algorithm.
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YES NO

YES NO YES NO

YES NO YES NO

a<b ?

b<c ? b<c ?

a<c ? a<c ?a<b<c c<b<a

a<c<b c<a<b b<a<c b<c<a

Figure 1.2: Decision tree for sorting three numbers a, b, c.

• Second, there must exist at least one leaf in the decision tree for every possible
answer. Note again that the list of integers can be presented to us in any order,
so all orderings of the numbers are possible candidate answers. Since all the
answers the algorithm gives are found in the leaves, there must be a leaf for
every possible case.

• Third, the number of possible different answers when sorting three integers is
3 · 2 · 1 = 6. Any of the 3 integers in the list can be the smallest one. Once we
know the position of the smallest integer, there are 2 possible positions left
for the middle integer, and then there is only 1 choice left for the position of
the largest integer. In general, when we are sorting N integers, there are

N(N−1)(N−2) . . . (continue multiplying with smaller integers) . . . 3·2·1

possible different answers, since the smallest integer in the input list can be
in any one of the N positions, the next smallest integer can be in any of the
N − 1 remaining positions, after that the third smallest integer can be in any
of the N − 2 remaining positions, et cetera.

By combining these observations, we can establish a lower bound in two steps.
In the first step, it can be shown (and this is not hard) that a decision tree with

L leaves must have some path that is at least roughly lnL long. If all paths would
be shorter than that, there simply would not be room in the tree for L distinct
leaves. As a concrete example, note that Figure 1.2 proves that it is impossible to
sort 3 numbers by just 2 comparisons. Why? Because there are 6 possible answers,
but if all paths in the tree would have length at most 2, then we could only have
4 < 6 leaves.

In the second step, it can be proven (and this is harder) that

ln
(
N(N − 1)(N − 2) · · · 3 · 2 · 1

)
≈ N lnN .
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0 1 2 3 4 5 6 7 8 9

490
670

802
642 124

475
45 266

(a) Radix sort pass on digit in the ones place

0 1 2 3 4 5 6 7 8 9

802 124
45
642 266

475
670 490

(b) Radix sort pass on digit in the tens place

0 1 2 3 4 5 6 7 8 9

45 124 266
490
475

670
642 802

(c) Radix sort pass on digit in the hundreds place

Figure 1.3: Example of radix sort of list 670, 45, 490, 642, 475, 124, 802, 266.

But this means that since there are N(N − 1)(N − 2) · · · 3 · 2 · 1 distinct possible
answers for the correct sorting order that all need their own distinct leaves, any
sorting algorithm will have to do N lnN comparisons in the worst case. This must
clearly be a lower bound on time. (Remember that we are ignoring a lot of other
things that the algorithm will also have to do.) Thus, the merge sort algorithm
that we presented above is an optimal sorting algorithm!

Almost. Indeed, N lnN is a lower bound for so-called comparison-based sorting
algorithms. But what about a sorting algorithm that does not do comparisons? A
sorting algorithm that does not compare the things that it is sorting might sound
slightly odd, but remember that we cautioned in the beginning of this section that
the algorithms that we are fighting against when proving lower bounds can be crazy.

So here is a crazy algorithm. It works as follows (this description will probably
be easier to understand by looking at Figure 1.3). We create ten buckets labelled
0, 1, 2, 3, . . . , 8, 9. Since our numbers have three digits, we make three passes over
all the numbers. In the first pass, we sort all numbers by the digit in the ones
place. That is, 670 is placed in bucket 0, 45 is placed in bucket 5, 490 is placed in
bucket 0 on top of 670, 642 is placed in bucket 2, 475 is placed in bucket 5 on top
of 45, et cetera (see Figure 1.3(a)). Then we turn all buckets upside down, pour
out the numbers, and go through the numbers again from left to right, and from
top to bottom in each column. This time, however, we sort them by the digit in the
tens place, so 670 is placed in bucket 7, 490 is placed in bucket 9, 642 is placed in
bucket 4, 802 is placed in bucket 0, et cetera (see Figure 1.3(b) for the result of this
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second pass). In the third pass, we turn all buckets upside down and go through the
numbers again from left to right, sorting them by the digit in the hundreds place.
Since 45 has no hundreds digit, we place it in bucket 0. This leads to the numbers
ending up in buckets as in Figure 1.3(c). Finally, we turn the buckets upside down
and list all numbers from left to right, and in the same bucket from top to bottom
(after turning the bucket upside down, remember). It is easy to check that listing
the numbers in Figure 1.3(c) in this way, we get our eight numbers sorted in correct
order.

This algorithm is called radix sort. It might seem slightly magical, but it actually
works. What is more, it beats merge sort (and our lower bound) by running in time
proportional to N , not N lnN .

What about N? Is that at least a lower bound on the time? Yes it is. For in
order to be able to sort N numbers, any algorithm must, in some way, look at each
number at least once. Since there are N numbers in the list we get, this must take
time proportional to N . (And this time, the statement can be made into a formal
proof.)

Concluding this introductory chapter, I hope that I have been able to convey
to the reader in Sections 1.1 and 1.2 at least something of what proof complexity
is and what it might be good for. I hope that the end of Section 1.3 gave some
vague flavour of the kind of problems that I have been studying, and that the more
technical stuff in Section 1.4 provided some indication of why proving lower bounds
is not entirely trivial. (And if you found this interesting, there is the whole rest of
the thesis just waiting to be read. . . )





Chapter 2

Formal Introduction and Results Overview

Ever since the fundamental NP-completeness result of Cook [31], the problem of
deciding whether a given propositional logic formula in conjunctive normal form
(CNF) is satisfiable or not has been on center stage in Theoretical Computer Sci-
ence. In more recent years, satisfiability has gone from a problem of mainly
theoretical interest to a practical approach for solving applied problems. Although
all known Boolean satisfiability solvers (SAT-solvers) have exponential running time
in the worst case, enormous progress in performance has led to satisfiability algo-
rithms becoming a standard tool for solving a large number of real-world problems
such as hardware and software verification, experiment design, circuit diagnosis,
and scheduling.

Perhaps a somewhat surprising aspect of this development is that the most
successful SAT-solvers to date are still variants of the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [36, 37] augmented with clause learning, which pro-
duces proofs in the resolution proof system. For instance, the great majority of the
best algorithms at the 2007 round of the international SAT competitions [75] fit
this description.

DPLL procedures perform a recursive backtrack search in the space of partial
truth value assignments. The idea behind clause learning, or conflict-driven learn-
ing, is that at each failure (backtrack) point in the search tree, the system derives
a reason for the inconsistency in the form of a new clause and then adds this clause
to the original CNF formula (“learning” the clause). This can save much work later
on in the proof search, when some other partial truth value assignment fails for
similar reasons.

The main bottleneck for this approach, other than the obvious one that the
worst-case running time can be exponential, is the amount of memory used by the
algorithms. Since there is only a finite amount of memory, all clauses cannot be
stored. The difficulty lies in obtaining a highly selective and efficient clause caching
scheme that nevertheless keeps the clauses needed. Thus, understanding time and
memory requirements for clause learning algorithms, and how these requirements

17



18 CHAPTER 2. FORMAL INTRODUCTION AND RESULTS OVERVIEW

are related to each other, is a question of great practical importance. We refer
to, for instance, [14, 48, 73] for a more detailed discussion of clause learning (and
SAT-solving in general) with examples of applications.

The study of proof complexity originated with the seminal paper of Cook and
Reckhow [33]. In its most general form, a proof system for a language L is a
predicate P (x, π), computable in time polynomial in |x| and |π|, having the property
that for all x ∈ L there is a string π (a proof ) for which P (x, π) = 1, whereas for
any x 6∈ L it holds for all strings π that P (x, π) = 0. A proof system is said to be
polynomially bounded if for every x ∈ L there exists a proof πx for x that has size
at most polynomial in |x|. A propositional proof system is a proof system for the
language of tautologies in propositional logic.

From a theoretical point of view, one important motivation for proof complexity
is the intimate connection with the fundamental question of P versus NP. Since NP
is exactly the set of languages with polynomially bounded proof systems, and since
tautology can be seen to be the dual problem of satisfiability, we have the
famous theorem of [33] that NP = co-NP if and only if there exists a polynomially
bounded propositional proof system. Thus, if it could be shown that there are no
polynomially bounded proof systems for propositional tautologies, P 6= NP would
follow as a corollary since P is closed under complement. One way of approaching
this distant goal is to study stronger and stronger proof systems and try to prove
superpolynomial lower bounds on proof size. However, although great progress has
been made in the last couple of decades for a variety of propositional proof systems,
it seems that we are still very far from fully understanding the reasoning power of
even quite simple ones.

Another important motivation is that, as was mentioned above, designing effi-
cient algorithms for proving tautologies (or, equivalently, testing satisfiability), is a
very important problem not only in the theory of computation but also in applied
research and industry. All automated theorem provers, regardless of whether they
actually produce a written proof, explicitly or implicitly define a system in which
proofs are searched for and rules which determine what proofs in this system look
like. Proof complexity analyzes what it takes to simply write down and verify the
proofs that such an automated theorem-prover might find, ignoring the computa-
tional effort needed to actually find them. Thus a lower bound for a proof system
tells us that any algorithm, even an optimal (non-deterministic) one making all the
right choices, must necessarily use at least the amount of a certain resource specified
by this bound. In the other direction, theoretical upper bounds on some proof com-
plexity measure give us hope of finding good proof search algorithms with respect
to this measure, provided that we can design algorithms that search for proofs in
the system in an efficient manner. For DPLL procedures with clause learning, the
time and memory resources used are measured by the length and space of proofs in
the resolution proof system.

The field of proof complexity also has rich connections to cryptography, artificial
intelligence and mathematical logic. Some good books and survey papers providing
more details are [12, 15, 28, 30, 76, 83].
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2.1 Previous Work

Any formula in propositional logic can be converted to a CNF formula that is
only linearly larger and is unsatisfiable if and only if the original formula is a
tautology. Therefore, any sound and complete system for refuting CNF formulas
can be considered as a general propositional proof system.

Perhaps the single most studied proof system in propositional proof complexity,
resolution, is such a system that produces proofs of the unsatisfiability of CNF for-
mulas. The resolution proof system appeared in [22] and began to be investigated
in connection with automated theorem proving in the 1960s [36, 37, 72]. Because
of its simplicity—there is only one derivation rule—and because all lines in a proof
are clauses, this proof system readily lends itself to proof search algorithms.

Being so simple and fundamental, resolution was also a natural target to attack
when developing methods for proving lower bounds in proof complexity. In this
context, it is most straightforward to prove bounds on the length of refutations,
i.e., the number of clauses, rather than on the total size of refutations. The length
and size measures are easily seen to be polynomially related. In 1968, Tseitin [81]
presented a superpolynomial lower bound on refutation length for a restricted form
of resolution, called regular resolution, but it was not until almost 20 years later
that Haken [44] proved the first superpolynomial lower bound for general resolution.
This weakly exponential bound of Haken has later been followed by many other
strong results, among others truly exponential lower bounds on resolution refutation
length for different formula families in, for instance, [13, 21, 29, 82].

A second complexity measure for resolution, first made explicit by Galil [41], is
the width, measured as the maximal size of a clause in the refutation. Ben-Sasson
and Wigderson [21] showed that the minimal width W(F ` 0) of any resolution
refutation of a k-CNF formula F is bounded from above by the minimal refutation
length L(F ` 0) by

W(F ` 0) = O
(√

n log L(F ` 0)
)

, (2.1)

where n is the number of variables in F . Since it is also easy to see that resolution
refutations of polynomial-size formulas in small width must necessarily be short
(simply for the reason that (2 ·#variables)w is an upper bound on the total number
of distinct clauses of width w), the result in [21] can be interpreted as saying roughly
that there exists a short refutation of the k-CNF formula F if and only if there
exists a (reasonably) narrow refutation of F . This interpretation also gives rise to
a natural proof search heuristic: to find a short refutation, search for refutations
in small width. It was shown in [19] that there are formula families for which this
heuristic exponentially outperforms any DPLL procedure regardless of branching
function.

The formal study of the space measure in resolution was initiated by Esteban
and Torán [39, 79]. Intuitively, the space Sp(π) of a resolution refutation π is the
maximal number of clauses one needs to keep in memory while verifying the refu-
tation, and the space Sp(F ` 0) of refuting F is defined as the minimal space of
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any resolution refutation of F . A number of upper and lower bounds for refuta-
tion space in resolution and other proof systems were subsequently presented in,
for example, [4, 18, 38, 40]. Just as for width, the minimum space of refuting a
formula can be upper-bounded by the size of the formula. Somewhat unexpect-
edly, however, it also turned out that the lower bounds on resolution refutation
space for several different formula families exactly matched previously known lower
bounds on refutation width. Atserias and Dalmau [10] showed that this was not a
coincidence, but that the inequality

W(F ` 0) ≤ Sp(F ` 0) + O(1) (2.2)

holds for any k-CNF formula F , where the (small) constant term depends on k.
The space measure discussed above is known as clause space. A less well-studied

space measure, introduced by Alekhnovich et al. [4], is variable space, which counts
the maximal number of variable occurrences that must be kept in memory simul-
taneously. Ben-Sasson [16] used this measure to obtain a trade-off result for clause
space versus width in resolution, proving that there are k-CNF formulas Fn that
can be refuted in constant clause space and constant width, but for which any
refutation πn must have Sp(πn) ·W(πn) = Ω(n/ log n). More recently, Hertel and
Pitassi [45] showed that there are CNF formulas Fn for which any refutation of Fn

in minimal variable space VarSp(Fn ` 0) must have exponential length, but by
adding just 3 extra units of storage one can instead get a resolution refutation in
linear length.

2.2 Two Questions Left Open by Previous Research

Despite all the research that has gone into understanding the resolution proof sys-
tem, a number of fundamental questions have remained unsolved. We discuss two
such questions, which have been the main focus of our research, below.

Firstly, what is the relation between clause space and width? The inequal-
ity (2.2) says that (essentially) clause space ≥ width, but it leaves open whether
this relationship is tight or not. Do refutation clause space and width always coin-
cide, or is there a formula family that separates the two measures asymptotically?

Secondly, what is the relation between clause space and length? For width,
rewriting the bound in (2.1) in terms of the number of clauses |Fn| instead of the
number of variables we get that that if the width of refuting Fn is ω

(√
|Fn| log|Fn|

)
,

then the length of refuting Fn must be superpolynomial in |Fn|. This is known to
be almost tight, since [25] shows that there is a k-CNF formula family {Fn}∞n=1

with W(Fn ` 0) = Ω
(

3
√
|Fn|

)
but L(Fn ` 0) = O(|Fn|). Hence, formula families

refutable in polynomial length can have somewhat wide minimum-width refuta-
tions, but not arbitrarily wide ones.

For clause space, the inequality (2.2) tells us that any correlation between length
and clause space cannot be tighter than the correlation between length and width,
so in particular we get from the previous paragraph that k-CNF formulas refutable
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in polynomial length may have at least “somewhat spacious” minimum-space refu-
tations. At the other end of the spectrum, given any resolution refutation π of F
in length L it can be proven using results from [39, 46] that Sp(π) = O(L/ log L).
This gives an upper bound on any possible separation of the two measures. But
is there a Ben-Sasson–Wigderson kind of upper bound on clause space in terms of
length similar to (2.1)? For all that we know, it might hold that Sp(Fn ` 0) =
O
(√

|Fn| log L(Fn ` 0)
)
. Or are length and space on the contrary unrelated in the

sense that there exist k-CNF formulas Fn with short refutations but maximal possi-
ble refutation space Sp(Fn ` 0) = Ω

(
L(Fn ` 0)/ log L(Fn ` 0)

)
in terms of length?

We note that for the restricted case of so-called tree-like resolution, [39] showed
that there is a tight correspondence between length and clause space, exactly as for
length versus width.

These two questions have been discussed in, for instance, [16, 38, 40, 76, 80],
but there seems to have been no consensus on what the right answer should be.
However, these papers identify a plausible formula family for answering the ques-
tion, namely so-called pebbling contradictions defined in terms of pebble games over
directed acyclic graphs. Non-constant lower bounds on the space of refuting peb-
bling contradictions would separate space and width and possibly also clarify the
relation between space and length if the bounds were good enough. On the other
hand, a constant upper bound on the refutation space would improve the trade-off
results for different proof complexity measures for resolution in [16].

2.3 Our Contribution

In this thesis, we answer both questions above. Our first result is a separation of
space and width, which we obtain by proving an asymptotically tight bound on
space for pebbling contradictions over binary trees. More precisely, the results can
be stated as follows (formal definitions are given in Chapters 4 and 5).

Theorem 2.1 ([60]). The clause space of refuting pebbling contradictions over
complete binary trees of height h in resolution grows as Θ(h), provided that the
number of variables per vertex in the pebbling contradictions is at least 2.

Corollary 2.2 ([60]). For all k ≥ 4, there is a family {Fn}∞n=1 of k-CNF formu-
las of size O(n) that can be refuted in width W(Fn ` 0) = O(1) but require space
Sp(Fn ` 0) = Θ(log n).

We then further strengthen this result by establishing an asymptotically tight
bound on the clause space of refuting pebbling contradictions over so-called pyramid
graphs.

Theorem 2.3 ([63]). The clause space of refuting pebbling contradictions over
pyramid graphs of height h in resolution grows as Θ(h), provided that the number
of variables per vertex in the pebbling contradictions is at least 2.
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This yields the first separation of space and length (in the sense of a polynomial
lower bound on space for formulas refutable in polynomial length) that is not a
consequence of a corresponding lower bound on width, as well as an exponential
improvement of the separation of space and width in Corollary 2.2.

Corollary 2.4 ([63]). For all k ≥ 4, there is a family {Fn}∞n=1 of k-CNF formulas
of size Θ(n) that can be refuted in resolution in length L(Fn ` 0) = O(n) and width
W(Fn ` 0) = O(1) but require clause space Sp(Fn ` 0) = Θ(

√
n).

Finally, by studying a slightly modified version of pebbling contradictions de-
fined in terms of exclusive or over the variables, we achieve lower bounds on clause
space in terms of pebbling price for any DAG G.

Theorem 2.5 ([20]). The space of refuting XOR-pebbling contradictions over any
DAG G in resolution is lower-bounded by the black-white pebbling price of G, pro-
vided that the number of variables per vertex in the XOR-pebbling contradictions is
at least 2.

As an immediate corollary, we get the strongest possible separation of clause
space and length in resolution.

Corollary 2.6 ([20]). For all k ≥ 6 there is a family {Fn}∞n=1 of k-CNF formulas
of size Θ(n) that can be refuted in resolution in length L(Fn ` 0) = O(n) and width
W(Fn ` 0) = O(1) but require clause space Sp(Fn ` 0) = Ω(n/ log n).

This separation is asymptotically optimal since, as was noted above, a refutation
in length O(n) is always possible to carry out in space O(n/ log n). For width, it
is not hard to show that a formula of size O(n) is refutable in width O(n), so the
separation of space and width is also very nearly optimal, except for perhaps a
logarithmic factor.

We mention that in ongoing research briefly reviewed in Chapter 11, we show
that our optimal separation of space and length is in fact a special case of a more
general phenomenon. Informally, for any CNF formula F and any non-constant
Boolean function f : {0, 1}d 7→ {0, 1}, we can substitute every variable x in F by
the function f(x1, . . . , xd) evaluated on d new variables x1, . . . , xd. This yields a
new Boolean formula , which we can rewrite in conjunctive normal form in the
natural way. Let us denote the resulting CNF formula by F [f]. Then we can prove
the following.

Theorem 2.7. If f : {0, 1}d 7→ {0, 1} is any non-constant Boolean function for d
fixed, and if F is any CNF formula with L(F ` 0) = O(n) and W(F ` 0) = O(1),
then it holds that L

(
F [f] ` 0

)
= O(n) and W

(
F [f] ` 0

)
= O(1). Furthermore, if

f has the property that no single variable xi can fix f(x1, . . . , xd) to true or false,
then the clause space Sp

(
F [f] ` 0

)
of refuting F [f] is lower-bounded by the number

of variables that have to be mentioned simultaneously in any proof for F .
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With hindsight, Theorem 2.5 and Corollary 2.6 can be shown to follow as more
or less immediate consequences of Theorem 2.7.

In addition to the sequence of lower bound results stated above, which are the
main contribution of this thesis, we also make the observation that the proof of
the trade-off result in [45] can be greatly simplified, and the parameters slightly
improved. Using similar ideas, we can also prove exponential trade-offs for length
with respect to clause space and width. Namely, we show that there are k-CNF for-
mulas such that if we insist on finding the resolution refutation in smallest clause
space or smallest width, respectively, then we have to pay with an exponential
increase in length. We state the theorem only for length versus clause space.

Theorem 2.8 ([61]). There is a family of k-CNF formulas {Fn}∞n=1 of size Θ(n)
such that:

• The clause space of refuting Fn in resolution is Sp(Fn ` 0) = Θ
(

3
√

n
)
.

• Any resolution refutation π : Fn ` 0 in minimal clause space must have length
L(π) = exp

(
Ω
(

3
√

n
))

.

• There are resolution refutations π′ : Fn ` 0 in asymptotically minimal clause
space Sp(π′) = O

(
Sp(Fn ` 0)

)
and length L(π′) = O(n), i.e., linear in the

formula size.

Using pattern matching on the proof of Theorem 2.8, it is possible to show a
trade-off result for length versus width on exactly the same form.





Chapter 3

High-Level Overview of Tools and Methods

We now try to give an intuitive, high-level description of the proofs of our results.
Although the technical details in the different proofs vary, there are some recurring
themes in the constructions that we want to make explicit. We conclude the chapter
by outlining how the rest of this thesis is organized.

3.1 Sketch of Preliminaries

A resolution refutation of a CNF formula F can be viewed as a sequence of deriva-
tion steps on a blackboard. In each step we may write a clause from F on the
blackboard (an axiom clause), erase a clause from the blackboard or derive some
new clause implied by the clauses currently written on the blackboard.1 The refuta-
tion ends when we reach the contradictory empty clause. The length of a resolution
refutation is the number of distinct clauses in the refutation, the width is the size of
the largest clause in the refutation, and the clause space is the maximum number
of clauses on the blackboard simultaneously. We write L(F ` 0), W(F ` 0) and
Sp(F ` 0) to denote the minimum length, width and clause space, respectively, of
any resolution refutation of F .

The pebble game played on a DAG G models the calculation described by G,
where the source vertices contain the input and non-source vertices specify oper-
ations on the values of the predecessors (see Figure 3.1). Placing a pebble on a
vertex v corresponds to storing in memory the partial result of the calculation de-
scribed by the subgraph rooted at v. Removing a pebble from v corresponds to
deleting the partial result of v from memory. A pebbling of a DAG G is a sequence
of moves starting with the empty graph G and ending with all vertices in G empty
except for a pebble on the (unique) sink vertex. The cost of a pebbling is the
maximal number of pebbles used simultaneously at any point in time during the

1For our proof, it turns out that the exact definition of the derivation rule is not essential—our
lower bound holds for any sound rule. What is important is that we are only allowed to derive
new clauses that are implied by the set of clauses currently on the blackboard.

25
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(a) DAG encoding calculation.
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(b) After pebbling with results filled in.

Figure 3.1: Example of modelling calculation as pebbling of DAG.

pebbling. The pebbling price of a DAG G is the minimum cost of any pebbling,
i.e., the minimum number of memory registers required to perform the complete
calculation described by G.

The pebble game on a DAG G can be encoded as an unsatisfiable CNF formula
Pebd

G, a so-called pebbling contradiction of degree d. See Figure 3.2 for a small
example. Very briefly, pebbling contradictions are constructed as follows:

• Associate d variables x(v)1, . . . , x(v)d with each vertex v (in Figure 3.2 we
have d = 2).

• Specify that all sources have at least one true variable, for example, the clause
x(r)1 ∨ x(r)2 for the vertex r in Figure 3.2.

• Add clauses saying that truth propagates from predecessors to successors. For
instance, for the vertex u with predecessors r and s, clauses 4–7 in Figure 3.2
are the CNF encoding of the implication (x(r)1 ∨ x(r)2) ∧ (x(s)1 ∨ x(s)2) →
(x(u)1 ∨ x(u)2).

• To get a contradiction, conclude the formula with x(z)1 ∧ · · · ∧ x(z)d where z
is the sink of the DAG.

We will need the fact, proven in [19], that a pebbling contradiction of degree d over
a graph with n vertices of at most constant indegree can be refuted by resolution
in length O

(
d2 · n

)
and width O(d).

3.2 Proof Idea for Pebbling Contradictions

Pebble games have been used extensively as a tool to prove time and space lower
bounds and trade-offs for computation. Loosely put, a lower bound for the pebbling
price of a graph says that although the computation that the graph describes can be
performed quickly, it requires large space. Our hope is that when we encode pebble
games in terms of CNF formulas, these formulas should inherit the same properties



3.2. PROOF IDEA FOR PEBBLING CONTRADICTIONS 27

(x(r)1 ∨ x(r)2) ∧ (x(u)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(s)1 ∨ x(s)2) ∧ (x(u)1 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(t)1 ∨ x(t)2) ∧ (x(u)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ (x(u)2 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2) ∧ x(z)1
∧ (x(r)2 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ x(z)2
∧ (x(r)2 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2)

∧ (x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

z

u v

r s t

Figure 3.2: Pebbling contradiction Peb2
Π2

for the pyramid of height 2.

as the underlying graphs. That is, if we pick a DAG G with high pebbling price,
since the corresponding pebbling contradiction encodes a calculation which needs
a lot of memory we would like to try to argue that any resolution refutation of this
formula should require large space. Then a separation result would follow since we
already know that the formula can be refuted in short length.

More specifically, what we would like to do is to establish a connection be-
tween resolution refutations of pebbling contradictions on the one hand, and the
so-called black-white pebble game [34] modelling the non-deterministic computa-
tions described by the underlying graphs on the other. Our intuition is that the
resolution proof system should have to conform to the combinatorics of the pebble
game in the sense that from any resolution refutation of a pebbling contradiction
Pebd

G we should be able to extract a pebbling of the DAG G.
Ideally, we would like to give a proof of a lower bound on the resolution refutation

space of pebbling contradictions along the following lines:

1. First, find a natural interpretation of sets of clauses currently “on the black-
board” in a refutation of the formula Pebd

G in terms of black and white pebbles
on the vertices of the DAG G.

2. Then, prove that this interpretation of clauses in terms of pebbles captures
the pebble game in the following sense: for any resolution refutation of Pebd

G,
looking at consecutive sets of clauses on the blackboard and considering the
corresponding sets of pebbles in the graph we get a black-white pebbling of G
in accordance with the rules of the pebble game.
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3. Finally, show that the interpretation captures clause space in the sense that
if the content of the blackboard induces N pebbles on the graph, then there
must be at least N clauses on the blackboard.

Combining the above with known lower bounds on the pebbling price of G, this
would imply a lower bound on the refutation space of pebbling contradictions and
a separation from length and width. For clarity, let us spell out what the formal
argument of this would look like.

Consider an arbitrary resolution refutation of Pebd
G. From this refutation we

extract a pebbling of G. At some point in time t in the obtained pebbling, there
must be many pebbles on the vertices of G since this graph was chosen with high
pebbling price. But this means that at time t, there are many clauses on the black-
board. Since this holds for any resolution refutation, the refutation space of Pebd

G

must be large. The separation result now follows from the fact that pebbling con-
tradictions are known to be refutable in linear length and constant width if d is
fixed.

Unfortunately, although this proof outline is intuitively appealing, we never
quite get it to work. In the next section, we try to sketch how we attempt to
implement the proof idea above, why it does not work, and what can be done to
circumvent the problems.

3.3 Overview of Formal Proofs of Space Bounds

The black-white pebble game played on a DAG G can be viewed as a way of proving
the end result of the calculation described by G. Black pebbles denote proven par-
tial results of the computation. White pebbles denote assumptions about partial
results which have been used to derive other partial results (i.e., black pebbles), but
these assumptions will have to be verified for the calculation to be complete. The
final goal is a black pebble on the sink z and no other pebbles in the graph, cor-
responding to an unconditional proof of the end result of the calculation with any
assumptions made along the way having been eliminated. The black-white pebbling
price BW-Peb(G) is the minimum cost of any black-white pebbling of G, or equiv-
alently the minimum number of memory registers required for a non-deterministic
computation of the calculation described by G.

Translating this to pebbling contradictions, it turns out that a fruitful way to
think of a black pebble on v is that it should correspond to truth of the disjunction∨d

i=1 x(v)i of all positive literals over v, or to “truth of v”. A white pebble on a
vertex w can be understood to mean that we need to assume the partial result on
w to derive the black pebbles above w in the graph. Needing to assume the truth
of w is the opposite of knowing the truth of w, so extending the reasoning above
we get that a white-pebbled vertex should correspond to “falsity of w”, i.e., to all
negative literals x(w)i, i ∈ [d], over w.

Using this intuitive correspondence, we can translate sets of clauses in a reso-
lution refutation of Pebd

G into black and white pebbles in G as in Figure 3.3. It
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

x(u)1 ∨ x(u)2

x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2


(a) Clauses on blackboard.

z

u v

r s t

(b) Corresponding pebbles in the graph.

Figure 3.3: Example of intuitive correspondence between clauses and pebbles.

is easy to see that if we assume x(s)1 ∨ x(s)2 and x(t)1 ∨ x(t)2, this assumption
together with the clauses on the blackboard in Figure 3.3(a) imply x(v)1∨x(v)2, so
v should be black-pebbled and s and t white-pebbled in Figure 3.3(b). The vertex
u is also black since x(u)1 ∨ x(u)2 certainly is implied by the blackboard. This
translation from clauses to pebbles is arguably quite straightforward, and seems
to yield well-behaved black-white pebblings for all “sensible” resolution refutations
of Pebd

G.
The problem is that we have no guarantee that the resolution refutations will be

“sensible”. Even though it might seem more or less clear how an optimal refutation
of a pebbling contradiction should proceed, a particular refutation might contain
unintuitive and seemingly non-optimal derivation steps that do not make much
sense from a pebble game perspective. In particular, a resolution derivation has
no obvious reason always to derive truth that is restricted to single vertices. For
instance, it could add the axioms x(u)i ∨ x(v)2 ∨ x(z)1 ∨ x(z)2, i = 1, 2, to the
blackboard in Figure 3.3(a), derive that the truth of s and t implies the truth of
either v or z, i.e., the clauses x(s)i ∨x(t)j ∨x(v)1 ∨x(z)1 ∨x(z)2 for i, j = 1, 2, and
then erase x(u)1 ∨ x(u)2 from the blackboard, resulting in the set of clauses

x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

 . (3.1)

Although it is hard to motivate from such a small example, this turns out to
be a serious problem in that there appears to be no way that we can interpret
such derivation steps in terms of black and white pebbles without making some
component in the proof idea in Section 3.2 break down.

So what can we do? Well, if you can’t beat ’em, join ’em! In order to prove
Theorems 2.1, 2.3, and 2.5, we give up our attempts to translate resolution refu-
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tations into black-white pebblings and instead invent new pebble games (in three
different flavours). These pebble games are on the one hand somewhat similar
to the black-white pebble game, but on the other hand they have pebbling rules
specifically designed so that tricky clause sets such as (3.1) can be interpreted in a
satisfying way. Once we have done this, we construct bound proofs as outlined in
Section 3.2 but using our modified pebble games instead of standard black-white
pebbling.

The first step is to establish that for appropriate classes of graphs (of varying
generality depending on which modified pebble game we use), any resolution refu-
tation of a pebbling contradiction can be interpreted as a pebbling, but now in our
modified game, of the DAG in terms of which this pebbling contradiction is defined.
Intuitively, the reason that this works is that we have introduced auxiliary pebbling
rules in the game that allow us to analyze apparently non-optimal derivation steps
in the refutation. For instance, to prove Theorem 2.1 we use a game where one
can not only place and remove pebbles, but also slide black pebbles downwards and
white pebbles upwards. When we have set up the formal definitions in the right
way, we can prove a “theorem template” of the following form.

Theorem Template 3.1. Let Pebd
G denote the pebbling contradiction of any de-

gree d ≥ 1 over a DAG G from some appropriate class of graphs. Then there is
a translation function from sets of clauses derived from Pebd

G into sets of black
and white pebbles in G that translates any resolution refutation π of Pebd

G into a
pebbling Pπ of G in our modified pebble game.

The next step is to show that the number of pebbles used in Pπ in Theorem
Template 3.1 is related to the space of the resolution refutation π. It can be shown
that we need at least d ≥ 2 variables per vertex in order for such a bound to hold.

Theorem Template 3.2. If π is a resolution refutation of a pebbling contradiction
Pebd

G of degree d > 1, then the cost of the associated pebbling Pπ is bounded by the
space of π by cost(Pπ) = O(Sp(π)).

In fact, what we do is to apply some “reverse engineering” by defining peb-
bling cost in our modified pebble game precisely so that the bound in Theorem
Template 3.2 holds.

Finally, we need lower bounds on pebbling price. Since the rules in our modified
pebble game have been changed in comparison with those of the standard black-
white pebble game, known bound on black-white pebbling price in the literature no
longer apply. However, by using varying amounts of effort depending on the flavour
of the modified pebble game, we can show for appropriate classes of graphs that
the pebbling price in our modified pebble game is lower-bounded by black-white
pebbling price.

Theorem Template 3.3. If G is a DAG from some appropriate class of graphs,
then the pebbling price of G in our modified pebble game is Ω

(
BW-Peb(G)

)
.
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Putting all of these components together, we can prove our main theorems and
corollaries.

Theorem Template 3.4 (Space lower bound). Let Pebd
G denote the pebbling

contradiction of degree d > 1 defined over a DAG G from some appropriate class
of graphs. Then the clause space of refuting Pebd

G by resolution is Sp(Pebd
G ` 0) =

Ω
(
BW-Peb(G)

)
.

Proof sketch. Let π be any resolution refutation of Pebd
G. Consider the associated

pebbling Pπ provided by Theorem Template 3.1. On the one hand, we know that
cost(Pπ) = O(Sp(π)) by Theorem Template 3.2, provided that d > 1. On the
other hand, Theorem Template 3.3 tells us that the cost of any pebbling of G is
Ω
(
BW-Peb(G)

)
, so in particular we must have cost(Pπ) = Ω

(
BW-Peb(G)

)
. Com-

bining these two bounds on cost(Pπ), we see that Sp(π) = Ω
(
BW-Peb(G)

)
and

since this holds for any resolution refutation π the lower bound follows.

Corollary Template 3.5 (Separation). There is a family of k-CNF formulas
{Fn}∞n=1 of size Θ(n) such that L(Fn ` 0) = O(n) and W(Fn ` 0) = O(1) but
Sp(Fn ` 0) = Ω(g(n)) for some suitable function g(n) = ω(1).

Proof sketch. If we fix the pebbling degree d ≥ 2 to some constant and pick {Gn}∞n=1

to be a family of DAGs with Θ(n) vertices of bounded indegree, then the pebbling
contradictions Pebd

Gn
are a family of k-CNF formulas of size Θ(n) (compare with

Figure 3.2). Also, when d is fixed the upper bounds mentioned at the end of
Section 3.1 become L

(
Pebd

G ` 0
)

= O(n) and W
(
Pebd

G ` 0
)

= O(1). Corollary
Template 3.5 now follows if we set Fn = Pebd

Gn
for some suitable constant d and

some family of DAGs {Gn}∞n=1 for which our modified pebble game works, and
then apply Theorem Template 3.4.

3.4 Overview of Trade-off Results

Let us also quickly sketch the ideas (or tricks, really) used to prove our trade-off
theorems for resolution.

We show the following version of the length-variable space trade-off theorem
of Hertel and Pitassi [45], with somewhat improved parameters and a very much
simpler proof.

Theorem 3.6. There is a family of CNF formulas {Fn}∞n=1 of size Θ(n) such that:

• The minimal variable space of refuting Fn is VarSp(Fn ` 0) = Θ(n).

• Any refutation π : Fn ` 0 in minimal variable space has length exp(Ω(
√

n)).

• Adding at most 2 extra units of storage, it is possible to obtain a resolution
refutation π′ in variable space VarSp(π′) = VarSp(Fn ` 0) + 2 = Θ(n) and
length L(π′) = O(n), i.e., linear in the formula size.
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The idea behind our proof is as follows. Take formulas Gn that are really hard
for resolution and formulas Hm which have short refutations but require linear
variable space, and set Fn = Gn∧Hm for m chosen so that VarSp

(
Hm ` 0

)
is only

just larger than VarSp
(
Gn ` 0

)
. Then refutations in minimal variable space will

have to take care of Gn, which requires exponential length, but adding one or two
literals to the memory we can attack Hm instead in linear length.

The trade-off result in Theorem 2.8 for length versus clause space and its twin
theorem for length versus width are shown using similar ideas.

3.5 Outline of This Thesis

The rest of this thesis is organized as follows. Chapter 4 gives a brief and selective
introduction to proof complexity in general and resolution in particular, and reviews
some known results. Chapter 5 describes pebble games and pebbling contradictions,
and in Chapter 6 we present some bounds on pebbling price that we will need.

In Chapter 7, we give proofs of the trade-offs results in Theorems 2.8 and 3.6. In
Chapter 8, we prove the space-width separation in Theorem 2.1 and Corollary 2.2,
which is then improved to Theorem 2.3 and Corollary 2.4 in Chapter 9. Chap-
ter 10 presents the optimal separation of space and length obtained by proving
Theorem 2.5 and Corollary 2.6. Finally, in Chapter 11 we discuss how our results
can be put in a more general framework, where the optimal separation is a simple
corollary of Theorem 2.7.

We conclude the thesis in Chapter 12 by discussing a few questions that seem
to be natural directions for future research in this area.
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Chapter 4

Proof Complexity and Resolution

In this chapter, we give a very brief overview of some of the central concepts in
proof complexity. We then proceed to define the resolution proof system and state
the results mentioned in Chapter 2, as well as some other results relevant to this
thesis, in a more formal setting. As already noted, we refer to, for instance, the
books [12, 28, 30] or the survey papers [15, 76, 83] for more details.

4.1 A Proof Complexity Primer

We assume the existence of an infinite set Vars of boolean (or propositional logic)
variables ranging over {0, 1}, where we identify 0 with FALSE and 1 with TRUE ,
respectively. We use the traditional set of logical connectives: negation ¬, conjunc-
tion ∧, disjunction ∨, implication → and bi-implication (or equivalence) ↔.

The set prop of propositional logic formulas is the smallest set X such that

• x ∈ X for all propositional logic variables x ∈ Vars,

• if F,G ∈ X then
(
F ∧G

)
,
(
F ∨G

)
,
(
F → G

)
,
(
F ↔ G

)
∈ X,

• if F ∈ X then
(
¬F
)
∈ X.

We write Vars(F ) to denote the set of variables of a formula F , i.e., Vars(x) = {x},
Vars(¬F ) = Vars(F ), Vars(F ∧G) = Vars(F ) ∪ Vars(G), and analogously for the
other connectives.

Let α denote a truth value assignment, i.e., a function α : Vars 7→ {0, 1}.
Then α is extended from variables to formulas in the canonical way by defining
that α(¬F ) = 1 if α(F ) = 0, α(F ∧G) = 1 if α(F ) = α(G) = 1, α(F ∨G) = 1
unless α(F ) = α(G) = 0, α(F → G) = 1 unless α(F ) = 1 and α(G) = 0, and
α(F ↔ G) = 1 if α(F ) = α(G). We say that F is

• satisfiable if there is an assignment α with α(F ) = 1,

• valid or tautological if all assignments satisfy F ,

35
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• falsifiable if there is an assignment α with α(F ) = 0,

• unsatisfiable or contradictory if all assignments falsify F .

If an assignment α satisfies a formula F , α is called a model of F . If α falsifies F ,
α is called a counter-model. The set of all tautological propositional logic formulas
(or tautologies) F is denoted tautology. For more details, see [35] or any other
standard textbook on logic.

The definition below from [12] is an adaption of the original definition in [33].

Definition 4.1 (Proof system). A proof system for a language L (or set L,
depending on which terminology one prefers) is a polynomial-time algorithm P
such that

1. for all x ∈ L there is a string π (a proof ) such that P (x, π) = 1,

2. for all x 6∈ L and for all strings π it holds that P (x, π) = 0.

Note that P does not have to be polynomial-time in x only. If the proof π is
large, P can use time polynomial in the size of the proof while checking it.

Let us define the size S (x) of a string x to be the number of symbols in x. Then
the complexity of a proof system P for a language L, which we denote cplx (P ), is
the smallest bounding function g : N 7→ N such that every x ∈ L has a proof of size
at most g

(
S (x)

)
, or in more formal notation

x ∈ L ⇔ ∃π S (π) ≤ g
(
S (x)

)
∧ P

(
x, π

)
= 1 . (4.1)

If a proof system is of polynomial complexity, it is said to be polynomially bounded
or p-bounded. Thus, NP is exactly the set of languages with polynomially bounded
proof systems.

In this thesis, we are interested in proof systems for the set of all tautologies in
propositional logic.

Definition 4.2 (Propositional proof system). A propositional proof system P
is a proof system for tautology.

That is, a propositional proof system is a polynomial-time computable binary
predicate P satisfying the following property: for all propositional logic formulas F
it holds that F ∈ tautology if and only if there exists a proof π of F such that
P
(
F, π

)
is true.

A quite common variation of this theme, a variation that we will focus on in
the rest of this thesis, is to prove instead that formulas in conjunctive normal form
(CNF formulas) are unsatisfiable. The reason that this is essentially the same
problem is that it is possible to convert any propositional logic formula F to a CNF
formula in such a way that it has only linearly larger size and is unsatisfiable if and
only if the original formula is a tautology. One example of such a conversion is a
transformation first used by Tseitin [81]. The idea in Tseitin’s transformation is
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G
.= H1 ∧H2 : Tr

(
G
)

=
(
¬xG ∨ xH1

)
∧
(
¬xG ∨ xH2

)
∧
(
xG ∨ ¬xH1 ∨ ¬xH2

)
G

.= H1 ∨H2 : Tr
(
G
)

=
(
¬xG ∨ xH1 ∨ xH2

)
∧
(
xG ∨ ¬xH1

)
∧
(
xG ∨ ¬xH2

)
G

.= H1 → H2 : Tr
(
G
)

=
(
¬xG ∨ ¬xH1 ∨ xH2

)
∧
(
xG ∨ xH1

)
∧
(
xG ∨ ¬xH2

)
G

.= H1 ↔ H2 : Tr
(
G
)

=
(
¬xG ∨ ¬xH1 ∨ xH2

)
∧
(
¬xG ∨ xH1 ∨ ¬xH2

)
∧
(
xG ∨ ¬xH1 ∨ ¬xH2

)
∧
(
xG ∨ xH1 ∨ xH2

)
Figure 4.1: Tseitin’s transformation to CNF formulas.

to introduce a new variable xG for each subformula G
.= H1 ◦H2 in F , where we

let ◦ denote one of the connectives ∧, ∨, →, or ↔, and use .= to denote syntactic
equality. The formula F is then translated to conjunctive normal form by adding
a set of clauses Tr

(
G
)

for each subformula G which enforces that the the truth
value of xG is computed correctly given the truth values of xH1 and xH2 . These
clauses Tr

(
G
)

are presented in Figure 4.1. Finally, a unit clause ¬xF is added. It
is easy to verify that the resulting CNF formula is unsatisfiable if and only if F is a
tautology. In this way, any sound and complete system which produces refutations
of formulas in conjunctive normal form can be considered as a general propositional
proof system.

We have already argued that proving tautologies (or equivalently, as we have
just seen, refuting unsatisfiable CNF formulas) is an important applied problem,
but one other reason why proof complexity is interesting from a theoretical point
of view is the following theorem.

Theorem 4.3 ([33]). NP = co-NP if and only if there exists a polynomially
bounded propositional proof system.
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Proof. (⇒) Obviously, tautology ∈ co-NP since F is not a tautology if and only if
¬F ∈ satisfiability. If NP = co-NP, then tautology ∈ NP has a polynomially
bounded proof system by definition.

(⇐) Conversely, assume that there exists a p-bounded propositional proof sys-
tem. Then tautology ∈ NP, and since tautology is complete for co-NP it
follows that NP = co-NP.

Since P is closed under complement, we have the following immediate corollary.

Corollary 4.4. If all propositional proof systems have superpolynomial complexity,
then P 6= NP.

The conventional wisdom is that it should hold that NP 6= co-NP, but Corol-
lary 4.4 explains why a proof of this still appears to be light years away. One line
of research in proof complexity is to try to approach this distant goal by studying
successively stronger propositional proof systems and relating their strengths. In
this context, polynomial simulations, or p-simulations, play an important role.

Definition 4.5 (p-simulation). A propositional proof system P1 polynomially
simulates, or p-simulates, another propositional proof system P2 if there exists a
polynomial-time computable function f such that for all F ∈ tautology it holds
that P2

(
F, π

)
= 1 if and only if P1

(
F, f

(
π
))

= 1.

If the complexity of two proof systems are within polynomial factors, we consider
them to be “equally strong” for theoretical purposes.

Definition 4.6 (p-equivalence). Two propositional proof systems P1 and P2 are
polynomially equivalent, or p-equivalent, if each proof system p-simulates the other.

Polynomial simulations define a partial order relation on proof systems. A
natural question is whether there is a maximal element with respect to this ordering
or not. This is not known, and there is little circumstantial evidence either way.
Formally, let us say that a propositional proof system is p-optimal if it p-simulates
every other propositional proof system. Then we have the following result.

Theorem 4.7 ([52]). If EXP = NEXP, there is a p-optimal propositional proof
system.

This does not tell us too much, though, since this complexity class equality is
considered implausible.

The definitions so far say nothing about how hard it might be to actually find
proofs in the proof system P . Let us say that a proof search algorithm AP for P is a
deterministic algorithm AP that takes as input a formula F and generates a proof π
of F in the format specified by the proof system P (i.e., such that P

(
F, π

)
= 1) if

F is valid and reports that F is falsifiable otherwise. Then the following definition
from [12] captures a property that we would like our propositional proof system to
have.
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Definition 4.8 (Automatizability). Given a propositional proof system P and
a function f : N× N 7→ N, we say that P is f(n, S)-automatizable if there exists
a proof search algorithm AP such that if F ∈ tautology, then AP on input F
outputs a P -proof of F in time at most f(n, S), where n is the size of F and S is
the size of a smallest P-proof of F .

A proof system P is called automatizable if it is f(n, S)-automatizable for some
f(n, S) = poly(n) · poly(S). The proof system P is quasi-automatizable if it is
f(n, S)-automatizable for f(n, S) = nc1 · exp

(
logc2 S

)
for some constants c1, c2.

Note that automatizability seems to be the right definition because given a proof
system P , this is in a sense the best we can hope for. If there are no small proofs
of F in P to be found, then no proof search algorithm AP in P can be expected to
find proofs quickly. However, given a bound on the best any proof search algorithm
for P can do, we want an algorithm AP that performs well with respect to this
bound.

Let us conclude this very brief introduction to proof complexity by giving exam-
ples of concrete propositional proof systems. No introduction to proof complexity
can be complete without at least mentioning what a Frege system is. The next two
definitions are (slightly adapted) from [28].

Definition 4.9 (Frege system). Let F, F1, . . . , Fk be propositional logic formulas
over the variables x1, . . . , xn. A Frege rule is a pair({

F1(x1, . . . , xn), . . . , Fk(x1, . . . , xn)
}
, F (x1, . . . , xn)

)
such that the implication F1(x1, . . . , xn) ∧ . . . ∧ Fk(x1, . . . , xn) → F (x1, . . . , xn)
is a tautology. Usually the rule is written as F1,...,Fk

F . A Frege rule with zero
assumptions is called an axiom schema.

A Frege rule is applied by substituting arbitrary formulas for the variables
x1, . . . , xn. A Frege proof of a formula G is a sequence of formulas such that
each formula follows from previous ones by an application of a Frege rule from a
given set of rules and the last formula is G.

A Frege system F is determined by a finite complete set of connectives B and
a finite set of Frege rules such that F is implicationally complete for the set of
formulas over the basis B.

If Definition 4.9 seems very relaxed, it is because the details do not matter very
much.

Theorem 4.10 ([33]). Any two Frege systems p-simulate each other.

Sadly, there are currently no strong lower bounds known for Frege systems
(but see [27] for a survey of what is known). However, by restricting the model,
somewhat similarly to what is done in circuit complexity, we get subsystems for
which it is known how to prove superpolynomial lower bounds.
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Definition 4.11 (Bounded-depth Frege system). Consider formulas in basis{
∧,∨,¬

}
, The depth of a formula is the maximum number of alterations of connec-

tives in it. A depth-d Frege proof is a Frege proof where all formulas in the proof
sequence have depth at most d.

Theorem 4.12 ([51, 69]). The pigeonhole principle formulas (encoding the state-
ment that if n + 1 pigeons are placed in n pigeonholes, then at least one pigeonhole
must contain more than one pigeon) require bounded-depth Frege proofs of size grow-
ing exponentially in n.

Informally speaking, there seems to be an unfortunate trade-off for proof systems
in that if a proof system is sufficiently powerful, then it is not automatizable.
For instance, bounded-depth Frege systems are not automatizable under plausible
cryptographic assumptions. More formally, we call n ∈ N a Blum integer if n = pq
for primes p ≡ q ≡ 3 (mod 4). Then the following theorem is known.

Corollary 4.13 ([23]). If factoring Blum integers is hard, then any proof system
that can p-simulate bounded-depth Frege is not automatizable.

The resolution proof systems, that we define next, can be viewed as a very
limited form of a bounded-depth Frege system, namely depth-0 Frege. Even this
proof system is likely not to be automatizable [6], but as was mentioned in Chapter 2
there are proof search algorithms for resolution that seem to work very well in
practice.

4.2 Definition of the Resolution Proof System

A literal is either a propositional logic variable x or its negation, which we will from
now on denote x. Sometimes, though, it will be convenient to write x1 for x and
x0 for x. We define x = x. Two literals a and b are strictly distinct if a 6= b and
a 6= b, i.e., if they refer to distinct variables.

A clause C = a1 ∨ · · · ∨ak is a set of literals. Throughout this thesis, all clauses
C are assumed to be nontrivial in the sense that all literals in C are pairwise strictly
distinct (otherwise C is trivially true). We say that C is a subclause of D if C ⊆ D.
A clause containing at most k literals is called a k-clause.

A CNF formula F = C1 ∧ · · · ∧ Cm is a set of clauses. A k-CNF formula is a
CNF formula consisting of k-clauses. We define the size S (F ) of the formula F to
be the total number of literals in F counted with repetitions. More often, we will
be interested in the number of clauses |F | of F .

In this thesis, when nothing else is stated it is assumed that A,B,C, D denote
clauses, C, D sets of clauses, x, y propositional variables, a, b, c literals, α, β truth
value assignments and ν a truth value 0 or 1. We write

αx=ν(y) =

{
α(y) if y 6= x,
ν if y = x,

(4.2)
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F = (x ∨ z) ∧ (z ∨ y) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)
∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

(a) CNF formula F .

1. x ∨ z Axiom 9. x ∨ y Res(1, 2)
2. z ∨ y Axiom 10. x ∨ y Res(3, 4)
3. x ∨ y ∨ u Axiom 11. x ∨ u Res(5, 6)
4. y ∨ u Axiom 12. x ∨ u Res(7, 8)
5. u ∨ v Axiom 13. x Res(9, 10)
6. x ∨ v Axiom 14. x Res(11, 12)
7. u ∨ w Axiom 15. 0 Res(13, 14)
8. x ∨ u ∨ w Axiom

(b) Resolution refutation of F .

Figure 4.2: Example resolution refutation.

to denote the truth value assignment that agrees with α everywhere except possibly
at x, to which it assigns the value ν. We let Vars(C) denote the set of variables and
Lit(C) the set of literals in a clause C.1 This notation is extended to sets of clauses
by taking unions. Also, we employ the standard notation [n] = {1, 2, . . . , n}.

A resolution derivation π : F `A of a clause A from a CNF formula F is a
sequence of clauses π = {D1, . . . , Dτ} such that Dτ = A and each line Di, i ∈ [τ ],
either is one of the clauses in F (axioms) or is derived from clauses Dj , Dk in π
with j, k < i by the resolution rule

B ∨ x C ∨ x

B ∨ C
. (4.3)

We refer to (4.3) as resolution on the variable x and to B ∨ C as the resolvent of
B ∨x and C ∨x on x. A resolution refutation π of a CNF formula F is a resolution
derivation of the empty clause 0, i.e., the clause with no literals, from F . See
Figure 4.2 for an example resolution refutation. Perhaps somewhat confusingly,
π is sometimes also referred to as a resolution proof of F in the literature, since
we can view F as being the encoding of the negation of a tautology as explained in
Section 4.1. In this thesis, we will try to stick to talking about “refutations of F ,”
but the terms “resolution refutation” and “resolution proof” in general will be used
interchangeably.

For a formula F and a set of formulas G = {G1, . . . , Gn}, we say that G im-
plies F , denoted G � F , if every truth value assignment satisfying all formulas

1Although the notation Lit(C) is slightly redundant given the definition of a clause as a set
of literals, we include it for clarity.
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x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1
x

y u

z u v w

(a) Decision tree for F with internal vertices labelled by variables queried.

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0

x x

x ∨ y x ∨ y x ∨ u x ∨ u

(b) Corresponding resolution refutation of F .

Figure 4.3: Proof by example of implicational completeness of resolution.

G ∈ G must satisfy F as well. It is well known that resolution is sound and implica-
tionally complete. That is, if there is a resolution derivation π : F `A, then F � A,
and if F � A, then there is a resolution derivation π : F `A′ for some A′ ⊆ A. In
particular, F is unsatisfiable if and only if there is a resolution refutation of F .

We note that the soundness is not hard to argue—it follows from the fact that
the resolution rule (4.3) is sound. Completeness is not immediately obvious, but
let us sketch a proof. Given any unsatisfiable CNF formula F , we can build a
decision tree for F , where we query some variable x in each vertex and branch
left or right depending on the value assigned to x. Then the paths from the root
downwards in the tree correspond to partial truth value assignments, and as soon
as an assignment falsifies a clause, we add a leaf labelled by that clause. It is
clear that we can build such a decision tree for any unsatisfiable formula F , and
if we then turn this decision tree upside down, we have (essentially) a resolution
refutation of F . Figure 4.3 gives a proof by example of this fact, and although we
omit the details it is not hard to make this into a formal proof.

With every resolution derivation π : F `A we can associate a DAG Gπ, with the
clauses in π labelling the vertices and with edges from the assumption clauses to the
resolvent for each application of the resolution rule (4.3). There might be several
different derivations of a clause C in π, but if so we can label each occurrence of C
with a time-stamp when it was derived and keep track of which copy of C is used
where. A resolution derivation π is tree-like if any clause in the derivation is used
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at most once as a premise in an application of the resolution rule, i.e., if Gπ is a
tree. (We may make different “time-stamped” vertex copies of the axiom clauses
in order to make Gπ into a tree). As we can see from Figure 4.3(b), our example
refutation in Figure 4.2 is tree-like.

Given this definition of the resolution proof system, we can define the length
L(π) of a resolution derivation π as the number of clauses in it, and the width W(π)
of a derivation is the size of a largest clause in it. For instance, the refutation in
Figure 4.2 has length 15 and width 3. However, in order to define space in a natural
way and to be able to reason about trade-offs between measures, it is convenient
to describe resolution is a slightly different way.

Following the exposition in [39], a resolution proof can be seen as a Turing
machine computation, with a special read-only input tape from which the axioms
can be downloaded and a working memory where all derivation steps are made.
Then the clause space of a resolution proof is the maximum number of clauses that
need to be kept in memory simultaneously during a verification of the proof. The
variable space is the maximum total space needed, where also the width of the
clauses is taken into account. The formal definitions follow.

Definition 4.14 (Resolution ([4])). A clause configuration C is a set of clauses.
A sequence of clause configurations {C0, . . . , Cτ} is a resolution derivation from a
CNF formula F if C0 = ∅ and for all t ∈ [τ ], Ct is obtained from Ct−1 by one2 of
the following rules:

Axiom Download Ct = Ct−1 ∪ {C} for some C ∈ F .

Erasure Ct = Ct−1 \ {C} for some C ∈ Ct−1.

Inference Ct = Ct−1∪{D} for some D inferred by resolution from C1, C2 ∈ Ct−1.

A resolution derivation π : F `A of a clause A from a formula F is a derivation
{C0, . . . , Cτ} such that Cτ = {A}. A resolution refutation of F is a derivation of
the empty clause 0 from F .

Definition 4.15 (Length, width, space). The width W(C) of a clause C is
|C|, i.e., the number of literals in it. The width of a clause configuration C is
W(C) = maxC∈C{W(C)}. The clause space of a configuration C is Sp(C) = |C|,
i.e., the number of clauses in C, and the variable space is VarSp(C) =

∑
C∈C W(C).

Let π be a resolution derivation. Then:

• The length L(π) of π is the number of axiom download and inference steps
in π.

• The width of π is W(π) = maxC∈π{W(C)}.

2In some previous papers, resolution is defined so as to allow every derivation step to combine
one or zero applications of each of the three derivation rules. Therefore, some of the bounds stated
in this thesis for space as defined next are off by a constant as compared to the cited sources.
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• The clause space of π is Sp(π) = maxC∈π{Sp(C)}.

• The variable space of π is VarSp(π) = maxC∈π{VarSp(C)}.

We define the length of deriving a clause A from F as L(F ` A) = minπ:F `A{L(π)},
where the minimum is taken over all resolution derivations of A. The width
W(F ` A), clause space Sp(F ` A), and variable space VarSp(F ` A) of deriving
A from F are defined completely analogously. The length, width, clause space and
variable space of refuting F is L(F ` 0), W(F ` 0), Sp(F ` 0), and VarSp(F ` 0),
respectively, where as before 0 denotes the contradictory empty clause.

In this thesis, we will be almost exclusively interested in the clause space of
general resolution refutations. When we write simply “space” for brevity, we mean
clause space.

As an aside, we note that if one wanted to be really precise, the size and space
measures should probably measure the number of bits needed rather than the num-
ber of literals. However, counting literals makes matters substantially cleaner, and
the difference is at most a logarithmic factor. Therefore, counting literals seems to
be the established way of measuring formula size and variable space.

Using the “configuration-style” description of resolution in Definition 4.14, a
tree-like resolution derivation can be defined as a derivation where a clause has to
be erased as soon as it has been used in an inference step. Restricting the resolution
derivations to tree-like resolution, we can define the minimum length LT(F ` 0),
clause space SpT(F ` 0), and variable space VarSpT(F ` 0) of refuting F in tree-like
resolution in analogy with the measures in Definition 4.15. Note that the minimum
width measures in general and tree-like resolution coincide, so it makes no sense to
make a separate definition for WT(F ` 0).

For technical reasons, it is sometimes convenient to add a rule for weakening in
resolution, saying that we can always derive a weaker clause C ′ ⊇ C from C. It is
easy to show that any weakening steps can always be eliminated from a resolution
refutation without increasing the length, width or space.

Restrictions are another technical tool that we will use to to simplify some of
the proofs.

Definition 4.16 (Restriction). A partial assignment or restriction ρ is a partial
function ρ : X 7→ {0, 1}, where X is a set of Boolean variables. We identify ρ with
the set of literals {a1, . . . , am} set to true by ρ. The ρ-restriction of a clause C is
defined to be

C�ρ =

{
1 (i.e., the trivially true clause) if Lit

(
C
)
∩ ρ 6= ∅,

C \ {a | a ∈ ρ} otherwise.

This definition is extended to set of clauses by taking unions.
We write ρ(¬C) to denote the minimal restriction fixing C to false, i.e., ρ(¬C) =

{a | a ∈ C}.
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π =
1. x ∨ z Axiom in F
2. z ∨ y Axiom in F
3. x ∨ y ∨ u Axiom in F
4. y ∨ u Axiom in F
5. u ∨ v Axiom in F
6. x ∨ v Axiom in F
7. u ∨ w Axiom in F
8. x ∨ u ∨ w Axiom in F
9. x ∨ y Res(1, 2)

10. x ∨ y Res(3, 4)
11. x ∨ u Res(5, 6)
12. x ∨ u Res(7, 8)
13. x Res(9, 10)
14. x Res(11, 12)
15. 0 Res(13, 14)

(a) Resolution refutation π.

π�x =
1. 1
2. z ∨ y Axiom in F�x
3. 1
4. y ∨ u Axiom in F�x
5. u ∨ v Axiom in F�x
6. v Axiom in F�x
7. u ∨ w Axiom in F�x
8. u ∨ w Axiom in F�x
9. 1

10. 1
11. u Res(5, 6)
12. u Res(7, 8)
13. 1
14. 0 Res(11, 12)
15. 0

(b) Restriction π�x setting x to true.

Figure 4.4: Proof by example that restrictions preserve resolution refutations.

Proposition 4.17. If π is a resolution refutation of F and ρ is a restriction on
Vars(F ), then π�ρ can be transformed into a resolution refutation of F�ρ in at most
the same length, width and space as π.

See Figure 4.4 for an illustration of this using our running example resolution
refutation. In this case, the restriction results in a legal resolution refutation, but
in general we might need the weakening rule to show that π�ρ is a refutation of F�ρ.
The formal proof is an easy induction over the derivations steps in π.

4.3 A Review of Some Results

It is not hard to show that any unsatisfiable CNF formula F over n variables
is refutable in length 2n+1 − 1, using the decision tree construction sketched in
Figure 4.3. Also, the maximal refutation width is clearly at most the number of
variables n + 1. Esteban and Torán [39] proved that the clause space of refuting F
is upper-bounded by the formula size. More precisely, the minimal clause space is
at most the number of clauses, or the number of variables, plus a small constant,
or in formal notation Sp(F ` 0) ≤ min

{
|F |, |Vars(F )|

}
+ O(1). Again, this follows

by studying resolution refutations constructed as in Figure 4.3. The height of the
decision tree is at most the number of variables, and it can be shown that any
resolution refutation described by a binary tree of height at most h can be carried
out in clause space h + O(1).
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We will need the fact that there are polynomial-size families of k-CNF formu-
las that are very hard with respect to length, width and clause space, essentially
meeting the upper bounds just stated.

Theorem 4.18 ([4, 13, 18, 21, 29, 79, 82]). There are arbitrarily large unsatisfi-
able 3-CNF formulas Fn of size Θ(n) with Θ(n) clauses and Θ(n) variables for which
it holds that L(Fn ` 0) = exp(Θ(n)), W(Fn ` 0) = Θ(n) and Sp(Fn ` 0) = Θ(n).

Clearly, for such formulas Fn it must also hold that Ω(n) = VarSp(Fn ` 0) =
O
(
n2
)
. We note in passing that determining the exact variable space complexity

of a formula family as in Theorem 4.18, or even proving a lower bound ω(n) on
the variable space, was mentioned as an open problem in [4]. To the best of our
knowledge, this problem is still unsolved.

If a resolution refutation has constant width, it is easy to see that it can be car-
ried out in length polynomial in the number of variables (just count the maximum
possible number of distinct clauses). Conversely, if all refutations of a formula are
very wide, it seems reasonable that any refutation of this formula must be very long
as well. This intuition was made precise by Ben-Sasson and Wigderson [21]. We
state their theorem in the more explicit form of Segerlind [76].

Theorem 4.19 ([21]). The width of refuting an unsatisfiable CNF formula F is
bounded from above by

W(F ` 0) ≤ W(F ) + 1 + 3
√

n lnL(F ` 0) ,

where n is the number of variables in F .

Bonet and Galesi [25] showed that this bound on width in terms of length is
essentially optimal. For the special case of tree-like resolution, however, it is possible
get rid of the dependence of the number of variables and obtain a tighter bound.

Theorem 4.20 ([21]). The width of refuting an unsatisfiable CNF formula F in
tree-like resolution is bounded from above by W(F ` 0) ≤ W(F ) + log LT(F ` 0).

For reference, we collect the result in [25] together with some other bounds
showing that there are formulas that are easy with respect to length but moderately
hard with respect to width and clause space, and state them as a theorem.3

Theorem 4.21 ([4, 25, 78]). There are arbitrarily large unsatisfiable 3-CNF
formulas Fn of size Θ

(
n3
)

with Θ
(
n3
)

clauses and Θ
(
n2
)

variables such that
W(Fn ` 0) = Θ(n) and Sp(Fn ` 0) = Θ(n), but for which there are resolution
refutations πn : Fn ` 0 in length L(πn) = O

(
n3
)
, width W(πn) = O(n) and clause

space Sp(πn) = O(n).

3Note that [25], where an explicit resolution refutation upper-bounding the proof complexity
measures is presented, does not talk about clause space, but it is straightforward to verify that
the refutation there can be carried out in length O

`
n3

´
and clause space O(n).
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As was mentioned in Chapter 2, the fact that all known lower bounds on refuta-
tion clause space coincided with lower bounds on width lead to the conjecture that
the width measure is a lower bound for the clause space measure. This conjecture
was proven true by Atserias and Dalmau [10].

Theorem 4.22 ([10]). For any unsatisfiable CNF formula F , Sp(F ` 0)− 3 ≥
W(F ` 0)−W(F ).

In other words, the extra clause space exceeding the minimum 3 needed for any
resolution refutation is bounded from below by the extra width exceeding the width
of the formula.

An immediate corollary of Theorem 4.22 is that for polynomial-size k-CNF for-
mulas, constant clause space implies polynomial proof length. We are interested in
finding out what holds in the other direction, i.e., if upper bounds on length imply
upper bounds on space. For the special case of tree-like resolution, it is known that
there is an upper bound on clause space in terms of length exactly analogous to the
one on width in terms of length in Theorem 4.20.

Theorem 4.23 ([39]). The clause space of refuting an unsatisfiable CNF formula
F in tree-like resolution is bounded from above by SpT(F ` 0) ≤ dlog LT(F ` 0)e+2.

For general resolution, since clause space is lower-bounded by width according
to Theorem 4.22, the separation of width and length of [25] in Theorem 4.21 tells
us that k-CNF formulas refutable in polynomial length can still have “somewhat
spacious” minimum-space refutations. But exactly how spacious can they be? Does
space behave as width with respect to length also in general resolution, or can one
get stronger lower bounds on space for formulas refutable in polynomial length?

All polynomial lower bounds on clause space known prior to this thesis can be
explained as immediate consequences of Theorem 4.22 applied on lower bounds
on width. Clearly, any space lower bounds derived in this way cannot get us
beyond the “Ben-Sasson–Wigderson barrier” implied by Theorem 4.19 saying that
if the width of refuting F is ω

(√
|F | log|F |

)
, then the length of refuting F must be

superpolynomial in |F |. Also, since matching upper bounds on clause space have
been known for all of these formula families, they have not been candidates for
showing stronger separations of space and length. Thus, the best known separation
of clause space and length prior to this thesis was provided by the formulas in
Theorem 4.21 refutable in linear length L(Fn ` 0) = O(|Fn|) but requiring space
Sp(Fn ` 0) = Θ

(
3
√
|Fn|

)
, as implied by the same bound on width.

Let us also discuss upper bounds on what kind of separations are a priori possi-
ble. Given any resolution refutation π : F ` 0, we can write down its DAG represen-
tation Gπ (described on page 42) with L(π) vertices corresponding to the clauses,
and with all non-source vertices having fan-in 2. We can then transform π into
as space-efficient a refutation as possible by considering an optimal black pebbling
of Gπ (soon to be formally defined in Definition 5.1) as follows: when a pebble is
placed on a vertex we derive the corresponding clause, and when the pebble is re-
moved again we erase the clause from memory. This yields a refutation π′ in clause
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space Peb(Gπ) (incidentally, this is the original definition in [39] of the clause space
of a resolution refution π). Since it is known that any constant indegree DAG on
n vertices can be black-pebbled in cost O(n/ log n) (see Theorem 5.4), this shows
that Sp(F ` 0) = O

(
L(F ` 0)/ log L(F ` 0)

)
is an upper bound on space in terms

of length.
Now we can rephrase the question above about space and length in the follow-

ing way: Is there a Ben-Sasson–Wigderson kind of lower bound, say L(F ` 0) =
exp
(
Ω
(
Sp(F ` 0)2/|F |

))
, on length in terms of space? Or do there exist k-CNF for-

mulas F with short refutations but maximum possible refutation space Sp(F ` 0) =
Ω
(
L(F ` 0)/ log L(F ` 0)

)
in terms of length? Note that the refutation length

L(F ` 0) must indeed be short in this case—essentially linear, since any formula F
can be refuted in space O(|F |) as was noted above. Or is the relation between
refutation space and refutation length somewhere in between these extremes?

This is the main question addressed in this thesis. We show that clause space
and length can be strongly separated in the sense that there are formula families
with maximum possible refutation clause space in terms of length. The same result
also yields an almost optimal separation of clause space and width.

Theorem 4.24 (Corollary 2.6 restated). For all k ≥ 6 there is a family
{Fn}∞n=1 of k-CNF formulas of size Θ(n) that can be refuted in resolution in
length L(Fn ` 0) = O(n) and width W(Fn ` 0) = O(1) but require clause space
Sp(Fn ` 0) = Ω(n/ log n).



Chapter 5

Pebble Games and Pebbling Contradictions

Pebble games were originally devised for studying programming languages and com-
piler construction, but have later found a variety of applications in computational
complexity theory. In connection with resolution, pebble games have been em-
ployed both to analyze resolution derivations with respect to how much memory
they consume (using the original definition of space in [39]) and to construct CNF
formulas which are hard for different restricted variants of resolution in various
respects (see for example [5, 19, 24, 26]). An excellent survey of pebbling up to
ca. 1980 is [68].

This chapter presents formal definitions of pebble games and pebbling contra-
dictions, and gives precise statements of some previously known results relevant to
this thesis. At the end of Section 5.2, we also try to provide some of the intuition
behind the proofs of our results.

5.1 Pebble Games

The black pebbling price of a DAG G captures the memory space, i.e., the number
of registers, required to perform the deterministic computation described by G. The
space of a non-deterministic computation is measured by the black-white pebbling
price of G. We say that vertices of G with indegree 0 are sources and that vertices
with outdegree 0 are sinks or targets. In the following, unless otherwise stated we
will assume that all DAGs under discussion have a unique sink, and this sink will
always be denoted z. The next definition is adapted from [34], though we use the
established pebbling terminology introduced by [46].

Definition 5.1 (Pebble game). Suppose that G is a DAG with sources S and a
unique target z. The black-white pebble game on G is the following one-player game.
At any point in the game, there are black and white pebbles placed on some vertices
of G, at most one pebble per vertex. A pebble configuration is a pair of subsets
P = (B,W ) of V (G), comprising the black-pebbled vertices B and white-pebbled
vertices W . The rules of the game are as follows:

49
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1. If all immediate predecessors of an empty vertex v have pebbles on them, a
black pebble may be placed on v. In particular, a black pebble can always be
placed on any vertex in S.

2. A black pebble may be removed from any vertex at any time.

3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vertex v have pebbles on
them, the white pebble on v may be removed. In particular, a white pebble
can always be removed from a source vertex.

A black-white pebbling from (B1,W1) to (B2,W2) in G is a sequence of pebble
configurations P = {P0, . . . , Pτ} such that P0 = (B1,W1), Pτ = (B2,W2), and for
all t ∈ [τ ], Pt follows from Pt−1 by one of the rules above. If (B1,W1) = (∅, ∅), we
say that the pebbling is unconditional, otherwise it is conditional.

The cost of a pebble configuration P = (B,W ) is cost(P) = |B ∪W | and the cost
of a pebbling P = {P0, . . . , Pτ} is max0≤t≤τ{cost(Pt)}. The black-white pebbling
price of (B,W ), denoted BW-Peb(B,W ), is the minimum cost of any unconditional
pebbling reaching (B,W ).

A complete pebbling of G, also called a pebbling strategy for G, is an uncon-
ditional pebbling reaching ({z}, ∅). The black-white pebbling price of G, denoted
BW-Peb(G), is the minimum cost of any complete black-white pebbling of G.

A black pebbling is a pebbling using black pebbles only, i.e., having Wt = ∅ for
all t. The (black) pebbling price of G, denoted Peb(G), is the minimum cost of any
complete black pebbling of G.

See Figure 5.1 for an example of a complete black-white pebbling.
We think of the moves in a pebbling as occurring at integral time intervals

t = 1, 2, . . . and talk about the pebbling move “at time t” (which is the move
resulting in configuration Pt) or the moves “during the time interval [t1, t2]”.

The only pebblings we are really interested in are complete pebblings of G.
However, when we prove lower bounds for pebbling price it will sometimes be
convenient to be able to reason in terms of partial pebbling move sequences, i.e.,
conditional pebblings. One can think of conditional pebblings as pebblings that
receive the start configuration (B1,W1) “as a gift”, and are also allowed to leave
(B2,W2) without “cleaning up” when they finish. It is clear that we can assume
that (B1,W1) = (B1, ∅) and (B2,W2) = (∅,W2) since we can freely place white
pebbles on G and freely remove black pebbles. The way the gift can help us is
that we get black pebbles at the beginning for free, and are allowed to leave white
pebbles without having to do the hard pebbling work of removing them.

There is an extensive literature on pebbling, mostly from the 70s and 80s. We
just quickly mention four results relevant to this thesis.

Perhaps the simplest graphs to pebble are complete binary trees Th of height h.
The black pebbling price of Th can be established by an easy induction over the
tree height. For black-white pebbling, general bounds for the pebbling price of trees
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⇒ ⇒ ⇒

⇒ ⇒ ⇒

⇒ ⇒ ⇒

⇒ ⇒ ⇒

⇒

Figure 5.1: Complete black-white pebbling of pyramid of height 2.
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of any arity were presented in [55] For the case of binary trees, this result can be
simplified to the exact equality below, which is proven in Section 6.2.
Theorem 5.2. For the complete binary tree Th of height h ≥ 1 it holds that
Peb(Th) = h + 2 and BW-Peb(Th) =

⌊
h
2

⌋
+ 3.

Another class of DAGs that we will study are so-called pyramid graphs. We
have not defined pyramid graphs formally yet (this will be done in Definition 6.4)
but hopefully it is clear from the example pyramid of height 2 used a number of
times already in this thesis (most recently in Figure 5.1) what pyramids look like.
Theorem 5.3 ([32, 49]). For the pyramid graph Πh of height h ≥ 1 it holds that
Peb(Πh) = h + 2 and BW-Peb(Πh) = h/2 + O(1).

In general, we are interested in DAGs with as high a pebbling price as possible
measured in terms of the number of vertices. For a DAG G with n vertices and
constant in-degree, the best we can hope for is O(n/ log n).
Theorem 5.4 ([46]). For directed acyclic graphs G with n vertices and constant
maximum indegree, it holds that Peb(G) = O

(
n/ log n

)
.

This bound is asymptotically tight for black-white pebbling, and thus for black
pebbling as well.1

Theorem 5.5 ([42, 67]). There is a family {Gn}∞n=1 of explicitly constructible
DAGs with Θ(n) vertices and vertex indegree 2 for all non-source vertices such that
BW-Peb(G) = Ω(n/ log n).

We remark that no explicit constructions were known at the time of the original
theorems in [42, 67]. What is needed is explicitly constructible superconcentrators
of linear density, and it has since been shown how to build such graphs (with [7]
currently being the best construction as far as we are aware).

It should be pointed out that although the black and black-white pebbling
prices coincide asymptotically in all of the theorems above, this is not the case in
general. In [47], a family of DAGs with a quadratic difference in the number of
pebbles between the black and the black-white pebble game was presented. We
note that this is the best separation possible, since by [56] the difference in black
and black-white pebbling price can be at most quadratic.

5.2 Pebbling Contradictions

A pebbling contradiction defined on a DAG G is a CNF formula that encodes the
pebble game on G by postulating the sources to be true and the target to be
false, and specifying that truth propagates through the graph according to the
pebbling rules. The definition below is a generalization of formulas previously
studied in [24, 70].

1We note that in several papers, the result in Theorem 5.5 is incorrectly attributed to [54],
but [54] itself gives the correct reference.
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Definition 5.6 (Pebbling contradiction [21]). Suppose that G is a DAG with
sources S, a unique target z and with all non-source vertices having indegree 2, and
let d > 0 be an integer. Associate d distinct variables x(v)1, . . . , x(v)d with every
vertex v ∈ V (G). The dth degree pebbling contradiction over G, denoted Pebd

G, is
the conjunction of the following clauses:

•
∨d

i=1 x(s)i for all s ∈ S (source axioms),

• x(u)i ∨ x(v)j ∨
∨d

l=1 x(w)l for all i, j ∈ [d] and all w ∈ V (G) \ S, where u, v
are the two predecessors of w (pebbling axioms),

• x(z)i for all i ∈ [d] (target or sink axioms).

The formula Pebd
G is a (2+d)-CNF formula with O

(
d2 · |V (G)|

)
clauses over

d · |V (G)| variables. An example pebbling contradiction is presented in Figure 3.2
on page 27.

Although any constant indegree will be fine for the results covered in this sub-
section, we restrict our attention to DAGs with vertex indegree 2 for all non-source
vertices since such are the graphs that will be studied in the rest of this thesis.

It was observed in [19] that Pebd
G can be refuted in resolution by deriving∨d

i=1 x(v)i for all v ∈ V (G) inductively in topological order and then resolving
with the target axioms x(z)i, i ∈ [d]. Writing down this resolution proof, one gets
the following proposition (which is proven together with Proposition 5.10 below).

Proposition 5.7 ([19]). For any DAG G with all vertices having indegree 0 or 2,
there is a resolution refutation π : Pebd

G ` 0 in length L(π) = O
(
d2 · |V (G)|

)
and

width W(π) = O(d).

Tree-like resolution is good at refuting first-degree pebbling contradictions Peb1
G

but is bad at refuting Pebd
G for d ≥ 2.

Theorem 5.8 ([16]). For any DAG G with all vertices having indegree 0 or 2,
there is a tree-like resolution refutation π of Peb1

G such that L(π) = O(|V (G)|) and
Sp(π) = O(1).

Theorem 5.9 ([19]). For any DAG G with all vertices having indegree 0 or 2,
LT(Peb2

G ` 0) = 2Ω(Peb(G)).

As to space, it is not too difficult to see that the black pebbling price of G
provides an upper bound for the refutation clause space of Pebd

G.

Proposition 5.10. For any DAG G with vertex indegrees 0 or 2, Sp(Pebd
G ` 0) ≤

Peb(G) + O(1).

Essentially, this is just a matter of combining an optimal black pebbling of G
with the resolution refutation idea from [19] sketched above. Since we need the
upper bounds on width and space in Propositions 5.7 and 5.10 in the proof of our
results, we write down the details for completeness.
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Proof of Propositions 5.7 and 5.10. Consider first the bound on space. Given a
black pebbling of G, we construct a resolution refutation of Pebd

G such that if at
some point in time there are black pebbles on a set of vertices V , then we have
the clauses

{∨d
i=1 x(v)i | v ∈ V

}
in memory. When some new vertex v is pebbled,

we derive
∨d

i=1 x(v)i from the clauses already in memory. We claim that with a
little care, this can be done in constant extra space independent of d. When a
black pebble is removed from v, we erase the clause

∨d
i=1 x(v)i. We conclude the

resolution proof by resolving
∨d

i=1 x(z)i for the target z with all target axioms
x(z)i, i ∈ [d], in space 3.

It is clear that given our claim about the constant extra space needed when
a vertex is black-pebbled, this yields a resolution refutation in space equal to the
pebbling cost plus some constant. In particular, given an optimal black pebbling
of G, we get a refutation in space Peb(G) + O(1).

To prove the claim, note first that it trivially holds for source vertices v, since∨d
i=1 x(v)i is an axiom of the formula. Suppose for a non-source vertex r with

predecessors p and q that at some point in time a black pebble is placed on r. Then
p and q must be black-pebbled, so by induction we have the clauses

∨d
i=1 x(p)i and∨d

j=1 x(q)j in memory. We will use that the clause x(p)i ∨
∨d

l=1 x(r)l for any i

can be derived in additional space 3 by resolving
∨d

j=1 x(q)j with x(p)i ∨ x(q)j ∨∨d
l=1 x(r)l for j ∈ [d], leaving the easy verification of this fact to the reader. To

derive
∨d

l=1 x(r)l, first resolve
∨d

i=1 x(p)i with x(p)1∨
∨d

l=1 x(r)l to get
∨d

i=2 x(p)i∨∨d
l=1 x(r)l, and then resolve this clause with the clauses x(p)i ∨

∨d
l=1 x(r)l for

i = 2, . . . , d one by one to get
∨d

l=1 x(r)l in total extra space 4.
It is easy to see that this proof has width O(d), which proves the claim about

width in Proposition 5.7. To get the claim about length, we observe that the
subderivation needed when a vertex is black-pebbled has length O

(
d2
)
. If we use

a pebbling that black-pebbles all vertices once in topological order without ever
removing a pebble, we get a refutation in length L(π) = O

(
d2 · |V (G)|

)
.

Thus, the refutation clause space of a pebbling contradiction is upper-bounded
by the black pebbling price of the underlying DAG. Proposition 5.10 is not quite
an optimal strategy with respect to clause space, though. For binary trees, [40] im-
proved this bound somewhat to Sp(Peb2

Th
` 0) ≤ 2

3h + O(1) by constructing reso-
lution proofs that try to mimic not black pebblings but instead optimal black-white
pebblings of Th as presented in [55]. And for one variable per vertex, we know
from Theorem 5.8 that Sp(Peb1

G ` 0) = O(1).
Proving lower bounds on space for pebbling contradictions of degree d ≥ 2 has

turned out to be much harder. For quite some time there was no lower bound on
Sp(Pebd

G ` 0) for any DAG G in general resolution (in terms of pebbling price or
otherwise). In [40], a lower bound SpT(Pebd

Th
` 0) = h + O(1) was obtained for

the special case of tree-like resolution. Unfortunately, this does not tell us any-
thing about general resolution. For tree-like resolution, if the only way of deriving
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a clause D is from clauses C1, C2 such that SpT(F ` Ci) ≥ s, then it holds that
SpT(F ` D) ≥ s + 1 since one of the clauses Ci must be kept in memory while de-
riving the other clause. This seems to be very different from how general resolution
works with respect to space.

We now try to present our own intuition for what the correct lower bound
on the refutation clause space of pebbling contradictions should be. Although the
reasoning is quite informal and non-rigorous, our hope is that it will help the reader
to navigate the formal proofs that will follow.

As we noted above, the resolution refutation of Peb2
Th

in [40] used to prove the
2
3h + O(1) upper bound for binary tree pebbling contradictions is structurally quite
similar to the optimal black-white pebbling of Th presented in [55], and it somehow
feels implausible that any resolution refutation would be able to do significantly
better. This raises the suspicion that the black-white pebbling price BW-Peb(G)
might be a lower bound for Sp(Pebd

G ` 0) as long as d ≥ 2. This suspicion is
somewhat strengthened by the fact that for variable space, we do have such a lower
bound in terms of black-white pebbling price.2

Theorem 5.11 ([16]). For any d ∈ N+, VarSp(Pebd
G ` 0) ≥ BW-Peb(G).

If the refutation clause space of pebbling contradictions for general DAGs would
be constant, Theorem 5.11 would imply that as BW-Peb(G) grows larger, the clauses
in memory get wider, and thus weaker. Still it would somehow be possible to derive
a contradiction from a very small number of these clauses of unbounded width. This
appears counterintuitive.

On the other hand, for one variable per vertex, i.e., pebbling degree d = 1,
refutations of Peb1

G in constant space have exactly these “counterintuitive” prop-
erties. The resolution refutation of Peb1

G in Theorem 5.8 is constructed by first
downloading the pebbling axiom for the target z and then moving the false literals
downwards by resolving with pebbling axioms for vertices v ∈ V (G) \ S in reverse
topological order. This finally yields a clause

∨
v∈S x(v)1 ∨ x(z)1 of width |S|+ 1,

which can be eliminated by resolving with the source axioms x(v)1 one by one for
all v ∈ S and then with the target axiom x(z)1 to yield the empty clause 0.

If we want to establish a non-constant lower bound on Sp(Pebd
G ` 0) for d ≥ 2,

we have to pin down why this case is different. Intuitively, the difference is that
with only one variable per vertex, a single clause x(v1)1 ∨ . . . ∨ x(vm)1 can express
the disjunction of the falsity of an arbitrary number of vertices v1, . . . , vm, but for
d = 2, the straightforward way of expressing that both variables x(vi)1 and x(vi)2
are false for at least one out of m vertices requires 2m clauses.

As was argued in Chapter 3, to prove a lower bound on the refutation clause
space of pebbling contradictions it seems natural to try to interpret resolution
refutations of Pebd

G in terms of pebblings of the underlying graph G. Let us say
that a vertex v is “true” if

∨d
i=1 x(v)i has been derived and “false” if x(v)i has been

2To be precise, the result in [16] is stated for d = 1, but the proof generalizes easily to any
d ∈ N+.
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derived for all i ∈ [d]. Any resolution proof refutes a pebbling contradiction by
deriving that some vertex v is both true and false and then resolving to get 0. Let
w be any vertex with predecessors u, v. Then we can see that if we have derived
that u and v are true, by downloading x(u)i ∨ x(v)j ∨

∨d
l=1 x(w)l for all i, j ∈ [d]

we can derive
∨d

l=1 x(w)l. This appears analogous to the rule that if u and v are
black-pebbled we can place a black pebble on w. In the opposite direction, if we
know x(w)l for all l ∈ [d], using the axioms x(u)i∨x(v)j ∨

∨d
l=1 x(w)l we can derive

that either u or v is false. This looks similar to eliminating a white pebble on
w by placing white pebbles on the predecessors u and v, and then removing the
pebble from w. Generalizing this loose, intuitive reasoning, we argue that a set of
black-pebbled vertices V should correspond to the derived conjunction of truth of
all v ∈ V , and that a set of white-pebbled vertices W should correspond to the
derived disjunction of falsity of some w ∈ W .

Suppose that we could show that as the resolution derivation proceeds, the black
and white pebbles corresponding to different clause configurations as outlined above
move about on the vertices of G in accordance with the rules of the pebble game.
If so, we would get that there is some clause configuration C corresponding to a
lot of pebbles. This could in turn hopefully yield a lower bound for the refutation
clause space. For if C corresponds to N black pebbles, i.e., implies N disjoint
clauses, it seems likely that |C| should be linear in N . And if C corresponds to N
white pebbles, |C| should grow with N if d ≥ 2, since C has to force d literals false
simultaneously for one out of N vertices.

This is the guiding intuition that served as a starting point for proving the
results in this thesis. And although quite a few complications arise along the way,
we believe that it is important when reading the thesis not to let all technical details
obscure the rather simple intuitive correspondence sketched above.



Chapter 6

Pebbling Price of Layered Graphs

A key component in the proofs in Chapters 8 and 9 are the upper and lower bounds
on pebbling price for binary trees and pyramid graphs. In this chapter, we prove
the bounds that we will need on pebbling price for a more general class of so-called
layered graphs, that includes trees and pyramids. These results are not new, but
we present somewhat simplified proofs that might be of some independent interest.

6.1 Some Graph Notation and Terminology

Let us first present some notation and terminology that will be used in what follows.
See Figure 6.1 for an illustration of the next definition.

Definition 6.1. We let succ(v) denote the immediate successors and pred(v) denote
the immediate predecessors of a vertex v in a DAG G. Taking the transitive closures
of succ(·) and pred(·), we let GO

v denote all vertices reachable from v (vertices
“above” v) and Gv

M denote all vertices from which v is reachable (vertices “below” v).
We write G

\v
M and GO

\v to denote the corresponding sets with the vertex v itself
removed. If u, w ∈ pred(v), we say that u and w are siblings. If u 6∈ Gw

M and
w 6∈ Gu

M, we say that u and w are non-comparable vertices. Otherwise they are
comparable.

When reasoning about arbitrary vertices we will often use as a canonical example
a vertex r with assumed predecessors pred(r) = {p, q}.

Note that for a leaf v we have pred(v) = ∅, and for the sink z of G we have
succ(z) = ∅. Also note that Gv

M and GO
v are sets of vertices, not subgraphs. However,

we will allow ourselves to overload the notation and sometimes use this notation
both for the subgraph and its vertices. Moreover, as a rule we will overload the
notation for the graph G itself and its vertices, and usually write only G when we
mean V (G), and when this should be clear from context.

Definition 6.2 (Layered DAG). A layered DAG G is a DAG whose vertices are
partitioned into (nonempty) sets of layers V0, V1, . . . , Vh on levels 0, 1, . . . , h, and

57
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v

G
\v
M

GO
\v

G \
(
Gv

M ∪GO
v

)

Figure 6.1: Notation for sets of vertices in DAG G with respect to vertex v.

whose edges run between consecutive layers. That is, if (u, v) is a directed edge,
then the level of u is L− 1 and the level of v is L for some L ∈ [h]. We say that h
is the height of the layered DAG G.

For the layered DAGs G that we will study, we will assume that all sources are
on level 0, that all non-sources have indegree 2, and that there is a a unique sink z.
The following notation will be convenient.

Definition 6.3 (Layered DAG notation). For a vertex u in a layered DAG
G we let level(u) denote the level of u. For a vertex set U we let minlevel(U) =
min{level(u) : u ∈ U} and maxlevel(U) = max{level(u) : u ∈ U} denote the lowest
and highest level, respectively, of any vertex in U . Vertices in U on particular levels
are denoted as follows:

• U{�j} = {u ∈ U | level(u) ≥ j} denotes the subset of all vertices in U on
level j or higher.

• U{�j} = {u ∈ U | level(u) > j} denotes the vertices in U strictly above
level j.

• U{∼j} = U{�j} \ U{�j} denotes the vertices exactly on level j.

The vertex sets U{�j} and U{≺j} are defined completely analogously.

Let us next give the formal definition of a particular class of layered DAGs that
we will be interested in, namely pyramids.
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z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Pyramid of height h = 6.
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(b) Pyramid as fragment of 2D lattice.

Figure 6.2: Running example pyramid Π6 of height 6 with labelled vertices.

Definition 6.4 (Pyramid graph). The pyramid graph Πh of height h is a layered
DAG with h + 1 levels, where there is one vertex on the highest level (the sink z),
two vertices on the next level et cetera down to h + 1 vertices at the lowest level 0.
The ith vertex at level L has incoming edges from the ith and (i + 1)st vertices at
level L− 1.

Although most of what will be said in what follows holds for arbitrary layered
DAGs, in this chapter we will tend to focus on pyramids. Figure 6.2(a) presents
a pyramid graph with labelled vertices that we will use as a running example.
Pyramid graphs can also be visualized as triangular fragments of a directed two-
dimensional rectilinear lattice. In Figure 6.2(b), the pyramid in Figure 6.2(a) is
redrawn as such a lattice fragment.

We also need some notation for contiguous and non-contiguous topologically
ordered sets of vertices in a DAG.

Definition 6.5 (Paths and chains). We say that V is a (totally) ordered set of
vertices in a DAG G, or a chain, if all vertices in V are comparable (i.e., if for all
u, v ∈ V , either u ∈ Gv

M or v ∈ Gu
M holds). A path P is a contiguous chain, i.e., such

that succ(v) ∩ P 6= ∅ for all v ∈ P except the top vertex.
We write P : v  w to denote a path starting in v and ending in w. A source

path is a path that starts at some source vertex of G. A path via w is a path such
that w ∈ P . We will also say that P visits w. For a chain V , we let

• bot(V ) denote the bottom vertex of V , i.e., the unique v ∈ V such that
V ⊆ GO

v ,

• top(V ) denote the top vertex of V , i.e., the unique v ∈ V such that V ⊆ Gv
M,
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• Pin(V ) denote the set of all paths P : bot(V )  top(V ) via V or agreeing
with V , i.e., such that V ⊆ P , and

• Pvia(V ) denote the set of all source paths agreeing with V .

We write
⋃

Pin(V ) to denote the union of the vertices in all paths P ∈ Pin(V ) and⋃
Pvia(V ) for the union of all vertices in paths P ∈ Pvia(V ).

Unless otherwise stated, in the rest of this chapter G denotes a layered DAG;
u, v, w, x, y denote vertices of G; U, V,W,X, Y denote sets of vertices; P denotes a
path; and P denotes a set of paths.

6.2 Pebbling Price of Binary Trees

Recall that Th denotes the complete binary tree of height h considered as a DAG
with edges directed towards the root. The fact that Peb(Th) = h + 2 can be
established by induction over the tree height. We omit the easy proof. To prove
the claim about black-white pebbling price in Theorem 5.2, it is convenient to
generalize the definition of black-white pebbling somewhat.

Definition 6.6 (Visiting pebbling). Suppose that G is a DAG with sources S
and sinks Z (one or many). Let the pebble game rules be as in Definition 5.1, and
define cost of pebble configurations and pebblings in the same way.

A complete black-white pebbling visiting Z is a pebbling P = {P0, . . . , Pτ} such
that P0 = Pτ = (∅, ∅) and such that for every z ∈ Z, there exists a time tz ∈ [τ ]
such that z ∈ Btz ∪ Wtz . The minimum cost of such a visiting pebbling is denoted
BW-Peb∅(G).

It is easy to see that if Z = {z} is a single sink, then it holds that BW-Peb∅(G) ≤
BW-Peb(G) ≤ BW-Peb∅(G) + 1.

Using Definition 6.6, we can prove the following statement.

Theorem 6.7. BW-Peb(Th) =
⌊

h
2

⌋
+3 and BW-Peb∅(Th) =

⌊
h−1

2

⌋
+3 for complete

binary trees Th of height h ≥ 1.

The proof of Theorem 6.7 is facilitated by the following proposition.

Proposition 6.8 ([34]). Suppose that P is a black-white pebbling from (B1,W1) to
(B2,W2). Then we can get a dual pebbling P from (W2, B2) to (W1, B1) in exactly
the same cost by reversing the sequence of moves and switching the colours of the
pebbles.

This proposition is an immediate consequence of the anti-symmetric nature of
the pebbling rules in Definition 5.1 (just observe that the rules for placing and
removing a black pebble are the duals of the rules for removing and placing a white
pebble, respectively).
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Proof of Theorem 6.7. Throughout this proof, we let z1, z2 denote the immediate
predecessors of the root z of the tree.

We first show that BW-Peb∅(Th+2) ≥ BW-Peb∅(Th) + 1. Suppose not, and
let P be a pebbling in cost K = BW-Peb∅(Th) for Th+2 making the minimum
number of pebbling moves. Let T i

h, i ∈ [4], be the four disjoint subtrees of height
h in Th+2. It is easy to see that P restricted to V (T i

h) yields a legal pebbling of
T i

h visiting its root. It follows that there must exist distinct times ti, i ∈ [4], when
T i

h contains K pebbles and the rest of Th+2 is empty. Number the subtrees so that
t1 < t2 < t3 < t4.

Suppose that the root z of Th+2 has been pebbled before time t3. Then we can
get a shorter pebbling of Th+2 by completing the subpebbling of T 3

h but ignoring
pebbling moves outside T 3

h after time t3.
Consequently, z must be pebbled for the first time after t3. But at time t3 the

rest of the tree is empty, so in that case we can get a shorter legal pebbling by
ignoring all moves outside T 3

h before time t3 and performing all moves in P after
time t3. Contradiction. Thus BW-Peb∅(Th+2) ≥ BW-Peb∅(Th) + 1.

Next, it is easy to see that BW-Peb∅(Th+1) ≤ BW-Peb(Th). First black-pebble
z1 using a pebbling P in cost BW-Peb(Th). Place white pebbles on z and z2, and
then remove the pebbles from z1 and z. Finally, use the dual pebbling P to get the
white pebble off z2 in the same cost BW-Peb(Th).

Since BW-Peb(T1)=BW-Peb∅(T1)=3, it follows that BW-Peb∅(Th)≥
⌊

h−1
2

⌋
+ 3

and BW-Peb(Th) ≥
⌊ (h+1)−1

2

⌋
+ 3 =

⌊
h
2

⌋
+ 3. It remains to demonstrate that there

are pebblings meeting these lower bounds. We construct such pebblings inductively.
Suppose for h odd that BW-Peb(Th) = BW-Peb∅(Th) =

⌊
h−1

2

⌋
+ 3 =

⌊
h
2

⌋
+ 3.

Using the same pebbling as above for Th+1, it is easy to see that BW-Peb∅(Th+1) =⌊
h
2

⌋
+ 3, and since the pebbling cost cannot increase by more than one when the

height is increased by one we get BW-Peb∅(Th+2) =
⌊

h
2

⌋
+ 4 =

⌊
h+1

2

⌋
+ 3. In the

same way we get BW-Peb(Th+1) =
⌊

h+1
2

⌋
+ 3.

To pebble Th+2 in cost
⌊

h+1
2

⌋
+ 3 leaving a pebble on z, first black-pebble the

root z1 of the subtree T 1
h+1 in cost

⌊
h+1

2

⌋
+ 3. Leaving the pebble on z1, make

a pebbling visiting the root z2 of T 2
h+1 in cost

⌊
h
2

⌋
+ 3 =

⌊
h+1

2

⌋
+ 2 using the

pebbling for T 2
h+1 constructed inductively. In this pebbling there is a time t when

z2 is pebbled and T 2
h+1 contains at most

⌊
h+1

2

⌋
+ 1 pebbles. At this time t, place a

black pebble on z and remove the black pebble on z1 without exceeding the total
limit of

⌊
h+1

2

⌋
+3 pebbles on Th+2. Then finish the pebbling of T 2

h+1. The theorem
follows.

We can use our knowledge of the black and black-white pebbling price of binary
trees to get upper bounds on pebbling price for any layered DAG.

Lemma 6.9. For any layered DAG Gh of height h with a unique sink z and
all non-sources having vertex indegree 2, it holds that Peb(Gh) ≤ h + O(1) and
BW-Peb(Gh) ≤ h/2 + O(1).
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z

u v

r s t

p q m n

(a) Pyramid graph Π3 of height 3.

z1

u1 v1

r1 s1 s2 t1

p1 q1 q2 m1 q3 m2 m3 n1

(b) Binary tree T3 with vertex labels from Π3.

Figure 6.3: Binary tree with vertices labelled by pyramid as in proof of Lemma 6.9.

Proof. The bounds above are true for complete binary trees of height h, as we have
just seen. It is not hard to see that the corresponding pebbling strategies can be
used to pebble any layered graph of the same height with at most the same amount
of pebbles.

Formally, suppose that the sink z of the DAG Gh has predecessors x and y.
Label the root of Th by z1 and its predecessors by x1 and y1. Recursively, for a
vertex in Th labelled by wi, look at the corresponding vertex w in Gh and suppose
that pred(w) = {u, v}. Then label the vertices pred(wi) in Th by uj and vk for the
smallest positive indices j, k such that there are not already other vertices in Th

labelled uj and vk. In Figure 6.3 there is an illustration of how the vertices in a
pyramid Π3 of height 3 are mapped to vertices in the complete binary tree T3 in
this manner.

The result is a labelling of Th where every vertex v in Gh corresponds to one or
more distinct vertices v1, . . . , vkv in Th, and such that if pred(wi) = {uj , vk} in Th,
then pred(w) = {u, v} in Gh. Given a pebbling strategy P for Th, we can pebble
Gh with at most the same amount of pebbles by mimicking any move on any vi in
Th by performing the same move on v in Gh. The details are easily verified.

6.3 The Black Pebbling Price of Pyramids

In this chapter, we will identify some layered graphs Gh for which the bound in
Lemma 6.9 is also the asymptotically correct lower bound. As a warm-up, and also
to introduce some important ideas, let us consider the black pebbling price of the
pyramid Πh of height h.

Theorem 6.10 ([32]). Peb(Πh) = h + 2 for h ≥ 1.

To prove this lower bound, it turns out that it is sufficient to study blocked
paths in the pyramid.
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Definition 6.11. A vertex set U blocks a path P if U ∩ P 6= ∅. U blocks a set of
paths P if U blocks all P ∈ P.
Proof of Theorem 6.10. It is easy to devise (inductively) a black pebbling strategy
that uses h + 2 pebbles (using, for instance, Lemma 6.9). We show that this is also
a lower bound.

Consider the first time t when all possible paths from sources to the sink are
blocked by black pebbles. Suppose that P is (one of) the last path(s) blocked.
Note that P must be blocked by a pebble placement on some source vertex u, since
otherwise both vertices in pred(u) would have to have pebbles on them and so P
would already be blocked. The path P contains h + 1 vertices, and for each vertex
v ∈ P \ {u} there is a unique path Pv that coincides with P from v onwards to
the sink but arrives at v in a straight line from a source “in the opposite direction”
of that of P , i.e., via the immediate predecessor of v not contained in P . At time
t− 1 all such paths {Pv | v ∈ P \ {u}} must already be blocked, and since P is still
open no pebble can block two paths Pv 6= Pv′ for v, v′ ∈ P \ {u}, v 6= v′. Thus
at time t there are at least h + 1 pebbles on Πh. Furthermore, without loss of
generality each pebble placement on a source vertex is followed by another pebble
placement (otherwise perform all removals immediately following after time t before
making the pebble placement at time t). Thus at time t+1 there are h+2 pebbles
on Πh.

We will repeatedly use the idea in the proof above about a set of paths con-
verging at different levels to another fixed path, so we write it down as a separate
observation.
Observation 6.12. Suppose that u and w are vertices in Πh on levels Lu < Lw

and that P : u w is a path from u to w. Let K = Lw − Lv and write P = {v0 =
u, v1, . . . , vK = w}. Then there is a set of K paths P = {P1, . . . , PK} such that Pi

coincides with P from vi onwards to w but arrives to vi in a straight line from a
source vertex via the immediate predecessor of vi which is not contained in P , i.e.,
is distinct from vi−1. In particular, for any i, j with 1 ≤ i < j ≤ k it holds that
Pi ∩ Pj ⊆ Pj ∩ P ⊆ P \ {u}.

We will refer to the paths P1, . . . , PK as a set of converging source paths, or just
converging paths, for P : u w. See Figure 6.4 for an example.

6.4 Black-White Pebbling Pyramids—a First Bound

For the black-white pebble game, Cook and Sethi proved the following lower bound
on the pebbling price of pyramids.
Theorem 6.13 ([34]). BW-Peb(Πh) ≥ 1

2

√
h.

In this section, we give a rather detailed exposition of the proof of this theo-
rem, in the hope that this will provide helpful intuition for the tighter (and more
intricate) lower bound proof that will follow in the next section.
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Figure 6.4: Set of converging source paths (dashed) for the path P : u4  y1 (solid).

Cook and Sethi get their bound by proving something slightly stronger than in
the statement of Theorem 6.13, namely the following.

Theorem 6.14 ([34]). Suppose that (B0, ∅) and ({z},Wτ ) are pebble configura-
tions in a pyramid Πh such that there is a path P : v  z from a source vertex v
to the sink z with P ∩ (B0 ∪ Wτ ) = ∅. Then for any conditional pebbling P from
(B0, ∅) to ({z},Wτ ) it holds that cost(P) ≥ 1

2

√
h.

That is, we start with a possibly non-empty set of black pebbles on B0 and
end with a possibly non-empty set of white pebbles on Wτ , but we have somehow
managed to place a black pebble on the sink z and clear a path from a source to z
that was not blocked when we started and is not blocked when we end. It is clear
that Theorem 6.13 follows from this by taking B0 = Wτ = ∅.

In order to prove Theorem 6.14, we will use the anti-symmetry property of
the black-white pebble game in Proposition 6.8 again. Note that, in particular,
Proposition 6.8 implies that if B0 and Wτ are such that there is a path P : v  z
from a source vertex v to the sink z with P ∩ (B0 ∪ Wτ ) = ∅, then the cost of
pebblings from (B0, ∅) to ({z},Wτ ), i.e., pebblings placing a black pebble on the sink
of the pyramid, will be equal to the cost of pebblings from (B0, {z}) to (∅,Wτ ),
i.e., pebblings removing a white pebble from the sink of the pyramid.

We also need the technical observation that if we have a pebbling on a large
graph and then look at a smaller subgraph and the moves in the pebbling restricted
to vertices in this subgraph, we get a legal pebbling of this smaller graph. This is
easy to verify directly from Definition 5.1.
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Proposition 6.15. Suppose that P is a pebbling on a DAG G and that G′ is the
induced subgraph on any connected set of vertices in V (G). Then the pebbling P ′

where we only perform the moves in P concerning the vertices in G′ is a legal
pebbling.

We are now ready to present the proof of Theorem 6.14.

Proof of Theorem 6.14. The proof is by induction over the height h of the pyra-
mid Π. For the induction base, note that it is obvious for any pyramid of height
h ≥ 1 that cost(P) ≥ 3. The sink z has a black pebble at time τ . At the time when
this pebble was placed on z, both its predecessors must also have had pebbles on
them. Thus for h ≤ 36 we have cost(P) ≥ 1

2

√
h.

Suppose that the statement in the theorem is true for all h′ < h. By the anti-
symmetry in Proposition 6.8 we can assume that the bound holds for all pebblings
P such that there is a path P : v  z from a source vertex v to the sink z with
P ∩ (B0 ∪ Wτ ) = ∅, and such that P either leaves a black pebble on z or removes
an initial white pebble from z.

Now we do the induction step. Suppose for a pyramid Π of height h that P is a
pebbling in minimum cost from (B0, ∅) to ({z},Wτ ). Without loss of generality, we
can assume that P is a pebbling with the least number of pebbling moves among
such minimum-cost pebblings.

Consider the last time σ when we have a configuration (Bσ,Wσ) such that
Bσ ∪ Wτ blocks all paths from sources to z, but this is not true for Bσ−1 ∪ Wτ .
Clearly, there is such time σ since B0 ∪ Wτ does not block all paths to z but
Bτ ∪ Wτ = {z} ∪ Wτ trivially does.

Since Bσ−1 ∪ Wτ does not block all paths from sources to z, the move at time
σ must be a placement of a black pebble on some vertex r. Also, if r is not a
source there must exist at least one white-pebbled predecessor q of r and a path
P from a source via q and r to z such that P is not blocked by Bσ−1 ∪ Wτ .
(Both predecessors must have pebbles at time σ − 1, but if both predecessors were
black-pebbled, Bσ−1 ∪ Wτ would already block all paths.)

We claim that if r is at distance 2
√

h or more from the sink, then we are done.
For consider the converging paths of Observation 6.12 for the subpath P r : r  z
of P . All these paths must be blocked by (Bσ ∪ Wτ ) \ {r} = Bσ−1 ∪ Wτ but there
are no pebbles from Bσ−1 ∪ Wτ on P r, so |Bσ−1 ∪ Wτ | ≥ 2

√
h yielding a pebbling

cost of at least max{|Bσ−1|, |Wτ |} ≥
√

h. Suppose therefore that r is at distance
strictly less than 2

√
h from the sink.

Consider the subpyramid Πq
M rooted at q. The height of Πq

M is at least h− 2
√

h.
At time σ there is a white pebble at the sink q and a path P ′ from a source to q
(namely the subpath P ′ = P ∩ Πq

M of P ) such that Bσ ∪ Wτ does not block P ′.
Looking just at the pebbles inside Πq

M during the time interval [σ, τ ] and using
Proposition 6.15, we see that we get a pebbling removing the white pebble on q
and opening a path to q in Πq

M. By the induction hypothesis (and anti-symmetry),
this pebbling inside Πq

M costs at least 1
2

√
h− 2

√
h ≥ 1

2

√
h− 1 if h ≥ 4.
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Also, we claim that during the whole time interval [σ, τ ] there must be a pebble
in Π outside Πq

M. This is true at time σ and at time τ . Suppose there is some time
t ∈ (σ, τ) such that all pebbles are inside Πq

M. Then it is easy to verify that we get
a correct pebbling P ′ of all of Π by ignoring all pebble placements and removals
outside Πq

M before time t. This pebbling P ′ has at most the same cost as P and
has strictly fewer moves (since it does not place a black pebble on r at time σ, for
instance), contradicting the assumed minimality of P. Thus there is at least one
pebble outside Πq

M during the whole time interval [σ, τ ], so the total cost of P is at
least 1 + ( 1

2

√
h− 1) = 1

2

√
h. The theorem follows.

Reading the proof of Theorem 6.13, it is hard to avoid the feeling that this
bound cannot be optimal. And indeed, Klawe [49] later proved that BW-Peb(Πh) ≥
h
2 + O(1). This result is tight, in view of Lemma 6.9, and it can be noted that the
additive constants in the upper and lower bounds are off by at most one. As we will
see in the next section, Klawe’s proof is technically quite intricate. We presented
the easier and perhaps more intuitive proof of Cook and Sethi first in the hope that
this will have helped to prepare the reader for what is to follow.

6.5 A Tight Bound for Black-White Pebbling Layered DAGs

In this section, we give a detailed exposition of the lower bound in [49], in the
process simplifying the proof somewhat. Much of the notation and terminology has
been changed from [49] to fit better with this thesis. Also, it should be noted that
we restrict all definitions to layered graphs, in contrast to Klawe who deals with a
somewhat more general class of graphs. We concentrate on layered graphs mainly
to avoid unnecessary complications in the exposition, and since it can be proven
that no graphs in [49] can give a better size/pebbling price trade-off than one gets
for layered graphs.

Recall from Definition 6.5 that a path via w is a path P such that w ∈ P . We
will also say that P visits w. The notation Pvia(w) is used to denote all source
paths visiting w. Note that a path P ∈ Pvia(w) visiting w may continue after w,
or may end in w.

Definition 6.16 (Hiding set). A vertex set U hides a vertex w if U blocks all
source paths visiting w, i.e., if U blocks Pvia(w). U hides W if U hides all w ∈ W .
If so, we say that U is a hiding set for W . We write VUW to denote the set of all
vertices hidden by U .

Our perspective is that we are standing at the sources of G and looking towards
the sink. Then U hides w if we “cannot see” w from the sources since U completely
hides w. When U blocks a path P is is possible that we can “see” the beginning
of the path, but we cannot walk all of the path since it is blocked somewhere on
the way. The reason why this terminological distinction is convenient will become
clearer in Chapter 9.
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Note that if U should hide w, then in particular it must block all paths ending
in w. Therefore, when looking at minimal hiding sets we can assume without loss
of generality that no vertex in U is on a level higher than w.

It is an easy exercise to show that the hiding relation is transitive, i.e., that if
U hides V and V hides W , then U hides W .

Proposition 6.17. If V ⊆ VUW and W ⊆ VV W, then W ⊆ VUW.

One key concept in Klawe’s paper is that of potential. The potential of P =
(B,W ) is intended to measure how “good” the configuration P is, or at least how
hard it is to reach in a pebbling. Note that this is not captured by the cost of the
current pebble configuration. For instance, the final configuration Pτ = ({z}, ∅)
is the best configuration conceivable, but only costs 1. At the other extreme, the
configuration P in a pyramid with, say, all vertices on level L white-pebbled and all
vertices on level L+1 black-pebbled is potentially very expensive (for low levels L),
but does not seem very useful. Since this configuration on the one hand is quite
expensive, but on the other hand is extremely easy to derive (just white-pebble all
vertices on level L, and then black-pebble all vertices on level L + 1), here the cost
seems like a gross overestimation of the “goodness” of P.

Klawe’s potential measure remedies this. The potential of a pebble configuration
(B,W ) is defined as the minimum measure of any set U that together with W
hides B. Recall that U{�j} denotes the subset of all vertices in U on level j or
higher in a layered graph G.

Definition 6.18 (Measure). The jth partial measure of the vertex set U in G is

mj
G(U) =

{
j + 2|U{�j}| if U{�j} 6= ∅,
0 otherwise,

and the measure of U is mG(U) = maxj

{
mj

G(U)
}

.

Definition 6.19 (Potential). We say that U is a hiding set for a black-white
pebble configuration P = (B,W ) in a layered graph G if U ∪ W hides B. We
define the potential of the pebble configuration to be

potG(P) = potG(B,W ) = min{mG(U) : U is a hiding set for (B,W )} .

If U is a hiding set for (B,W ) with minimal measure mG(U) among all vertex sets
U ′ such that U ′ ∪ W hides B, we say that U is a minimum-measure hiding set
for P.

Remark 6.20. Klawe does not use the level of a vertex u in Definitions 6.18 and 6.19,
but instead the black pebbling price Peb({u}, ∅) of the configuration with a black
pebble on u and no other pebbles in the DAG. For pyramids, these two concepts
are equivalent, and we feel that the exposition can be made considerably simpler
by using levels.
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Since the graph under consideration will almost always be clear from context,
we will tend to omit the subindex G in measures and potentials.

We remark that although this might not be immediately obvious, there is quite
a lot of nice intuition why Definition 6.19 is a relevant estimation of how “good”
a pebble configuration is. We refer the reader to Section 2 of [49] for a discussion
about this. Let us just note that with this definition, the pebble configuration
Pτ = ({z}, ∅) has high potential, as we shall soon see, while the configuration with
all vertices on level L white-pebbled and all vertices on level L + 1 black-pebbled
has potential zero.

Klawe proves two facts about the potentials of the pebble configurations in any
black-white pebbling P = {P0, . . . , Pτ} of a pyramid graph Πh:

1. The potential correctly estimates the goodness of the current configuration
Pt by taking into account the whole pebbling that has led to Pt. Namely,
pot(Pt) ≤ 2 ·maxs≤t{cost(Ps)}.

2. The final configuration Pτ = ({z}, ∅) has high potential, namely pot({z}, ∅) =
h + O(1).

Combining these two parts, one clearly gets a lower bound on pebbling price.
For pyramids, part 2 is not too hard to show directly. In fact, it is a useful

exercise if one wants to get some feeling for how the potential works. Part 1 is
much trickier. It is proven by induction over the pebbling. As it turns out, the
whole induction proof hinges on the following key property.
Property 6.21 (Limited hiding-cardinality property). We say that the black-
white pebble configuration P = (B,W ) in G has the Limited hiding-cardinality
property, or just the LHC property for short, if there is a vertex set U such that

1. U is a hiding set for P,

2. potG(P) = m(U),

3. U = B or |U | < |B|+ |W | = cost(P).
We say that the graph G has the Limited hiding-cardinality property if all black-
white pebble configurations P = (B,W ) on G have the Limited hiding-cardinality
property.

Note that requirements 1 and 2 just say that U is a vertex set that witnesses the
potential of P. The important point here is requirement 3, which says, basically,
that if we are given a hiding set U with minimum measure but with size exceeding
the cost of the black-white pebble configuration P, then we can pick another hid-
ing set U ′ which keeps the minimum measure but decreases the cardinality to at
most cost(P).

Given Property 6.21, the induction proof for part 1 follows quite easily. The
main part of the paper [49] is then spent on proving that a class of DAGs including
pyramids have Property 6.21. Let us see what the lower bound proof looks like,
assuming that Property 6.21 holds.
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Lemma 6.22 (Theorem 2.2 in [49]). Let G be a layered graph possessing the
LHC property and suppose that P = {P0 = ∅, P1, . . . , Pτ} is any unconditional
black-white pebbling on G. Then it holds for all t = 1, . . . , τ that potG(Pt) ≤
2 ·maxs≤t{cost(Ps)}.

Proof. To simplify the proof, let us assume without loss of generality that no white
pebble is ever removed from a source. If P contains such moves, we just substitute
for each such white pebble placement on v a black pebble placement on v instead,
and when the white pebble is removed we remove the corresponding black pebble.
It is easy to check that this results in a legal pebbling P ′ that has exactly the same
cost.

The proof is by induction. The base case P0 = ∅ is trivial. For the induction
hypothesis, suppose that pot(Pt) ≤ 2 · maxs≤t{cost(Ps)} and let Ut be a vertex
set as in Property 6.21, i.e., such that Ut ∪ Wt hides Bt, pot(Pt) = m(Ut) and
|Ut| ≤ cost(Pt) = |B|+ |W |.

Consider Pt+1. We need to show that pot(Pt+1) ≤ 2 ·maxs≤t+1{cost(Ps)}. By
the induction hypothesis, it is sufficient to show that

pot(Pt+1) ≤ max{pot(Pt), 2 · cost(Pt+1)} . (6.1)

We also note that if Ut ∪ Wt+1 hides Bt+1 we are done, since if so pot(Pt+1) ≤
m(Ut) = pot(Pt). We make a case analysis depending on the type of move made
to get from Pt to Pt+1.

1. Removal of black pebble: In this case, Ut ∪ Wt+1 = Ut ∪ Wt obviously hides
Bt+1 ⊂ Bt as well, so pot(Pt+1) ≤ pot(Pt).

2. Placement of white pebble: Again, Ut ∪ Wt+1 ⊃ Ut ∪ Wt hides Bt+1 = Bt,
so pot(Pt+1) ≤ pot(Pt).

3. Removal of white pebble: Suppose that a white pebble is removed from the
vertex w, so Wt+1 = Wt \ {w}. As noted above, without loss of generality w
is not a source vertex. We claim that Ut ∪ Wt+1 still hides Bt+1 = Bt, from
which pot(Pt+1) ≤ pot(Pt) follows as above.
To see that the claim is true, note that pred(w) ⊆ Bt ∪ Wt by the pebbling
rules, for otherwise we would not be able to remove the white pebble on w.
If pred(w) ⊆ Wt we are done, since then Ut ∪ Wt+1 hides Ut ∪ Wt and
we can use the transitivity in Proposition 6.17. If instead there is some
v ∈ pred(w) ∩ Bt, then Ut ∪ Wt = Ut ∪ Wt+1 ∪ {w} hides v by assumption.
Since w is a successor of v, and therefore on a higher level than v, we must
have Ut ∪ Wt \ {w} hiding v. Thus in any case Ut ∪ Wt+1 hides pred(w), so
by transitivity Ut ∪ Wt+1 hides Bt+1.

4. Placement of black pebble: Suppose that a black pebble is placed on v. If v
is not a source, by the pebbling rules we again have that pred(v) ⊆ Bt ∪ Wt.
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In particular, Bt ∪ Wt hides v and by transitivity we have that Ut ∪ Wt+1 =
Ut ∪ Wt hides Bt ∪ {v} = Bt+1.
The case when v is a source turns out to be the only interesting one. Now
Ut ∪ Wt does not necessarily hide Bt ∪ {v} = Bt+1 any longer. An obvious
fix is to try with Ut ∪ {v} ∪ Wt instead. This set clearly hides Bt+1, but
it can be the case that m(Ut ∪ {v}) > m(Ut). This is problematic, since we
could have pot(Pt+1) = m(Ut ∪ {v}) > m(Ut) = pot(Pt). And we do not
know that the inequality pot(Pt) ≤ 2 · cost(Pt) holds, only that pot(Pt) ≤
2 · maxs≤t{cost(Ps)}. This means that it can happen that pot(Pt+1) > 2 ·
cost(Pt+1), in which case the induction step fails. However, we claim that
using the Limited hiding-cardinality property 6.21 we can prove for Ut+1 =
Ut ∪ {v} that

m(Ut+1) = m(Ut ∪ {v}) ≤ max{m(Ut), 2 · cost(Pt+1)} , (6.2)

which shows that (6.1) holds and the induction steps goes through.
Namely, suppose that Ut is chosen as in Property 6.21 and consider Ut+1 =
Ut ∪ {v}. Then Ut+1 is a hiding set for Pt+1 = (Bt ∪ {v},Wt) and hence
pot(Pt+1) ≤ m(Ut+1). For j > 0, it holds that Ut+1{�j} = Ut{�j} and
thus mj(Ut+1) = mj(Ut). On the bottom level, using that the inequality
|Ut| ≤ cost(Pt) holds by the LHC property, we have

m0(Ut+1) = 2 · |Ut+1| = 2 · (|Ut|+1) ≤ 2 · (cost(Pt)+1) = 2 ·cost(Pt+1) (6.3)

and we get that

m(Ut+1) = maxj

{
mj(Ut+1)

}
= max

{
maxj>0

{
mj(Ut)

}
,m0(Ut+1)

}
≤ max{m(Ut), 2 · cost(Pt+1)} = max{pot(Pt), 2 · cost(Pt+1)} (6.4)

which is exactly what we need.

We see that the inequality (6.1) holds in all cases in our case analysis, which proves
the lemma.

The lower bound on black-white pebbling price now follows by showing that the
final pebble configuration ({z}, ∅) has high potential.

Lemma 6.23. For z the sink of a pyramid Πh of height h, the pebble configuration
({z}, ∅) has potential potΠh

({z}, ∅) = h + 2.

Proof. This follows easily from the Limited hiding-cardinality property (which says
that U can be chosen so that either U ⊆ {z} or |U | ≤ 0), but let us show that this
assumption is not necessary here. The set U = {z} hides itself and has measure
m(U) = mh(U) = h + 2 · 1 = h + 2. Suppose that z is hidden by some U ′ 6= {z}.
Without loss of generality U ′ is minimal, i.e., no strict subset of U ′ hides z. Let u be
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a vertex in U ′ on minimal level minlevel(U) = L < h. The fact that U ′ is minimal
implies that there is a path P : u  z such that (P \ {u}) ∩ U ′ = ∅ (otherwise
U ′ \ {u} would hide z). By Observation 6.12, there must exist h − L converging
paths from sources to z that are all blocked by distinct pebbles in U ′ \ {u}. It
follows that

m(U ′) ≥ mL
(
U ′) = L+2

∣∣U ′{�L}
∣∣ = L+2

∣∣U ′∣∣ ≥ L+2 · (h+1−L) > h+2 (6.5)

(where we used that U ′{�L} = U ′ since L = minlevel(U)). Thus U = {z} is the
unique minimum-measure hiding set for ({z}, ∅), and the potential is pot({z}, ∅) =
h + 2.

Since [49] proves that pyramids possess the Limited hiding-cardinality prop-
erty, and since there are pebblings that yield matching upper bounds, we have the
following theorem.

Theorem 6.24 ([49]). BW-Peb(Πh) = h
2 + O(1).

Proof. The upper bound on the pebbling price was shown in Lemma 6.9. For
the lower bound, Lemma 6.23 says that the final pebble configuration ({z}, ∅) in
any complete pebbling P of Πh has potential pot({z}, ∅) = h + 2. According to
Lemma 6.22, pot({z}, ∅) ≤ 2 · cost(P). Thus BW-Peb(Πh) ≥ h/2 + 1.

In the final two subsections of this section, we provide a fairly detailed overview
of the proof that pyramids do indeed possess the Limited hiding-cardinality prop-
erty. As was discussed above, the reason for giving all the details is that we will
need to use and modify the construction in non-trivial ways in Chapter 9, where
we will use ideas inspired by Klawe’s paper to prove lower bounds on the pebbling
price of pyramids in another pebble game.

6.5.1 Proving the Limited Hiding-Cardinality Property
We present the proof of that pyramids have the Limited hiding-cardinality property
in a top-down fashion as follows.

1. First, we study what hiding sets look like in order to better understand their
structure. Along the way, we make a few definitions and prove some lemmas
culminating in Definition 6.30 and Lemma 6.34.

2. We conclude that it seems like a good idea to try to split our hiding set into
disjoint components, prove the LHC property locally, and then add everything
together to get a proof that works globally. We make an attempt to do this
in Theorem 6.35, but note that the argument does not quite work. However,
if we assume a slightly stronger property locally for our disjoint components
(Property 6.37), the proof goes through.
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3. We then prove this stronger local property by assuming that pyramid graphs
have a certain spreading property (Definition 6.44 and Theorem 6.45), and
by showing in Lemmas 6.43 and 6.46 that the stronger local property holds
for such spreading graphs.

4. Finally, in Section 6.5.2, we give a simplified proof of the theorem in [49] that
pyramids are indeed spreading.

From this, the desired conclusion follows.
For a start, we need two definitions. The intuition for the first one is that the

vertex set U is tight if is does not contain any “unnecessary” vertex u hidden by
the other vertices in U .

Definition 6.25 (Tight vertex set). The vertex set U is tight if for all u ∈ U it
holds that u /∈ VU \ {u}W.

If x is a vertex hidden by U , we can identify a subset of U that is necessary for
hiding x.

Definition 6.26 (Necessary hiding subset). If x ∈ VUW, we define UTxU to be
the subset of U such that for each u ∈ UTxU there is a source path P ending in x
for which P ∩ U = {u}.

We observe that if U is tight and u ∈ U , then UTuU = {u}. This is not the case
for non-tight sets. If we let U = {u} ∪ pred(u) for some non-source u, Definition 6.26
yields that UTuU = ∅. The vertices in UTxU must be contained in every subset of U
that hides x, since for each v ∈ UTxU there is a source path to x that intersects U
only in v. But if U is tight, the set UTxU is also sufficient to hide x, i.e., x ∈ VUTxUW.

Lemma 6.27 (Lemma 3.1 in [49]). If U is tight and x ∈ VUW, then UTxU hides
x and this set is also contained in every subset of U that hides x.

Proof. The necessity was argued above, so the interesting part is that x ∈ VUTxUW.
Suppose not. Let P1 be a source path to x such that P1 ∩ UTxU = ∅. Since U hides
x, U blocks P1. Let v be the highest-level element in P1 ∩ U (i.e., , the vertex on
this path closest to x). Since U is tight, U \{v} does not hide v. Let P2 be a source
path to v such that P2 ∩ (U \ {v}) = ∅. Then going first along P2 and switching to
P1 in v we get a path to x that intersects U only in v. But if so, we have v ∈ UTxU

contrary to assumption. Thus, x ∈ VUTxUW must hold.

Given a vertex set U , the tight subset of U hiding the same elements is uniquely
determined.

Lemma 6.28. For any vertex set U in a layered graph G there is a uniquely
determined minimal subset U∗ ⊆ U such that VU∗W = VUW, U∗ is tight, and for
any U ′ ⊆ U with VU ′W = VUW it holds that U∗ ⊆ U ′.



6.5. A TIGHT BOUND FOR BLACK-WHITE PEBBLING 73

Proof. We construct the set U∗ bottom-up, layer by layer. We will let U∗
i be the

set of vertices on level i or lower in the tight hiding set under construction, and Ur
i

be the set of vertices in U strictly above level i remaining to be hidden.
Let L = minlevel(U). For i < L, we define U∗

i = ∅. Clearly, all vertices on
level L in U must be present also in U∗, since no vertices in U{�L} can hide
these vertices and vertices on the same level cannot help hiding each other. Set
U∗

L = U{∼L} = U \ U{�L}. Now we can remove from U all vertices hidden by
U∗

L, so set Ur
L = U \ VU∗

LW. Note that there are no vertices on or below level L left
in Ur

L, i.e., Ur
L = Ur

L{�L}, and that U∗
L hides the same vertices as does U{�L}

(since the two sets are equal).
Inductively, suppose we have constructed the vertex sets U∗

i−1 and Ur
i−1. Just

as above, set U∗
i = U∗

i−1 ∪ Ur
i−1{∼ i} and Ur

i = Ur
i−1\VU∗

i W. If there are no vertices
remaining on level i to be hidden, i.e., if Ur

i−1{∼ i} = ∅, nothing happens and we
get U∗

i = U∗
i−1 and Ur

i = Ur
i−1. Otherwise the vertices on level i in Ur

i−1 are added
to U∗

i and all of these vertices, as well as any vertices above in Ur
i−1 now being

hidden, are removed from Ur
i−1 resulting in a smaller set Ur

i .
To conclude, we set U∗ = U∗

M for M = maxlevel(U). By construction, the
invariant

VU∗
i W = VU{� i}W (6.6)

holds for all levels i. Thus, VU∗W = VUW. Also, U∗ must be tight since if v ∈ U∗

and level(v) = i, by construction U∗{≺ i} does not hide v, and (as was argued
above) neither does U∗{� i} \ {v}. Finally, suppose that U ′ ⊆ U is a hiding set
for U with U∗ * U ′. Consider v ∈ U∗ \ U ′ and suppose level(v) = i. On the one
hand, we have v /∈ VU∗

i−1W by construction. On the other hand, by assumption it
holds that v ∈ VU ′{≺ i}W and thus v ∈ VU{≺ i}W. But then by the invariant (6.6)
we know that v ∈ VU∗

i−1W, which yields a contradiction. Hence, U∗ ⊆ U ′ and the
lemma follows.

We remark that U∗ can in fact be seen to contain exactly those elements u ∈ U
such that u is not hidden by U \ {u}.

It follows from Lemma 6.28 that if U is a minimum-measure hiding set for
P = (B,W ), we can assume without loss of generality that U ∪ W is tight. More
formally, if U ∪ W is not tight, we can consider minimal subsets U ′ ⊆ U and
W ′ ⊆ W such that U ′ ∪ W ′ hides B and is tight, and prove the LHC property for
B and W ′ with respect to this U ′ instead. Then clearly the LHC property holds
also for B and W .

Suppose that we have a set U that together with W hides B. Suppose further-
more that B contains vertices very far apart in the graph. Then it might very well
be the case that U ∪ W can be split into a number of disjoint subsets Ui ∪ Wi

responsible for hiding different parts Bi of B, but which are wholly independent of
one another. Let us give an example of this.
Example 6.29. Suppose we have the configuration of black and white pebbles
(B,W ) = ({x1, y1, v5}, {w3, s6, s7}) and the hiding set U = {v1, u2, u3, v3, s5}
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z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Hiding set U with large size and measure.

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(b) Smaller hiding set U∗ with smaller measure.

Figure 6.5: Illustration of Example 6.29 (with vertices in hiding sets cross-marked).

in Figure 6.5(a). Then U ∪ W hides B, but U seems unnecessarily large. To
get a better hiding set U∗, we can leave s5 responsible for hiding v5 but replace
{v1, u2, u3, v3} by {x1, y1}. The resulting set U∗ = {x1, y1, s5} in Figure 6.5(b) has
both smaller size and smaller measure (we leave the straightforward verification of
this fact to the reader).

Intuitively, it seems that the configuration can be split into two disjoint com-
ponents, namely (B1,W1) = ({x1, y1}, {w3}) with hiding set U1 = {v1, u2, u3, v3}
and (B2,W2) = ({v5}, {s6, s7}) with hiding set U2 = {s5}, and that these two com-
ponents are independent of one another. To improve the hiding set U , we need to
do something locally about the bad hiding set U1 in the first component, namely
replace it with U∗

1 = {x1, y1}, but we should keep the locally optimal hiding set U2

in the second component.
We want to formalize this understanding of how vertices in B, W and U depend

on one another in a hiding set U ∪ W for B. The following definition constructs a
graph that describes the structure of the hiding sets that we are studying in terms
of these dependencies.

Definition 6.30 (Hiding set graph). For a tight (and non-empty) set of vertices
X in G, the hiding set graph H = H(G, X) is an undirected graph defined as follows:

• The set of vertices of H is V (H) = VXW.

• The set of edges E(H) ofH consists of all pairs of vertices (x, y) for x, y ∈ VXW
such that Gx

M ∩ VXTxUW ∩ Gy
M ∩ VXTyUW 6=∅.

We say that the vertex set X is hiding-connected if H(G, X) is a connected graph.

When the graph G and vertex set X are clear from context, we will sometimes
write only H(X) or even just H. To illustrate Definition 6.30, we give an example.
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z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Vertices hidden by U ∪ W .

y1

x1 x2

w1 w2 w3

v1 v2 v3 v5

u2 u3 u5 u6

s5 s6 s7

(b) Hiding set graph H(U ∪ W ).

Figure 6.6: Pebbles with hiding set and corresponding hiding set graph.

Example 6.31. Consider again the configuration (B,W ) = ({x1, y1, v5}, {w3, s6, s7})
from Example 6.29 with hiding set U = {v1, u2, u3, v3, s5}, where we have shaded
the set of hidden vertices in Figure 6.6(a). The hiding set graph H(X) for X =
U ∪ W = {v1, u2, u3, v3, w3, s5, s6, s7} has been drawn in Figure 6.6(b). In accor-
dance with the intuition sketched in Example 6.29, H(X) consists of two connected
components.

Note that there are edges from the top vertex y1 in the first component to
every other vertex in this component and from the top vertex v5 to every other
vertex in the second component. We will prove presently that this is always the
case (Lemma 6.32). Perhaps a more interesting edge in H(X) is, for instance,
(w1, x2). This edge exists since XTw1U = {v1, u2, u3} and XTx2U = {u2, u3, v3, w3}
intersect and since as a consequence of this (which is easily verified) we have Πw1

M ∩
VXTw1UW ∩ Πx2

M ∩ VXTx2UW 6= ∅. For the same reason, there is an edge (u5, u6)
since XTu5U = {s5, s6} and XTu6U = {s6, s7} intersect.

Lemma 6.32. Suppose for a tight vertex set X that x ∈ VXW and y ∈ XTxU. Then
x and y are in the same connected component of H(X).

Proof. Note first that x, y ∈ VXW by assumption, so x and y are both vertices
in H(X). Since x is above y we have Gx

M ⊇ Gy
M and we get Gx

M ∩ VXTxUW ∩ Gy
M ∩

VXTyUW = VXTxUW ∩ Gy
M ∩ {y} = {y} 6= ∅. Thus, (x, y) is an edge in H(X), so x

and y are certainly in the same connected component.

Corollary 6.33. If X is tight and x ∈ VXW then x and all of XTxU are in the same
connected component of H(X).

The next lemma says that if H(X) is a hiding set graph with vertex set V =
VXW, then the connected components V1, . . . , Vk of H(X) are themselves hiding set
graphs defined over the hiding-connected subsets X ∩ V1, . . . , X ∩ Vk.
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Lemma 6.34 (Lemma 3.3 in [49]). Let X be a tight set and let Vi be one of
the connected components in H(X). Then the subgraph of H(X) induced by Vi is
identical to the hiding set graph H(X ∩ Vi) defined on the vertex subset X ∩ Vi.
In particular, it holds that Vi = VX ∩ ViW.

Proof. We need to show that Vi = VX ∩ ViW and that the edges of H(X) in Vi

are exactly the edges in H(X ∩ Vi). Let us first show that y ∈ Vi if and only if
y ∈ VX ∩ ViW.

(⇒) Suppose y ∈ Vi. Then XTyU ⊆ Vi by Corollary 6.33. Also, XTyU ⊆ X
by definition, so XTyU ⊆ X ∩ Vi. Since y ∈ VXTyUW by Lemma 6.27, clearly
y ∈ VX ∩ ViW.

(⇐) Suppose y ∈ VX ∩ ViW. Since X is tight, its subset X ∩ Vi must be tight
as well. Applying Lemma 6.27 twice, we deduce that (X ∩ Vi)TyU hides y and
that XTyU ⊆ (X ∩ Vi)TyU since XTyU is contained in any subset of X that hides
y. But then a third appeal to Lemma 6.27 yields that (X ∩ Vi)TyU ⊆ XTyU since
XTyU ⊆ (X ∩ Vi)TyU ⊆ X ∩ Vi and consequently

XTyU = (X ∩ Vi)TyU . (6.7)

By Corollary 6.33, y and all of (X ∩ Vi)TyU = XTyU are in the same connected
component. Since XTyU ⊆ Vi it follows that y ∈ Vi.

This shows that Vi = VX ∩ ViW. Plugging (6.7) into Definition 6.30, we see
that (x, y) is an edge in H(X) for x, y ∈ Vi if and only if (x, y) is an edge in
H(X ∩ Vi).

Now we are in a position to describe the structure of the proof that pyramid
graphs have the LHC property.

Theorem 6.35 (Analogue of Theorem 3.7 in [49]). Let P = (B,W ) be any
black-white pebble configuration on a pyramid Π. Then there is a vertex set U such
that U ∪ W hides B, potΠ(P) = m(U) and either U = B or |U | < |B|+ |W |.

The idea is to construct the graph H = H(Π, U ∪ W ), study the different
connected components in H, find good hiding sets locally that satisfy the LHC
property (which we prove is true for each local hiding-connected subset of U ∪ W ),
and then add all of these partial hiding sets together to get a globally good hiding
set.

Unfortunately, this does not quite work. Let us nevertheless attempt to do the
proof, note where and why it fails, and then see how Klawe fixes the broken details.

Tentative proof of Theorem 6.35. Let U be a set of vertices in Π such that U ∪ W
hides B and pot(P) = m(U). Suppose that U has minimal size among all such sets,
and furthermore that among all such minimum-measure and minimum-size sets U
has the largest intersection with B.

Assume without loss of generality (Lemma 6.28) that U ∪ W is tight, so that
we can construct H. Let the connected components of H be V1, . . . , Vk. For all
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i = 1, . . . , k, let Bi = B ∩ Vi, Wi = W ∩ Vi, and Ui = U ∩ Vi. Lemma 6.34 says
that Ui ∪ Wi hides Bi. In addition, all Vi are pairwise disjoint, so |B| =

∑k
i=1|Bi|,

|W | =
∑k

i=1|Wi| and |U | =
∑k

i=1|Ui|.
Thus, if the LHC property 6.21 does not hold for U globally, there is some

hiding-connected subset Ui ∪ Wi that hides Bi but for which |Ui| ≥ |Bi| + |Wi|
and Ui 6= Bi. Note that this implies that Bi * Ui since otherwise Ui would not be
minimal.

Suppose that we would know that the LHC property is true for each connected
component. Then we could find a vertex set U∗

i with U∗
i ⊆ Bi or

∣∣U∗
i

∣∣ < |Bi|+ |Wi|
such that U∗

i ∪ Wi hides Bi and m
(
U∗

i

)
≤ m(Ui). Setting U∗ = (U \Ui) ∪ U∗

i , we
would get a hiding set with either |U∗| < |U | or |U∗ ∩ B| > |U ∩ B|. The second
inequality would hold since if |U∗| = |U |, then

∣∣U∗
i

∣∣ = |Ui| ≥ |Bi ∪ Wi| and this
would imply U∗

i = Bi and thus
∣∣U∗

i ∩ Bi

∣∣ > |Ui ∩ Bi|. This would contradict how
U was chosen above, and we would be home.

Almost. We would also need that U∗
i could be substituted for Ui in U without in-

creasing the measure, i.e., that m
(
U∗

i

)
≤ m

(
Ui

)
should imply m

(
(U \ Ui) ∪ U∗

i

)
≤

m
(
(U \ Ui) ∪ Ui

)
. And this turns out not to be true.

The reason that the proof above does not quite work is that the measure in
Definition 6.18 is ill-behaved with respect to unions. Klawe provides the following
example of what can happen.

Example 6.36. With vertex labels as in Figures 6.2 and 6.4–6.6, let X1 = {s1, s2},
X2 = {w1} and X3 = {s3}. Then m(X1) = 4 and m(X2) = 5 but taking unions
with X3 we get that m(X1 ∪ X3) = 6 and m(X2 ∪ X3) = 5. Thus m(X1) <
m(X2) but m(X1 ∪ X3) > m(X2 ∪ X3).

So it is not enough to show the LHC property locally for each connected com-
ponent in the graph. We also need that sets Ui from different components can
be combined into a global hiding set while maintaining measure inequalities. This
leads to the following strengthened condition for connected components of H.

Property 6.37 (Local limited hiding-cardinality property). We say that the
pebble configuration P = (B,W ) has the Local limited hiding-cardinality property,
or just the Local LHC property for short, if for any vertex set U such that U ∪ W
hides B and is hiding-connected, we can find a vertex set U∗ such that

1. U∗ is a hiding set for (B,W ),

2. for any vertex set Y with Y ∩ U = ∅ it holds that m
(
Y ∪ U∗) ≤ m(Y ∪ U),

3. U∗ ⊆ B or
∣∣U∗

∣∣ < |B|+ |W |.

We say that the graph G has the Local LHC property if all black-white pebble
configurations P = (B,W ) on G do.
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Note that if the Local LHC property holds, this in particular implies that
m
(
U∗) ≤ m(U) (just choose Y = ∅). Also, we immediately get that the LHC

property holds globally.

Lemma 6.38. If G has the Local limited hiding-cardinality property 6.37, then G
has the Limited hiding-cardinality property 6.21.

Proof. Consider the tentative proof of Theorem 6.35 and look at the point where it
breaks down. If we instead use the Local LHC property to find U∗

i , this time we get
that m

(
U∗

i

)
≤ m

(
Ui

)
does indeed imply m

(
(U \ Ui) ∪ U∗

i

)
≤ m

(
(U \ Ui) ∪ Ui

)
,

and the theorem follows.

An obvious way to get the inequality m(Y ∪ U∗) ≤ m(Y ∪ U) in Property 6.37
would be to require that mj(U∗) ≤ mj(U) for all j, but we need to be slightly more
general. The next definition identifies a sufficient condition for sets to behave well
under unions with respect to the measure in Definition 6.18.

Definition 6.39. We write U -m V if for all j ≥ 0 there is an i ≤ j such that
mj(U) ≤ mi(V ).

Note that it is sufficient to verify the condition in Definition 6.39 for j =
1, . . . ,maxlevel(U). For j > maxlevel(U) we get mj(U) = 0 and the inequality
trivially holds.

It is immediate that U -m V implies m(U) ≤ m(V ), but the relation -m gives
us more information than that. Usual inequality m(U) ≤ m(V ) holds if and only
if for every j we can find an i such that mj(U) ≤ mi(V ), but in the definition of
-m we are restricted to finding such an index i that is less than or equal to j. So
not only is m(U) ≤ m(V ) globally, but we can also explain locally at each level, by
“looking downwards”, why U has smaller measure than V .

In Example 6.36, X1 6-m X2 since the relative cheapness of X1 compared to
X2 is explained not by a lot of vertices in X2 on low levels, but by one single
high-level, and therefore expensive, vertex in X2 which is far above X1. This is
why these sets behave badly under union. If we have two sets X1 and X2 with
X1 -m X2, however, reversals of measure inequalities when taking unions as in
Example 6.36 can no longer occur.

Lemma 6.40 (Lemma 3.4 in [49]). If U -m V and Y ∩ V = ∅, then it holds
that m(Y ∪ U) ≤ m(Y ∪ V ).

Proof. To show that m(Y ∪ U) ≤ m(Y ∪ V ), we want to find for each level
j = 1, . . . ,maxlevel(Y ∪ U) in U another level i in V such that mj(Y ∪ U) ≤
mi(Y ∪ V ). We pick the i ≤ j provided by the definition of U -m V such that
mj(U) ≤ mi(V ). Since V ∩ W = ∅ and i ≤ j implies Y {�j} ⊆ Y {� i}, we get

mj(Y ∪ U) = j + 2 · |(U ∪ Y ){�j}| ≤ j + 2 · |U{�j}|+ 2 · |Y {�j}| ≤
i + 2 · |V {� i}|+ 2 · |Y {� i}| = mi(Y ∪ V ) (6.8)

and the lemma follows.
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So when locally improving a blocking set U that does not satisfy the LHC
property to some set U∗ that does, if we can take care that U∗ -m U in the sense
of Definition 6.39 we get the Local LHC property. All that remains is to show that
this can indeed be done.

When “improving” U to U∗, we will strive to pick hiding sets of minimal size.
The next definition makes this precise.

Definition 6.41. For any set of vertices X, let

L�j(X) = min{|Y | : X{�j} ⊆ VY W and Y {�j} = Y }

denote the size of a smallest set Y such that all vertices in Y are on level j or higher
and Y hides all vertices in X on level j or higher.

Note that we only require of Y to hide X{�j} and not all of X. Given the
condition that Y = Y {�j}, this set cannot hide any vertices in X{≺j}. We make
a few easy observations.

Observation 6.42. Suppose that X is a set of vertices in a layered graph G. Then:

1. L�0(X) is the minimal size of any hiding set for X.

2. If X ⊆ Y , then L�j(X) ≤ L�j(Y ) for all j.

3. It always holds that L�j(X) ≤ |X{�j}| ≤ |X|.

Proof. Part 1 follows from the fact that V {�0} = V for any set V . If X ⊆ Y ,
then X{�j} ⊆ Y {�j} and any hiding set for X{�j} works also for Y {�j}, which
yields part 2. Part 3 holds since X{�j} ⊆ X is always a possible hiding set for
itself.

For any vertex set V in any layered graph G, we can always find a set hiding V
that has “minimal cardinality at each level” in the sense of Definition 6.41.

Lemma 6.43 (Lemma 3.5 in [49]). For any vertex set V we can find a hiding
set V ∗ such that

∣∣V ∗{�j}
∣∣ ≤ L�j(V ) for all j, and either V ∗ = V or |V ∗| < |V |.

Proof. If |V {�j}| ≤ L�j(V ) for all j, we can choose V ∗ = V . Suppose this is
not the case, and let k be minimal such that |V {�k}| > L�k(V ). Let V ′ be a
minimum-size hiding set for V {�k} with V ′ = V ′{�k} and

∣∣V ′
∣∣ = |L�k(V )| and

set V ∗ = V {≺k}
.
∪ V ′. Since V {≺k} hides itself (any set does), we have that V ∗

hides V = V {≺k}
.
∪ V {�k} and that∣∣V ∗∣∣ = |V {≺k}|+ |V ′| < |V {≺k}|+ |V {�k}| = |V | . (6.9)

Combining (6.9) with part 1 of Observation 6.42, we see that the minimal index
found above must be k = 0. Going through the same argument as above again,
we see that

∣∣V ∗{�j}
∣∣ ≤ L�j(V ) for all j, since otherwise (6.9) would yield a

contradiction to the fact that V ′ = V ′{�0} was chosen as a minimum-size hiding
set for V .
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We noted above that L�0(X) is the cardinality of a minimum-size hiding set
of X. For j > 0, the quantity L�j(X) is large if one needs many vertices on level
≥ j to hide X{�j}, i.e., if X{�j} is “spread out” in some sense. Let us consider a
pyramid graph and suppose that X is a tight and hiding-connected set in which the
level-difference maxlevel(X)−minlevel(X) is large. Then it seems that |X| should
also have to be large, since the pyramid “fans out” so quickly. This intuition might
be helpful when looking at the next, crucial definition of Klawe.

Definition 6.44 (Spreading graph). We say that the layered DAG G is a spread-
ing graph if for every (non-empty) hiding-connected set X in G and every level
j = 1, . . . ,maxlevel(VXW), the spreading inequality

|X| ≥ L�j(VXW) + j −minlevel(X) (6.10)

holds.

Let us try to give some more intuition for Definition 6.44 by considering two
extreme cases in a pyramid graph:

• For j ≤ minlevel(X), we have that the term j −minlevel(X) is non-positive,
X{�j} = X, and VX{�j}W = VXW. In this case, (6.10) is just the trivial
fact that no set that hides VXW need be larger than X itself.

• Consider j = maxlevel(VXW), and suppose that VX{�j}W is a single vertex v
with XTxU = X. Then (6.10) requires that |X| ≥ 1 + level(x)−minlevel(X),
and this can be proven to hold by the “converging paths” argument of Theo-
rem 6.10 and Observation 6.12.

Very loosely, Definition 6.44 says that if X contains vertices at low levels that help
to hide other vertices at high levels, then X must be a large set. Just as we tried
to argue above, the spreading inequality (6.10) does indeed hold for pyramids.

Theorem 6.45 ([49]). Pyramids are spreading graphs.

Unfortunately, the proof of Theorem 6.45 in [49] is rather involved. The analysis
is divided into two parts, by first showing that a class of so-called nice graphs are
spreading, and then demonstrating that pyramid graphs are nice. In Section 6.5.2,
we give a simplified, direct proof of the fact that pyramids are spreading that might
be of independent interest.

Accepting Theorem 6.45 on faith for now, we are ready for the decisive lemma:
If our layered DAG is a spreading graph and if U ∪ W is a hiding-connected set
hiding B such that U is too large for the conditions in the Local limited hiding-
cardinality property 6.37 to hold, then replacing U by the minimum-size hiding set
in Lemma 6.43 we get a hiding set in accordance with the Local LHC property.

Lemma 6.46 (Lemma 3.6 in [49]). Suppose that B,W,U are vertex sets in
a layered spreading graph G such that U ∪ W hides B and is tight and hiding-
connected. Then there is a vertex set U∗ such that U∗ ∪ W hides B, U∗ -m U ,
and either U∗ = B or |U∗| < |B|+ |W |.
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Postponing the proof of Lemma 6.46 for a moment, let us note that if we com-
bine this lemma with Lemma 6.40 and Theorem 6.45, the Local limited hiding-
cardinality property for pyramids follows.

Corollary 6.47. Pyramid graphs have the Local limited hiding-cardinality property
6.37.

Proof of Corollary 6.47. This is more or less immediate, but we write down the de-
tails for completeness. Since pyramids are spreading by Theorem 6.45, Lemma 6.46
says that U∗ is a hiding set for (B,W ) and that U∗ -m U . Lemma 6.40 then yields
that m(Y ∪ U∗) ≤ m(Y ∪ U) for all Y with Y ∩ U = ∅. Finally, Lemma 6.46 also
tells us that U∗ ⊆ B or |U∗| < |B|+ |W |, and thus all conditions in Property 6.37
are satisfied.

Continuing by plugging Corollary 6.47 into Lemma 6.38, we get the global LHC
property in Theorem 6.35 on page 76. So all that is needed to conclude Klawe’s
proof of the lower bound for the black-white pebbling price of pyramids is to prove
Theorem 6.45 and Lemma 6.46. We attend to Lemma 6.46 right away, deferring a
proof of Theorem 6.45 to the next subsection.

Proof of Lemma 6.46. If |U | < |B| + |W | we can pick U∗ = U and be done, so
suppose that |U | ≥ |B|+ |W |. Intuitively, this should mean that U is unnecessarily
large, so it ought to be possible to do better. In fact, U is so large that we can just
ignore W and pick a better U∗ that hides B all on its own.

Namely, let U∗ be a minimum-size hiding set for B as in Lemma 6.43. Then
either U∗ = B or

∣∣U∗
∣∣ < |B| ≤ |B| + |W |. To prove the lemma, we also need to

show that U∗ -m U , which will guarantee that U∗ behaves well under union with
other sets with respect to measure.

Before we do the the formal calculations, let us try to provide some intuition for
why it should be the case that U∗ -m U holds, i.e., that for every j we can find an
i ≤ j such that mj

(
U∗) ≤ mi(U). Perhaps it will be helpful at this point for the

reader to look at Example 6.29 again, where the replacement of U1 = {v1, u2, u3, v3}
in Figure 6.5(a) by U∗

1 = {x1, y1} in Figure 6.5(b) shows Lemmas 6.43 and 6.46 in
action.

Suppose first that j ≤ minlevel(U ∪ W ) ≤ minlevel(U). Then the measure
inequality mj(U∗) ≤ mj(U) is obvious, since U{�j} = U is so large that it can
easily pay for all of U∗, let alone U∗{�j} ⊆ U∗.

For j > minlevel(U ∪ W ), however, we can worry that although our hiding set
U∗ does indeed have small size, the vertices in U∗ might be located on high levels in
the graph and be very expensive since they were chosen without regard to measure.
Just throwing away all white pebbles and picking a new set U∗ that hides B on
its own is quite a drastic move, and it is not hard to construct examples where
this is very bad in terms of potential (say, exchanging s5 for v5 in the hiding set
of Example 6.29). The reason that this nevertheless works is that |U | is so large,
that, in addition, U ∪ W is hiding-connected, and that, finally, the graph under
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consideration is spreading. Thanks to this, if there are a lot of expensive vertices in
U∗{�j} on or above some high level j resulting in a large partial measure mj

(
U∗),

the number of vertices on or above level L = minlevel(U ∪W ) in U = U{�L} is
large enough to yield at least as large a partial measure mL

(
U
)
.

Let us do the formal proof, divided into the two cases above.
1. j ≤ minlevel(U ∪ W ): Using the lower bound on the size of U and that level

j is no higher than the minimal level of U , we get

mj
(
U∗) = j + 2 ·

∣∣U∗{�j}
∣∣ [

by definition of mj(·)
]

≤ j + 2 ·
∣∣U∗∣∣ [

since V {�j} ⊆ V for any V
]

≤ j + 2 · |B|
[

by construction of U∗ in Lemma 6.43
]

≤ j + 2 · |U |
[

by assumption |U | ≥ |B|+ |W | ≥ |B|
]

= j + 2 ·
∣∣U{�j}

∣∣ [
U{�j} = U since j ≤ minlevel(U)

]
= mj(U)

[
by definition of mj(·)

]
and we can choose i = j in Definition 6.39.

2. j > minlevel(U ∪ W ): Let L = minlevel(U ∪ W ). The black pebbles in B
are hidden by U ∪ W , or in formal notation B ⊆ VU ∪ WW, so

L�j(B) ≤ L�j

(
VU ∪ WW

)
(6.11)

holds by part 2 of Observation 6.42. Moreover, U ∪ W is a hiding-connected
set of vertices in a spreading graph G, so the spreading inequality in Defini-
tion 6.44 says that |U ∪ W | ≥ L�j

(
VU ∪ WW

)
+ j − L, or

j + L�j

(
VU ∪ WW

)
≤ L + |U ∪ W | (6.12)

after reordering. Combining (6.11) and (6.12) we have that

j + L�j(B) ≤ L + |U ∪ W | (6.13)

and it follows that

mj(U∗) = j + 2 ·
∣∣U∗{�j}

∣∣ [
by definition of mj(·)

]
≤ j +

∣∣U∗{�j}
∣∣+ ∣∣U∗∣∣ [

since V {�j} ⊆ V for any V
]

≤ j + L�j(B) + |B|
[

by construction of U∗ in Lemma 6.43
]

≤ L + |U ∪ W |+ |B|
[

by the inequality (6.13)
]

≤ L + 2 · |U |
[

by assumption |U | ≥ |B|+ |W |
]

= L + 2 · |U{�L}|
[

U{�L} = U since L ≤ minlevel(U)
]

= mL(U)
[

by definition of mL(·)
]

Thus, the partial measure of U at the minimum level L is always larger than
the partial measure of U∗ at levels j above this minimum level, and we can
choose i = L in Definition 6.39.
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Consequently, U∗ -m U , and the lemma follows.

Concluding this subsection, we want to make a comment about Lemmas 6.43
and 6.46 and try to rephrase what they say about hiding sets. Given a tight set
U ∪ W such that B ⊆ VU ∪ WW, we can always pick a U∗ as in Lemma 6.43
with U∗ = B or

∣∣U∗
∣∣ < |B| and with

∣∣U∗{�j}
∣∣ ≤ L�j(B) for all j. This will

sometimes be a good idea, and sometimes not. Just as in Lemma 6.46, for j >
minlevel(U ∪ W ) we can always prove that

mj(U∗) ≤ minlevel(U ∪ W ) + |U |+ (|B|+ |W |) . (6.14)

The key message of Lemma 6.46 is that replacing U by U∗ is a good idea if U is
sufficiently large, namely if |U | ≥ |B|+ |W |, in which case we are guaranteed to get
mj(U∗) ≤ mL(U) for L = minlevel(U ∪ W ).

6.5.2 Pyramids Are Spreading Graphs
The fact that pyramids are spreading graphs, that is, that they satisfy the inequal-
ity (6.10), is a consequence of the following lemma.

Lemma 6.48 (Ice-Cream Cone Lemma). If X is a tight vertex set in a pyramid
Π such that H(X) is a connected graph with vertex set V = VXW, then there is a
unique vertex x ∈ V such that X = XTxU and V = VXTxUW ⊆ Πx

M.

What the lemma says it that for any tight vertex set X, the connected compo-
nents V1, . . . , Vk look like ragged ice-cream cones turned upside down. Moreover,
for each “ice-cream cone” Vi, all vertices in X ∩ Vi are needed to hide the top
vertex. The two connected components in Figure 6.6 are both examples of such
“ice-cream cones.”

Before proving Lemma 6.48, we show how this lemma can be used to establish
that pyramid graphs are spreading by a converging-paths argument as in Observa-
tion 6.12.

Proof of Theorem 6.45. Suppose that X is a tight and hiding-connected set, i.e.,
such that H(X) is a single connected component with set of vertices V = VXW. Let
x ∈ V be the vertex given by Lemma 6.48 such that X = XTxU and V = VXTxUW ⊆
Πx

M, and let M = level(x).
For any j ≤ M we have

L�j(VXW) ≤ M − j + 1 . (6.15)

This is so since there are only so many vertices on level j in Πx
M and the set of all

these vertices must hide everything in VXW above level j since VXW ⊆ Πx
M.

By assumption X is tight and all of X is needed to hide x, i.e., X = XTxU. Pick
a vertex v ∈ X on bottom level L = minlevel(X). Since v ∈ XTxU there is a path
P : v  x such that P ∩ X = {v}. Consider the set of converging source paths
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for P in Observation 6.12. All these converging paths P1, P2, . . . , PM−L must be
blocked by distinct vertices in X \ {v}, since Pi ∩ Pj ⊆ P \ {v} and P \ {v} does
not intersect X. From this the inequality

|X| ≥ M − L + 1 (6.16)

follows. By combining (6.15) and (6.16), we get that

|X| − L�j(VXW) ≥ M − L + 1− (M − j + 1) = j − L (6.17)

which is the required spreading inequality (6.10).

The rest of this subsection is devoted to proving the Ice-Cream Cone Lemma.
We will use that fact that pyramids are planar graphs where we can talk about left
and right. More precisely, the following (immediate) observation will be central in
our proof.

Observation 6.49. Suppose for a planar DAG G that we have a source path P

to a vertex w and two vertices u, v ∈ G
\w
M on opposite sides of P . Then any path

Q : u v must intersect P .

Given a vertex v in a pyramid Π, there is a unique path that passes through v
and in every vertex u moves to the right-hand successor of u. We will refer to this
path as the north-east path through v, or just the NE-path through v for short, and
denote it by PNE(v). The path through v always moving to the left is the north-west
path or NW-path through v, and is denoted PNW(v). For instance, for the vertex v4

in our running example pyramid in Figure 6.2 we have PNE(v4) = {s4, u4, v4, w4}
and PNW(v4) = {s6, u5, v4, w3, x2, y1}. To simplify the proofs in what follows, we
make a couple of observations.

Observation 6.50. Suppose that X is a tight set of vertices in a pyramid Π and
that v ∈ VXW. Then VXTvUW ⊆ Πv

M.

Proof. Since all vertices in XTvU have a path to v by definition, it holds that XTvU ⊆
Πv

M. Any vertex u ∈ Π \ Πv
M must lie either to the left of PNE(v) or to the right

of PNW(v) (or both). In the first case, PNE(u) is a path via u that does not
intersect XTvU, so u /∈ VXTvUW. In the second case, we can draw the same conclusion
by looking at PNW(u). Thus,

(
Π \Πv

M

)
∩ VXTvUW = ∅.

Observation 6.51. Suppose that X is a tight set of vertices in a DAG G and that
v ∈ VXW. Then there is a source path P to v such that |P ∩ X| = 1.

Proof. Let P1 be any source path to v and note that P1 intersects X since v ∈ VXW.
Let y be the last vertex on P1 in P1 ∩ X, i.e., the vertex on the highest level in this
intersection. Since X is tight, there is a source path P2 to y that does not intersect
X \ {y}. Let P be the path that starts like P2 and then switches to P1 in y. Then
|P ∩ X| = |{y}| = 1.
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Using Observations 6.50 and 6.51, we can simplify the definition of the hiding
set graph. Note that Observation 6.50 is not true for arbitrary layered DAGs,
however, or even for arbitrary layered planar DAGs, so the simplification below
does not work in general.

Proposition 6.52. Let H = H(Π, X) be the hiding set graph for a tight set of
vertices X in a pyramid Π, and suppose that u, v ∈ VXW. Then the following
conditions are equivalent:

1. (u, v) is an edge in H, i.e., Πu
M ∩ VXTuUW ∩ Πv

M ∩ VXTvUW 6= ∅.

2. VXTuUW ∩ VXTvUW 6= ∅.

3. XTuU ∩ XTvU 6= ∅.

Proof. The directions (1) ⇒ (2) and (3) ⇒ (2) are immediate. The implication
(2) ⇒ (1) also follows easily, since VXTuUW ⊆ Πu

M and VXTvUW ⊆ Πv
M by Observa-

tion 6.50. To prove (2) ⇒ (3), fix some vertex w ∈ VXTuUW ∩ VXTvUW and let P be a
source path to w as in Observation 6.51 with P ∩ X = {y} for some vertex y. Since
P ∩ XTuU 6= ∅ 6= P ∩ XTuU by assumption, we have y ∈ XTuU ∩ XTvU 6= ∅.

As the first part of the proof of Lemma 6.48, we show that all vertices hidden by
a hiding-connected set X are contained in a subpyramid, the top vertex of which
is also hidden by X. This gives the ice-cream cone shape alluded to by the name
of the lemma.

Lemma 6.53. Let H = H(Π, X) be the hiding set graph of a hiding-connected
vertex set X in a pyramid Π. Then there is a unique vertex x ∈ VXW such that
VXW ⊆ Πx

M.

Proof. It is clear that at most one vertex x ∈ VXW can have the properties stated in
the lemma. We show that such a vertex exists. As a quick preview of the proof, we
note that it is easy to find a unique vertex x on minimal level such that VXW ⊆ Πx

M.
The crucial part of the lemma is that x is hidden by X. The reason that this holds
is that the graph H is connected. If x /∈ VXW, we can find a source path P to
the top vertex z of the pyramid such that P does not intersect X but there are
vertices in H both to the left and to the right of P . But there is no way we can
have an edge crossing P in H, so the hiding set graph cannot be connected after
all. Contradiction.

The above paragraph really is the whole proof, but let us also provide the
(somewhat tedious) formal details for completeness. To follow the formalization of
the argument, the reader might be helped by looking at Figure 6.7. Suppose that
Π has height h and let s1, s2, . . . , sh+1 be the sources enumerated from left to right.
Look at the north-east paths PNE(s1), PNE(s2), . . . and let si be the first vertex
such that PNE(si) ∩ VXW 6= ∅. Similarly, consider PNW(sh+1), PNW(sh), . . . and let
sj be the first vertex such that PNW(sj) ∩ VXW 6= ∅. It clearly holds that i ≤ j.
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z

x

u

v

w

si s∗ sj

P ∗

PNW(x)

PNE(x)

X

Figure 6.7: Illustration of proof of Lemma 6.53 that H is not connected if x /∈ VXW.

Let x be the unique vertex where PNE(si) and PNW(sj) intersect. By con-
struction, we have VXW ⊆ Πx

M, since no NE-path to the left of PNE(si) = PNE(x)
intersects VXW and neither does any NW-path to the right of PNW(sj) = PNW(x).
We need to show that it also holds that x ∈ VXW.

To derive a contradiction, suppose instead that x /∈ VXW. By definition, there is
a path P from some source s∗ to x such that P ∩ VXW = ∅. P cannot coincide with
PNE(x) or PNW(x) since the latter two paths both intersect VXW by construction.
Since ΠO

\x ∩ VXW = ∅, we can extend P to a path P ∗ : s∗  z via x having
the property that P ∗ ∩ VXW = ∅ but there are vertices in H(X) both to the left
and to the right of P ∗, namely, the non-empty sets PNE(x) ∩ VXW ∩ Πx

M and
PNW(x) ∩ VXW ∩ Πx

M. We claim that this implies that H is not connected. This
is a contradiction to the assumptions in the statement of the lemma and it follows
that x ∈ VXW must hold.

To establish the claim, note that if H is connected, there must exist some edge
(u, v) between a vertex u to the left of P ∗ and a vertex v to the right of P ∗.
Then Proposition 6.52 says that VXTuUW ∩ VXTvUW 6= ∅. Pick any vertex w ∈
VXTuUW ∩ VXTvUW and assume without loss of generality that w is on the right-
hand side of P ∗. We prove that such a vertex w cannot exist. See the example
vertices labelled u, v and w in Figure 6.7, which illustrate the fact that w /∈ VXTuUW
if w ∈ VXTvUW.



6.5. A TIGHT BOUND FOR BLACK-WHITE PEBBLING 87

Since w is assumed to be hidden by VXTuUW, the NW-path through w must
intersect XTuU somewhere before w or in w. Fix any y ∈ PNW(w) ∩ XTuU ∩ Πw

M
and note that y must also be located to the right of P ∗. By Definition 6.26, there
is a source path P ′ via y to u such that P ′ ∩ X = {y}. But P ′ must intersect
P ∗ somewhere above y, since y is to the right and u is to the left of P ∗. (Here
we use Observation 6.49.) Consider the source path that starts like P ∗ and then
switches to P ′ at some intersection point in P ′ ∩ P ∗ ∩ ΠO

\y . This path reaches u
but does not intersect X, contradicting the assumption u ∈ VXW. It follows that
VXTuUW ∩ VXTvUW = ∅ for all u and v on different sides of P ∗, so there are no edges
across P ∗ in H. This proves the claim.

The second part needed to prove Lemma 6.48 is that all vertices in X are
required to hide the top vertex x ∈ VXW found in Lemma 6.53.

Lemma 6.54. Let H = H(Π, X) be the hiding set graph of a hiding-connected
vertex set X in a pyramid Π and let x ∈ VXW be the unique vertex such that
VXW ⊆ Πx

M. Then X = XTxU.

Proof. By definition, XTxU ⊆ X. We want to show that XTxU = X. Again, let us
first try to convey some intuition why the lemma is true. If X \ XTxU 6= ∅, since
X is hiding-connected there must exist some vertex hidden by all of X but not by
just XTxU or X \ XTxU (otherwise there can be no edge between the components
of H containing XTxU and X \XTxU, respectively). But if so, it can be shown that
the extra vertices in X \ XTxU help XTxU to hide one of its own vertices. This
contradicts the fact that X is tight, so we must have XTxU = X which proves the
lemma.

Let us fill in the formal details in this proof sketch. Assume, to derive a contra-
diction, that XTxU 6= X. Since X is tight, it holds that (X \XTxU) ∩ VXTxUW = ∅,
so H contains vertices outside of VXTxUW. Since H is connected, there must exist
some edge

(
u, u′

)
between a pair of vertices u ∈ VXW \ VXTxUW and u′ ∈ VXTxUW.

Lemma 6.27 says that XTu′U ⊆ XTxU and Proposition 6.52 then tells us that
XTuU ∩ XTxU 6= ∅. Also, XTuU \ XTxU 6= ∅ since u /∈ XTxU. For the rest of
this proof, fix some arbitrary vertices r ∈ XTuU ∩ XTxU and s ∈ XTuU \XTxU. We
refer to Figure 6.8 for an illustration of the proof from here onwards.

By Definition 6.26, there are source paths Pr via r to u and Ps via s to u that
intersect X only in r and s, respectively. Also, there is a source path P to x such
that P ∩ X = {r} since r ∈ XTxU. Suppose without loss of generality that s is
to the right of P . The paths Ps and P cannot intersect between s and u. To see
this, observe that if Ps crosses P after s but before r, then by starting with P
and switching to Ps at the intersection point we get a source path to u that is not
blocked by X. And if the crossing is after r, we can start with Ps and then switch
to P when the paths intersect, which implies that s ∈ XTxU contrary to assumption.
Thus u is located to the right of P as well.

Extend Ps by going north-west from u until hitting P , which must happen
somewhere in between r and x, and then following P to x. Denote this extended
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Figure 6.8: Illustration of proof of Lemma 6.54 that all of X is needed to hide x.

path by PE
s and let w be the vertex starting from which PE

s and P coincide. The
path PE

s must intersect X in some more vertex after s since s /∈ XTxU. Pick any
v ∈ PE

s ∩ (X \ {s}). By construction, v must be located strictly between u and w.
We claim that X \ {v} hides v. This contradicts the tightness of X and the lemma
follows.

To prove the claim, consider any source path Pv to v and assume that Pv ∩ (X \
{v}) = ∅. Then, in particular, r /∈ Pv. Suppose that Pv passes to the left of r. By
planarity, Pv must intersect P somewhere above r. But if so, we can construct a
source path P ′ to x that starts like Pv and switches to P at this intersection point.
We get P ′ ∩ X = ∅, which contradicts x ∈ XTxU. If instead Pv passes r on the
right, then Pv must cross Pr in order to get to v. This implies that there is a source
path P ′′ to u such that P ′′ ∩ X = ∅, namely the path obtained by starting to go
along Pv and then changing to Pr when the two paths intersect above r. Thus we
get a contradiction in this case as well. Hence, X \ {v} blocks any source path to
v as claimed.

The Ice-Cream Cone Lemma 6.48 now follows. Thereby, the proof of the lower
bound on the black-white pebbling price of pyramid graphs in Theorem 6.24 on
page 71 is complete.
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Chapter 7

A Simplified Way of Proving Trade-offs

As a warm-up before launching into the proofs of the results that are the main
contribution of this thesis, in this chapter we present our simplification of the
length-space trade-off result in [45], and show how the same ideas can be used to
prove other related theorems. We also point out two key ingredients needed for
our proofs to work and discuss possible conclusions to be drawn regarding proving
trade-off results for resolution. This chapter is based on [61], to appear as one of
the results in [63].

We will need the following easy observation.

Observation 7.1. Suppose that F = G∧H where G and H are unsatisfiable CNF
formulas over disjoint sets of variables. Then any resolution refutation π : F ` 0
must contain a refutation of either G or H.

Proof. By induction, we can never resolve a clause derived from G with a clause
derived from H, since the sets of variables of the two clauses are disjoint.

7.1 A Proof of Hertel and Pitassi’s Trade-off Result

We show the following version of the length-variable space trade-off theorem of
Hertel and Pitassi [45], with somewhat improved parameters and a very much
simpler proof.

Theorem 3.6 (restated). There is a family of CNF formulas {Fn}∞n=1 of size
Θ(n) such that:

• The variable space of refuting Fn in resolution is VarSp(Fn ` 0) = Θ(n).

• Any refutation π : Fn ` 0 in minimal variable space has length exp(Ω(
√

n)).

• Adding at most 2 extra units of storage, one can obtain a refutation π′ in
space VarSp(π′) = VarSp(Fn ` 0) + 2 = Θ(n) and length L(π′) = O(n), i.e.,
linear in the formula size.

91
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We note that the CNF formulas used by Hertel and Pitassi, as well as those in
our proof, have clauses of width Θ(n).

Proof of Theorem 3.6. Let Gn be CNF formulas as in Theorem 4.18 having size
Θ(n), refutation length L(Gn ` 0) = exp(Ω(n)), and refutation clause space
Sp(Gn ` 0) = Θ(n). Let us define g(n) = VarSp(Gn ` 0) to be the refutation
variable space of the formulas. Then it holds that Ω(n) = g(n) = O

(
n2
)
.

Let Hm be the formulas

Hm = y1 ∧ · · · ∧ ym ∧ (y1 ∨ · · · ∨ ym) . (7.1)

It is not hard to see that there are resolution refutations π : Hm ` 0 in length L(π) =
2m + 1 and variable space VarSp(π) = 2m, and that L(Hm ` 0) = 2m + 1 and
VarSp(Hm ` 0) = 2m are also the lower bounds (all clauses must be used in any
refutation, and the minimum space refutation must start by downloading the wide
clause and some unit clause, and then resolve).

Now define
Fn = Gn ∧Hbg(n)/2c+1 (7.2)

where Gn and Hbg(n)/2c+1 have disjoint sets of variables. By Observation 7.1, any
resolution refutation of Fn refutes either Gn or Hbg(n)/2c+1. We have

VarSp
(
Hbg(n)/2c+1 ` 0

)
= 2 · (bg(n)/2c+ 1) > g(n) = VarSp(Gn ` 0) , (7.3)

so a resolution refutation in minimal variable space must refute Gn in length
exp(Ω(n)). However, allowing at most two more literals in memory, the resolu-
tion refutation can disprove the formula Hbg(n)/2c+1 instead in length linear in the
(total) formula size.

Thus, we have a formula family {Fn}∞n=1 of size Ω(n) = S (Fn) = O
(
n2
)

refutable in length and variable space both linear in the formula size, but where
any minimum variable space refutation must have length exp(Ω(n)). Adjusting the
indices as needed, we get a formula family with a trade-off of the form stated in
Theorem 3.6.

7.2 Some Other Trade-off Results for Resolution

Using a similar trick as in the previous section, we can prove the following length-
clause space trade-off.

Theorem 2.8 (restated). There is a family of k-CNF formulas {Fn}∞n=1 of size
Θ(n) such that:

• The minimal clause space of refuting Fn is Sp(Fn ` 0) = Θ
(

3
√

n
)
.

• Any resolution refutation π : Fn ` 0 in minimal clause space must have length
L(π) = exp

(
Ω
(

3
√

n
))

.
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• There are resolution refutations π′ : Fn ` 0 in asymptotically minimal clause
space Sp(π′) = O

(
Sp(Fn ` 0)

)
and length L(π′) = O(n), i.e., linear in the

formula size.

The same game can be played with refutation width as well.

Theorem 7.2. There is a family of k-CNF formulas {Fn}∞n=1 of size Θ(n) such
that:

• The minimal width of refuting Fn is W(Fn ` 0) = Θ
(

3
√

n
)
.

• Any resolution refutation π : Fn ` 0 in minimal width must have length L(π) =
exp
(
Ω
(

3
√

n
))

.

• There are resolution refutations π′ : Fn ` 0 in width W(π′) = O
(
W(Fn ` 0)

)
and length L(π′) = O(n).

We only present the proof of Theorem 2.8, as Theorem 7.2 is proved in exactly
the same manner.

Proof of Theorem 2.8. Let Gn be a 3-CNF formula family as in Theorem 4.18 hav-
ing size Θ(n), refutation length L(Gn ` 0) = exp(Θ(n)), and refutation clause
space Sp(Gn ` 0) = Θ(n). Let Hm be a 3-CNF formula family as in Theorem 4.21
of size Θ

(
m3
)

such that L(Hm ` 0) = O
(
m3
)

and Sp(Hm ` 0) = Θ(m). Define

g(n) = min
{
m |Sp(Hm ` 0) > Sp(Gn ` 0)

}
. (7.4)

Note that since Sp(Hm ` 0) = Ω(m) and Sp(Gn ` 0) = O(n), we know that
g(n) = O(n).

Now as before let Fn = Gn ∧Hg(n), where Gn and Hg(n) have disjoint sets of
variables. By Observation 7.1, any resolution refutation of Fn is a refutation of
either Gn or Hg(n). Since g(n) has been chosen so that Sp

(
Hg(n) ` 0

)
> Sp(Gn `

0), a refutation in minimal clause space has to refute Gn, which requires exponential
length. However, since g(n) = O(n), Theorem 4.21 tells us that there are refutations
of Hg(n) in length O

(
n3
)

and clause space O(n).

7.3 Making the Main Trick Explicit

The proofs of the theorems in Sections 7.1 and 7.2 come very easily; in fact almost
too easily. What is it that makes this possible? In this and the next section, we
want to highlight two key ingredients in the constructions.

The common paradigm for the proofs of Theorems 2.8, 3.6, and 7.2 is as follows.
We are given two complexity measures M1 and M2 that we want to trade off against
one another. We do this by finding formulas Gn and Hm such that

• The formulas Gn are very hard with respect to the first resource measured
by M1, while M2

(
Gn

)
is at most some (more or less trivial) upper bound.
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• The formulas Hm are very easy with respect to M1, but there is some non-
trivial lower bound on the usage M2

(
Hm

)
of the second resource.

• The index m = m(n) is chosen so as to minimize M2

(
Hm(n)

)
− M2

(
Gn

)
>

0, i.e., so that Hm(n) requires just a little bit more of the second resource
than Gn.

Then for Fn = Gn ∧Hm(n), if we demand that a resolution refutation π must use
the minimal amount of the second resource, it will have to use a large amount of
the first resource. However, relaxing the requirement on the second resource by the
very small expression M2

(
Hm(n)

)
−M2

(
Gn

)
, we can get a refutation π′ using small

amounts of both resources.
Clearly, the formula families {Fn}∞n=1 that we get in this way are “redundant”

in the sense that each formula Fn is the conjunction of two formulas Gn and Hm

which are themselves already unsatisfiable. Formally, we say that a formula F is
minimally unsatisfiable if F is unsatisfiable, but removing any clause C ∈ F makes
the remaining subformula F \ {C} satisfiable. We note that if we would add the
requirement in Sections 7.1 and 7.2 that the formulas under consideration should be
minimally unsatisfiable, the proof idea outlined above fails completely. In contrast,
the result in [45] seems to be independent of any such conditions. What conclusions
can be drawn from this?

On the one hand, trade-off results for minimally unsatisfiable formulas seem
more interesting, since they tell us something about a property that some natural
formula family has, rather than about some funny phenomena arising because we
glue together two totally unrelated formulas.

On the other hand, one could argue that the main motivation for studying space
is the connection to memory requirements for proof search algorithms, for instance
algorithms using clause learning. And for such algorithms, a minimality condition
might appear somewhat arbitrary. There are no guarantees that “real-life” formulas
will be minimally unsatisfiable, and most probably there is no efficient way of testing
this condition.1 So in practice, trade-off results for non-minimal formulas might be
just as interesting.

7.4 An Auxiliary Trick for Variable Space

A second important reason why our proof of Theorem 3.6 gives sharp results is that
we are allowed to use CNF formulas of growing width. It is precisely because of this
that we can easily construct the needed formulas Hm that are hard with respect
to variable space but easy with respect to length. If we would have to restrict
ourselves to k-CNF formulas for k constant, it would be much more difficult to

1The problem of deciding minimal unsatisfiability is NP-hard but not known to be in NP.
Formally, a language L is in the complexity class DP if and only if there are two languages L1 ∈ NP
and L2 ∈ co-NP such that L = L1 ∩ L2 [64]. minimal unsatisfiability is DP-complete [65], and
it seems to be commonly believed that DP * NP ∪ co-NP.
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find such examples. Although the formulas in Theorem 4.21 could be plugged in to
give a slightly weaker trade-off, we are not aware of any family of k-CNF formulas
that can provably give the very sharp result in Theorem 3.6. (Note, though, that
the formula families used in the proofs of Theorems 2.8 and 7.2 consist of k-CNF
formulas).

This is not the only example of a space measure behaving badly for formu-
las of growing width. We have already discussed the lower bound Sp(F ` 0) ≥
W(F ` 0)−W(F ) + 3 on clause space in terms of length in Theorem 4.22, and the
result, proven in this thesis, that the inequality above is asymptotically strict in
the sense that there are k-CNF formula families Fn with W(Fn ` 0) = O(1) but
Sp(Fn ` 0) = ω(1).

However, if we are allowed to consider formulas of growing width, the fact that
the inequality in Theorem 4.22 is not tight is entirely trivial. Namely, let us say
that a CNF formula F is k-wide if all clauses in F have size at least k. In [39], it was
proven that for F a k-wide unsatisfiable CNF formula it holds that Sp(F ` 0) ≥
k+2. So in order to get a formula family Fn such that W(Fn ` 0)−W(Fn) = O(1)
but Sp(Fn ` 0) = ω(1), just pick some suitable formulas {Fn}∞n=1 of growing width.

In our opinion, these phenomena are clearly artificial. Since every CNF formula
can be rewritten as an equivalent k-CNF formula without increasing the size more
than linearly (using extension variables), the right approach when studying space
measures in resolution seems to be to require that the formulas under study should
have constant width.

As a final comment before moving on to our main results, we note that the
open trade-off questions mentioned in Section 12.3 do not suffer from the technical
problems discussed above.





Chapter 8

A Separation of Space and Width

In this chapter we prove Theorem 2.1 and Corollary 2.2, thus providing a first
(weak) separation of clause space and width. We do this by establishing asymp-
totically tight bounds on the clause space of refuting pebbling contradictions over
binary trees. This result has been published as [60], the full-length version of which
is to appear as [62].

We note that the result in this chapter is subsumed by what will be presented in
Chapter 9 in the sense that the results there hold for more general classes of graphs
and formulas. However, the actual constants that we get for pebbling contradictions
over binary trees are much better in this chapter, and in fact could be pushed to
very nearly optimal if one wanted to (although we opt for a simpler proof with
slightly worse constants in what follows).

8.1 Overview of Space-Width Separation Proof

Let us start by describing how we implement the general approach in Section 3.3 in
this concrete case. Recall that our guiding intuition is that some kind of pebbling–
resolution-correspondence as sketched in Section 3.2 should hold, but since we are
not able to interpret clauses in terms of pebbles in such a way that resolution
derivation steps comply with the rather restrictive set of rules of the black-white
pebble game, we instead try to modify the pebbling rules.

The most important change in the new pebble game that we construct, com-
pared to the black-white pebble game in Definition 5.1, is that we allow “sliding
moves” of black pebbles downwards and of white pebbles upwards in the graph. As
we will see, this leads to serious technical difficulties. Another, less far-reaching,
modification of the game can be motivated as follows. Looking at the clauses and
pebbles in Figure 3.3 on page 29, it somehow seems that the white pebbles on s and t
are relevant only for the black pebble on v. The black pebble on u corresponding
to
∨d

i=1 x(u)i is wholly independent of these white pebbles, although strictly from
a pebbling perspective it is not, since the white pebble on s is below u. It turns

97
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out that it is important to formalize and keep track of this “dependence” relation
between black and white pebbles, so we will have to label each black pebble in the
graph with the white-pebbled vertices it depends on. Because of this property, we
name the new game the labelled pebble game (Definition 8.5).

Once we have defined this labelled pebble game in Section 8.2, we continue
according to the proof outline in Section 3.3. However, for reasons that will be
clear below, we restrict our attention to binary trees.

In Section 8.3, we show that a resolution refutation of a pebbling contradiction
defined over a binary tree induces a pebbling of this tree in our modified pebble
game.

Theorem 8.1. Let Pebd
Th

denote the pebbling contradiction of degree d ≥ 1 over
the complete binary tree Th of height h. Then there is a translation function from
sets of clauses derived from Pebd

Th
into sets of pebbles in Th such that any resolu-

tion refutation π of Pebd
Th

corresponds to a labelled pebbling Lπ of Th under this
translation.

In Section 8.4, we prove that if the number of variables d associated to each
vertex is at least 2, then the cost of the labelled pebbling Lπ in Theorem 8.1 is
related to the space of the resolution refutation π.

Theorem 8.2. If π is a resolution refutation of a pebbling contradiction Pebd
Th

of
degree d > 1, then the cost of the associated labelled pebbling Lπ is asymptotically
bounded by the space of π, or in formal notation cost(Lπ) = O(Sp(π)).

Finally, we need a lower bound for the pebbling price of binary trees in the
labelled pebble game.

Theorem 8.3. Any complete labelled pebbling L of Th must have cost at least linear
in the tree height h. That is, the labelled pebbling price of Th is L-Peb(Th) = Ω(h).

We establish this result by transforming labelled pebblings to pebblings in the
standard black-white pebble game and then using known bounds on the black-white
pebbling price of binary trees (Theorem 5.2). The technically quite complicated
proof is given in Section 8.5. The reason that we consider only binary trees is that
the analogue of Theorem 8.3 does not hold for more general DAGs. For instance,
it is false for the pyramid graph in Figure 3.3 (as is shown in Lemma 8.6).

Putting all of this together, we can now prove the main results in this chapter.

Theorem 2.1 (restated). Let Th denote the complete binary tree of height h and
Pebd

Th
the pebbling contradiction of degree d > 1 defined over Th. Then the space

of refuting Pebd
Th

by resolution is Sp(Pebd
Th
` 0) = Θ(h).

Proof. The upper bound Sp(Pebd
Th
` 0) = O(h) is the easy part. It follows from

Theorem 5.2 and Proposition 5.10, since the refutation space of a pebbling contra-
diction is upper-bounded by the black pebbling price of its underlying graph, and
binary trees of height h have black pebbling price O(h).
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For the lower bound, let π be any resolution refutation of Pebd
Th

. Consider the
associated labelled pebbling Lπ provided by Theorem 8.1. On the one hand, we
know that cost(Lπ) = O(Sp(π)) by Theorem 8.2, provided that d > 1. On the other
hand, Theorem 8.3 tells us that the cost of any pebbling of Th is Ω(h), so in partic-
ular we must have cost(Lπ) = Ω(h). Combining these two bounds on cost(Lπ), we
see that Sp(π) = Ω(h). Since this bound holds for any resolution refutation π, it
follows that the minimum clause space of refuting Pebd

Th
is Sp(Pebd

Th
` 0) = Ω(h)

for d > 1. The theorem follows.

We know that the pebbling contradiction Pebd
G is a (2+d)-CNF formula, and

for fixed d the size of the formula is linear in the number of vertices of G. Thus, for
binary trees, Pebd

Th
has size exponential in the tree height h. Also, Proposition 5.7

tells us that Pebd
G can be refuted in width W(Pebd

G ` 0) = O(d) for any graph G.
The separation of space and width in Corollary 2.2 follows from this if we fix

d > 1 and set Fn = Pebd
Th

for h = blog(n + 1)c in Theorem 2.1.

Corollary 2.2 (restated). For all k ≥ 4, there is a family of k-CNF formulas{
Fn

}∞
n=1

of size O(n) such that W(Fn ` 0) = O(1) but Sp(Fn ` 0) = Θ(log n).

8.2 The Labelled Pebble Game

In this section, we present our modified pebble game used for analyzing resolution
derivations. We then argue that for binary trees, we get essentially the same bound
on pebbling price in this new pebble game as in the black-white pebble game of
Definition 5.1.

Our first modification of the pebble game is to change the rule for white pebble
removal so that a white pebble can be removed from a vertex when a black pebble
is placed on that same vertex. This will make the correspondence between peb-
blings and resolution derivations much more natural. Clearly, this is only a minor
adjustment, and it is easy to prove formally that it does not really change anything.

Our second, and far more substantial, modification of the pebble game is moti-
vated by the fact that in general, a resolution refutation has no obvious reason to
follow our intuition that it should somehow correspond to a pebbling of the under-
lying graph. Since pebbles are induced by clauses, if at some derivation step the
refutation chooses to erase “the wrong clause” from the point of view of the induced
pebble configuration, this can lead to pebbles just disappearing. This is all in order
for black pebbles, but if we allow uncontrolled removal of white pebbles, we cannot
hope for any nontrivial lower bounds on pebbling price (just white-pebble the two
predecessors of the target, then black-pebble the target itself, and finally remove
the white pebbles).

Our solution to this problem is to keep track of exactly which white pebbles
have been used to get a black pebble on a vertex. Loosely put, removing a white
pebble from a vertex v without placing a black pebble on the same vertex should
be in order, provided that all black pebbles placed on vertices above v in the DAG
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with the help of the white pebble on v are removed as well. We define a pebble
subconfiguration to consist of a black pebble together with all the white pebbles this
black pebble depends on, and require that if a white pebble in a subconfiguration is
removed, then all other pebbles in this subconfiguration must be removed as well.

Another problem is that some resolution derivation steps can lead to what looks
like “backward” pebbling moves, with white pebbles moving upwards and black
pebbles downwards in the DAG. This problem turns out to be even more serious.
We try to get around it by introducing an order relation on pebble subconfigu-
rations, where the intuition is that “stronger” pebble subconfigurations are “closer”
to the final goal of getting the target black-pebbled. Using this order relation, the
backward pebbling moves can be characterized as moves from stronger to weaker
pebble subconfigurations, so we add a pebbling rule allowing such moves.

To define this modified pebble game formally, we need some notation and ter-
minology. We write p, q, r, s, u, v, w, x, y to denote arbitrary vertices of the DAG G
and U, V,W to denote arbitrary subsets of vertices. We will always use z to denote
the unique target vertex of the DAG. Also, recall that succ(v) denotes the imme-
diate successor of v and pred(v) denotes the immediate predecessors. For a leaf v
we have pred(v) = ∅, and for the target z we have succ(z) = ∅. We say that w is
below v if there is a path from w to v and above v if there is a path from v to w.
If in addition v 6= w, the vertex w is said to be strictly below/above v. We say
that v and w are unrelated if v is neither above nor below w. The vertex set W is
(strictly) below v if all w ∈ W are (strictly) below v.

We now present the concept used to “label” each black pebble with the set of
white pebbles (if any) that this black pebble is dependent on. The intuition behind
the next definition is that v〈W 〉 should denote a black pebble on v together with
the white pebbles W below v with the help of which we have been able to place
the black pebble on v.

Definition 8.4 (Pebble subconfiguration). For a vertex v and a set of vertices
W strictly below v, we say that v〈W 〉 is a pebble subconfiguration with a black
pebble on v supported by white pebbles on w ∈ W . The black pebble on v in
v〈W 〉 is said to be dependent on the white pebbles in W . We refer to v〈∅〉 as an
independent black pebble.

The cover of v〈W 〉, denoted cover(v〈W 〉), consists of all vertices U such that
there is a path P : u  v from u ∈ U to v that does not intersect W , i.e.,
P ∩ W = ∅. If cover(v1〈W1〉) ⊆ cover(v2〈W2〉), we say that v1〈W1〉 is covered by
v2〈W2〉 and write v1〈W1〉 � v2〈W2〉. If cover(v1〈W1〉) $ cover(v2〈W2〉), we write
v1〈W1〉 ≺ v2〈W2〉.

We use L to denote a set of pebble subconfigurations and refer to such a set
as a labelled pebble configuration or an L-configuration. The cover of an L-configu-
ration L is defined as cover(L) =

⋃
v〈W 〉∈L cover(v〈W 〉), and we write L1 � L2 if

cover(L1) ⊆ cover(L2).

In the following, when we specify the set W of white-pebbled vertices in v〈W 〉
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(a) The subconfigurations z〈x, v〉, r〈p, q〉, and w〈∅〉.

z

x

r v w

p q

(b) The covers cover(z〈x, v〉), cover(r〈p, q〉), and cover(w〈∅〉) (dashed).

Figure 8.1: Three pebble subconfigurations and their covered vertices.

by enumerating the members of W , we will abuse notation somewhat by omitting
the curly brackets inside 〈 and 〉 around this set.

For an illustration of Definition 8.4, see Figure 8.1. Note that w〈∅〉 ≺ z〈x, v〉
since cover(w〈∅〉) $ cover(z〈x, v〉) (see Figure 8.1(b)). We remark that � is an
order relation on pebble subconfigurations, as the notation suggests, and that the
minimal elements are subconfigurations v〈pred(v)〉.

Our modified pebble game is defined in terms of moves not of individual pebbles,
but of entire pebble subconfigurations. In this pebble game, a black pebble on v is
always placed together with white pebbles on pred(v) below (except for at the leaves
where pred(v) = ∅). Removals of white pebbles are always allowed, but since we
can remove only a whole subconfiguration, the removal rule ensures that any black
pebble dependent on the removed white pebbles is removed as well. A “traditional”
removal of a white pebble from w corresponds to merging two subconfigurations
v〈V 〉 and w〈W 〉 into v〈(V ∪ W ) \ {w}〉 and then erasing v〈V 〉 and w〈W 〉 (see
Figure 8.2 for an example). Finally, we allow reversal moves to weaker subconfigu-
rations. The formal definition is as follows.

Definition 8.5 (Labelled pebble game). For G any DAG with unique target z,
a labelled pebbling, or L-pebbling, on G is a sequence L = {L0, . . . , Lτ} of labelled
pebble configurations such that for all t it holds that Lt 6= Lt+1 and Lt+1 is obtained
from Lt by one of the following rules:

Introduction Lt+1 = Lt ∪ {v〈pred(v)〉}.
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(a) z〈x, v〉 and cover(z〈x, v〉).
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p q

(b) x〈p, q, u〉 and cover(x〈p, q, u〉).

z
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p q

(c) The merger z〈p, q, u, v〉 with cover.

Figure 8.2: Two pebble subconfigurations and their merger.

Erasure Lt+1 = Lt \ {v〈V 〉} for v〈V 〉 ∈ Lt.

Merger Lt+1 = Lt ∪
{
v〈(V ∪W ) \ {w}〉

}
for v〈V 〉, w〈W 〉 ∈ Lt with w ∈ V . We

denote this subconfiguration merge(v〈V 〉, w〈W 〉), where the pair of subcon-
figurations v〈V 〉, w〈W 〉 is always ordered so that w ∈ V , and refer to it as a
merger on w.

Reversal Lt+1 = Lt ∪ {v〈V 〉} if v〈V 〉 � u〈U〉 for some u〈U〉 ∈ Lt.

Let Bl(Lt) =
⋃
{v | v〈W 〉 ∈ Lt} denote the set of all black pebbles in Lt and

Wh(Lt) =
⋃
{W | v〈W 〉 ∈ Lt} the set of all white pebbles. Then the cost of an

L-configuration L is cost(L) = |Bl(L) ∪ Wh(L)|, and the cost of an L-pebbling
L = {L0, . . . , Lτ} is maxt∈[τ ]{cost(Lt)}.

A complete labelled pebbling of G is an L-pebbling L such that L0 = ∅ and
Lτ = {z〈∅〉}. The labelled pebbling price of G, denoted L-Peb(G), is the minimum
cost of any complete L-pebbling of G.

The “backward” pebbling moves mentioned at the beginning of this section are
moves according to the reversal rule. It can be shown that the L-pebble game with-
out reversal moves is essentially just a disguised version of the ordinary black-white
pebble game. Arguing very informally, it seems plausible that making reversals in
an L-pebbling should only “weaken” the pebble configurations (for example, revers-
ing from z〈x, v〉 to w〈∅〉 in Figure 8.1), and that it should therefore be possible to
eliminate all reversal moves from a pebbling without affecting the pebbling cost.

Unfortunately, this intuition does not hold in general.

Lemma 8.6. There are families of DAGs {Gn}∞n=1 such that BW-Peb(Gn) goes to
infinity with n but L-Peb(Gn) is constant.
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z

y1 y2

x1 x2 x3

u1 u2 u3 u4

s1 s2 s3 s4 s5

Figure 8.3: Example pyramid in proof of Lemma 8.6 that L-pebbling price collapses.

Proof. Consider the pyramid graphs Πh (with Π4 shown in Figure 8.3). We know
from Theorem 5.3 that BW-Peb(Πh) = h/2 + O(1). We prove by induction that
Πh can be L-pebbled with 4 pebbles if we allow reversal moves of black pebbles
downwards.

The base case for a pyramid of height 1 is clear. For the induction step, suppose
that we have been able to get to the pebble subconfiguration y2〈∅〉 in Figure 8.3 in
L-pebbling cost at most 4. We show how to get a black pebble on the target z by
an introduction move and then move the white pebbles downwards one level at a
time until we reach the sources.

Introducing z〈y1, y2〉 and merging z〈y1, y2〉 with y2〈∅〉 on y2, we get z〈y1〉.
Next, reverse y2〈∅〉 to x2〈∅〉 (this is a legal reversal move, since cover(x2〈∅〉) ⊆
cover(y2〈∅〉)). Conclude this first subsequence of L-pebbling moves by erasing
z〈y1, y2〉 and y2〈∅〉.

Now we have the L-configuration
{
z〈y1〉, x2〈∅〉

}
. Introduce y1〈x1, x2〉, merge

z〈y1〉 and y1〈x1, x2〉 on y1 resulting in z〈x1, x2〉, and erase z〈y1〉 and y1〈x1, x2〉.
Then merge z〈x1, x2〉 and x2〈∅〉 on x2 to get z〈x1〉. As above, conclude the subse-
quence of moves by reversing x2〈∅〉 to u2〈∅〉 and then erasing z〈x1, x2〉 and x2〈∅〉.

The next round of moves is entirely analogous: Introduce x1〈u1, u2〉, merge with
z〈x1〉 to get z〈u1, u2〉, and then erase the merged subconfigurations. Then merge
z〈u1, u2〉 with u2〈∅〉 resulting in z〈u1〉, reverse u2〈∅〉 to s2〈∅〉, and erase z〈u1, u2〉
and u2〈∅〉.

At the start of the final subsequence of moves, we have the L-configuration{
z〈u1〉, s2〈∅〉

}
. Introducing u1〈s1, s2〉 and merging this subconfiguration with z〈u1〉

on u1 results in z〈s1, s2〉. Introducing s1〈∅〉 and merging z〈s1, s2〉 with s1〈∅〉 and
then s2〈∅〉, we get z〈∅〉.

The cost of this pebbling is 4, and it is easy to see that it generalizes to pyramids
of arbitrary height.

For binary trees, however, we can prove that the L-pebbling price and the black-
white pebbling price coincide asymptotically.

Theorem 8.7. For a complete binary tree T , L-Peb(T ) = Θ
(
BW-Peb(T )

)
.
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The technically quite complicated proof of this fact, which is a cornerstone of
our result, is presented in the final section of this chapter.

Given Theorem 8.7, the lower bound on L-pebbling price in Theorem 8.3 on
page 98 follows.

Theorem 8.3 (restated). L-Peb(Th) = Ω(h).

Proof. Theorem 8.7 says that L-Peb(Th) = Θ
(
BW-Peb(Th)

)
, and Theorem 5.2 on

page 52 says that BW-Peb(Th) = Θ(h).

8.3 Resolution Derivations Induce Labelled Pebblings

The next step in our proof is to show that sets of clauses can be interpreted in
terms of pebble configurations in such a way that resolution derivations induce
legal labelled pebblings.

For simplicity, from now on let us write v1, . . . , vd instead of x(v)1, . . . , x(v)d for
the d variables associated with the vertex v in a dth degree pebbling contradiction.

Definition 8.8. Assume that G is a DAG with a unique target z and all vertices
having indegree 0 or 2. Then we define *Pebd

G = Pebd
G \

{
z1, . . . , zd

}
to be the

pebbling contradiction with target axioms removed. If pred(r) = {p, q}, the axioms
for r is the set Axd(r) =

{
pi ∨ qj ∨

∨d
l=1 rl | i, j ∈ [d]

}
, and for r a source we let

Axd(r) =
{∨d

i=1 ri

}
. For a set of vertices V , we define Axd(V ) =

{
Axd(v) | v ∈ V

}
.

Let us first observe that instead of refutations of Pebd
G, we can just as well

study derivations of
∨d

i=1 zi from *Pebd
G. This will help us to avoid some artificial

technicalities when defining the correspondence between resolution derivations and
L-pebblings.

Lemma 8.9. For any DAG G with a unique target z and all vertices having in-
degree 0 or 2, it holds that Sp(Pebd

G ` 0) = Sp(*Pebd
G `

∨d
l=1 zl). In particu-

lar, for every resolution refutation π : Pebd
G ` 0 we can find a resolution derivation

π∗ : *Pebd
G `

∨d
l=1 zl in the same space.

Proof. For any resolution derivation π∗ : *Pebd
G `

∨d
l=1 zl, we can get a resolution

refutation of Pebd
G from π∗ in the same space by resolving

∨d
l=1 zl with all zl,

l = 1, . . . , d, in space 3.
In the other direction, for π : Pebd

G ` 0 we can extract a derivation of
∨d

l=1 zl in
at most the same space by simply omitting all downloads of and resolution steps
on zl in π, leaving the literals zl in the clauses. Instead of the final empty clause 0
we get some clause D ⊆

∨d
l=1 zl, and since *Pebd

G 2 D $
∨d

l=1 zl and resolution is
sound, we have D =

∨d
l=1 zl.

Now we try to develop some intuition for how clause configurations in a resolu-
tion derivation of

∨d
i=1 zi from *Pebd

G should be translated into pebble configura-
tions in the L-pebble game. Since we know from Lemma 8.6 that we cannot hope to
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P v
∗

v

T v
∗

T \
(
T v ∪ P v

)

Figure 8.4: Referencing sets of vertices of a tree relative to a vertex.

get lower bounds for refutation space of pebbling contradictions over general DAGs
by using the L-pebble game, from now on we concentrate exclusively on binary
trees. To do this, we need some more notation and terminology. (Note that the
notation below is somewhat different from that in Chapter 6.)

Definition 8.10. For a vertex v in a binary tree T , we let T v denote the vertices
in the complete binary subtree of T rooted at v, and T v

∗ = T v \ {v} the vertices in
T v without its root v. We let P v denote the vertices in the unique path from v to
the root z of T and P v

∗ = P v \ {v} the path without v.

Definition 8.10 is illustrated in Figure 8.4. We blur the distinction somewhat
between a tree T and the vertices in V (T ) and write, for instance, T \

(
T v ∪ P v

)
instead of V (T ) \

(
T v ∪ P v

)
to denote all vertices in the tree unrelated to v.

In the standard black-white pebble game, if at some time t there is an indepen-
dent black pebble on v, a pebbling need not place any pebbles on T v after time t.
As an analogy, if Ct �

∨d
i=1 vi, it is not difficult to see that no axioms from Axd(T v)

need be used in the resolution derivation after time t to derive
∨d

i=1 zi. Therefore,
it seems natural to think of a black pebble on v as derived truth

∨d
i=1 vi of v, and

we want Ct to induce a subconfiguration v〈∅〉 if Ct �
∨d

i=1 vi.
What kind of clause configuration should correspond to a dependent black peb-

ble on v supported by white pebbles on W , i.e., a subconfiguration v〈W 〉? Well, one
way of looking at v〈W 〉 is that this is the subconfiguration such that we would obtain
an independent black pebble on v from it if the white pebbles on W were removed.
But getting white pebbles off vertices is exactly as hard as getting black pebbles on
vertices (compare with Proposition 6.8). In view of this, we can describe v〈W 〉 as
the subconfiguration from which we can immediately derive v〈∅〉 by assuming black
pebbles on W . And as to black pebbles, we just argued that they should correspond
to clauses

∨d
i=1 vi. Our conclusion is that Ct should induce v〈W 〉 if this clause con-

figuration together with assumed independent black pebbles on all w ∈ W implies an
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
xi ∨ vj ∨

∨d
l=1 zl

pi ∨ qj ∨
∨d

l=1 rl∨d
l=1 wl

∣∣∣∣∣∣∣∣ i, j ∈ [d]


(a) Clause configuration C.

z

x

r v w

p q

(b) L(C) = {z〈x, v〉, r〈p, q〉, w〈∅〉}.

Figure 8.5: Example clause configuration C and its induced L-configuration L(C).

independent black pebble on v, i.e., if Ct ∪
{∨d

i=1 wi | w ∈ W
}
�
∨d

i=1 vi. Contin-
uing our example from Figure 8.1, in Figure 8.5 we present a clause configuration
corresponding to the given set of pebbles according to this intuitive understanding
of induced pebble configurations.

Our formal definitions follow this intuition fairly closely, but since resolution
derivations have no reason to be as well-behaved as to fit the description above, we
need to add a number of technical details.

For white pebbles, it will simplify matters if we can ensure that they have the
following property.

Definition 8.11. For a vertex v and a vertex set W strictly below v, if for every
w ∈ W there is a path P : w  v not intersecting W \ {w}, we say that W is
a simple set below v and that v〈W 〉 is a simple subconfiguration. L is a simple
L-configuration if all subconfigurations v〈W 〉 ∈ L are simple.

In the following, B(V ) can be thought of as “truth of all vertices in V ” and
All+(V ) as “truth of some vertex in V .” We will be particularly interested in
clauses All+(P v), i.e., clauses stating that some variable on the path from v to the
root z is true.

Definition 8.12. Let B(V ) =
{∨d

i=1 vi | v ∈ V
}

and All+(V ) =
∨

v∈V

∨d
i=1 vi.

Given a set of clauses C and a vertex v, if a vertex set V ⊆ T \ P v is such that
C ∪ B(V ) � All+(P v), we say that V is a support for v with respect to C. If there
is no V ′ $ V such that C ∪ B(V ′) � All+(P v) the support is minimal. If V is a
support for v with respect to C such that C∪B(V ) 2 All+(P v

∗ ) = All+(P v)\
∨d

i=1 vi,
we say that v is maximal with respect to C and V .

We define the supporting white pebbles in the set V of the vertex v as swp(v, V ) ={
w ∈ V ∩ T v

∗ | Pw
∗ ∩ V = ∅

}
.

When it is clear from context, we sometimes omit which support or vertex is
minimal or maximal with respect to what. Note that swp(v, V ) is a simple set
below v in the sense of Definition 8.11.

Definition 8.13 (Induced L-configuration). For a set of clauses C derived from
*Pebd

T , the induced L-configuration L(C) consists of all subconfigurations v〈V 〉 such
that:
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1. there is a minimal support V ′ ⊆ T \ P v for v with respect to C,

2. v is maximal with respect to C and V ′, and

3. V = swp(v, V ′).

That is, it holds that C ∪ B(V ′) � All+(P v) but C ∪ B(V ′) 2 All+(P v
∗ ), the

set V ′ is minimal with this property, and if V ′ is not simple below v, we remove
vertices in a bottom-up fashion until we get such a set V ⊆ V ′. The reader can
verify that this definition matches the example in Figure 8.5.
Remark 8.14. Note that a black pebble on v is defined in terms of All+(P v) =∨

u∈P v

∨d
i=1 ui instead of just

∨d
i=1 vi. Otherwise, we will not be able to prove the

correspondence between L-pebblings and resolution derivation that we need. This
means that if we let, say,

C′ =


xi ∨ vj ∨

∨d
n=1 zn

pi ∨ qj ∨
∨d

n=1 rn ∨
∨d

n=1 xn∨d
n=1 wn ∨

∨d
n=1 zn

∣∣∣∣∣∣∣∣ i, j ∈ [d]

 (8.1)

in Figure 8.5, then C′ induces the same pebble subconfigurations as does C, so
L(C′) = L(C) = {z〈x, v〉, r〈p, q〉, w〈∅〉}.

The reason we use V = swp(v, V ′) instead of V ′ ∩ T v
∗ (or even V ′ \P v) to define

the white pebbles is that for technical purposes, we would like to have simple sets
V below v in our induced subconfigurations v〈V 〉, but the minimal supporting sets
V ′ do not necessarily have this property. For instance, in the clause configuration

C′′ =


ri ∨ xj ∨ vl ∨

∨d
n=1 zn

pi ∨ qj ∨
∨d

n=1 rn ∨
∨d

n=1 xn

vl ∨
∨d

n=1 wn ∨
∨d

n=1 zn

∣∣∣∣∣∣∣∣ i, j, l ∈ [d]

 (8.2)

the vertices z and w have minimal supports {r, x, v} and {v}, respectively, which are
not simple sets below z and w, but since Definition 8.13 ignores all but the topmost
vertices below the supported vertex, we get L(C′′) = L(C) = {z〈x, v〉, r〈p, q〉, w〈∅〉}.

Thanks to this we get cleaner pebblings to work with (this will be used in
Section 8.5), and it seems very plausible anyway that optimal resolution derivations
should never result in clause configurations like C′′. Indeed, since the bound we
will prove is asymptotically tight, we see that we do not really lose anything by
restricting the white pebbles to V = swp(v, V ′) instead of V ′ ∩ T v

∗ or V ′ \ P v.
Recall that the goal of this section is to demonstrate that resolution derivations

induce L-pebblings. Suppose that π =
{
C0, . . . , Cτ

}
is a resolution derivation of∨d

i=1 zi from *Pebd
T . For C0 = ∅ we have L(C0) = ∅, and Cτ =

{∨d
i=1 zi

}
induces

a single independent black pebble L(Cτ ) =
{
z〈∅〉

}
on the root of T . Hence, we are

done if we can show that
{
L(C0), . . . L(Cτ )

}
is a legal L-pebbling.
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The rest of this section is devoted to proving that this is (almost) the case. We
start by stating three technical lemmas. The first lemma relates subset containment
of supporting sets and the order relation between corresponding subconfigurations.

Lemma 8.15. For a vertex v ∈ V (T ), if u ∈ P v is a vertex and U ′, V ′ ⊆ T \ P v

are vertex sets such that U ′ ∩ T v
∗ ⊆ V ′ ∩ T v

∗ , then u〈swp(u, U ′)〉 � v〈swp(v, V ′)〉.

Proof. Let U = swp(u, U ′) and V = swp(v, V ′). According to Definition 8.4, we
need to show that cover(v〈V 〉) ⊆ cover(u〈U〉).

Suppose w ∈ cover(v〈V 〉). This means that there is a path P1 : w  v from
w to v such that P1 ∩ V = ∅. Also, since u ∈ P v there is a path P2 : v  u.
Concatenating these paths, we get a path P = P1 ∪ P2 from w to u. We claim
that P ∩ U = ∅. If this is true, we have w ∈ cover(u〈U〉) and thus cover(v〈V 〉) ⊆
cover(u〈U〉), and the lemma follows.

To prove the claim, note first that since U ⊆ U ′ ⊆ T \ P v, it holds that
P2 ∩ U = ∅. Suppose P1 intersects U , and let x ∈ P1 ∩ U . By assumption, x 6∈ V
since P1 ∩ V = ∅. But x ∈ U ⊆ U ′ ∩ T v

∗ ⊆ V ′ ∩ T v
∗ , so Definition 8.12 tells us

that the reason x 6∈ V must be that P x
∗ ∩ V ′ ∩ T v 6= ∅. Let y ∈ P x

∗ ∩ V ′ ∩ T v

be the vertex closest to v. Looking at Definition 8.12 again, since P y
∗ ∩ V ′ = ∅ by

construction, we have y ∈ V . But if so, P1 ∩ V 6= ∅. Contradiction.

A second handy lemma is that if V ′ is not minimal or v is not maximal with
respect to C, this just means that C induces something stronger than the subcon-
figuration v〈swp(v, V ′)〉.

Lemma 8.16. If C ∪ B(V ′) � All+(P v) for V ′ ⊆ T \ P v, then there is an induced
subconfiguration u〈U〉 ∈ L(C) such that v〈swp(v, V ′)〉 � u〈U〉.

Proof. Minimize U ′ ⊆ V ′ and then pick u ∈ P v as close to the root as possible so
that C ∪ B(U ′) � All+(Pu). Set U = swp(u, U ′) and use Lemma 8.15.

The following easy lemma will be used repeatedly.

Lemma 8.17. Suppose that C,D are clauses and C is a set of clauses. Then
C ∪

{
C
}
� D if and only if C � a ∨D for all a ∈ Lit(C).

Proof. Assume that C ∪
{
C
}
� D and consider an assignment α such that α(C) = 1

and α(D) = 0 (if there is no such α, then C � D ⊆ a ∨ D). Such an α must set
all a to true. Conversely, if C � a ∨ D for all a ∈ Lit(C) and α is such that
α(C) = α(C) = 1, it must hold that α(D) = 1, since otherwise α(a ∨D) = 0 for
some literal a ∈ Lit(C) satisfied by α.

Using these lemmas, we can prove that resolution derivations induce L-peb-
blings. By the L-pebbling rules in Definition 8.5, any subconfiguration v〈V 〉 may
be erased freely at any time. Consequently, we need not worry about subconfigu-
rations disappearing during the transition from Ct to Ct+1. What we do need to
check, though, is that no v〈V 〉 appears inexplicably in L(Ct+1) as a result of a
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derivation step Ct  Ct+1, but that we can always derive any subconfiguration
v〈V 〉 ∈ L(Ct+1) \ L(Ct) from L(Ct) by the L-pebbling rules.

Let us consider the resolution derivation rules one by one.

Observation 8.18 (Inference). If Ct+1 is derived from Ct by inference, then
L(Ct+1) = L(Ct).

Proof. This is immediate, since Ct and Ct+1 imply exactly the same clauses.

We remark that, as was stated in Section 3.1, this means that the exact definition
of the resolution derivation rule is not important. The lower bound on space will
hold for any sound derivation rule as long as the lines in the proof are disjunctive
clauses.

Lemma 8.19 (Erasure). Suppose that Ct+1 is derived from Ct by erasure. Then
for each v〈V 〉 ∈ L(Ct+1) there is a u〈U〉 ∈ L(Ct) such that v〈V 〉 � u〈U〉.

Proof. By assumption there is a V ′ ⊆ T \P v such that V = swp(v, V ′) and Ct+1 ∪
B(V ′) � All+(P v). Certainly, the same implication holds for Ct ⊇ Ct+1. The
lemma follows from Lemma 8.16.

In particular, all new subconfigurations resulting from an erasure Ct  Ct+1

can be obtained from L(Ct) by reversal moves.

Lemma 8.20 (Axiom download). If Ct+1 = Ct ∪ {C} for an axiom clause
C ∈ Axd(r), then all subconfigurations v〈V 〉 ∈ L(Ct+1) \ L(Ct) can be obtained
from L(Ct) ∪ r〈pred(r)〉 by reversals from subconfigurations in L(Ct) followed by
mergers on the vertices {r} ∪ pred(r).

Proof. Let us fix a vertex v ∈ V (T ) and an axiom C ∈ Axd(r). If v〈V 〉 is a
pebble subconfiguration induced at time t + 1, by assumption there is a minimal
V ′ ⊆ T \ P v with V = swp(v, V ′) ⊆ V ′ such that Ct ∪ {C} ∪ B(V ′) � All+(P v).

Our intuition is that downloading C ∈ Axd(r) should not yield any interesting
new subconfigurations v〈V 〉 if r ∈ T \ T v, and for r ∈ T v we should be able to
explain new subconfigurations with the help of an introduction of r〈pred(r)〉 in our
L-pebbling. We prove this by a case analysis over r.

r ∈ T \
(
T v ∪ P v

)
: Observing that B(r) � C (this will be used repeatedly), we get

that Ct ∪ B(V ′ ∪ {r}) � All+(P v) for V ′ ∪ {r} ⊆ T \ P v. Lemma 8.16 tells
us that there is a u〈U〉 ∈ L(Ct) such that u〈U〉 � v〈swp(v, V ′ ∪ {r})〉 =
v〈swp(v, V ′)〉 = v〈V 〉, where the first equality follows since r 6∈ T v

∗ . Hence,
we can get v〈V 〉 from L(Ct) by a reversal move.

r ∈ P v
∗ : Write C = pi∨qj∨

∨d
l=1 rl for {p, q} = pred(r) 6= ∅ and assume without loss

of generality that p is the vertex in P v ∩ pred(r). Using Lemma 8.17 to move
pi to the right of the implication sign yields Ct ∪ B(V ′) � All+(P v) ∨ pi =
All+(P v), and since V ′ is minimal it follows that v〈V 〉 ∈ L(Ct).
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r = v: Note first that the introduction of r〈pred(r)〉 is a legal pebbling move, so
if Ct ∪ {C} ∪ B(V ′) � All+(P r) for pred(r) ⊆ V ′, no further analysis is
needed for r〈swp(r, V ′)〉 = r〈pred(r)〉. In particular, this is always the case if
pred(r) = ∅, i.e., if r is a source.

Suppose that v〈V 〉 = r〈swp(r, V ′)〉 ∈ L(Ct+1) for V 6= pred(r) = {p, q}, and
write C = pi ∨ qj ∨

∨d
l=1 rl. We want to derive r〈V 〉 by the pebbling rules

from L(Ct) ∪
{
r〈pred(r)〉

}
. By symmetry, we get two subcases.

1. p ∈ V, q 6∈ V : By Definition 8.12, we have p ∈ V ′ ⊇ V . Also, it must hold
that q 6∈ V ′, since otherwise P q

∗ ∩ V ′ ⊆ P q
∗ ∩ (T \P r) = P q

∗ ∩ (T \P q
∗ ) =

∅ would imply that q ∈ V = swp(v, V ′), contrary to assumption. It
follows that V ′ ⊆ T \ P q. Also, we can use Lemma 8.17 to move qj

to the right-hand side of the implication sign and get Ct ∪ B(V ′) �
All+(P r) ∨ qj ⊆ All+(P r) ∨

∨d
l=1 ql = All+(P q). Plugging this into

Lemma 8.16 shows that there is a w〈W 〉 ∈ L(Ct) such that q
〈
V \ {p}

〉
=

q
〈
swp(q, V ′)

〉
� w〈W 〉. Thus we can derive q

〈
V \ {p}

〉
from L(Ct) by

reversal and then merge r〈pred(r)〉 = r〈p, q〉 with q
〈
V \ {p}

〉
to obtain

r
〈(
{p, q} ∪ (V \ {p})

)
\ {q}

〉
= r〈V 〉.

2. p, q 6∈ V : Again, by Definition 8.12 we have p, q 6∈ V ′. If we use
Lemma 8.17 twice, we get Ct ∪ B(V ′) � All+(P p)∧All+(P q), and noting
that V ′ ⊆ T \

(
P p ∪ P q

)
we can apply Lemma 8.16 to derive p

〈
V ∩ T p

∗
〉

and q
〈
V ∩ T q

∗
〉

from L(Ct) by reversal moves. Merging these pebble sub-
configurations with r〈p, q〉, we get the desired pebble subconfiguration
r
〈(

V ∩ T p
∗
)
∪
(
V ∩ T q

∗
)〉

= r〈V 〉.

We note in passing that this is the place in the proof where we critically need
black pebbles to be defined in terms of All+(P v) =

∨
u∈P v

∨d
i=1 ui instead of

just
∨d

i=1 vi. (Although it also simplifies the proof of the case r ∈ P v
∗ , there

it is not strictly necessary.)

r ∈ T v
∗ : By assumption, Ct ∪ {C} ∪ B(V ′) � All+(P v), and since r ∈ T v

∗ and
B(r) � C we have Ct ∪ B(V ′ ∪ {r}) � All+(P v) for V ′ ∪ {r} ⊆ T \ P v. If
P r ∩ V ′ 6= ∅, it holds that swp(v, V ′ ∪ {r}) = swp(v, V ′), and we can obtain
v〈V 〉 from L(Ct) by reversal according to Lemma 8.16. Suppose therefore that
P r ∩ V ′ = ∅. Also, we assume that Ct ∪ B(V ′) 2 All+(P v) since otherwise
v〈V 〉 ∈ L(Ct) and there is nothing to prove.

Pick U ′ ⊆ V ′ ∪ {r} minimal and then u ∈ P v maximal with respect to U ′

such that Ct ∪ B(U ′) � All+(Pu). Since Ct ∪ B(V ′) 2 All+(P v) we must
have r ∈ U ′. Set U = swp(u, U ′). Using that P r

∗ ∩ U ′ ⊆ P r
∗ ∩ V ′ = ∅,

we see that r ∈ U . Consequently, we cannot use u〈U〉 ∈ L(Ct) to derive
v〈V 〉 6� u〈U〉 by reversal. However, since U ′ ⊆ V ′ ∪{r}, Lemma 8.15 says that
v
〈
(V ∪ {r}) \ T r

∗
〉

= v
〈
swp(v, V ′ ∪ {r})

〉
� u〈U〉 can be derived by reversal
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from L(Ct). If we could also derive r
〈
V ∩ T r

∗
〉

from L(Ct) ∪
{
r〈pred(r)〉

}
,

we could do a merger to get v
〈(

((V ∪ {r}) \T r
∗ ) ∪ (V ∩ T r

∗ )
)
\ {r}

〉
= v〈V 〉.

Hence, we are done if we can derive the pebble subconfiguration r
〈
V ∩

T r
∗
〉

= r
〈
swp(v, V ′) ∩ T r

∗
〉

= r
〈
swp(r, V ′)

〉
from L(Ct) ∪

{
r〈pred(r)〉

}
. But

All+(P r) ⊇ All+(P v), so by assumption we have Ct ∪ {C} ∪ B(V ′) � All+(P r)
for V ′ ⊆ T \P r. This is almost exactly the case r = v above, where we proved
that r

〈
swp(r, V ′)

〉
is derivable from L(Ct) ∪

{
r〈pred(r)〉

}
. The only differ-

ence is that now it is not necessarily true that V ′ is a minimal support and
that r is maximal with respect to V ′. But these assumptions were not used
in the derivation of r

〈
swp(r, V ′)

〉
from L(Ct) ∪

{
r〈pred(r)〉

}
anyway, so we

can reuse exactly the same proof to get r
〈
swp(r, V ′)

〉
. This concludes the

analysis for r ∈ T v
∗ .

Studying the pebbling moves performed in the case analysis above, we see that all
subconfigurations v〈V 〉 ∈ L(Ct+1)\L(Ct) resulting from an axiom download can be
obtained from L(Ct) ∪ r〈pred(r)〉 by a (possibly empty) sequence of reversals from
L(Ct), followed by a (possibly empty) sequence of mergers on {r} ∪ pred(r).

Combining the results proven for axiom download, inference, and erasure, we
can show that a resolution derivation induces a legal L-pebbling. We need a pair
of easy technical observations about L-pebbling cost, which we state as a separate
proposition for clarity.

Proposition 8.21. For L1 and L2 arbitrary L-configurations, it holds that

1. if L1 ⊆ L2 then cost(L1) ≤ cost(L2), and

2. cost(L1 ∪ L2) ≤ cost(L1) + cost(L2).

Proof. This is fairly obvious, but we give a short formal proof for completeness. Ac-
cording to Definition 8.5, if Bl(L1) ∪Wh(L1) ⊆ Bl(L2) ∪Wh(L2), then cost(L1) =∣∣Bl(L1) ∪ Wh(L1)

∣∣ ≤ ∣∣Bl(L2) ∪ Wh(L2)
∣∣ = cost(L2). Part 1 follows immediately

from this observation. Part 2 also follows easily, since each pebbled vertex on the
left-hand side is counted at least once on the right-hand side.

Theorem 8.22. Let π = {C0, . . . , Cτ} be a resolution derivation of
∨d

l=1 zl from
*Pebd

T . Then the L-configurations L(C0), . . . , L(Cτ ) are contained in a legal, com-
plete L-pebbling L of T such that maxt∈[τ ]

{
cost(L(Ct))

}
= Ω

(
cost(L)

)
.

Proof. The fact that
{
L(C0), . . . , L(Cτ )

}
is the “backbone” of a legal L-pebbling

was proven in Observation 8.18, Lemma 8.19, and Lemma 8.20, where it was explic-
itly indicated how the “holes” in L(Ct) L(Ct+1) could be filled in by L-pebbling
moves to get a legal pebbling L. It was also noted above that L(C0) = ∅ and
L(Cτ ) =

{
z〈∅〉

}
, so filling in the holes results in a complete pebbling of T .

The bound maxt∈[τ ]

{
cost(L(Ct))

}
= Ω

(
cost(L)

)
does not follow immediately

from this, however. The problem is that a single derivation step Ct  Ct+1 may
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induce several L-pebbling moves to get from L(Ct) to L(Ct+1) in L. Therefore, we
have to consider the possibility1 that the maximal pebbling cost in L is reached in
some intermediate L-configuration L′ between L(Ct) and L(Ct+1).

Since inference steps in π do not change the set of induced L-configurations, we
get two cases.

1. Ct  Ct+1 is an erasure. The moves to get from L(Ct) to L(Ct+1) are a
series of reversals from L(Ct) followed by a series of erasures from L(Ct).
In view of part 1 of Proposition 8.21, the maximal cost is incurred in the
intermediate L-configuration L′ after all reversals but before all erasures. We
have L′ = L(Ct) ∪ L(Ct+1), and by part 2 of Proposition 8.21 it follows that
cost(L′) ≤ cost(L(Ct)) + cost(L(Ct+1)) ≤ 2 ·maxi∈[t,t+1]

{
cost(L(Ci))

}
.

2. Ct  Ct+1 is a download of C ∈ Axd(v). In this case the sequence of moves
to get from L(Ct) to L(Ct+1) is a possible introduction of v〈pred(v)〉 followed
by a series of reversals from L(Ct), then a series of mergers on {v} ∪ pred(v),
and finally a series of erasures of subconfigurations not derived in the merger
moves. Again by part 1 of Proposition 8.21, we may concentrate on the
L-configuration L′ after all reversals and mergers but before the erasures.
All pebbles in Bl(L′) ∪Wh(L′) are present in either L(Ct) or L(Ct+1), except
possibly for the pebbles on {v} ∪ pred(v) which may have been introduced and
then merged away. Since by construction all subconfigurations resulting from
these mergers must be contained in L(Ct+1), the pebbles on {v} ∪ pred(v)
are the only ones that can appear and then disappear during the intermedi-
ate pebbling steps. If we remove {v} ∪ pred(v) from Bl(L′) ∪ Wh(L′), the
pebbling cost cannot decrease by more than 3.
Since all pebbles Bl(L′) \

(
{v} ∪ pred(v)

)
and Wh(L′) \

(
{v} ∪ pred(v)

)
are

contained in Bl(L(Ct)) ∪ Bl(L(Ct+1)) and Wh(L(Ct)) ∪ Wh(L(Ct+1)), re-
spectively, appealing to part 2 of Proposition 8.21 again we get the inequality
maxi∈[t,t+1]

{
cost(L(Ci))

}
≥ 1

2

(
cost(L′)− 3

)
.

This establishes that even if the maximal cost in the L-pebbling L induced
by derivation π = {C0, . . . , Cτ} is attained in some intermediate L-configuration
L′ 6∈

{
L(Ct) | t ∈ [τ ]

}
, it still holds that maxt∈[τ ]

{
cost(L(Ct))

}
≥ 1

2cost(L) + O(1).
The theorem follows.

Remark 8.23. At this point, the reader might ask whether we really need the reversal
rule in the L-pebble game in order to get Theorem 8.22 or whether it is just a
convenience to simplify the proofs. The answer is that unfortunately, the reversal
rule is really needed. We provide two examples of this below, using the binary tree
of height 3 with vertex labels as in Figure 8.6.

1In fact, this does not happen, but instead of proving this we happily sacrifice a constant 2
here in order to get a simpler (or at least slightly less involved) proof.
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(a) L(C1) = {z〈p〉}.
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(b) L(C′
1) = {x〈p, q〉}.
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(c) L(C2) = {z〈y〉}.
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u

(d) L(C′
2) = {z〈y〉, x〈∅〉}.

Figure 8.6: Illustration of reversal moves in Remark 8.23.

Suppose that we have

C1 =

[
pi ∨ qj ∨

∨d
l=1 xl

pi ∨
∨d

l=1 zl

∣∣∣∣∣ i, j ∈ [d]

]
with L(C1) =

{
z〈p〉

}
(8.3)

(see Figure 8.6(a)). Note that only the subset of clauses on the second line in C1

contributes to L(C1). It is true that, because of the clauses on the first line, we
have

C1 ∪ B(p, q) � All+(P x) =
∨d

l=1 xl ∨
∨d

l=1 zl , (8.4)

but the support {p, q} is not minimal and x is not maximal with respect to C1 and
{p, q} (Definition 8.12) since it also holds that

C1 ∪ B(p) � All+(P x
∗ ) =

∨d
l=1 zl . (8.5)

However, if we erase the second line of clauses from (8.3), the implication in (8.4)
comes into play, and we get

C′
1 = [pi ∨ qj ∨

∨d
l=1 xl | i ∈ [d]] with L(C′

1) =
{
x〈p, q〉

}
(8.6)

as in Figure 8.6(b). It is necessary to have the reversal rule to go from Figure 8.6(a)
to Figure 8.6(b), which shows why reversals are needed in Lemma 8.19.

This might perhaps look like a somewhat silly example, but it nevertheless pin-
points the problem: although the erasures going from C1 in (8.3) to C′

1 in (8.6)
might seem clearly non-optimal, we cannot exclude the possibility that such deriva-
tion steps are made, and so we have to be able to match such steps by pebbling
moves.
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As a second example, consider

C2 =


x1 ∨ v1 ∨

∨d
j=1 zj

x1 ∨ w1 ∨
∨d

j=1 zj

yi ∨
∨d

j=1 zj

∣∣∣∣∣∣∣∣ i ∈ [d]

 with L(C2) =
{
z〈y〉

}
(8.7)

(see Figure 8.6(c)). Here the first two clauses do not contribute to L(C2), but if we
download the axiom v1 ∨ w1 ∨

∨d
j=1 yj , we get

C′
2 =


x1 ∨ v1 ∨

∨d
j=1 zj

x1 ∨ w1 ∨
∨d

j=1 zj

yi ∨
∨d

j=1 zj

v1 ∨ w1 ∨
∨d

j=1 yj

∣∣∣∣∣∣∣∣∣∣∣
i ∈ [d]

 with L(C′
2) =

{
z〈y〉, x〈∅〉

}
(8.8)

as in Figure 8.6(d), since it is easy to check that C′
2 � All+(P x) =

∨d
j=1 xj∨

∨d
j=1 zj

but C′
2 2 All+(P x

∗ ) =
∨d

j=1 zj . We cannot get x〈∅〉 from L(C2) unless we have
reversal moves, so the reversal rule is needed also in Lemma 8.20.

We leave it to the reader to verify that C1 and C2 can indeed be derived from
*Pebd

T3
. We note, though, that it appears that in order to derive C2 one needs to pass

stronger clause configurations along the way, and it seems very unclear why anyone
would like to go from these clause configurations to the weaker configuration C2.

We conclude this section by proving Theorem 8.1 on page 98. Since we wanted to
avoid unnecessary technicalities in Section 8.1, Theorem 8.1 talks about refutations
π : Pebd

Th
` 0 rather than derivations π∗ : *Pebd

Th
`
∨d

i=1 zi, but this is easily taken
care of.

Theorem 8.1 (restated). There is a translation function from clause configu-
rations derived from Pebd

Th
into L-configurations in Th such that any resolution

refutation π of Pebd
Th

corresponds to a complete labelled pebbling Lπ of Th under
this translation.

Proof. Given a resolution refutation π : Pebd
Th
` 0, use (the proof of) Lemma 8.9

to transform the refutation π clause configuration by clause configuration into a
derivation π∗ : *Pebd

Th
`
∨d

i=1 zi in the same space. Then use Definition 8.13 as the
translation function, and let Lπ be the labelled pebbling constructed from π∗ in
Theorem 8.22.

We comment that as another attempt to simplify the exposition in Section 8.1,
Theorem 8.1 leaves out the crucial information in Theorem 8.22 that the cost of Lπ

is upper-bounded by the maximal cost of the induced L-configurations L(Ct). We
will return to Theorem 8.22 and use this information in the proof of Theorem 8.2
at the end of the next section.
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8.4 Induced L-pebbles Measure Clause Set Size

In the last section, we proved that Sp(Pebd
Th

` 0) = Sp(*Pebd
Th

`
∨d

i=1 zi) and
that each resolution derivation π : *Pebd

Th
`
∨d

i=1 zi induces a complete L-pebbling
L of Th such that maxC∈π

{
cost(L(C))

}
= Ω

(
cost(L)

)
. In Section 8.2 we stated

(promising a proof in Section 8.5) that cost(L) = Ω
(
BW-Peb(T )

)
. The final compo-

nent needed to piece together the proof of our lower bound on the refutation space of
pebbling contradictions is that the number of pebbles in an induced L-configuration
L(C) and the number of clauses in C are somehow connected.

Note that we cannot expect a proof of this fact to work regardless of the pebbling
degree d. The induced L-pebbling in Section 8.3 makes no assumptions about d, but
we know that Sp(*Peb1

G ` z1) = Sp(Peb1
G ` 0) = O(1). If we look at the resolution

refutation π of Peb1
G in constant space sketched in Section 5.2, we see that the

induced L-pebbling starts by placing white pebbles on pred(z) and a black pebble
on z, i.e., introducing z〈pred(z)〉, and then pushes the white pebbles downwards
by introducing v〈pred(v)〉 for all v in reverse topological order and merging until
it reaches z〈S〉 for S the source vertices of G. Finally, the white pebbles s ∈ S
are eliminated one by one by introducing s〈∅〉 and merging. The reason that Peb1

G

can be refuted in constant space is that one single clause z1 ∨
∨

v∈V v1 can induce
an arbitrary number |V | of white pebbles, or, phrasing it differently, that white
pebbles are free for d = 1.

In Theorem 8.29 below we show that provided d > 1 one has to pay at least
|C| ≥ N clauses to get N induced pebbles. This completes the proof of our main
theorem which was outlined in Section 8.1. We first show some technical results
about CNF formulas that will be needed in the proof.

Lemma 8.24. Suppose that it holds for a set of clauses C and clauses D1 and D2

with Vars(D1) ∩ Vars(D2) = ∅ that C � D1 ∨ D2 but C 2 D2. Then there is a
literal a ∈ Lit(C) ∩ Lit(D1).

Proof. Pick a truth value assignment α such that α(C) = 1 but α(D2) = 0. Since
C � D, we must have α(D1) = 1. Let α′ be the same assignment except that
all satisfied literals in D1 are flipped to false (which is possible since they are all
strictly distinct by assumption). Then α′(D1 ∨D2) = 0 forces α′(C) = 0, so the
flip must have falsified some previously satisfied clause in C.

Definition 8.25. A set of clauses C implies a clause D minimally if C � D but
for all C′ $ C it holds that C′ 2 D. If C � 0 minimally, C is said to be minimally
unsatisfiable.

Lemma 8.26. Let C be a set of clauses and D a clause such that C � D minimally
and a ∈ Lit(C) but a 6∈ Lit(C). Then a ∈ Lit(D).

Proof. Suppose not. Let C1 = {C ∈ C | a ∈ Lit(C)} and C2 = C \ C1. Since
C2 2 D there is a truth value assignment α such that α(C2) = 1 and α(D) = 0.
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Note that α(a) = 0, since otherwise α(C1) = 1 which would contradict C1 ∪ C2 =
C � D. It follows that a /∈ Lit(D). Flip a to true and denote the resulting truth
value assignment by αa=1. By construction αa=1(C1) = 1 and C2 and D are not
affected since {a, a} ∩

(
Lit(C2) ∪ Lit(D)

)
= ∅, so αa=1(C) = 1 and αa=1(D) = 0.

Contradiction.

The fact that a minimally unsatisfiable CNF formula must have more clauses
than variables seems to have been proven independently a number of times (see,
for instance, [2, 11, 29, 53]). We will need the following formulation of this result,
relating subsets of variables in a minimally implicating CNF formula and the clauses
containing variables from these subsets.

Theorem 8.27. Suppose that F is a CNF formula that implies a clause D mini-
mally. For any subset of variables V , let FV = {C ∈ F | Vars(C) ∩ V 6= ∅}. Then
if V ⊆ Vars(F )\Vars(D), it holds that |FV | > |V |. In particular, if F is minimally
unsatisfiable, we have |FV | > |V | for all V ⊆ Vars(F ).

Proof. The proof is by induction over V ⊆ Vars(F ) \Vars(D).
If |V | = 1, then |FV | ≥ 2, since any x ∈ V must occur both positively and

negatively in F by Lemma 8.26.
The inductive step just generalizes the proof of Lemma 8.26. Suppose that

|FV ′ | > |V ′| for all strict subsets V ′ $ V ⊆ Vars(F ) \ Vars(D) and consider V .
Since FV ′ ⊆ FV if V ′ ⊆ V , choosing any V ′ of size |V | − 1 we see that |FV | ≥
|FV ′ | ≥ |V ′|+ 1 = |V |.

If |FV | > |V | there is nothing to prove, so assume that |FV | = |V |. Consider the
bipartite graph with the variables V and the clauses in FV as vertices, and edges
between variables and clauses for all variable occurrences. Since for all V ′ ⊆ V the
set of neighbours N(V ′) = FV ′ ⊆ FV satisfies |N(V ′)| ≥ |V ′|, by Hall’s marriage
theorem there is a perfect matching between V and FV . Use this matching to
satisfy FV assigning values to variables in V only.

The clauses in F ′ = F \ FV are not affected by this partial truth value assign-
ment, since they do not contain any occurrences of variables in V . Furthermore,
by the minimality of F it must hold that F ′ can be satisfied and D falsified simul-
taneously by assigning values to variables in Vars(F ′) \ V .

The two partial truth value assignments above can be combined to an assign-
ment that satisfies all of F but falsifies D, which is a contradiction. Thus |FV | > |V |.
The theorem follows by induction.

We need one final definition relating vertices of T and literal occurrences in
clauses for the variables associated with these vertices.

Definition 8.28. We say that a vertex v is represented positively in a clause C if{
v1, . . . , vd

}
∩ Lit(C) 6= ∅ and negatively if

{
v1, . . . , vd

}
∩ Lit(C) 6= ∅, and that C

mentions v positively or negatively, respectively. This definition is extended to sets
of vertices and clauses by taking unions.
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For a set of vertices U , we let Varsd(U) =
{
u1, . . . , ud | u ∈ U

}
denote the set

of all variables representing vertices in U . For a set of clauses C, we use V (C) ={
u ∈ U | Varsd(u) ∩ Vars(C) 6= ∅

}
to denote all vertices represented (positively or

negatively) in C, and we write CJUK =
{
C ∈ C | V (C) ∩ U 6= ∅

}
to denote the

subset of all clauses in C mentioning vertices in U .

We now prove by induction over the (sub)sets of induced pebbles that a clause
configuration is at least as large as the number of pebbles it induces.

Theorem 8.29. Suppose that C is a set of clauses derived from *Pebd
T for d ≥ 2

that induces the labelled pebble configuration L(C). Then cost(L(C)) ≤ |C|.

Proof. Suppose that C induces a subconfiguration v〈W 〉. By Definition 8.13, there
is a minimal support Vv ⊆ T \P v with W = swp(v, Vv) ⊆ Vv such that C ∪ B(Vv) �
All+(P v) but C ∪ B(Vv) 2 All+(P v

∗ ) and C ∪ B(V ′
v) 2 All+(P v) for all V ′

v $ Vv.
Fix for each induced subconfiguration v〈W 〉 with W = swp(v, Vv) a subset

Cv ⊆ C such that the implication Cv ∪ B(Vv) � All+(P v) holds minimally. Since
Vars(B(Vv)) ∩Vars(All+(P v)) = ∅ by definition, using Lemma 8.24 with D1 =∨d

i=1 vi and D2 = All+(P v
∗ ), we see that the vertex v must be represented in Cv by

some positive literal vi. For the white pebbles in W ⊆ Vv, it follows for the same
reason from Lemma 8.26 that all literals wj , j ∈ [d], must be present in Cv.

We prove by induction over U ⊆ Bl(L(C)) ∪ Wh(L(C)) that |CJUK| ≥ |U |, from
which the theorem clearly follows. The base case |U | = 1 is immediate, since we
just observed that all pebbled vertices v ∈ V are represented in C.

For the induction step, suppose that
∣∣CJU ′K

∣∣ ≥ ∣∣U ′
∣∣ for all U ′ $ U . Pick a

“topmost” vertex u ∈ U , i.e., such that Pu
∗ ∩ U = ∅, and look at the subcon-

figuration v〈W 〉 containing u (with u = v if u is black and u strictly below v
otherwise) and the associated subset Cv ⊆ C fixed above. Note that Varsd(U) ∩
Vars(All+(P v)) ⊆ {u1, . . . , ud}. Let S = U ∩ V (Cv) be the set of all vertices in U
mentioned by Cv. We claim that |CvJSK| ≥ |S|.

To show this, note first that u ∈ S as was argued above, and if S = {u} we
trivially have |CvJSK| ≥ 1 = |S|. Suppose therefore that S % {u}. We want to apply
Theorem 8.27 on the formula F = Cv ∪ B(Vv), which as we recall implies All+(P v)
minimally. To this end, let S′ = S \ {u}, write S′ = S1

.
∪ S2 for S1 = S′ ∩ Vv and

S2 = S′ \ S1, and consider

FS′ =
{
C ∈

(
Cv ∪ B(Vv)

)
| V (C) ∩ S′ 6= ∅

}
= CvJS′K ∪ B(S1) .

(8.9)

For each w ∈ S1, the clauses in B(S1) contain d literals w1, . . . , wd, and these
literals must all occur negated in Cv by Lemma 8.26. For each w ∈ S2, the clauses
in CvJS′K contain at least one variable wi. Appealing to Theorem 8.27 with the
subset of variables Varsd(S′) ∩ Vars(Cv) ⊆ Vars(Cv ∪ B(Vv)) \ Vars(All+(P v)),
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we get ∣∣FS′
∣∣ = ∣∣CvJS′K ∪ B(S1)

∣∣
≥
∣∣Varsd(S′) ∩ Vars(Cv)

∣∣+ 1

≥ d
∣∣S1

∣∣+ ∣∣S2

∣∣+ 1 ,

(8.10)

and rewriting this as ∣∣CvJSK
∣∣ ≥ ∣∣CvJS′K

∣∣
=
∣∣FS′

∣∣− ∣∣B(S1)
∣∣

≥ (d− 1)
∣∣S1

∣∣+ ∣∣S2

∣∣+ 1

≥
∣∣S∣∣

(8.11)

proves the claim (this is where we use that d ≥ 2).
Note that CvJSK ⊆ CJUK, since Cv ⊆ C and S ⊆ U . Also, by construction CvJSK

does not mention any vertices in U \ S since S = U ∩ V (Cv). In other words,
CJUK ⊇ CvJSK ∪ CJU \ SK for CvJSK ∩ CJU \ SK = ∅, and using the induction
hypothesis for U \ S $ U we get∣∣CJUK

∣∣ ≥ ∣∣CvJSK
∣∣+ ∣∣CJU \ SK

∣∣ ≥ |S|+ |U \ S| = |U |. (8.12)

The theorem follows by induction.

We can now prove Theorem 8.2 on page 98.

Theorem 8.2 (restated). If π is a resolution refutation of a pebbling contradiction
Pebd

Th
of degree d > 1 and Lπ is the associated labelled pebbling from Theorem 8.1,

then cost(Lπ) = O(Sp(π)).

Proof. As in the proof of Theorem 8.1, given a refutation π : Pebd
Th
` 0, we use

Lemma 8.9 to get a derivation π∗ = {C0, . . . , Cτ} of
∨d

i=1 zi from *Pebd
Th

in the
same space and consider the L-pebbling Lπ constructed in Theorem 8.22. Then

cost(Lπ) = O
(
maxt∈[τ ]{cost(L(Ct))}

)
(8.13)

by Theorem 8.22, and for all t ∈ [τ ] it holds that

cost(L(Ct)) ≤ |Ct| (8.14)

by Theorem 8.29. Thus

cost(Lπ) = O
(
maxt∈[τ ]{|Ct|}

)
= O

(
Sp(π∗)

)
= O

(
Sp(π)

)
(8.15)

and the theorem follows.

The proof of the tight bound for the refutation clause space of pebbling con-
tradictions over binary trees in Theorem 2.1 as presented in Section 8.1 is thereby
complete.
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8.5 The Labelled Pebbling Price of Binary Trees

In this final section we present a proof of Theorem 8.7 on page 103, i.e., that for
binary trees, the L-pebbling price coincides with the black-white pebbling price up
to (small) constant factors. Since the argument is quite lengthy, we begin by giving
an outline of its structure.

8.5.1 High-Level Overview of Proof
The proof of the theorem consists of two main components. The first component is
pretty straightforward and is taken care of in Section 8.5.2. The second component
is much more involved and takes up the rest of the section. In this first subsection
we discuss these two parts of the proof informally, state the two corresponding
formal lemmas that we will need, and show how they together yield Theorem 8.7.

For the first part, studying Definition 8.5 on page 101 carefully, one can argue
that if we remove the reversal rule from the labelled pebble game, what remains
looks essentially just like a disguised version of the standard black-white pebble
game in Definition 5.1 on page 49. True, the rule for white pebble removal has
been somewhat changed, and we are grouping pebbles together in pebble subcon-
figurations, but if we take any “sensible” L-pebbling L =

{
L0, . . . , Lτ

}
, ignore

this pebble grouping, and just look at how the set of all black and white pebbles(
Bl(Lt),Wh(Lt)

)
changes over time with t, it seems plausible that we should obtain

something pretty close to a standard black-white pebbling.
This is indeed the case, and we formalize the intuition above in Section 8.5.2,

where we prove the following lemma.

Lemma 8.30. Suppose that G is an arbitrary DAG with unique sink, and let L
be any complete L-pebbling of G without reversal moves. Then from L we can
construct a complete black-white pebbling P of G such that cost(P) ≤ cost(L).

Thus, if we could somehow do away with the reversal moves without increasing
pebbling price, we would be done. Recall that we know from Lemma 8.6 on page 102
that for general DAGs, this cannot be done. The counterexample in Lemma 8.6
does not apply to binary trees, though. Rather on the contrary, toying around
with L-pebblings of small binary trees, one cannot help getting the feeling that the
removal of reversals should not affect the L-pebbling price in any way whatsoever.
To show this formally, we need to make a detailed analysis of L-pebblings of trees
and find out what structural properties can help us get rid of reversal moves in
this special case. This is the second, much harder, component in the proof of
Theorem 8.7.

In Section 8.5.3, we present some further definitions and notation that we will
use when studying this problem, and make some useful technical observations. The
rest of the section is then spent proving that for binary trees, the rule for reversal
can in fact be omitted from the L-pebble game. We do not quite get the result
that the pebbling price is not affected at all by this, but we show that it cannot
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increase by more than a constant factor 2. Such a bound is wholly sufficient for our
purposes.

Unfortunately, the proof of this fact is very technical, but the structure of the
underlying argument is not that complicated. Below, we try to sketch what it looks
like to give the reader an idea of where we are going.

1. We first take care of a minor technical issue. In the pebble configurations of
the standard black-white pebble game, we have black pebbles, and below each
black pebble the white pebbles it depends on with nothing in between. In
contrast, in the L-pebble game there can be other black pebbles in between a
black pebble and its white pebbles, or two black pebbles one above the other
without any white pebbles below them (see, for example, v1〈v2, v6〉 and v7〈∅〉
in Figure 8.7 on page 129, or v〈v1, v2, v3〉 and w〈w4, w5〉 in Figure 8.8(a) on
page 134).
The first step in our elimination of reversal moves is to show that this differ-
ence is inconsequential. Namely, we establish that without loss of generality
we can assume that any L-pebbling L is non-overlapping in the sense that,
roughly speaking, different pebble subconfigurations in the same labelled peb-
ble configuration do not intersect (Definition 8.50 and Lemma 8.55 in Sec-
tion 8.5.4).

2. Next, we study the connection between reversal moves and the set of vertices
covered by the pebble subconfigurations in the sense of Definition 8.4 on
page 100. In a standard black-white pebbling of a binary tree T , the set
of vertices covered (generalizing Definition 8.4 in the natural way) expands
monotonically as the pebbling proceeds, but in an L-pebbling it might also
shrink as a result of reversal moves.
As was discussed above, our intuition is that for trees this “shrinking” should
not help to produce cheaper pebblings. As a part of our attempt to understand
what happens during reversal moves, we observe that if we restrict an L-peb-
bling L to a subset of the vertices in T and let L act on these vertices in the
natural way, we get a legal L-pebbling on this subset of vertices. We refer to
this restriction operation as projection (Definition 8.51 and Lemma 8.57 in
Section 8.5.5).

3. This leads to the idea of trying to get rid of reversal moves altogether in
the following way: When the cover of a labelled pebble configuration shrinks
as the result of a reversal move, we eliminate this reversal by projecting the
L-pebbling moves made so far on what remains after the reversal move. We
know that every such projection results in a legal L-pebbling, and if we do
this by forward induction for all reversal moves in L, we get a reversal-free
complete L-pebbling L′ of T (Section 8.5.6).

4. The problem is that these projection operations do not preserve pebbling
cost—the pebbling L may contain reversal moves such that the projected
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pebbling L′ becomes more expensive than L. We identify which kind of
reversals in L spoil our construction of a reversal-free and cheap pebbling L′
by projection and note that, from a global perspective, such wasteful reversal
moves seem clearly non-optimal (Example 8.58).
Encouraged by this, and allowing some temporary wishful thinking, we then
demonstrate that for all L-pebblings that contain reversal moves but avoid
this special class of wasteful reversals, the projection construction sketched
above works (Definition 8.59 and Lemma 8.61 in Section 8.5.7).

5. In this way, the whole problem finally boils down to whether wasteful reversals
can be eliminated. In general, we cannot assume that an L-pebbling L does
not make wasteful reversal moves, but we show that if L contains such moves,
we can construct another L-pebbling L′ in which these wasteful reversals
are replaced by stronger, non-wasteful moves without increasing the total
pebbling cost by more than a constant factor (Lemma 8.66 in Section 8.5.8).

Summing this up, we get the next lemma.

Lemma 8.31. Suppose that L is a complete L-pebbling of a complete binary tree T .
Then from L we can construct a complete L-pebbling L′ of T without reversals such
that cost(L′) = O(cost(L)).

Assuming Lemmas 8.30 and 8.31, it is easy to prove that the L-pebbling price
and the black-white pebbling price of a complete binary tree Th of height h coincide
asymptotically.

Theorem 8.7 (restated). L-Peb(Th) = Θ
(
BW-Peb(Th)

)
.

Proof. The black pebbling price of Th is Peb(Th) = O(h) = O(BW-Peb(Th)) ac-
cording to Theorem 5.2 on page 52. It is not hard to see that an L-pebbling L can
imitate a black pebbling P in the same cost. For suppose that at some point in
time t a black pebble is placed on the vertex r in P. If r is a source, L can match
this move by introducing r〈∅〉. Otherwise, if pred(r) = {p, q}, both these vertices
must be black-pebbled at time t in P, so by induction we have p〈∅〉 and q〈∅〉 in L.
Introducing r〈p, q〉, merging with p〈∅〉 and q〈∅〉 on p and q, respectively, and then
erasing r〈p, q〉, we get r〈∅〉. Thus L-Peb(Th) ≤ Peb(Th) = O(BW-Peb(Th)).

In the other direction, let L be a complete L-pebbling of Th in minimal cost.
By Lemma 8.31, there exists a complete L-pebbling L′ of Th without reversal
moves such that cost(L′) = O(cost(L)). By Lemma 8.30 we can construct a plain
old black-white pebbling P of Th from L′ for which cost(P) ≤ cost(L′). Hence
BW-Peb(Th) = O(L-Peb(Th)), and the theorem follows.

So all that needs to be done is to prove Lemmas 8.30 and 8.31, which we do
starting in the next subsection.

We make one final remark before plunging into the proofs. We are aware that the
technical machinery in this section can appear cumbersome. However, this might
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mainly be due to the fact that sometimes, one picture says more than the thousand
words used to formalize it mathematically. We feel that at times in this section,
we are forced to go to great lengths to prove statements that seem intuitively very
plausible once one visualizes what they actually say. Therefore, we believe that the
arguments should be possible to follow more easily if the reader tries to digest what
the definitions mean and what is proven about them simply by drawing a binary
tree of suitable height and working out small examples in this binary tree while
reading.

8.5.2 Reversal-Free L-pebblings Are (Almost) Standard Pebblings

We present the proof of Lemma 8.30 in two steps, one easy and one harder.
The first modification of the pebble game when going from Definition 5.1 to

Definition 8.5 was that in the context of resolution, it appears that a more natural
rule for white pebble removal is that a white pebble can be removed from a vertex
when a black pebble is placed on that same vertex. It is thanks to this that we get
the close correspondence between clauses and pebbles in Section 8.3.

It seems intuitively fairly obvious that this rule change should not really affect
the pebble game, but for completeness we state and prove this fact formally.

Definition 8.32 (S-pebble game). Suppose that G is a DAG with unique sink z.
The superpositioned black-white pebble game, or S-pebble game, is as in Defini-
tion 5.1, except that a vertex may have both a black and a white pebble on itself,
and the pebbling rules are (1)–(3) in Definition 5.1 and (4’) below instead of rule
(4) in Definition 5.1.

4’. A white pebble on v can be removed only if there is a black pebble on v.

We write S-Peb(G) to denote the minimum cost of any complete S-pebbling of G.

Lemma 8.33. For any DAG G it holds that S-Peb(G) = BW-Peb(G).

Proof. It is easy to see that for any standard black-white pebbling P of G we can
make an S-pebbling S of G in exactly the same cost. Every white pebble removal
from a vertex v in P according to rule (4) corresponds to first placing a black pebble
on v in S in no extra cost and then removing first the white pebble according to
rule (4’) and then the black pebble according to rule (2).

In the other direction, suppose that we are given a superpositioned pebbling S =
{S0, . . . , Sτ} of G. We construct a standard black-white pebbling P = {P0, . . . , Pτ}
such that for Pt = (Bt,Wt) and St = (B′

t,W
′
t ) it holds that Bt = B′

t, Bt ∪ Wt =
B′

t ∪ W ′
t , and (as required by Definition 5.1) Bt ∩ Wt = ∅. In particular, this

means that cost(P) = cost(S) and that if S is a complete pebbling, then so is P.
The construction is by forward induction over S. We set P0 = S0 = (∅, ∅) and

then make the inductive step by a case analysis over the pebbling moves.
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1. If S places a black pebble on v at time t + 1, the vertices in pred(v) must be
pebbled in St and thus in Pt. If v ∈ Wt, we remove the white pebble from v
in P. Then we place a black pebble on v.

2. If S removes a black pebble from v at time t + 1, by induction v is black-
pebbled and the vertices in pred(v) are pebbled in P. Thus we can remove
the black pebble from v in P, and in case v ∈ W ′

t we then place a white
pebble on v.

3. If S places a white pebble on v at time t + 1, we place a white pebble there
in P if v 6∈ Bt and otherwise do nothing.

4. When a white pebble is removed from v in S it holds that v ∈ B′
t. Then by

induction v ∈ Bt, so the white pebble has already been removed from v in P
or was never placed there.

Note that to avoid being overly formalistic, we ignore the fact there there might be
“idle moves” Pt = Pt+1 and moves simultaneously removing and placing a pebble
on the same vertex in P and S. It should be clear that this is not a problem.

The second step in the proof of Lemma 8.30 is to show that if we take a complete
L-pebbling L = {L0, . . . , Lτ} of a DAG G without reversal moves and look at(
Bl(Lt),Wh(Lt)

)
for t ∈ [τ ], we can extract a legal complete S-pebbling of G in at

most the same cost. We prove this in the next two lemmas.
The first lemma says that without loss of generality we can assume that all

L-pebblings are non-redundant in the sense that if a subconfiguration v〈V 〉 is de-
rived at time t, then this subconfiguration is not just thrown away but is used at
some time t′ > t further on in the pebbling before being erased.

From now on, in order not to clutter the notation we allow a mild abuse of
notation by omitting curly brackets around singleton L-configurations, quite often
writing, for instance, v〈V 〉 � L, u〈U〉 = L, and L ∪ w〈W 〉 instead of {v〈V 〉} � L,
{u〈U〉} = L, and L ∪ {w〈W 〉}. Also, we sometimes drop the curly brackets around
singleton sets within subconfigurations, writing, for instance, v〈(V ∪ W ) \ w〉 in-
stead of v〈(V ∪ W ) \ {w}〉 for the merger of v〈V 〉 and w〈W 〉.

Lemma 8.34. Let L = {L0, . . . , Lτ} be an arbitrary complete L-pebbling of a
DAG G. Then we can construct a complete L-pebbling L′ = {L′

0, . . . , L′
τ ′} of G

with cost(L′) ≤ cost(L) that has the following property: If v〈V 〉 is erased at time t
in L′, i.e., v〈V 〉 ∈ L′

t\L′
t+1, then this subconfiguration has been used in a merger or

reversal move immediately before being erased, and the subconfiguration resulting
from this move is present in L′

t+1. Also, if L makes no reversal moves, then neither
does L′.

Proof. Let us first try to visualize the proof. For any L-pebbling L, we can construct
a DAG GL encoding the pebbling as follows. For every subconfiguration v〈V 〉
appearing at time t1 and staying in the graph until time t2 when it is erased, we
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create a vertex (v〈V 〉, [t1, t2]). For each reversal u〈U〉  v〈V 〉, we draw an edge
from the vertex representing this occurrence of u〈U〉 to the vertex representing this
occurrence of v〈V 〉. For each merger u〈U〉 = merge(v〈V 〉, w〈W 〉), we draw edges
from v〈V 〉 and w〈W 〉 to u〈U〉. The sources in GL are vertices (v〈pred(v)〉, [t1, t2]),
and by assumption there is a sink (z〈∅〉, [t1, τ ]). Note that by the definition of the
L-pebble game we never derive a subconfiguration that is already present in the
graph, so all vertices in GL have indegree 0, 1 or 2 corresponding to introductions,
reversals and mergers.

Consider the subgraph of GL consisting of all vertices from which the sink vertex
(z〈∅〉, [t1, τ ]) is reachable. We construct L′ to be the subpebbling corresponding
exactly to the moves in this subgraph, except that erasures are always performed
as soon as possible. Since the moves in L′ are a subset of the moves in L, clearly
L′ is reversal-free if L is.

Formally, this amounts to the following. We construct the modified pebbling
L′ by backward induction over L = {L0, . . . , Lτ}. Let L′

τ = Lτ = {z〈∅〉}. Our
induction hypothesis is that L′

t∗ ⊆ Lt∗ for t∗ > t. The backward induction step from
t+1 to t is a case analysis over the moves Lt  Lt+1 in L. For simplicity, we allow
using fractional time steps in the interval [t, t + 1] in the inductive constructions
below.

Introduction Lt+1 = Lt ∪ v〈pred(v)〉: Set L′
t = L′

t+1 \ v〈pred(v)〉. Note that
we might have L′

t = L′
t+1 if v〈pred(v)〉 6∈ L′

t+1. In any case, the induction
hypothesis holds for L′

t.

Merger Lt+1 = Lt ∪ v〈(V ∪W )\w〉: If v〈(V ∪W )\w〉 6∈ L′
t+1, set L′

t = L′
t+1. The

induction hypothesis trivially remains true. Otherwise, if the merged subcon-
figuration is present in L′

t+1, set L′
t =

(
L′

t+1 ∪ {v〈V 〉, w〈W 〉}
)
\v〈(V ∪W )\w〉.

We can go from L′
t to L′

t+1 in at most three steps via intermediate L-con-
figurations L′

t+1/3 = L′
t ∪ v〈(V ∪ W ) \ w〉 and L′

t+2/3 = L′
t+1 ∪ w〈W 〉 by

first merging v〈V 〉 and w〈W 〉, then possibly erasing v〈V 〉, and finally possibly
erasing w〈W 〉.

Reversal Lt+1 = Lt ∪ v〈V 〉 for v〈V 〉 ≺ u〈U〉 ∈ Lt: If v〈V 〉 6∈ L′
t+1, set L′

t = L′
t+1.

Otherwise, set L′
t =

(
L′

t+1 ∪ u〈U〉
)
\v〈V 〉. We can go from L′

t to L′
t+1 in at

most two steps via the intermediate L-configuration L′
t+1/2 = L′

t+1 ∪ u〈U〉,
i.e., by first reversing u〈U〉 to v〈V 〉 and then possibly erasing u〈U〉.

Erasure Lt+1 = Lt \v〈V 〉: All erasure moves in L′ are taken care of in connection
with mergers or reversals, so set L′

t = L′
t+1.

We claim that all moves in L′ constructed in this way are legal (if we eliminate
repeated L-configurations L′

t = L′
t+1). For if u〈U〉 ∈ L′

t, then u〈U〉 ∈ Lt, and
we know that this subconfiguration must have been derived at some point in time
t∗ ≤ t in L by introduction, merger, or reversal. Thus the backward construction
of L′ will yield a correct derivation of u〈U〉. Also note that by the construction for
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the merger and reversal moves, when a subconfiguration in L′ is erased it has just
been used in some merger or reversal move.

Finally, by construction L′
t ⊆ Lt, and for the intermediate fractional time step

L-configurations L′
t+a/b in the merger and reversal moves in L′ we have L′

t+a/b ⊆
Lt+1. This shows that for all L′ ∈ L′ there is a corresponding L ∈ L such that
cost(L′) ≤ cost(L) (part 1 of Proposition 8.21). It follows that cost(L′) ≤ cost(L).

For L-pebblings as in Lemma 8.34, if we ignore all relations between black and
white pebbles in the subconfigurations and consider

(
Bl(Lt),Wh(Lt)

)
for t ∈ [τ ],

this is a legal S-pebbling.

Lemma 8.35. Suppose that L is a complete L-pebbling of a DAG G without reversal
moves. Then there is a complete S-pebbling S of G such that cost(S) ≤ cost(L).

Proof. By Lemma 8.34, without loss of generality we can assume that each v〈V 〉
is erased from L precisely after it has been used in a merger, and that v〈V 〉
is erased before w〈W 〉 when both subconfigurations are eliminated after a move
v〈(V ∪ W ) \ w〉 = merge(v〈V 〉, w〈W 〉), so that the white pebble on w is removed
before the black pebble on w.

It is clear that we are done if we can construct an S-pebbling S with moves
matching the moves in L exactly. Let S0 = (∅, ∅) and construct St+1 inductively
by looking at the moves in Lt  Lt+1.

Introduction Lt+1 = Lt ∪ v〈pred(v)〉: Place white pebbles on pred(v) and then
a black pebble on v in S.

Merger Lt+1 = Lt ∪ v〈(V ∪ W ) \ w〉 for v〈V 〉, w〈W 〉 ∈ Lt: No pebbling moves
in S, but note that if v〈V 〉 is now removed, the change in pebbles on G in L
is exactly the same as after an application of rule (4’) on w.

Erasure Lt+1 = Lt \ v〈V 〉: This is the only nontrivial case. In general, an erasure
move in an L-pebbling can remove an arbitrary number of white pebbles
without any black pebbles being even close to these white pebbles, and there
is no way we can match such a move in an S-pebbling. But since we can
assume that L is an L-pebbling as described in Lemma 8.34, we know that
v〈V 〉 has just been used in a merger. Consequently, the only pebble that
disappears when going from

(
Bl(Lt),Wh(Lt)

)
to
(
Bl(Lt+1),Wh(Lt+1)

)
is

either the black pebble on v, which is always a legal pebble removal, or some
white pebble on w ∈ V which has just been eliminated in the merger move
by a black pebble, and this is a legal pebble removal according to rule (4’).

We see that S generated in this way is a legal S-pebbling if we modify each intro-
duction step into three pebble placement moves. Clearly, cost(S) ≤ cost(L). The
lemma follows.

Combining Lemmas 8.33 and 8.35 immediately yields Lemma 8.30.
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Lemma 8.30 (restated). Suppose that G is an arbitrary DAG with unique sink,
and let L be any complete L-pebbling of G without reversals. Then from L we can
construct a complete black-white pebbling P of G such that cost(P) ≤ cost(L).

Proof. Given any L-pebbling L of G without reversal moves, we use Lemma 8.35
to find an S-pebbling S in at most the same cost as L. Then Lemma 8.33 helps
us to transform S to a standard black-white pebbling P in at most the same cost
as S.

8.5.3 Some Technical Preliminaries
In the rest of this section, we restrict our attention to binary trees and show that
for such graphs the reversal rule can be omitted in the labelled pebble game. Before
beginning to construct the proof of this statement, in this subsection we collect a
number of technical observations that will simplify matters later on. In the process,
we also introduce some more definitions and notation.

Recall the terminology and notation from the beginning of Section 8.2 and from
Definitions 8.10 and 8.11. We add that, in this section, P and Q will denote paths
in T . Also, if succ(u) = succ(v) for u 6= v, we will say that u and v are siblings
and write v = sibl(u). Note that siblings are unrelated vertices in the sense of
Section 8.2; i.e., there is no (directed) path between u and v.

We observe that for binary trees, the cover of a subconfiguration can be defined
more explicitly than in Definition 8.4, and also has the following convexity property.

Definition 8.36. We say that a vertex set V ⊆ V (G) in a DAG G is convex if
for all u1, u2 ∈ V there is a u∗ ∈ V above both u1 and u2 such that for all paths
Pi : ui  u∗, i = 1, 2, it holds that Pi ⊆ V .

Proposition 8.37. For any pebble subconfiguration v〈W 〉 in a binary tree T it
holds that cover(v〈W 〉) = T v \

⋃
w∈W Tw. In particular, cover(v〈W 〉) is a convex

set.

This is not true for general DAGs. Consider, for instance, the pyramid graph
of height 4 with vertex labels as in Figure 8.3 on page 103. Then for z〈u2, u3〉 it
holds that s2, s4 ∈ cover(z〈u2, u3〉), but for any vertex above both s2 and s4 we
can always pick paths going through u2, u3 6∈ cover(z〈u2, u3〉) so cover(z〈u2, u3〉)
is not convex.

Proof of Proposition 8.37. Proving the set inclusion T v \
⋃

w∈W Tw ⊆ cover(v〈W 〉)
is straightforward. Since all vertices u ∈ T v \

⋃
w∈W Tw are below v, they have

paths P : u v to v. But no u is below any w ∈ W , so the paths P cannot possibly
intersect W . Thus u ∈ cover(v〈W 〉) according to Definition 8.4.

To show that this is an equality, we have to make use of the fact that T is a
tree. Namely, this implies that the path P : u  v, if it exists, must be unique.
Suppose to get a contradiction that u ∈ cover(v〈W 〉) but u 6∈ T v \

⋃
w∈W Tw. By

definition there is a path P : u  v, so u ∈ T v. It follows that there must exist



8.5. THE LABELLED PEBBLING PRICE OF BINARY TREES 127

some w ∈ W such that u ∈ Tw. But then the unique path P : u  v, must pass
through w, so P ∩ W 6= ∅, contradicting the assumption that u ∈ cover(v〈W 〉).

To prove convexity, just set u∗ = v in Definition 8.36 and use that the path
between any two vertices in T is uniquely determined.

A nice property of mergers in binary trees is that if we merge two simple subcon-
figurations (Definition 8.11), then the resulting subconfiguration is also simple. We
remark that this is not true in more general DAGs. If we look at Figure 8.3 again,
the subconfigurations z〈x2, u2, u3〉 and x2〈s3〉 are both simple, but their merger
z〈u2, u3, s3〉 is not.

Observation 8.38. If v〈V 〉 and w〈W 〉 with w ∈ V are simple subconfigurations
in a binary tree, then merge(v〈V 〉, w〈W 〉) is also simple.

Proof. By definition, merge(v〈V 〉, w〈W 〉) = v〈(V ∪ W ) \ {w}〉. Since V is simple
and we are in a binary tree, it holds that Tw ∩

⋃
x∈V \{w} T x = ∅. To get the

required paths from u ∈ W to v in Definition 8.11, just concatenate the paths from
u ∈ W to w with the path from w to v.

Another nice property of mergers of simple subconfigurations is that the cover
of a merger is the disjoint union

.
∪ of the covers of the merged subconfigurations.

Figure 8.2 on page 102 provides an illustration of this. Again, this holds only
in the binary tree case. Reusing the example subconfigurations z〈x2, u2, u3〉 and
x2〈s3〉 above, it is readily verified that we have cover(merge(z〈x2, u2, u3〉, x2〈s3〉)) =
cover(z〈u2, u3, s3〉) 6= cover(z〈x2, u2, u3〉) ∪ cover(x2〈s3〉).

Proposition 8.39. Suppose that u〈U〉, v〈V 〉, and w〈W 〉 are simple pebble subcon-
figurations in a binary tree. Then it holds that u〈U〉 = merge(v〈V 〉, w〈W 〉) if and
only if cover(u〈U〉) = cover(v〈V 〉)

.
∪ cover(w〈W 〉).

Proof. (⇒) If u〈U〉 = merge(v〈V 〉, w〈W 〉), it holds that w ∈ V , and since we
are in a tree and V is a simple set, we have Tw ∩

⋃
x∈V \w T x = ∅. Combining

this with the fact that W is below w by definition, we get
⋃

y∈W T y ⊆ Tw and⋃
x∈V \w T x ∩

⋃
y∈W T y = ∅. The equality in the proposition follows by using

Proposition 8.37 and checking that

cover(u〈U〉) = cover
(
v
〈
(V ∪ W ) \ w

〉)
= T v \

⋃
x∈(V ∪W )\w

T x

= T v \

 ⋃
x∈V \w

T x .
∪
⋃

y∈W

T y


=

(
T v \

⋃
x∈V

T x

)
.
∪

Tw \
⋃

y∈W

T y


= cover(v〈V 〉)

.
∪ cover(w〈W 〉) .

(8.16)
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(⇐) Suppose that cover(u〈U〉) = cover(v〈V 〉)
.
∪ cover(w〈W 〉). Since by defini-

tion all vertices in cover(v〈V 〉) and cover(w〈W 〉) are below v and w, respectively,
but cover(v〈V 〉) ∪ cover(w〈W 〉) = cover(u〈U〉) is convex by Proposition 8.37, set-
ting u1 = v and u2 = w in Definition 8.36 shows that either v is below w or w is
below v. Suppose without loss of generality that the latter case holds. Then using
the same reasoning again we see that v = u.

Since w ∈ cover(u〈U〉) there is a path P : w  u with P ⊆ cover(u〈U〉).
Clearly, (P \ w) ∩ cover(w〈W 〉) = ∅. Because cover(v〈V 〉) ∩ cover(w〈W 〉) =
∅ by assumption and w ∈ cover(w〈W 〉) by definition, we must have (P \ w) ⊆
cover(v〈V 〉) but w 6∈ cover(v〈V 〉). Applying Proposition 8.37 we see that w ∈
V , so v〈V 〉 and w〈W 〉 are mergeable. By assumption, u〈U〉, v〈V 〉, and w〈W 〉
are all simple subconfigurations, and using Proposition 8.37 again as well as the
⇒-direction of this proposition it can be verified that the equality

cover(u〈U〉) = Tu \
⋃

x∈U

T x = cover(v〈V 〉)
.
∪ cover(w〈W 〉) =

= cover(merge(v〈V 〉, w〈W 〉)) = T v \
⋃

x∈(V ∪W )\w

T x (8.17)

can hold only if U = (V ∪ W ) \ w, i.e., only if u〈U〉 = merge(v〈V 〉, w〈W 〉).

Observe that we need the simplicity of the subconfigurations in order for Propo-
sition 8.39 to hold. If v〈V 〉 were not simple, white pebbles in

⋃
x∈V T x

∗ would create
problems. In a sense, requiring that subconfigurations be simple is a way of ensuring
that mergers behave in the way one would expect them to.

Now the subconfigurations v〈pred(v)〉 in introduction moves are obviously sim-
ple, and Observation 8.38 says that mergers preserve simplicity. It is not hard
to show that we can also assume that reversal moves result in simple subconfigu-
rations, so that in any L-pebbling of a binary tree T it is always the case that all
subconfigurations are simple. We next sketch a proof of this statement,2 which will
simplify matters in what follows.

Lemma 8.40. Suppose that L is a complete L-pebbling of a binary tree T . Then
from L we can construct a complete L-pebbling L′ such that cost(L′) ≤ cost(L) and
L′ contains only simple L-configurations.

Proof sketch. Recalling Definition 8.12, let L′
t =

{
v〈swp(v,W )〉 | v〈W 〉 ∈ Lt

}
for

L =
{
L0, . . . , Lτ

}
. This implies that cover(L′

t) = cover(Lt) (perhaps most easily
seen by using Proposition 8.37) for L′

t consisting of simple subconfigurations. We

2However, we note that the reader who so wishes can instead make Lemma 8.40 an assumption
and restrict Theorem 8.7 to the case of L-pebblings with simple subconfigurations. This is so since
a careful reading of Section 8.3 reveals that the L-pebblings that we get from resolution derivations
satisfy this property. To see this, note that by Definition 8.13 all subconfigurations in L(Ct) are
simple, and by Observation 8.38 and the construction in Lemma 8.20 all subconfigurations in the
intermediate L-configurations are simple as well.
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v1

v2 v3

v4 v5 v6 v7

v8 v9 v10 v11 v12 v13 v14 v15

Figure 8.7: Three pebble subconfigurations v1〈v2, v6〉, v4〈v8, v9〉, and v7〈∅〉.

claim that L′ =
{
L′

0, . . . , L′
τ

}
is a legal L-pebbling if repeated L-configurations

L′
t = L′

t+1 are eliminated. Let us outline the proof.
Introduction moves in L are always performed also in L′, since v〈pred(v)〉 =

v〈swp(v, pred(v))〉.
Suppose that v1〈W1〉 and v2〈W2〉 are merged in L, and let W ′

i = swp(vi,Wi)
for i = 1, 2. If v2 6∈ W ′

1 we have swp(v1, (W1 ∪ W2) \ v2) = W ′
1, so nothing happens

in L′. Otherwise we can merge v1〈W ′
1〉 and v2〈W ′

2〉, and it is straightforward to
verify that swp(v1, (W1 ∪ W2) \ v2) = swp(v1, (W ′

1 ∪ W ′
2) \ v2).

Likewise, if v1〈W1〉 is reversed to v2〈W2〉 in L, going from v1〈W ′
1〉 to v2〈W ′

2〉
in L′ is a legal reversal move.

Finally, note that erasures are taken care of automatically by the definition
of L′

t.

In the outline of the proof in Section 8.5.1, we said that we wanted to construct
L-pebblings with “non-intersecting” subconfigurations. We next formally define
two slightly different flavours of “non-intersecting” that we will use extensively
below. It might be easier to parse this rather technical definition by first studying
Examples 8.42 and 8.43.

Definition 8.41. For a simple pebble subconfiguration v〈W 〉, we define the bound-
ary of v〈W 〉 to be ∂v〈W 〉 = {v} ∪ W . The interior of v〈W 〉 is int(v〈W 〉) =
cover(v〈W 〉) \ ∂v〈W 〉 and the closure is cl(v〈W 〉) = cover(v〈W 〉) ∪ ∂v〈W 〉.

If cover(v〈V 〉) ∩ cover(u〈U〉) = ∅, the subconfigurations v〈V 〉 and u〈U〉 are said
to be non-overlapping. If cl(v〈V 〉)∩ cl(u〈U〉) = ∅, v〈V 〉 and u〈U〉 are non-touching.

Example 8.42. Consider the subconfigurations in Figure 8.7 (which is Figure 8.1
but with all vertices labelled). For v1〈v2, v6〉 we have

cover(v1〈v2, v6〉) = {v1, v3, v7, v14, v15},
∂v1〈v2, v6〉 = {v1, v2, v6},

int(v1〈v2, v6〉) = {v3, v7, v14, v15},
cl(v1〈v2, v6〉) = {v1, v2, v3, v6, v7, v14, v15}.
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Since cl(v4〈v8, v9〉) = {v4, v8, v9}, the subconfigurations v1〈v2, v6〉 and v4〈v8, v9〉
are non-touching. For v7〈∅〉 we have cover(v7〈∅〉) = {v7, v14, v15}, so v7〈∅〉 and
v1〈v2, v6〉 are overlapping, or, more precisely, it holds that v7〈∅〉 ≺ v1〈v2, v6〉.
Example 8.43. More generally, if v〈V 〉 and w〈W 〉 are simple, mergeable subcon-
figurations with w ∈ V , then v〈V 〉 and w〈W 〉 are non-overlapping (because of
Proposition 8.39) but touching in w. This is illustrated in Figure 8.2.

For the case of binary trees, it turns out that Lemma 8.34 can be formulated
more sharply. Remember that the cover of an L-configuration L is defined by taking
the union of the covers of the subconfigurations in L.

Lemma 8.44. Suppose that L =
{
L0, . . . , Lτ

}
is a reversal-free L-pebbling on T

such that all L-configurations Lt are simple and Lτ consisting of pairwise non-
overlapping subconfigurations. Then there is a reversal-free complete L-pebbling
L′ =

{
L′

0, . . . , L′
τ ′

}
with L′

0 ⊆ L0, L′
τ ′ = Lτ and cost(L′) ≤ cost(L) such that every

v〈V 〉 in L′ occurs during one contiguous time interval, and every v〈V 〉 in L′ except
those in Lτ is used in exactly one merger, after which it is erased. Also, all L′

t are
simple, and cover(L′

t) grows monotonically with t.

Proof. Apply the construction in the proof of Lemma 8.34, but use the stronger
induction hypothesis that L′

t ⊆ Lt for L′
t consisting of non-overlapping subconfigu-

rations.
For introduction moves, if the L-configuration L′

t+1 is non-overlapping then so
is L′

t = L′
t+1 \ v〈pred(v)〉.

For merger moves u〈U〉 = merge(v〈V 〉, w〈W 〉), by the induction hypothesis we
have v〈V 〉, w〈W 〉 6∈ L′

t+1, since L′
t+1 is non-overlapping and v〈V 〉 and w〈W 〉 are cov-

ered by u〈U〉 by Proposition 8.39. For the same reason L′
t must be non-overlapping,

since we just swap u〈U〉 for v〈V 〉 and w〈W 〉 with cover(v〈V 〉)
.
∪ cover(w〈W 〉) =

cover(u〈U〉). (Naturally enough, though, the intermediate L-configurations L′
t+1/3

and L′
t+2/3, where we merge and erase, will be overlapping.)

Also, any subconfiguration v〈V 〉 occurs only in one merger, after which it is
immediately erased. For at all times t∗ > t after which v〈V 〉 was erased from L′
directly after the first merger move involving v〈V 〉, there is a u〈U〉 � v〈V 〉 in L′

t∗ .
Since all L′

t∗ are non-overlapping, the subconfiguration v〈V 〉 never appears again
(this can easily be formalized by a forward induction argument).

Finally, note that in the reversal-free L-pebbling L′, the cover increases at in-
troduction moves, stays the same at mergers, and (by the construction for mergers)
also stays the same for erasures. Hence, cover(L′

t) grows monotonically with t.

For any L-configuration, we can find an L-configuration with the same cover
but consisting only of non-touching subconfigurations. We will refer to this as a
canonical representation.

Lemma 8.45. Let V be any non-empty vertex set in T . Then there exists a unique
simple L-configuration L′ such that cover(L′) = V and all subconfigurations in L′

are simple and non-touching.
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We introduce the formal definition of canonical representation before proceeding
to give a proof of Lemma 8.45.

Definition 8.46 (Canonical representation). For an arbitrary non-empty set
of vertices V ⊆ V (T ), we define the canonical representation canon(V ) of V to be
the unique L′ in Lemma 8.45.

For L an arbitrary L-configuration, we define canon(L) to be the canonical
representation L′ = canon(cover(L)) of the vertices covered by L.

Once more, we note that this definition is specific for binary trees. Consider,
for instance, the set V = {u1, u2, s1, s2, s3} in Figure 8.3. Both u1 and u2 must be
black-pebbled in any L with cover(L) = V , but there is no way two subconfigu-
rations u1〈U1〉 and u2〈U2〉 can be non-touching.

Proof of Lemma 8.45. We first show existence and then uniqueness.
We construct L′ with cover(L′) = V as follows: for each v ∈ V such that

succ(v) 6∈ V or v = z, add the subconfiguration v〈W 〉, where W ⊆ T v
∗ is the

maximal set such that for all w ∈ W it holds that Pw
∗ \ P v

∗ ⊆ V but w 6∈ V . By
construction, v〈W 〉 is simple, and applying Proposition 8.37 shows that cover(L′) =
V .

Clearly, every u ∈ V is covered by exactly one subconfiguration in L′, so all
subconfigurations in L′ must be at least non-overlapping. Also, for all Wh(L′) it
holds that w 6∈ V by construction, so the subconfigurations are non-touching.

To get uniqueness, suppose that L is any simple L-configuration with the prop-
erty that cover(L) = V . If v ∈ V but succ(v) 6∈ V , there must be a black pebble
on v in L by Proposition 8.37. Also, if w 6∈ V but succ(w) ∈ V , w must be
white-pebbled. Thus Bl(L′) ⊆ Bl(L) and Wh(L′) ⊆ Wh(L).

The L-configuration L cannot have pebbles outside cover(L′) ∪ Wh(L′), for
if so we would have cover(L) % V (by the convexity property in Definition 8.36
of subconfigurations and since all subconfigurations are simple). And if L has
pebbles inside cover(L′) \

(
Bl(L′) ∪ Wh(L′)

)
, there must exist touching subcon-

figurations in L. Hence, if L′ does not contain touching subconfigurations it holds
that L′ = L.

Note, in particular, that if V is a convex set in T in the sense of Definition 8.36,
then canon(V ) is a single subconfiguration.

We use the canonical representation to extend Definition 8.41 to L-configura-
tions.

Definition 8.47. Suppose that L, L1, L2 are simple L-configurations.
If cover(L1) = cover(L2), we say that L1 and L2 coincide and write L1 ∼ L2.

L is non-overlapping if all distinct v〈V 〉, u〈U〉 ∈ L are pairwise non-overlapping
and non-touching if all distinct v〈V 〉, u〈U〉 ∈ L are pairwise non-touching. L1 and
L2 are mutually non-overlapping or mutually non-touching if all v〈V 〉 ∈ L1 and
u〈U〉 ∈ L2 are pairwise non-overlapping or non-touching, respectively.
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Let L′ = canon(L) be the canonical representation of L. Then the boundary
of L is defined to be ∂L =

⋃
v〈V 〉∈L′ ∂v〈V 〉, the interior is defined to be int(L) =⋃

v〈V 〉∈L′ int(v〈V 〉) and the closure is cl(L) =
⋃

v〈V 〉∈L′ cl(v〈V 〉).

Observe that L1 = L2 implies L1 ∼ L2, but not the other way round. For
non-touching L-configurations, however, the two notions are identical. Also, L ∼
canon(L) by definition.
Example 8.48. Returning to Figure 8.7, if we look at the L-configuration L ={
v1〈v2, v6〉, v4〈v8, v9〉, v7〈∅〉

}
we have cover(L) = {v1, v3, v4, v7, v14, v15}. Since

v7〈∅〉 is covered by v1〈v2, v6〉 and the subconfigurations v1〈v2, v6〉 and v4〈v8, v9〉 are
non-touching, we get the canonical representation simply by leaving out v7〈∅〉, i.e.,
canon(L) =

{
v1〈v2, v6〉, v4〈v8, v9〉

}
. Using this canonical representation of L, we

see that

∂L = {v1, v2, v4, v6, v8, v9},
int(L) = {v3, v7, v14, v15},
cl(L) = {v1, v2, v3, v4, v6, v7, v8, v9, v14, v15}.

The L-configuration L is overlapping because of v7〈∅〉 and v1〈v2, v6〉, but, for in-
stance, L1 =

{
v1〈v2, v6〉, v7〈∅〉

}
and L2 =

{
v4〈v8, v9〉

}
are mutually non-touching.

As a final preliminary before moving on to part 1 in the proof outline in Sec-
tion 8.5.1, we collect some properties of the L-pebbling cost function of Defini-
tion 8.5.

Proposition 8.49. Suppose that L, L1, . . . , Lm are arbitrary simple L-configura-
tions.

1. If L1 ⊆ L2 then cost(L1) ≤ cost(L2).

2. cost(L1 ∪ L2) ≤ cost(L1) + cost(L2).

3. If L is non-touching, cost(L) =
∣∣Bl(L)

∣∣+ ∣∣Wh(L)
∣∣ = ∣∣∂L

∣∣.
4. If Li and Lj are mutually non-touching for 1 ≤ i < j ≤ m, it holds that

cost
(⋃m

i=1 Li

)
=
∑m

i=1 cost(Li).

5. If L′
i = canon(Li) for i = 1, . . . ,m, then cost

(⋃m
i=1 L′

i

)
≤ cost

(⋃m
i=1 Li

)
.

6. If L′ = canon(L), then cost(L ∪ L′) = cost(L), and there is an L-pebbling
from L to L′ which does not cost more than L.

Proof. Parts 1 and 2 are from Proposition 8.21 on page 111 and were proven there.
For part 3, using Definition 8.47 we see that if L is non-touching, it holds that

Bl(L) ∩ Wh(L) = ∅. And if the L-configurations Li and Lj are mutually non-
touching, we have

(
Bl(Li) ∪ Wh(Li)

)
∩
(
Bl(Lj) ∪ Wh(Lj)

)
= ∅, which shows that
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each pebbled vertex on the left-hand side in part 4 is counted exactly once on the
right-hand side.

Part 5 is again immediate since Bl(L′
i) ⊆ Bl(Li) and Wh(L′

i) ⊆ Wh(Li) for
L′

i = canon(Li) by Proposition 8.37 and the proof of Lemma 8.45.
For part 6, Bl(L ∪ L′) = Bl(L) and Wh(L ∪ L′) = Wh(L), which shows that

the cost is the same. We also claim that we can do an L-pebbling from L to
L′ = canon(L) at no extra cost.

To show this claim, we first note that if v〈V 〉 and w〈W 〉 are touching but
non-overlapping, we can derive a subconfiguration u〈U〉 such that cover(u〈U〉) =
cover(v〈V 〉) ∪ cover(w〈W 〉) simply by merging v〈V 〉 and w〈W 〉, because either
w ∈ V or v ∈ W . Suppose therefore that v〈V 〉 and w〈W 〉 are overlapping and
that w ∈ T v but w〈W 〉 6� v〈V 〉. Then we can derive a subconfiguration u〈U〉 with
cover(u〈U〉) = cover(v〈V 〉) ∪ cover(w〈W 〉) and substitute it for v〈V 〉 and w〈W 〉
at no extra cost by first deriving vi〈W ∩ T vi

∗ 〉 for all vi ∈ V ∩ int(w〈W 〉) from
w〈W 〉 by reversals, and then merging all vi〈W ∩ T vi

∗ 〉 in turn with v〈V 〉. The
resulting L-configuration L ∪

{
vi〈W ∩ T vi

∗ 〉 | vi ∈ V ∩ int(w〈W 〉)
}
∪ u〈U〉 costs

no more than L, since the only change is that already white-pebbled vertices are
also black-pebbled. Finally, erase v〈V 〉, w〈W 〉 and all vi〈W ∩ T vi

∗ 〉. Repeating this
for all mutually touching subconfigurations, the claim follows by induction.

A “proof-by-example” pebbling move sequence for part 6 as described above
is given in Figure 8.8, with the overlapping subconfigurations v〈V 〉 and w〈W 〉 in
Figure 8.8(a), the two subconfigurations in

{
vi〈W ∩ T vi

∗ 〉 | vi ∈ V ∩ int(w〈W 〉)
}

derived by reversals from w〈W 〉 in Figure 8.8(b), and the two mergers of v〈V 〉
with these subconfigurations in Figures 8.8(c) and 8.8(d) leading to the canonical
representation canon

(
{v〈V 〉, w〈W 〉}

)
.

8.5.4 Non-Overlapping Labelled Pebblings and Projections
In this subsection we turn to part 1 in the outline of the proof of Lemma 8.31
in Section 8.5.1. From now on we will assume without loss of generality (in view
of Lemma 8.40) that all L-pebblings operate with simple subconfigurations only
(Definition 8.11), and that they are non-redundant in the sense of Lemma 8.34.

Parts 5 and 6 of Proposition 8.49 tell us that for any given set of vertices, the
cheapest way of covering these vertices is to use canonical L-configurations, and that
if L is not canonical, it does not cost anything extra to make L canonical by applying
reversals and mergers followed by erasures. We define non-overlapping pebblings as
L-pebblings which always keep the L-configurations canonical in this way. In a
non-overlapping pebbling, each introduction is immediately followed by a merger
when possible, each merger is immediately followed by erasures of the merged sub-
configurations, and all reversals from a subconfiguration u〈U〉 are performed in
sequence after which u〈U〉 is erased. We refer to these merger-and-erasures and
reversals-and-erasure moves as expansions and implosions, respectively.
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(a) v〈v1, v2, v3〉 and w〈w4, w5〉 (dashed).
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(d) canon
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´
.

Figure 8.8: Illustration of canonizing pebbling in Proposition 8.49, part 6.

Definition 8.50 (Non-overlapping pebbling). A non-overlapping L-pebbling L
is a sequence of the following types of moves.

Introduction Lt+1 = Lt ∪ v〈pred(v)〉, for v〈pred(v)〉 6� Lt and Lt non-touching.

Expansion Lt+3 =
(
Lt ∪ merge(u〈U〉, v〈V 〉)

)
\{u〈U〉, v〈V 〉} for u〈U〉, v〈V 〉 ∈ Lt

and Lt non-overlapping.

Implosion Lt+m+1 =
(
Lt \ u〈U〉

)
∪ M for Lt and M =

{
vi〈Vi〉 | i ∈ [m]

}
non-

touching, and M � u〈U〉 ∈ Lt.

For technical reasons, it will be convenient to allow trivial implosion moves
where M = u〈U〉. We say that u〈U〉  M is a nontrivial implosion if M ≺ u〈U〉.
Observe that after introduction and expansion the resulting L-configuration is non-
overlapping, and after implosion the L-configuration is non-touching.

We want to prove that without loss of generality we can assume L-pebblings to
be non-overlapping. The notation in the proof of this fact is simplified by intro-
ducing projections.

Definition 8.51 (Projection). Let u〈U〉, v〈V 〉 be arbitrary subconfigurations, L
an arbitrary L-configuration, and M an arbitrary non-touching L-configuration.

If u〈U〉 and v〈V 〉 are overlapping, the projection of u〈U〉 on v〈V 〉 is defined as
projv〈V 〉(u〈U〉) = canon(cover(u〈U〉) ∩ cover(v〈V 〉)), i.e., the unique subconfigu-
ration w〈W 〉 such that cover(w〈W 〉) = cover(u〈U〉) ∩ cover(v〈V 〉). If u〈U〉 and
v〈V 〉 are non-overlapping, we define projv〈V 〉(u〈U〉) = ∅.

The projection of u〈U〉 on M is projM(u〈U〉) =
⋃

v〈V 〉∈M projv〈V 〉(u〈U〉), and
projM(L) =

⋃
u〈U〉∈L projM(u〈U〉).
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(a) The L-configuration L and cover(L). (b) The L-configuration M and cover(M).

(c) The projection projM(L) with cover.

Figure 8.9: Example L-configurations L and M and projection projM(L).

In order to grasp this definition, it might be helpful to study the example in
Figure 8.9. Note, in particular, that if u〈U〉 � v〈V 〉, then projv〈V 〉(u〈U〉) = u〈U〉.
Here and in the following, we adopt the convention that projections resulting in the
undefined subconfiguration ∅ are implicitly eliminated from all L-configurations.

We will need a technical lemma relating the pebbles in an L-configuration with
those in its projection. Once deciphered, the statements in the lemma are fairly
obvious, and the proof is just an exercise in applying the definitions so far in this
section. We recommend the reader to look at the projections in (the right subtree
of) the tree in Figure 8.9 and verify what the lemma says for this example.

Lemma 8.52. Let L be any L-configuration and M any non-touching L-configura-
tion, and let Lp = projM(L) be the projection of L on M. Suppose that v is a vertex
that is pebbled in Lp but not in L, i.e., v ∈

(
Bl(Lp) ∪ Wh(Lp)

)
\
(
Bl(L) ∪ Wh(L)

)
.

Then the following hold:

1. The vertex v is on the boundary of M, i.e., v ∈ ∂M.

2. The pebble on the vertex v has the same colour in Lp and M, i.e., either
v ∈ Bl(Lp) ∩ Bl(M) or v ∈ Wh(Lp) ∩ Wh(M).

3. There is a subconfiguration wL

〈
WL

〉
∈ L such that v ∈ int

(
wL

〈
WL

〉)
.

Proof. If v ∈ Bl(Lp) ∪ Wh(Lp), by Definition 8.51 there are wL〈WL〉 ∈ L and
wM 〈WM 〉 ∈ M with projwM 〈WM 〉(wL〈WL〉) = u〈U〉 such that v ∈ {u} ∪ U . We
remark that since M is non-touching, canon(M) = M and, in particular, ∂M =
Bl(M) ∪ Wh(M). We make a case analysis depending on the colour of the pebble
on v.
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1. Suppose v = u, i.e., that v is black-pebbled in Lp. Then

v ∈ cover(u〈U〉) = cover(wL〈WL〉) ∩ cover(wM 〈WM 〉) (8.18)

and

succ(v) 6∈ cover(u〈U〉) = cover(wL〈WL〉) ∩ cover(wM 〈WM 〉) (8.19)

by the proof of Lemma 8.45. But succ(v) ∈ cover(wL〈WL〉), since otherwise
v = wL ∈ Bl(L) by Proposition 8.37, which is contrary to assumption. Thus
for (8.19) to hold we must have succ(v) 6∈ cover(wM 〈WM 〉), so v = wM ∈
Bl(M) ⊆ ∂M. Since v is not pebbled in Lp, in particular we have v 6∈
{wL} ∪ WL = ∂wL〈WL〉, and combining this with (8.18) we see that v ∈
cover(wL〈WL〉) \ ∂wL〈WL〉 = int(wL〈WL〉).

2. Suppose that v ∈ U , i.e., that v is white-pebbled in Lp. Then

v 6∈ cover(wL〈WL〉) ∩ cover(wM 〈WM 〉) (8.20)

and
succ(v) ∈ cover(wL〈WL〉) ∩ cover(wM 〈WM 〉) (8.21)

by wholly analogous reasoning. We have that v ∈ cover(wL〈WL〉) since
otherwise v ∈ Wh(L) contrary to assumption, so it must hold that v 6∈
cover(wM 〈WM 〉). Hence, v ∈ Wh(M) ⊆ ∂M and v ∈ cover(wL〈WL〉) \
∂wL〈WL〉 = int(wL〈WL〉).

This proves the lemma.

The next proposition says that any L-configuration L can be written as a disjoint
union of the sets of subconfigurations of L covered by each subconfiguration in
canon(L), and that the cost of L is the sum of the costs of the sub-L-configurations
in this disjoint union. This statement, too, is obvious once deciphered, and the proof
is immediate from Definition 8.51, (the proof of) Lemma 8.45 and Proposition 8.49,
parts 4 and 5.

Proposition 8.53. Let L′ = canon(L). Then it holds that L is a disjoint union of
the sets projv〈V 〉(L) =

{
u〈U〉 | v〈V 〉 � u〈U〉 ∈ L

}
for all v〈V 〉 ∈ L′. Also, cost(L) =∑

v〈V 〉∈L′ cost(projv〈V 〉(L)), and for all subconfigurations v〈V 〉 ∈ L′ it holds that
cost(v〈V 〉) ≤ cost(projv〈V 〉(L)).

Example 8.54. As we saw in Example 8.48, for L =
{
v1〈v2, v6〉, v4〈v8, v9〉, v7〈∅〉

}
in

Figure 8.7 we have the canonical representation canon(L) =
{
v1〈v2, v6〉, v4〈v8, v9〉

}
.

Trivially, L can be written as the disjoint union of

L1 = projv1〈v2,v6〉(L) =
{
v1〈v2, v6〉, v7〈∅〉

}
(8.22)
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and

L2 = projv4〈v8,v9〉(L) =
{
v4〈v8, v9〉

}
(8.23)

and it holds that cost(L) = cost(L1) + cost(L2).
Using Definition 8.51 and Propositions 8.49 and 8.53, we can prove that for

every overlapping L-pebbling we can find a non-overlapping pebbling which is at
least as good and at least as cheap.

Lemma 8.55. Suppose that L is an arbitrary complete L-pebbling of T . Then
from L we can construct a non-overlapping complete L-pebbling L′ of T such that
cost

(
L′
)
≤ cost

(
L
)
.

Proof. Given L = {L0, . . . , Lτ}, we create the “backbone” L′ = {L′
0, . . . , L′

τ} of a
non-overlapping pebbling by setting L′

t = canon(Lt). Then we have L′
0 = L0 = ∅

and L′
τ = canon(Lτ ) = canon(z〈∅〉) = z〈∅〉.

By Proposition 8.49, part 5, cost(L′
t) ≤ cost(Lt), so we are done if we can

fill in the holes in the transitions L′
t  L′

t+1 using the non-overlapping moves
of Definition 8.50 without paying more than max

{
cost(Lt), cost(Lt+1)

}
. This is

basically just an exercise in applying Proposition 8.49. Consider the moves Lt  
Lt+1 in L.

Introduction Lt+1 = Lt ∪ v〈pred(v)〉: If v〈pred(v)〉 � L′
t, set L′

t+1 = L′
t. Other-

wise, introduce v〈pred(v)〉 and canonize by expanding (at most three times)
to get L′

t+1 = canon(Lt+1). This can be done at cost at most cost(Lt+1),
since cost(L′

t ∪ v〈pred(v)〉) ≤ cost(Lt+1) by part 5 of Proposition 8.49 (note
that canon(v〈pred(v)〉) = v〈pred(v)〉), and since the canonization does not
increase this cost by part 6 of Proposition 8.49.

Merger Lt+1 = Lt ∪ merge(u〈U〉, v〈V 〉) for u〈U〉, v〈V 〉 ∈ Lt: For merger moves
it holds that Lt+1 ∼ Lt, so set L′

t+1 = L′
t = canon(Lt+1).

Reversal Lt+1 = Lt ∪ {v〈V 〉} for v〈V 〉 ≺ u〈U〉 ∈ Lt: For reversal moves it holds
that Lt+1 ∼ Lt, so set L′

t+1 = L′
t = canon(Lt+1).

Erasure Lt+1 = Lt \ v〈V 〉 for v〈V 〉 ∈ Lt: If v〈V 〉 � Lt+1 we have Lt+1 ∼ Lt and
can set L′

t+1 = L′
t, so assume that v〈V 〉 6� Lt+1.

Since L′
t ∼ Lt is non-touching, there is a u〈U〉 ∈ L′

t such that v〈V 〉 � u〈U〉.
It follows from Proposition 8.53 that for w〈W 〉 ∈ L′

t, w〈W 〉 6= u〈U〉, we
have projw〈W 〉(Lt+1) = projw〈W 〉(Lt). Thus, letting Lu

i = proju〈U〉(Li) for
i = t, t+1, by Proposition 8.49, part 4, it is sufficient to show locally that we
can implode u〈U〉 = canon(Lu

t ) = canon(Lu
t+1 ∪ v〈V 〉) into M = canon(Lu

t+1)
in cost at most max

{
cost(Lu

t+1 ∪ v〈V 〉), cost(Lu
t+1)

}
= cost(Lu

t+1 ∪ v〈V 〉). By
part 1 of Proposition 8.49, it is enough to check that the inequality cost(M ∪
u〈U〉) ≤ cost(Lu

t+1 ∪ v〈V 〉) holds. But this follows from part 5 of the same
proposition by setting L1 = Lu

t+1 ∪ v〈V 〉 with L′
1 = canon(L1) = u〈U〉 and

L2 = Lu
t+1 with L′

2 = canon(L2) = M.
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Eliminating “idle moves” L′
t+1 = L′

t, we see that we get a non-overlapping pebbling
in accordance with Definition 8.50.

Lemma 8.55 tells us that as far as pebbling cost is concerned, without loss of
generality we may assume that an L-pebbling L that reaches the subconfiguration
z〈∅〉 is non-overlapping. This completes part 1 in the proof of Lemma 8.31 sketched
in Section 8.5.1.

In what follows, it will sometimes be convenient to consider the L-pebblings as
consisting of the “aggregated” expansion and implosion moves in Definition 8.50,
and sometimes more convenient to consider each individual merger or reversal in
these moves individually as in Definition 8.5. In view of Lemma 8.55, we know that
we can switch freely back and forth between these two perspectives.

8.5.5 Projections Preserve Labelled Pebblings
If L = {L0, . . . , Lτ} is a non-overlapping pebbling ending in an implosion u〈U〉  
M, it seems natural to try to replace the moves in L leading to u〈U〉 by a reversal-
free pebbling reaching M � u〈U〉. Since u〈U〉 and Lτ−1 \ u〈U〉 are mutually non-
touching by definition, this substitution should not affect the cost of the pebbling
outside cl(u〈U〉) by Proposition 8.53.

We argue that intuitively, one natural candidate for such a substitution pebbling
is what we get if we take all L-configurations in L and project them on Lτ =
(Lτ−(m+1) ∪ M) \u〈U〉. To show that this idea makes sense, we establish as a first
step that projections preserve merger moves.

Proposition 8.56. Suppose that M is a non-touching L-configuration and that
v〈V 〉 and w〈W 〉 are mergeable with w ∈ V . Then if projM(merge(v〈V 〉, w〈W 〉)) 6=
projM({v〈V 〉, w〈W 〉}) it holds that projM(merge(v〈V 〉, w〈W 〉)) can be derived from
projM({v〈V 〉, w〈W 〉}) by a single merger on w.

Proof. Consider the merger vertex w. For each u〈U〉 ∈ M there are four possibilities
for w:

1. w ∈
⋃

x∈U T x,

2. w ∈ Pu,

3. w ∈ T \
(
Tu ∪ Pu

)
,

4. w ∈ int(u〈U〉).

See Figure 8.10 for a schematic illustration.
For all u〈U〉 ∈ M such that w 6∈ int(u〈U〉), i.e., the first three cases, it is

straightforward, if tedious, to verify that merge(v〈V 〉, w〈W 〉) projects the same
subconfigurations on u〈U〉 as do v〈V 〉 and w〈W 〉 together. In the fourth case,
the change in projection corresponds to exactly one merger move, and since M is
non-touching, there is at most one u〈U〉 ∈ M for which this case applies.
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Pu

u

int(u〈U〉) T \
(
Tu ∪ Pu

)
⋃

x∈U T x

U

Figure 8.10: Illustration of cases in proof that projections preserve mergers.

We prove these statements by analyzing the cases above one by one, using in
the analysis that cover(merge(v〈V 〉, w〈W 〉)) = cover(v〈V 〉)

.
∪cover(w〈W 〉) (Propo-

sition 8.39).

1. w ∈
⋃

x∈U T x: By Proposition 8.37, cover(w〈W 〉) ⊆ Tw, and since by as-
sumption it holds that Tw ⊆

⋃
x∈U T x, it follows that

cover(w〈W 〉) ∩ cover(u〈U〉) ⊆ Tw ∩
(
Tu \

⋃
x∈U T x

)
= ∅ (8.24)

and hence

cover(merge(v〈V 〉, w〈W 〉)) ∩ cover(u〈U〉) =

=
(
cover(v〈V 〉)

.
∪ cover(w〈W 〉)

)
∩ cover(u〈U〉) =

= cover(v〈V 〉) ∩ cover(u〈U〉) . (8.25)

Consequently, proju〈U〉(merge(v〈V 〉, w〈W 〉)) = proju〈U〉(v〈V 〉) according to
Definition 8.51, so the merger does not change the projection.

2. w ∈ Pu: Then cover(u〈U〉) ⊆ Tu ⊆ Tw, so

cover(v〈V 〉) ∩ cover(u〈U〉) =
(
T v \

⋃
x∈V T x

)
∩ cover(u〈U〉) ⊆

⊆ (T v \ Tw) ∩ Tu = ∅ (8.26)

and proju〈U〉(merge(v〈V 〉, w〈W 〉)) = proju〈U〉(w〈W 〉).

3. w ∈ T \
(
Tu ∪ Pu

)
: Since cover(w〈W 〉) ⊆ Tw and cover(u〈U〉) ⊆ Tu, in this

case we have cover(w〈W 〉) ∩ cover(u〈U〉) ⊆ Tw ∩ Tu = ∅, and again it holds
that proju〈U〉(merge(v〈V 〉, w〈W 〉)) = proju〈U〉(v〈V 〉).
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4. w ∈ int(u〈U〉): Note that this implies that cover(v〈V 〉) ∩ cover(u〈U〉) 6= ∅
and cover(w〈W 〉) ∩ cover(u〈U〉) 6= ∅, which means that the projected sub-
configurations proju〈U〉(v〈V 〉) and proju〈U〉(w〈W 〉) both exist. Using simple
set arithmetic we get that

cover
(
proju〈U〉(merge(v〈V 〉, w〈W 〉))

)
=

= cover
(
merge(v〈V 〉, w〈W 〉)

)
∩ cover(u〈U〉)

=
(
cover(v〈V 〉)

.
∪ cover(w〈W 〉)

)
∩ cover(u〈U〉)

=
(
cover(v〈V 〉) ∩ cover(u〈U〉)

)
.
∪
(
cover(w〈W 〉) ∩ cover(u〈U〉)

)
= cover(proju〈V 〉(v〈V 〉))

.
∪ cover(proju〈V 〉(w〈W 〉))

(8.27)

and applying Proposition 8.39 we see that indeed

proju〈U〉(merge(v〈V 〉, w〈W 〉)) =

= merge(proju〈V 〉(v〈V 〉), proju〈V 〉(w〈W 〉)) , (8.28)

i.e., the projection of merge(v〈V 〉, w〈W 〉) is derivable in one merger step from
the projections of v〈V 〉 and w〈W 〉 as claimed.

It follows that either projM(merge(v〈V 〉, w〈W 〉)) = projM({v〈V 〉, w〈W 〉}), if there
are no u〈U〉 ∈ M such that w ∈ int(u〈U〉), or projM(merge(v〈V 〉, w〈W 〉)) can be
derived from projM({v〈V 〉, w〈W 〉}) by a single merger move for the unique u〈U〉 ∈ M
such that w ∈ int(u〈U〉).

The other L-pebbling moves can also be taken care of easily, and we show next
that projecting any L-pebbling on any non-touching L-configuration M, we get
a legal L-pebbling inside the closure cl(M) (modulo some technical details). In
particular, this holds for the non-overlapping pebblings of Definition 8.50. This is
part 2 in our proof outline.

Lemma 8.57. For an arbitrary L-pebbling L = {L0, . . . , Lτ} and a non-touching
L-configuration M, let projM(L) = {L′

0, . . . , L′
τ} for L′

t = projM(Lt). Then projM(L)
is a legal L-pebbling if we eliminate idle moves L′

t+1 = L′
t and take care of that

one reversal or erasure Lt  Lt+1 in L may correspond to a sequence of re-
versals or erasures, respectively, in projM(L). Legalizing projM(L) by performing
these moves one by one does not affect the pebbling cost, i.e., cost(projM(L)) =
maxt∈τ

{
cost(projM(Lt))

}
. Also, if L does not contain any reversals, then neither

does projM(L).

Proof. By induction over the pebbling moves Lt  Lt+1 in L. Case analysis:

Introduction If v〈pred(v)〉 6� M the projection does not change, and otherwise
adding v〈pred(v)〉 = projM(v〈pred(v)〉) is a legal introduction move.
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Merger Suppose u〈U〉 = merge(v〈V 〉, w〈W 〉). Clearly, Lt \
{
u〈U〉, v〈V 〉, w〈W 〉

}
=

Lt+1 \
{
u〈U〉, v〈V 〉, w〈W 〉

}
, so the only subconfigurations for which the pro-

jections can change are u〈U〉, v〈V 〉, and w〈W 〉. This is Proposition 8.56.

Reversal If v〈V 〉 is derived from u〈U〉 by reversal, we have v〈V 〉 � u〈U〉, or,
equivalently, cover(v〈V 〉) ⊆ cover(u〈U〉). Then

cover(projM(v〈V 〉)) = cover(v〈V 〉) ∩ cover(M) ⊆
⊆ cover(u〈U〉) ∩ cover(M) = cover(projM(u〈U〉)) , (8.29)

so adding projM(v〈V 〉) � projM(u〈U〉) is a sequence of legal reversals. As this
sequence of reversals is performed, the pebbling cost increases monotonically
by part 1 of Proposition 8.49.

Erasure If Lt+1 = Lt \ {v〈V 〉} for v〈V 〉 ∈ Lt, removing projM(v〈V 〉) from L′
t is

a sequence of legal erasures. As this sequence of erasures is performed, the
pebbling cost decreases monotonically by part 1 of Proposition 8.49.

We see that the cost of this pebbling is maxt∈[τ ]

{
projM(Lt)

}
, and if L is reversal-

free, then so is projM(L), since every move in L is matched by the same kind of
moves in projM(L).

8.5.6 A First (Failed) Attempt to Eliminate Reversal Moves
In the light of Lemma 8.57, the following transformation from a non-overlapping
pebbling L to a reversal-free pebbling L′ seems very tempting: by forward induction
over the moves in L, replace each implosion u〈U〉 M at time t by a local projection
of {L0, . . . , Lt} on M. Since by induction there are no reversals before time t,
the projection must be a reversal-free pebbling inside cl(M). Doing this for all
implosions, we get a globally reversal-free pebbling L′ ending in z〈∅〉. This is the
transformation described in part 3 of our roadmap for the proof of Lemma 8.31.

There is only one problem. Although we will indeed get a complete L-pebbling
of T , it is not true in general that cost(projM(L)) ≤ cost(L). For instance, if v〈V 〉 �
u〈∅〉 for V 6= ∅, then projv〈V 〉(u〈∅〉) = v〈V 〉 and hence cost(projv〈V 〉(u〈∅〉)) =
1 + |V | > cost(u〈∅〉) = 1. Looking at this counterexample, however, one might
argue that having gotten as far as u〈∅〉, reversing to the weaker and more expen-
sive configuration v〈V 〉 should be non-optimal.

What we want to do next is to define formally which reversals are wasteful in this
sense, and to prove that for pebblings avoiding such wasteful reversals, projection
does not increase the pebbling cost.

8.5.7 Pinpointing the Problem: Wasteful Reversal Moves
Since the definition of wastefulness turns out to be quite technical, we first try to
give some more intuition for which kind of reversals we disapprove of.
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(a) The subconfiguration u〈U〉. (b) Wastefully lowered black pebble.

(c) Superfluous white pebble. (d) Wasteful “split” of u〈U〉.

Figure 8.11: A subconfiguration u〈U〉 and three wasteful implosions of u〈U〉.

Example 8.58. Consider the subconfiguration u〈U〉 in Figure 8.11(a).

1. If v ∈ Tu
∗ , the reversal move from u〈U〉 to v〈T v

∗ ∩ U〉 seems reasonable only if
T v
∗ ∩ U $ U , i.e., if we get rid of white pebbles by lowering the black pebble

from u to v. The reversal in Figure 8.11(b) does not satisfy this, so it appears
we should be better off keeping the original, stronger subconfiguration u〈U〉
in Figure 8.11(a) instead.

2. Suppose that V is a simple set below u and above U in the sense that
Pu ∩ V 6= ∅ for all u ∈ U . Then we approve of the reversal u〈U〉  u〈V 〉
only if for all w ∈ V it holds that Tw ∩ U 6= ∅. Otherwise, unnecessary white
pebbles have been introduced, as in Figure 8.11(c).

3. If u〈U〉 is imploded into a non-touching L-configuration {v1〈V1〉, v2〈V2〉} such
that, say, v2 ∈ T v1

∗ , it should not be the case that v1

〈(
V1\P v2

)
∪ V2

〉
� u〈U〉,

for if so we could have reversed to this stronger subconfiguration instead of
{v1〈V1〉, v2〈V2〉} at no extra cost. The implosion in Figure 8.11(d) violates
this condition.

The reversals from u〈U〉 in figures 8.11(b), 8.11(c) and 8.11(d) are all exam-
ples of wasteful implosions for which our reversal-free pebbling L′ constructed by
projection may become more expensive than L. Looking at these examples, it is
easy to believe that such moves are non-optimal and that it ought to be possible
to eliminate them. The formal definition of wastefulness is as follows.

Definition 8.59 (Wasteful implosion). For a non-touching L-configuration M �
u〈U〉, the implosion u〈U〉 M is non-wasteful if the following hold:
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1. For every v ∈ Bl(M) \ {u} there is a w ∈ U ∩ T sibl(v) such that for the
path Qv = Pw \ P

succ(v)
∗ starting at w and ending at succ(v) it holds that

Qv ∩
(
Bl(M) ∪Wh(M)

)
= ∅.

2. For every v ∈ Wh(M) there is a w ∈ U ∩ T v (possibly equal to v) such that
for the path Qv = Pw \ P v

∗ from w to v it holds that Qv ∩ Bl(M) = ∅.

3. The paths between the vertices
(
Bl(M) ∪ Wh(M)

)
\{u} and (some subset of)

Wh(u〈U〉) = U as described above can all be chosen pairwise disjoint, i.e.,
such that Qv ∩ Qv′ = ∅ if v 6= v′.

If u〈U〉 M is not a non-wasteful implosion, it is said to be wasteful.

Definition 8.59 identifies the offending reversal moves for which our projective
construction of a reversal-free but cheap pebbling fails (by not being cheap enough).

Loosely put, an implosion move u〈U〉 M is non-wasteful if for every black and
white pebble in M we can identify a distinct pebble in u〈U〉 “explaining” why the
implosion move could potentially be cost-saving. If there is no such correspondence
(as in the implosions from Figure 8.11(a) to Figures 8.11(b), 8.11(c), and 8.11(d),
which are all wasteful according to Definition 8.59), the implosion intuitively seems
non-optimal, and it should be possible to do better by replacing this wasteful im-
plosion by a stronger, non-wasteful one. And if we can assume that all wasteful
implosions are changed into non-wasteful ones, it turns out that our projection idea
from Section 8.5.6 does the trick!

Continuing according to part 4 in our proof plan, we show that for pebblings
without wasteful moves the projective construction works. This is the next lemma.
The thornier task of eliminating wasteful implosions is deferred to Section 8.5.8.

Lemma 8.60. Suppose that L =
{
L0 = ∅, . . . , Lτ−2, Lτ−1 = u〈U〉 M

}
is an

L-pebbling ending with the non-touching L-configuration M and containing no re-
versal moves except for a final non-wasteful implosion u〈U〉  M. Then it holds
that cost(projM(L)) ≤ cost(L).

Proof. By Lemma 8.44, without loss of generality we can assume that cover(Lt)
grows monotonically with t until we reach Lτ−1 = u〈U〉. This means that, in partic-
ular, there will never be any subconfigurations covering vertices outside cover(u〈U〉)
during the pebbling (since such subconfigurations would have to be erased in a re-
dundant way), so it holds that Lt � u〈U〉 for all t.

Let L′
t = projM(Lt) for all t < τ . By Lemma 8.57, it suffices to show cost(L′

t) ≤
cost(Lt) to get cost(projM(L)) ≤ cost(L). This is so since we can go from L′

t to L′
t+1

paying at most max
{

cost(L′
t), cost(L′

t+1)
}

, and for τ − 1 we have projM(Lτ−1) =
projM(u〈U〉) = M since M � u〈U〉.

By definition cost(Lt) =
∣∣Bl(Lt) ∪ Wh(Lt)

∣∣, so to prove cost(L′
t) ≤ cost(Lt)

it is enough to find for each vertex v ∈ Bl(L′
t) ∪ Wh(L′

t) an associated vertex
vL ∈ Bl(Lt) ∪ Wh(Lt) such that vL 6= v∗L if v 6= v∗. These associated vertices are
exactly what Definition 8.59 will help us find.
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If v∗ ∈
(
Bl(L′

t) ∪ Wh(L′
t)
)
∩
(
Bl(Lt) ∪ Wh(Lt)

)
, an obvious choice is v∗L = v∗.

Suppose therefore that v ∈
(
Bl(L′

t) ∪Wh(L′
t)
)
\
(
Bl(Lt) ∪Wh(Lt)

)
. In this case

Lemma 8.52 tells us that v ∈ ∂M, that v has the same colour in L′
t and M, i.e., either

v ∈ Bl(L′
t) ∩ Bl(M) or v ∈ Wh(L′

t) ∩ Wh(M), and that there is a wv

〈
Wv

〉
∈ Lt

such that v ∈ int
(
wv

〈
Wv

〉)
, namely the wv

〈
Wv

〉
projecting the pebble on v. We

choose vL ∈ Bl(Lt) ∪ Wh(Lt) for such vertices v by first associating a unique
vu ∈ U = Wh(u〈U〉) to v as follows.

1. If v ∈ Bl(L′
t) ∩ Bl(M), pick a vertex vu ∈ U ∩ T sibl(v) and a path Qv =

P vu \ P
succ(v)
∗ from vu to succ(v) such that Qv ∩

(
Bl(M) ∪ Wh(M)

)
= ∅

as guaranteed by Definition 8.59. For the subconfiguration wv〈Wv〉 ∈ Lt

projecting the black pebble on v, we must have succ(v) ∈ cover
(
wv

〈
Wv

〉)
since v ∈ int

(
wv

〈
Wv

〉)
, and thus succ(v) ∈ Qv ∩ cover

(
wv

〈
Wv

〉)
6= ∅.

2. If v ∈ Wh(L′
t) ∩ Wh(M), pick vu ∈ U ∩ T v and Qv = P vu \ P v

∗ such that
Qv ∩ Bl(M) = ∅ as provided by Definition 8.59. For wv〈Wv〉 ∈ Lt projecting
the white pebble on v, we have v ∈ int

(
wv

〈
Wv

〉)
⊆ cover

(
wv

〈
Wv

〉)
, so

v ∈ Qv ∩ cover
(
wv

〈
Wv

〉)
6= ∅.

According to Definition 8.59, all the paths Qv above can be chosen disjoint.
We claim that Wv ∩ Qv 6= ∅ for all v ∈

(
Bl(L′

t) ∪Wh(L′
t)
)
\
(
Bl(Lt) ∪Wh(Lt)

)
.

Given this claim, we can choose as our associated vertex vL ∈ Bl(Lt) ∪ Wh(Lt)
for v the (unique) vertex vL ∈ Wv ∩ Qv. Since all paths Qv are disjoint, it follows
that all such vertices vL are distinct. They must also be distinct from the vertices
v∗ ∈

(
Bl(L′

t) ∪ Wh(L′
t)
)
∩
(
Bl(Lt) ∪ Wh(Lt)

)
. This is so since the path Qv does

not intersect M except possibly in v, or in formal notation
(
Qv \ {v}

)
∩ cl(M) = ∅,

and by construction the associated vertex vL ∈ Wv ∩ Qv is always distinct from v
(since v ∈ int(wv〈Wv〉) but by definition int(wv〈Wv〉) ∩ Wv = ∅). Hence, for
all chosen representatives vL ∈ Qv it holds that vL 6∈ cl(M) ⊇ Bl(L′

t) ∪ Wh(L′
t).

Summing this up, for each v ∈ Bl(L′
t) ∪Wh(L′

t) we have found a distinct associated
vertex vL ∈ Bl(Lt) ∪ Wh(Lt), and it follows that cost(L′

t) ≤ cost(Lt).
It remains to prove the claim that Wv ∩ Qv 6= ∅ for the path Qv and subcon-

figuration wv〈Wv〉 ∈ Lt such that v ∈ int(wv〈Wv〉) found for each v ∈
(
Bl(L′

t) ∪
Wh(L′

t)
)
\
(
Bl(Lt) ∪ Wh(Lt)

)
above. Fix such a triple

(
v,Qv, wv〈Wv〉

)
. By con-

struction, L′
t � Lt � u〈U〉, so in particular wv〈Wv〉 � u〈U〉. Recall that we showed

above that Qv ∩ cover
(
wv

〈
Wv

〉)
6= ∅. Furthermore, we have Qv 6⊆ cover(u〈U〉)

since the lowest vertex in Qv is a white pebble of u〈U〉. Now if Wv ∩ Qv = ∅
would hold, this would imply by Proposition 8.37 that all of Qv lies inside wv〈Wv〉,
i.e., Qv ⊆ cover(wv〈Wv〉). But this yields the contradiction wv〈Wv〉 6� u〈U〉. Thus
Wv ∩ Qv 6= ∅, which proves the claim. The lemma follows.

We can use Lemma 8.60 to eliminate non-wasteful implosions one by one without
increasing the cost, resulting in a reversal-free L-pebbling.
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Lemma 8.61. Let L =
{
L0, . . . , Lτ

}
be a non-overlapping complete L-pebbling of T

without wasteful implosions. Then from L we can construct a complete L-pebbling
L′ of T without reversal moves such that cost(L′) ≤ cost(L).

Proof. By induction over the number of implosions. Plainly, if we can go from an
L-pebbling L with n non-wasteful implosions to an L-pebbling L′ with n− 1 non-
wasteful implosions and cost(L′) ≤ cost(L), the lemma follows by the induction
principle.

Consider the subpebbling L∗ of L consisting of the moves up to and including
the first implosion. That is, L∗ = {L0, . . . , Lτ∗  (Lτ∗ \ u〈U〉) ∪ M} is non-over-
lapping and reversal-free except for a final non-wasteful implosion u〈U〉 M.

By Definition 8.51, the L-configuration Lτ∗ is non-touching, and using Propo-
sition 8.53 each Lt, t < τ∗, can be written as a union of mutually non-touching
L-configurations Lt =

⋃
v〈V 〉∈Lτ∗

Lv
t for Lv

t = projv〈V 〉(Lt) such that cost(Lt) =∑
v〈V 〉∈Lτ∗

cost(Lv
t ). Appealing to Lemma 8.57, we see that for all v〈V 〉 ∈ Lτ∗ , it

holds that Lv =
{
Lv

0, . . . , Lv
τ∗−1, Lv

τ∗ = v〈V 〉
}

are pairwise non-touching pebblings
without reversals.

Lemma 8.60 now says that locally, the pebbling Lu corresponding to the im-
ploded subconfiguration u〈U〉 can be replaced by a reversal-free pebbling projM(Lu)
without increasing the local pebbling cost. Then Proposition 8.53 says that we can
substitute projM(Lu) for Lu in L∗ without increasing the global pebbling cost.

Doing this local substitution, instead of L∗ we get a reversal-free pebbling end-
ing in the same L-configuration (Lτ∗ \ u〈U〉) ∪ M, and it is easy to check using
Lemma 8.44 and (the proof of) Lemma 8.45 that this reversal-free pebbling can be
made non-overlapping. If we concatenate this pebbling with the rest of the peb-
bling moves in L\L∗, we have a non-overlapping complete L-pebbling with one less
implosion move.

This concludes part 4 in the proof outline in Section 8.5.1.

8.5.8 Wasteful Reversal Moves Can Be Replaced
All that remains now is to show that in an arbitrary non-overlapping L-pebbling
we can always replace wasteful implosions by non-wasteful ones without increasing
the pebbling cost by more than a constant factor. It will take a couple of technical
lemmas before we get there, but the intuition from Example 8.58 is clear: if Lt  
Lt+m+1 is a wasteful implosion, we should be able to match this move with a non-
wasteful implosion L′

t  L′
t+m+1 instead, where L′

i � Li and cost(L′
i) ≤ cost(Li)

for i = t, t+m+1. The only thing that complicates the matter is that we may have
to pay extra for the transitional L-configurations during the implosion L′

t  L′
t+m+1

because of overlapping subconfigurations.
The cornerstone of our proof is the fact that for every wasteful implosion move

u〈U〉 L, there is a non-wasteful implosion move to M � L with cost(M) ≤
cost(L).
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Lemma 8.62. If u〈U〉  L is a wasteful implosion, then there is a non-touching
M such that u〈U〉 � M � L, cost(M) ≤ min{cost(u〈U〉), cost(L)}, and u〈U〉  M
is a non-wasteful implosion.

Proof. If u〈U〉 M is a non-wasteful implosion, it holds that cost(M) =
∣∣Bl(M)

∣∣+∣∣Wh(M)
∣∣ ≤ cost(u〈U〉) = 1 + |U |, since by Definition 8.59 every v ∈

(
Bl(M) ∪

Wh(M)
)
\ {u} can be associated with a distinct w ∈ U .

We demonstrate that if u〈U〉  L is a wasteful implosion, we can find an M
such that u〈U〉 � M � L and cost(M) ≤ cost(L). If u〈U〉  M is also a wasteful
implosion, we repeat this construction to obtain L-configurations M′ with u〈U〉 �
M′ � M and cost(M′) ≤ cost(M), M′′ with u〈U〉 � M′′ � M′ cost(M′′) ≤ cost(M′),
et cetera. Sooner or later the process must terminate for some M(k) � u〈U〉 such
that u〈U〉 Mk is non-wasteful, since the set of covered vertices cover

(
M(i)

)
grows

in every step. If nothing else, we will end up with M(k) = u〈U〉, and by definition
the trivial implosion u〈U〉 u〈U〉 is non-wasteful.

According to Definition 8.59, the configuration L can be wasteful with respect
to u〈U〉 in three ways. For the purpose of the case analysis, it appears more natural
in this lemma (but only in this lemma) to traverse the paths in T in the reverse
direction, so that we move downwards from above.

1. Some black pebble v ∈ Bl(L)\{u} lacks a path. That is, all paths from succ(v)
downwards in the sibling subtree T sibl(v) to white pebbles in U intersect with
other pebbled vertices in L.
If succ(v) ∈ Wh(L) we must have succ(v) ∈ cover(u〈U〉) by convexity (Def-
inition 8.36 and Proposition 8.37), so we can enlarge the cover by adding
the subconfiguration canon({succ(v)}) = succ(v)〈v, sibl(v)〉 to L and canon-
ize to get M = canon(L ∪ succ(v)〈v, sibl(v)〉) � L with cost(M) ≤ cost(L) +
|{sibl(v)}| − |{v, succ(v)}| < cost(L). We note that this is so since a black
and a white pebble on the same vertex “cancel” and can be eliminated by a
merger on this vertex. Figure 8.11(d) is an illustration of this case.
Otherwise, since L is non-touching all paths from succ(v) downwards in
T sibl(v) are either blocked by r1, . . . , rm ∈ Bl(L) ∩ T sibl(v) or reach sources
in T sibl(v) without passing pebbled vertices (if there are no black pebbles in
T sibl(v), we let m = 0). By the convexity of cover(u〈U〉), we conclude that
V = T succ(v) \

(
T v ∪

⋃
i∈[m] T

ri
)
⊆ cover(u〈U〉), so we can add canon(V ) =

succ(v)〈v, r1, . . . , rm〉 � u〈U〉 to L. This move increases the cost only by 1 for
the unpebbled vertex succ(v), since the vertices v, r1, . . . , rm are all pebbled.
Setting M = canon(L ∪ succ(v)〈v, r1, . . . , rm〉) � L removes the pebbles from
the black- and white-pebbled vertices v, r1, . . . , rm and decreases the cost by
at least 1, so cost(M) ≤ cost(L). See Figure 8.12 for a simple example.

2. There is a white pebble w ∈ Wh(L) such that all paths downwards in Tw

either are blocked by r1, . . . , rm ∈ Bl(L) ∩ Tw
∗ or reach sources in Tw without

passing pebbled vertices. If so, we have V = Tw \
⋃

i∈[m] T
ri ⊆ cover(u〈U〉),
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(a) The subconfiguration. (b) Wasteful implosion L. (c) Non-wasteful M � L.

Figure 8.12: Illustration of case 1 in proof of Lemma 8.62.

(a) The subconfiguration. (b) Wasteful implosion L. (c) Non-wasteful M � L.

Figure 8.13: Illustration of case 2 in proof of Lemma 8.62.

and we can add canon(V ) = w〈r1, . . . , rm〉 � u〈U〉 to L at no extra cost
and set M = canon(L ∪ w〈r1, . . . , rm〉) � L. Here we get a strict inequality
cost(M) < cost(L) since the canonization eliminates at least the pebble on w.
This case is illustrated in Figure 8.13.

3. There are paths for all v ∈
(
Bl(L) ∪ Wh(L)

)
\ {u} to vertices in U in the

sense of Definition 8.59, but they cannot be chosen disjoint. Start picking
disjoint paths bottom-up from the leaves towards the root so that when we
choose a path for a white pebble v ∈ Wh(L) we have already determined
paths for all w ∈

(
Bl(L) ∪ Wh(L)

)
∩ T v

∗ , and when we choose a path for
a black pebble v ∈ Bl(L) we have already determined paths for all w ∈(
Bl(L) ∪ Wh(L)

)
∩ T sibl(v), or in fact for all of T succ(v) \ {v}. This can be

done since for black pebbles, the vertex sibl(v) itself cannot be black-pebbled
in L, for if so there would be no path for v and we would be in case 1. For
the same reason, succ(v) is not white-pebbled in L, and then sibl(v) cannot
be white-pebbled, nor can succ(v) be black-pebbled, since L is non-touching.
At some point we reach a v such that no matter how we choose the paths
below, we cannot choose a disjoint path for v. Consider the colour of v.

(a) v is black. Then there are white pebbles in U ∩ T
sibl(v)
∗ reachable from v,

but they are all blocked by paths already chosen from black-pebbled ver-
tices r1, . . . , rm∈Bl(L) ∩ T

sibl(v)
∗ . (Note that all white pebbles in T

sibl(v)
∗

are located below black pebbles since L is non-touching, so no paths
from white-pebbled vertices in T

sibl(v)
∗ are among the “blocking paths”



148 CHAPTER 8. A SEPARATION OF SPACE AND WIDTH

(a) The subconfiguration u〈U〉. (b) Wasteful implosion L of u〈U〉.

(c) Non-wasteful implosion u〈U〉 M�L.

Figure 8.14: Illustration of case 3 in proof of Lemma 8.62.

for our vertex v.) This means that {succ(ri) | i ∈ [m]} ⊆ cover(u〈U〉)
by the convexity of cover(u〈U〉), so we can add all of the subconfigu-
rations canon({succ(ri) | i ∈ [m]}) =

{
succ(ri)〈ri, sibl(ri)〉 | i ∈ [m]

}
to

L at an additional cost 2m. By similar reasoning we can also add
succ(v)〈v, succ(r1), . . . , succ(rm)〉 at a further cost of 1 for the unpeb-
bled vertex succ(v). When we canonize this L-configuration, the black
and white pebbles on the vertices v, r1, . . . , rm, succ(r1), . . . , succ(rm)
all cancel and disappear and the cost decreases by 2m + 1, resulting in
M � L with cost(M) ≤ cost(L).

(b) v is white. The construction is analogous. Let the blocking black peb-
bles in T v

∗ be r1, . . . , rm ∈ Bl(L) ∩ T v
∗ . Again succ(ri)〈ri, sibl(ri)〉,

i ∈ [m], can be added at an extra cost 2m. Since succ(ri), i ∈ [m],
block all paths from v we have T v \

⋃
i∈[m] T

succ(ri) ⊆ cover(u〈U〉),
so v〈succ(r1), . . . , succ(rm)〉 can be added as well at no additional cost.
Canonizing decreases the cost by 2m+1, which yields an L-configuration
M � L with cost(M) < cost(L). The transition from Figure 8.14(b) to
Figure 8.14(c) is accomplished by applying this procedure twice.

In all cases we can find a non-touching L-configuration M such that u〈U〉 � M � L
and cost(M) ≤ cost(L). The lemma follows by induction.

The following transitivity property of non-wasteful implosions is an immediate
consequence of Definition 8.59.
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Observation 8.63. If u〈U〉  {vi〈Vi〉 | i ∈ [m]} and vi〈Vi〉  Mi for i ∈ [m] are
all non-wasteful implosions, then u〈U〉  {Mi | i ∈ [m]} is a non-wasteful implo-
sion.

Proof. For each i ∈ [m], concatenate the paths from Mi to vi〈Vi〉 provided by Defini-
tion 8.59 with those from vi〈Vi〉 to u〈U〉 provided by the same definition. The result
is a set of disjoint paths from

⋃
i∈[m] Mi to u〈U〉 as required by Definition 8.59.

It follows from Observation 8.63 that if u〈U〉  L is a wasteful implosion and
u〈U〉  M � L is a corresponding non-wasteful implosion for M minimal, then
all nontrivial “local implosions” from subconfigurations in M to sets of subconfigu-
rations in L are wasteful. We formalize this as a lemma.

Lemma 8.64. Suppose that u〈U〉  L is a wasteful implosion and let M � L be
minimal such that u〈U〉  M is non-wasteful. Then for each v〈V 〉 ∈ M and each
non-touching L′ such that M � L′ � L, either projv〈V 〉(L′) = v〈V 〉 or v〈V 〉  
projv〈V 〉(L′) is a wasteful implosion. In particular, for each v〈V 〉 ∈ M it holds that
cost(v〈V 〉) ≤ cost(projv〈V 〉(L′)).

Proof. Given a subconfiguration u〈U〉 and an L-configuration L as in the statement
of the lemma, we know from Lemma 8.62 that we can find some M such that
u〈U〉 M is a non-wasteful implosion and u〈U〉 � M � L. Pick such an M which
is minimal with respect to �. Note that by the definition of implosion moves, L and
M are non-touching.

Suppose that there is a subconfiguration v〈V 〉 ∈ M and an L-configuration L′

with M � L′ � L such that projv〈V 〉(L′) ≺ v〈V 〉 and v〈V 〉  projv〈V 〉(L′) is a
non-wasteful implosion. Then by the transitivity in Observation 8.63 it holds that
M′ =

(
M ∪ projv〈V 〉(L′)

)
\ v〈V 〉 ≺ M is a non-wasteful implosion of u〈U〉. This

contradicts the minimality of M.
If v〈V 〉  projv〈V 〉(L′) is a wasteful implosion, Lemma 8.62 says that there

exists a non-wasteful implosion locally to an L-configuration Mv with v〈V 〉 �
Mv � projv〈V 〉(L′) such that cost(Mv) ≤ min

{
cost(v〈V 〉), cost(projv〈V 〉(L′))

}
, and,

in particular, cost(Mv) ≤ cost(projv〈V 〉(L′)). But we have just proven that this non-
wasteful Mv must be identical with v〈V 〉, so cost(v〈V 〉) ≤ cost(projv〈V 〉(L′)).

Very roughly, the next lemma says that wasteful implosions are preserved under
mergers.

Lemma 8.65. Suppose for i = 1, 2 that ui〈Ui〉 � Li and cost(ui〈Ui〉) ≤ cost(Li)
for Li non-overlapping, and that u1〈U1〉 and u2〈U2〉 are mutually non-overlapping
with u2 ∈ U1. Then it holds that cost(merge(u1〈U1〉, u2〈U2〉)) ≤ cost(L1 ∪ L2).

Proof. The L-configurations L1 and L2 must be mutually non-overlapping since
they are covered by u1〈U1〉 and u2〈U2〉, respectively. The only way that cost(L1 ∪
L2) could be less than cost(merge(u1〈U1〉, u2〈U2〉)) = cost(u1〈U1〉)+cost(u2〈U2〉)−
1 ≤ cost(L1)+ cost(L2)− 1 is if there were at least two vertices in

⋂
i=1,2

(
Bl(Li) ∪
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Wh(Li)
)
. But Bl(Li) ∪ Wh(Li) ⊆ cl(Li) ⊆ cl(ui〈Ui〉) since Li � ui〈Ui〉 by the

assumptions of the lemma, and also by assumption cl(u1〈U1〉) ∩ cl(u1〈U1〉) = {u2}
since u1〈U1〉 and u2〈U2〉 are mergeable (recall Example 8.43), so this is impossible.

Combining Lemmas 8.64 and 8.65, we can provide the fifth and final component
in the proof of Lemma 8.31, namely, that any non-overlapping L-pebbling L can
be transformed into a pebbling L′ without wasteful implosions such that L′ has
asymptotically the same cost as L.

Lemma 8.66. Suppose that L is a non-overlapping complete L-pebbling of T . Then
we can find a non-overlapping complete L-pebbling L′ of T without wasteful implo-
sions such that cost(L′) ≤ 2 · cost(L).

Proof. In this proof, let us assume for simplicity (and without loss of generality
what concerns pebbling cost, by the proof of Lemma 8.55) that each introduction,
expansion or implosion move in Definition 8.50 takes exactly one time step.

Given a non-overlapping L-pebbling L, we build a non-overlapping L-pebbling L′
without wasteful implosions such that if we let Li ∈ L denote the starting configu-
ration of the ith move in L, there is a corresponding L′

i ∈ L′ such that the following
invariants hold:

1. L′
i is non-touching.

2. L′
i � Li.

3. For all u〈U〉 ∈ L′
i, it holds that cost(u〈U〉) ≤ cost(proju〈U〉(Li)).

4. The cost of the L-pebbling transition from L′
i−1 to L′

i in L′ does not exceed
2 ·max

{
cost(Li−1), cost(Li)

}
.

To see that the lemma follows from this, note that invariants 1 and 2 imply that
for every v〈V 〉 ∈ Li there is a u〈U〉 ∈ L′

i such that v〈V 〉 � u〈U〉. In particular, for
Lτ = z〈∅〉 we have z〈∅〉 ∈ L′

τ , since z〈∅〉 is the maximal element with respect to �.
Then plugging invariant 3 into Proposition 8.49, part 4, we get

cost(L′
i) =

∑
u〈U〉∈L′i

cost(u〈U〉) ≤
∑

u〈U〉∈L′i

cost(proju〈U〉(Li)) =

∑
u〈U〉∈L′i

cost({v〈V 〉∈Li | v〈V 〉 � u〈U〉}) = cost(Li) . (8.30)

Using invariant 4 to bound the cost of the pebbling transitions L′
i−1  L′

i, we get
the desired result cost(L′) ≤ 2 · cost(L).

The construction is by forward induction over the moves in L. Assume that the
invariants hold for Lt and L′

t.
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Introduction Lt+1 = Lt ∪ v〈pred(v)〉: If v〈pred(v)〉 � L′
t we set L′

t+1 = L′
t. For

the pebble subconfiguration u〈U〉 ∈ L′
t such that v〈pred(v)〉 � u〈U〉, we have

cost(u〈U〉) ≤ cost(proju〈U〉(Lt)) ≤ cost(proju〈U〉(Lt ∪ v〈pred(v)〉)), and for
u′
〈
U ′〉 ∈ L′

t distinct from u〈U〉 nothing changes. All invariants stay true.
If v〈pred(v)〉 6� L′

t, we introduce v〈pred(v)〉 in L′ and expand (at most three
times) to get L′

t+1 = canon(L′
t ∪ v〈pred(v)〉). Invariants 1 and 2 obviously

hold. We claim that invariant 3 holds with respect to Lt+1 instead of Lt for
all subconfigurations in the intermediate L-configurations L′ in the transition
L′

t  L′
t+1 up to and including L′

t+1 = canon(L′
t ∪ v〈pred(v)〉). This claim

yields invariants 3 and 4 for L′
t+1.

To prove the claim, observe that invariant 3 holds for L′
t ∪ v〈pred(v)〉 with

respect to Lt+1 = Lt ∪ v〈pred(v)〉 by the induction hypothesis and the fact
that projv〈pred(v)〉(Lt ∪ v〈pred(v)〉) = v〈pred(v)〉. Since L′

t+1 is obtained by
repeated merging of non-overlapping subconfigurations from L′

t ∪ v〈pred(v)〉,
and since by induction over each such merger these subconfigurations meet
the conditions in Lemma 8.65, the claim follows.

Expansion Lt+1 =
(
Lt ∪ merge(v1〈V1〉, v2〈V2〉)

)
\{v1〈V1〉, v2〈V2〉}: By induction

it holds that L′
t � Lt ∼ Lt+1, so there is a u〈U〉 ∈ L′

t such that vi〈Vi〉 � u〈U〉
for i = 1, 2. For u′

〈
U ′〉 ∈ L′

t distinct from u〈U〉 there are no changes in
the invariants, and if cost(proju〈U〉(Lt+1)) ≥ cost(u〈U〉), nothing needs to be
done for u〈U〉 either and we can set L′

t+1 = L′
t.

It can be the case, however, that the expansion within proju〈U〉(Lt+1) de-
creased the cost so that u〈U〉 is now too expensive and invariant 3 no longer
holds. If so, we implode u〈U〉 to a minimal non-wasteful L-configuration
Mu � proju〈U〉(Lt+1) and set L′

t+1 =
(
L′

t \ u〈U〉
)
∪ Mu.

Invariants 1 and 2 are immediate. Invariant 3 follows from Lemma 8.64 since
Mu is chosen minimal. Thus, cost(Mu) ≤ cost(proju〈U〉(Lt+1)), and by the
induction hypothesis we know that cost(u〈U〉) ≤ cost(proju〈U〉(Lt)). Using
part 1 of Proposition 8.49, we see that the maximal cost in the implosion
sequence L′

t  L′
t+1 locally inside the closure cl(u〈U〉) is reached in the

L-configuration u〈U〉 ∪ Mu, and using part 2 of Proposition 8.49, this extra
cost in the transition from L′

t to L′
t+1 in L′ is at most

cost(u〈U〉 ∪ Mu) ≤ cost(u〈U〉) + cost(Mu)
≤ cost(proju〈U〉(Lt)) + cost(proju〈U〉(Lt+1))

≤ 2 · max
i∈{t,t+1}

{
cost(proju〈U〉(Li))

}
.

(8.31)

The cost outside cl(u〈U〉) does not change since nothing happens there, so
invariant 4 follows.

Implosion Lt+1 =
(
Lt \ v〈V 〉

)
∪ M for M =

{
vi〈Vi〉 | i ∈ [m]

}
: This case is

analogous to the expansion case. By invariants 1 and 2, we know that v〈V 〉
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is covered by some u〈U〉 ∈ L′
t. Nothing happens for u′〈U ′〉 ∈ L′

t distinct
from u〈U〉, so we can again concentrate on what is going on inside cl(u〈U〉).
If u〈U〉 is too expensive with respect to proju〈U〉(Lt+1) so that invariant 3 fails,
we make a non-wasteful implosion of u〈U〉 to an L-configuration Mu with
u〈U〉 � Mu � proju〈U〉(Lt+1) and set L′

t+1 =
(
L′

t \ u〈U〉
)
∪ Mu. By part 1 of

Proposition 8.49, a lower bound for the cost locally of the pebbling sequence
proju〈U〉(Lt) proju〈U〉(Lt+1) in L is maxi∈{t,t+1}

{
cost(proju〈U〉(Li+1))

}
. Us-

ing Lemma 8.64 and parts 1 and 2 of Proposition 8.49, we can upper-bound
the pebbling cost locally inside cl(u〈U〉) in L′ in terms of this local cost in L
by

cost(u〈U〉 ∪ Mu) ≤ cost(u〈U〉) + cost(Mu)

≤ 2 · max
i∈{t,t+1}

{
cost(proju〈U〉(Li))

}
, (8.32)

which yields invariants 1-4.

Going through the moves in L = {L0, . . . , Lτ}, this construction yields a labelled
pebbling L′ without wasteful implosion moves such that L′

τ ′ � Lτ and cost(L′) ≤
2 · cost(L).

Thereby, the proof of Lemma 8.31 as outlined in Section 8.5.1 is complete, and
Theorem 8.7 follows. We conclude the section by restating the lemma and writing
out the proof in full for completeness.

Lemma 8.31 (restated). Suppose that L is a complete L-pebbling of a complete
binary tree T . Then from L we can construct a complete L-pebbling L∗ of T without
reversals such that cost(L∗) = O(cost(L)).

Proof. Let L be an arbitrary complete L-pebbling of T . Without loss of generality,
we can assume that L is non-redundant in the sense of Lemma 8.34. By Lemma 8.40,
we can also assume that L contains only simple L-configurations. This sets the stage
for applying the technical machinery developed in Sections 8.5.4–8.5.8.

First, using Lemma 8.55 we transform L into a non-overlapping L-pebbling
L′ with cost(L′) ≤ cost(L). If L′ contains wasteful implosion moves, we then
let Lemma 8.66 provide us with a non-wasteful complete L-pebbling L′′ such that
cost(L′′) ≤ 2·cost(L′). But for such an L-pebbling, Lemma 8.61 allows us to project
away all implosion moves without increasing the pebbling cost, so we finally get a
reversal-free complete L-pebbling L∗ of T with cost(L∗) ≤ cost(L′′) ≤ 2 · cost(L′) ≤
2 · cost(L). This proves the lemma.



Chapter 9

Towards Separating Space and Length

The techniques used in Chapter 8 enables us to prove lower bounds on clause space
for pebbling contradictions over trees, but as we can see from Lemma 8.6 there
is not much hope that the labelled pebble game will give us anything for more
general graphs. To improve our bounds to better than logarithmic, we have to do
something different.

In this chapter, we therefore devise another pebble game, which makes it pos-
sible to prove tight bounds on the clause space of refuting pebbling contradictions
over pyramid DAGs. This yields the exponential improvements over Chapter 8
in Theorem 2.3 and Corollary 2.4. This chapter is based on joint work with my
advisor Johan Håstad to appear as [63].

9.1 Overview of Improved Lower Bound Proof

We start this chapter by giving a high-level overview of the proof and trying to
describe the similarities and differences compared to the approach in Chapter 8.
As before, we want to think of a black pebble on v as corresponding to truth of the
disjunction

∨d
i=1 x(v)i of all positive literals over v, or to “truth of v”. As we have

seen, with this correspondence it is straightforward to translate a pebbling of G us-
ing only black pebbles into refutation of the pebbling contradiction Pebd

G. The only
observation needed is that if we have derived the clauses

∨d
i=1 x(s)i and

∨d
i=1 x(t)i

for the two predecessors s and t of v, then by downloading the axioms saying that
truth propagates from s and t to v we can derive

∨d
i=1 x(v)i. The correspondence

here is quite close in that the space used by the refutation is at most an additive
constant larger than the number of black pebbles used (Proposition 5.10).

When we look at pebblings involving also white pebbles the translation gets
slightly more complicated. White pebbles enable us to place black pebbles “in the
middle” of the DAG without first having to pebble bottom-up from the sources. For
instance, if we white-pebble u and v in Figure 3.2, we can then place a black pebble
on their common successor z. Next, the white pebble on, say, v can be eliminated

153
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by placing white pebbles on the predecessors s and t, allowing the pebble on v to
be removed. A resolution derivation can mimic these pebbling moves by writing all
axioms x(u)i∨x(v)j ∨

∨d
n=1 x(z)n and x(s)i∨x(r)j ∨

∨d
n=1 x(v)n on the blackboard

and then using all these clauses to derive x(u)i ∨ x(s)j ∨ x(r)l ∨
∨d

n=1 x(z)n for
i, j, l ∈ [d]. As it happens, it is possible to translate any black-white pebbling to
a refutation in this way (modulo some technical details), but the reduction is not
as tight as in the case of a black-pebbles-only pebbling. As we can see from the
example above, this naive translation can transform N white pebbles into a set of
clauses of size dN .

The key to our argument, however, is a translation in the other direction. We
want to start with a resolution refutation and produce a black-white pebbling and
then use the existing lower bound machinery for the black-white pebble game to
get a lower bound on clause space. Let us first try to give the intuition behind our
translation, and then discuss some technical complications that arise and how we
adapt our construction to cope with these problems.

For black pebbles, we can reuse the ideas above for transforming pebblings
into refutations. If the clause

∨d
i=1 x(v)i is implied by the current content of the

blackboard, we will let this correspond to a black pebble on v. A white pebble in a
pebbling is a “debt” that has to be paid. It is difficult to see how any clause could
be a liability in the same way and therefore no set of clauses corresponds naturally
to isolated white pebbles. But if we think of white pebbles as assumptions that
allow us to place black pebbles higher up in the DAG, it makes sense to say that if
the content of the blackboard conditionally implies the clause

∨d
i=1 x(v)i given that

we also assume the set of clauses
{∨d

i=1 x(w)i

∣∣w ∈ W
}

for some vertex set W , then
this could be interpreted as a black pebble on v and white pebbles on the vertices
in W .

Using this correspondence, we can translate sets of clauses into black and white
pebbles in a way that fits nicely with the resolution derivations sketched above. To
give a concrete example, the clauses

x(u)1 ∨ x(u)2

x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2


(9.1)

in Figure 3.3(a) correspond to the pebbles in Figure 3.3(b), i.e., black pebbles on u
and v and white pebbles on s and t. To see this, note that if we assume x(s)1∨x(s)2
and x(t)1∨x(t)2, this assumption together with the clauses on the blackboard imply
x(v)1 ∨x(v)2, so v is black-pebbled and s and t are white-pebbled in Figure 3.3(b).
The vertex u is also black since x(u)1∨x(u)2 certainly is implied by the blackboard.

The problem is that refutations can derive clauses that cannot be translated, at
least not naturally, to pebbles in the way indicated above. Some of these clauses
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
x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2


(a) New set of clauses on blackboard.

z

u v

r s t

(b) Corresponding blobs and pebbles.

Figure 9.1: Interpreting sets of clauses as black blobs and white pebbles.

we can afford to ignore. For example, considering how axiom clauses can be used in
derivations it seems reasonable to expect that a derivation never writes an isolated
axiom x(s)i ∨ x(t)j ∨ x(v)1 ∨ x(v)2 on the blackboard. And in fact, if three of
the four axioms for v in (9.1) are written on the blackboard but the fourth one
x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2 is missing, we will just discard these three clauses and
there will be no pebbles on s, t, or v corresponding to them.

A more dangerous situation is when clauses are derived that are the disjunction
of positive literals from different vertices. Such clauses say something about the
truth of several vertices but only cost one in terms of clause space. They do not
appear to be very useful, but nevertheless we have to model them in some way. To
see why, consider the following example. Starting from the blackboard in (9.1), a
refutation could add the axioms x(u)i∨x(v)2∨x(z)1∨x(z)2 for i = 1, 2, derive the
clauses x(s)i∨x(t)j∨x(v)1∨x(z)1∨x(z)2 for i, j = 1, 2, and then erase x(u)1∨x(u)2
to save space, resulting in the blackboard in Figure 9.1(a). This blackboard does
not correspond to any pebbles under our tentative translation. However, the clauses
can easily be used to derive something that does. For instance, writing down all
axioms x(u)i ∨ x(v)j ∨ x(z)1 ∨ x(z)2 for i, j = 1, 2, we get that the truth of s, t,
and u implies the truth of z. We have decided to interpret such a set of clauses as
a black pebble on z and white pebbles on s, t, and u, but this pebble configuration
cannot arise out of nothing in an empty DAG.

Although it is hard to motivate from such a small example, this turns out to be
a serious problem. And as we saw in Chapter 8, when we interpreted a set of clauses
as in Figure 9.1(a) by placing white pebbles on s and t and a black pebble on v, the
result was a pebble game that could only yield lower bounds for trees (intuitively,
because black pebbles can slide downwards, which breaks the lower bounds we
know for black-white pebbling price), which in turn meant that we could only get
logarithmic lower bounds on clause space. We want to do better.

Therefore, we give up the notion that clauses should correspond to pebbles and
invent a new “pebble” game, with white pebbles just as before, but with black blobs
that can cover multiple vertices instead of single-vertex black pebbles. A blob on
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a vertex set V can be thought of as truth of some vertex v ∈ V . The clauses in
Figure 9.1(a) are consequently translated into white pebbles on s and t, as before,
and a black blob covering both v and z in Figure 9.1(b).

We use this blob-pebble game to build a lower bound proof as outlined in Sec-
tion 3.3. First, we establish that for a fairly general class of graphs, any resolution
refutation of a pebbling contradiction can be interpreted as a blob-pebbling on the
DAG in terms of which this pebbling contradiction is defined.

Theorem 9.1. Let Pebd
G denote any pebbling contradiction over a layered DAG G.

Then there is a translation from sets of clauses derived from Pebd
G into sets of

black blobs and white pebbles in G such that any resolution refutation π of Pebd
G

corresponds to a blob-pebbling Pπ of G under this translation.

Proof outline. If there are vertex sets B and W with B ∩ W = ∅ and a subset C
of blackboard clauses such that

C ∪
{∨d

i=1 x(w)i

∣∣w ∈ W
}
�
∨

v∈B

∨d
i=1 x(v)i (9.2)

but this implication does not hold for any subset of B, W , or C, the blackboard
induces a black blob on B supported by white pebbles on W . This subconfigu-
ration of pebbles is denoted [B]〈W 〉. The pebble configuration corresponding to
the blackboard is the set S of all induced subconfigurations.

When an axiom clause x(s)i ∨ x(t)j ∨
∨d

l=1 x(v)l is written on the blackboard,
we match this (if needed) by a black blob on v and white pebbles on s and t, i.e.,
by the subconfiguration [v]〈s, t〉. This is an introduction move, and it corresponds
to the rules for black and white pebble placement in the standard pebble game. If
v is a source, we get the subconfiguration [v]〈∅〉.

Because of the new axiom clause, there can also appear other new blobs and
pebbles. We show that they can all be explained in terms of mergers of existing sub-
configurations [B1]〈W1〉 and [B2]〈W2〉 such that B1 ∩ W2 = ∅ and B2 ∩ W1 = {v∗}
for some vertex v∗ into

[
(B1 ∪ B2) \ {v∗}

]〈
(W1 ∪ W2) \ {v∗}

〉
. To see why the

merger rule is defined the way it is, note that if the blackboard plus truth of all
w ∈ Wi implies the truth of some v ∈ Bi for i = 1, 2, then certainly the blackboard
plus truth of all w ∈ (W1 ∪ W2) \ {v∗} implies the truth of some vertex either in
B1 (if v∗ is true) or B2 \ {v∗} (if v∗ is false).

When new clauses are derived, we expect nothing to happen since these clauses
are implied by what is already on the blackboard. It can be the case, though, that
clauses are derived that are in some sense “weaker” than what is implied by the
blackboard, but if so we can make inflation moves that inflate blobs to cover more
vertices and/or add white pebbles.

Finally, blobs and pebbles can disappear when clauses are erased from the black-
board. A problem here is that we can get erasures of white pebbles, which is not
acceptable in the black-white pebble game. However, by associating white pebbles
with black blobs in subconfigurations [B]〈W 〉, we can allow erasures of white peb-
bles W as long as the blobs B that they support are erased as well. Thus, one cannot
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erase individual pebbles but only entire subconfigurations. In this way (sweeping
the technical details under the rug for now) we can associate a blob-pebbling Pπ

with any refutation π.

In fact, the only property that we need from the layered graphs in Theorem 9.1
is that if w is a vertex with predecessors u and v, then there is no path between
the siblings u and v. The theorem holds for any DAG satisfying this condition.

The next step is to design a cost function for black blobs and white pebbles so
that the cost of the blob-pebbling Pπ in Theorem 9.1 is related to the space of the
resolution refutation π. Consider first two special cases. If a clause set induces N
disjoint blobs without any supporting white pebbles, it is not hard to prove that
the size of this set is at least N . This is clearly tight, so the cost of a single blob
can never exceed one. And if C ∪

{∨d
i=1 x(w)i

∣∣w ∈ W
}

implies
∨

v∈B

∨d
i=1 x(v)i

with the vertex set W chosen minimal so that this implication still holds, it can be
shown that |C| > (d − 1)|W | (so here we need d > 1). This follows from the fact
that a minimally unsatisfiable CNF formula over N variables must contain strictly
more than N clauses (Theorem 8.27).

In general, matters will be more complicated. Distinct blobs will not be disjoint,
and therefore cannot always all count towards the cost. Also, black blobs and white
pebbles from different subconfigurations can intersect in tricky ways. However, it
turns out that if we only allow blobs B that are chains (i.e., where all v ∈ B are
ordered topologically), look at the lowest vertex in each blob and count the number
of distinct such vertices, and also only charge for white pebbles in [B]〈W 〉 that are
located below the bottom vertex of B, we get the required result. Once we have
defined the cost function in this way, the proof that blob-pebbling cost yields a
lower bound on clause space is similar to the proof of Theorem 8.29.

Theorem 9.2. If π is a resolution refutation of a pebbling contradiction of degree
d > 1, the cost of the associated blob-pebbling Pπ is bounded by the space of π by
cost(Pπ) ≤ Sp(π) + O(1).

Finally, we need lower bounds on blob-pebbling price. Because of the inflation
rule in combination with the peculiar cost function, the blob-pebble game seems
to behave somewhat differently from the standard black-white pebble game, and
therefore we cannot appeal directly to known lower bounds on black-white pebbling
price. Luckily, it so happens that the lower bound construction in [49] that we
presented in Section 6.5 can be generalized to the blob-pebble game giving the
following theorem.

Theorem 9.3. Pyramids Πh have blob-pebbling price Θ(h).

Proof outline. This is arguably the technically most complex part of the construc-
tion, but let us nevertheless try to briefly outline the proof structure. The key idea
(adapted from [49]) is to define a potential measure for the set of subconfigurations
S = {[Bi]〈Wi〉 | i = 1, . . . ,m} currently in the graph as an indicator of “how good”
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this set is. We then prove two facts about this potential, from which the desired
lower bound on blob-pebbling price immediately follows:

1. The potential of the current pebble configuration St is upper-bounded, up
to a fixed multiplicative constant, by the maximum cost of any configuration
St′ , t′ ≤ t.

2. The final pebble configuration Sτ =
{
[z]〈∅〉

}
consisting of a single black blob

on the sink has potential Θ(h).

More precisely, we let U{�j} denote the subset of vertices in U on or above
level j (recall that sources are on level 0 and the sink z is on level h) and de-
fine m(U) = max

{
j + 2|U{�j}| : U{�j} 6= ∅

}
to be the measure of U . We say

that the vertex set U blocks the subconfiguration [B]〈W 〉 if U ∪ W intersects every
path P from a source vertex such that B ⊆ P , and that U blocks S if it blocks
every [B]〈W 〉 ∈ S. The potential of S is pot(S) = min{m(U) : U blocks S}.

Fact 2 of the proof now follows easily, since it can be shown that the set U with
smallest measure blocking Sτ =

{
[z]〈∅〉

}
is U = {z} with m(U) = h + 2.

Fact 1 is the hard part. It is proven by induction. Suppose that Ut blocks
St and that pot(St) = m(Ut). By the inductive hypothesis, we have pot(St) ≤
C · maxt′≤t{cost(St′)}. We want to show pot(St+1) ≤ C · maxt′≤t+1{cost(St′)},
which clearly holds if

pot(St+1) ≤ max{pot(St), C · cost(St+1)} . (9.3)

To establish this inequality, we note that if the pebbling move at time t + 1 is an
inflation, St+1 is blocked by Ut. Hence, pot(St+1) ≤ m(Ut) = pot(St) in this case.
In the same way it can be verified that if Ut blocks two subconfigurations being
merged, it must also block the result of the merger. And if we make an introduction
move on a non-source vertex v, the white pebbles on the predecessors of v block
the black pebble on v no matter what Ut looks like.

Thus, the potential can only increase when an introduction of [v]〈∅〉 is performed
on a source v. It turns out that what we need to prove (9.3) in this case is that
pyramid graphs have the following property: There exists a constant C ′ such that
for any configuration S there is a blocking vertex set U with pot(S) = m(U) and
|U | ≤ C ′ · cost(S).

This far the construction closely parallels that in Section 6.5, but showing that
we can choose blocking sets that achieve the minimum measure and at the same time
have limited cardinality requires new tools, as well as using the proof in Section 6.5
as a subroutine.

We remark that the proof of Theorem 9.3 applies in (almost) the same generality
as in [49]. It works for all layered DAGs that are also “spreading” in the sense that
(loosely speaking) for every vertex v on any level L and every K ≤ L, there are at
least K+1 vertices located exactly K levels below v from which v is reachable. This
class of graphs includes among others complete binary trees and pyramid graphs.
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It is an intriguing open question to determine the exact relation between the
blob-pebble game and the black-white pebble game. On the one hand, to prove
Theorem 9.3 we use additional techniques and get worse constants compared to the
construction in [49]. On the other hand, we do not know of a single example where
the possibility to use blobs reduces the cost of the cheapest pebbling.

Returning to our main path of reasoning and putting all of this together, we
can now prove the main theorem of this chapter.

Theorem 2.3 (restated). Let Pebd
Πh

denote the pebbling contradiction of degree
d > 1 defined over the pyramid graph of height h. Then the clause space of refuting
Pebd

Πh
by resolution is Sp(Pebd

Πh
` 0) = Θ(h).

Proof. The upper bound Sp(Pebd
Πh

` 0) = O(h) is easy. A pyramid of height h can
be pebbled with h + O(1) black pebbles, and as was noted above a refutation can
mimic such a pebbling in constant extra clause space (independent of d).

As before, the interesting part is the lower bound. Let π be any resolution
refutation of Pebd

Πh
and consider the associated blob-pebbling Pπ provided by The-

orem 9.1. On the one hand, we know that cost(Pπ) = O(Sp(π)) by Theorem 9.2,
provided that d > 1. On the other hand, Theorem 9.3 tells us that the cost of
any blob-pebbling of Πh is Ω(h), so in particular we must have cost(Pπ) = Ω(h).
Combining these two bounds on cost(Pπ), we see that Sp(π) = Ω(h).

Recall that the pebbling contradiction Pebd
G is a (2+d)-CNF formula and that

for constant d the size of the formula is linear in the number of vertices of G. Hence,
for pyramid graphs Πh the corresponding pebbling contradictions Pebd

Πh
have size

quadratic in the height h. Also, when d is fixed the upper bounds in Proposition 5.7
become L(Pebd

G ` 0) = O(n) and W(Pebd
G ` 0) = O(1). Corollary 2.4 now follows

if we set Fn = Pebd
Πh

for d = k − 2 and h = b
√

nc and use Theorem 2.3.

Corollary 2.4 (restated). For every k ≥ 4, there is a family of k-CNF formulas
{Fn}∞n=1 of size Θ(n) that can be refuted in length L(Fn ` 0) = O(n) and width
W(Fn ` 0) = O(1) but require clause space Sp(Fn ` 0) = Θ(

√
n).

9.2 The Blob-Pebble Game

The rest of this chapter is devoted to proving Theorem 2.3. In this section, we
present the modified pebble game that we will use to study the clause space of
resolution refutations of pebbling contradictions. For our pebble game to work, we
require of the graphs under study that they have the following property.

Property 9.4 (Sibling non-reachability). We say that a DAG G has the Sibling
non-reachability property if for all vertices u and v that are siblings in G, it holds
that u /∈ Gv

M and v /∈ Gu
M, i.e., the siblings are not reachable from one another.

Phrased differently, Property 9.4 asserts that siblings are non-comparable.
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A sufficient condition for Property 9.4 to hold is that if v is reachable from u,
then all paths P : u v have the same length. This holds for instance for the class
of layered graphs in Definition 6.2, and it is also easy to see directly that layered
graphs possess Property 9.4.

In the rest of this chapter, we will concentrate on DAGs having certain structural
properties. The next definition is so that we will not have to repeat these properties
over and over again.

Definition 9.5 (Blob-pebblable DAG). A blob-pebblable DAG is a DAG that
has a unique sink, which we will alway denote z, that has vertex indegree 2 for all
non-sources, and that satisfies the Sibling non-reachability property 9.4.

9.2.1 Description of the Blob-Pebble Game and Formal Definition
As before, we alter the rule for white pebble removal so that a white pebble can be
removed from a vertex when a black pebble is placed on that same vertex. This will
make the correspondence between pebblings and resolution derivations much more
natural. Clearly, this is only a minor adjustment, and it is easy to prove formally
that it does not really change anything.

Also, we still have the problem that in general, a resolution refutation has no
reason a priori to follow our pebble game intuition. Since pebbles are induced
by clauses, if at some derivation step the refutation chooses to erase “the wrong
clause” from the point of view of the induced pebble configuration, this can lead
to pebbles just disappearing. Whatever our translation from clauses to pebbles
is, a resolution proof that suddenly out of spite erases practically all clauses must
surely lead to practically all pebbles disappearing, at least if we want to maintain
a correspondence between clause space and pebbling cost. This is all in order for
black pebbles, but if we allow uncontrolled removal of white pebbles we cannot
hope for any nontrivial lower bounds on pebbling price (just white-pebble the two
predecessors of the sink, then black-pebble the sink itself and finally remove the
white pebbles).

We will keep our solution to this problem from Chapter 8, namely, to keep
track of exactly which white pebbles have been used to get a black pebble on a
vertex. We do the necessary bookkeeping by defining subconfigurations of pebble
configurations, each subconfiguration consisting of black pebble together with all
the white pebbles this black pebble depends on, and require that if any pebble in
a subconfiguration is removed, then all other pebbles in this subconfiguration must
be removed as well.

Another problem is that resolution derivation steps can be made that appear
intuitively bad given that we know that the end goal is to derive the empty clause,
but where it seems hard to nail down formally wherein this supposed badness lies.
To analyze such apparently non-optimal derivation steps, we introduce an inflation
rule in which a black pebble can be inflated to a blob covering multiple vertices. The
way to think of this is that a black pebble on a vertex v corresponds to derived truth
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of v, whereas for a blob pebble on V we only know that some vertex v ∈ V is true,
but not which one. For reasons that will perhaps become clearer in Section 9.5, in
is natural to consider blobs that are chains (Definition 6.5).

We now present the formal definition of the concept used to “label” each black
blob pebble with the set of white pebbles (if any) this black pebble is dependent on.
The intended meaning of the notation [B]〈W 〉 is a black blob on B together with
the white pebbles W with the help of which we have been able to place the black
blob on B. These “associated” or “supporting” white pebbles can be located on any
vertex w /∈ B that can be visited by a source path P to top(B) agreeing with B.
Formally, the legal pebble positions with respect to a chain B with b = bot(B) is
the set of vertices

lpp(B) = G
\b
M ∪

(⋃
Pin(B) \B

)
=
⋃

Pvia(B) \B . (9.4)

We refer to the structure [B]〈W 〉 grouping together a black blob B and its associated
white pebbles W as a blob subconfiguration, or just subconfiguration for short.

Definition 9.6 (Blob subconfiguration). For sets of vertices B,W in a blob-
pebblable DAG G, [B]〈W 〉 is a blob subconfiguration if B 6= ∅ is a chain and
W ⊆ lpp(B). We refer to B as a (single) black blob and to W as (a number of
different) white pebbles supporting B. We also say that B is dependent on W . If
W = ∅, B is independent. Blobs B with |B| = 1 are said to be atomic.

A set of blob subconfigurations S =
{
[Bi]〈Wi〉 | i = 1, . . . ,m

}
together consti-

tute a blob-pebbling configuration.

Note in particular that it always holds that B ∩ W = ∅ for a blob subconfigu-
ration [B]〈W〉.

Since the definition of the game we will play with these blobs and pebbles is
somewhat involved, let us first try to give an intuitive description.

• There is one single rule corresponding to the two rules 1 and 3 for black and
white pebble placement in the black-white pebble game of Definition 5.1. This
introduction rule says that we can place a black pebble on a vertex v together
with white pebbles on its predecessors (unless v is a source, in which case no
white pebbles are needed).

• The analogy for rule 2 for black pebble removal in Definition 5.1 is a rule for
“shrinking” black blobs. A vertex v in a blob can be eliminated by merging
two blob subconfigurations, provided that there is both a black blob and a
white pebble on v, and provided that the two black blobs involved in this
merger do not intersect the supporting white pebbles of one another in any
other vertex than v. Removing black pebbles in the black-white pebble game
corresponds to shrinking atomic black blobs.

• A black blob can be inflated to cover more vertices, as long as it does not
collide with its own supporting white vertices. Also, new supporting white
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pebbles can be added at an inflation move. There is no analogy of this move
in the usual black-white pebble game.

• The rule 4 for white pebble removal also corresponds to merging in the blob-
pebble game, since the white pebble used in the merger is eliminated as well.
In addition, however, a white pebble on w can also disappear if its black blob
B changes so that w no longer can be visited on a path via B (i.e., if w is no
longer a legal pebble position with respect to B).

• Other than that, individual white pebbles, and individual black vertices cov-
ered by blobs, can never just disappear. If we want to remove a white pebble
w ∈ W or parts of a black blob B, we can do so only by erasing the whole
blob subconfiguration [B]〈W〉.

The formal definition follows. See Figure 9.2 for some examples of blob-pebbling
moves.
Definition 9.7 (Blob-pebble game). For a blob-pebblable DAG G and blob-
pebbling configurations S0 and Sτ on G, a blob-pebbling from S0 to Sτ in G is a
sequence P =

{
S0, . . . , Sτ

}
of configurations such that for all t ∈ [τ ], St is obtained

from St−1 by one of the following rules:

Introduction St = St−1 ∪
{
[v]〈pred(v)〉

}
.

Merger St = St−1 ∪
{
[B]〈W〉

}
if there are [B1]〈W1〉, [B2]〈W2〉 ∈ St−1 such that

1. B1 ∪ B2 is (totally) ordered,
2. B1 ∩ W2 = ∅,
3. |B2 ∩ W1| = 1; let v∗ denote this unique element in B2 ∩ W1,
4. B = (B1 ∪ B2) \ {v∗}, and
5. W =

(
(W1 ∪ W2) \ {v∗}

)
∩ lpp(B),

We write [B]〈W〉 = merge([B1]〈W1〉, [B2]〈W2〉) and refer to this as a merger
on v∗.

Inflation St = St−1 ∪
{
[B]〈W〉

}
if there is a [B′]〈W ′〉 ∈ St−1 such that

1. B ⊇ B′,
2. B ∩ W ′ = ∅, and
3. W ⊇ W ′ ∩ lpp(B).

We say that [B]〈W〉 is derived from [B′]〈W ′〉 by inflation or that [B′]〈W ′〉 is
inflated to yield [B]〈W〉.

Erasure St = St−1 \
{
[B]〈W〉

}
for [B]〈W〉 ∈ St−1.

The blob-pebbling P is unconditional if S0 = ∅ and conditional otherwise. A
complete blob-pebbling of G is an unconditional pebbling P ending in Sτ =

{
[z]〈∅〉

}
for z the unique sink of G.
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(a) Empty pyramid. (b) Introduction move.

(c) Two subconfigurations before merger. (d) The merged subconfiguration.

(e) Subconfiguration before inflation. (f) Subconfiguration after inflation.

(g) Another subconfiguration before inflation. (h) After inflation with vanished white pebbles.

Figure 9.2: Examples of moves in the blob-pebble game.



164 CHAPTER 9. TOWARDS SEPARATING SPACE AND LENGTH

9.2.2 Blob-Pebbling Price
We have not yet defined what the price of a blob-pebbling is. The reason is that it
is not a priori clear what the “correct” definition of blob-pebbling price should be.

It should be pointed out that the blob-pebble game has no obvious intrinsic
value—its function is to serve as a tool to prove lower bounds on the resolution
refutation space of pebbling contradictions. The intended structure of our lower
bound proof for resolution space is that we want to look at resolution refutations of
pebbling contradictions, interpret them in terms of blob-pebblings on the underlying
graphs, and then translate lower bounds on the price of these blob-pebblings into
lower bounds on the size of the corresponding clause configurations. Therefore, we
have two requirements for the blob-pebbling price Blob-Peb(G):

1. It should be sufficiently high to enable us to prove good lower bounds on
Blob-Peb(G), preferably by relating it to the standard black-white pebbling
price BW-Peb(G).

2. It should also be sufficiently low, so that lower bounds on Blob-Peb(G) trans-
late back into lower bounds on the size of the clause configurations.

So when defining pebbling price in Definition 9.8 below, we also have to have in
mind the coming Definition 9.9 saying how we will interpret clauses in terms of
blobs and pebbles and that these two definitions together should make it possible
for us to lower-bound clause set size in terms of pebbling cost.

For black pebbles, we could try to charge 1 for each distinct blob. But this
will not work, since then the second requirement above fails. For the translation
of clauses to blobs and pebbles sketched in Section 9.1 it is possible to construct
clause configurations that correspond to an exponential number of distinct black
blobs measured in the clause set size. The other natural extreme seems to be to
charge only for mutually disjoint black blobs. But this is far too generous, and the
first requirement above fails. To get a trivial example of this, take any ordinary
black pebbling of G and translate in into an (atomic) blob-pebbling, but then
change it so that each black pebble [v] is immediately inflated to [{v, z}] after each
introduction move. It is straightforward to verify that this would yield a pebbling
of G in constant cost.

For white pebbles, the first idea might be to charge 1 for every white-pebbled
vertex, just as in the standard pebble game. On closer inspection, though, this
seems to be not quite what we need.

The definition presented below turns out to give us both of the desired properties
above, and allows us to prove an optimal bound. Namely, we define blob-pebbling
price so as to charge 1 for each distinct bottom vertex among the black blobs, and
so as to charge for the subset of supporting white pebbles W ∩ Gb

M in a subconfigu-
ration [B]〈W〉 that are located below the bottom vertex bot(B) of the black blob B.
Multiple distinct blobs with the same bottom vertex come for free, however, and
any supporting white pebbles above the bottom vertex of its own blob are also free,
although we still have to keep track of them.
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Definition 9.8 (Blob-pebbling price). For a subconfiguration [B]〈W〉, we say
that B([B]〈W〉) = {bot(B)} is the chargeable black vertex and that WM([B]〈W〉) =
W ∩ G

bot(B)
M are the chargeable white vertices. The chargeable vertices of the sub-

configuration [B]〈W〉 are all vertices in the union B([B]〈W〉) ∪ WM([B]〈W〉). This
definition is extended to blob-pebbling configurations S in the natural way by letting

B(S) =
⋃

[B]〈W〉∈S

B([B]〈W〉) =
{
bot(B) | [B]〈W〉 ∈ S

}
and

WM(S) =
⋃

[B]〈W〉∈S

WM([B]〈W〉) =
⋃

[B]〈W〉∈S

(
W ∩ G

bot(B)
M

)
.

The cost of a blob-pebbling configuration S is cost(S) =
∣∣B(S) ∪ WM(S)

∣∣, and the
cost of a blob-pebbling P =

{
S0, . . . , Sτ

}
is cost(P) = maxt∈[τ ]

{
cost(St)

}
.

The blob-pebbling price of [B]〈W〉, denoted Blob-Peb([B]〈W〉), is the minimal
cost of any unconditional blob-pebbling P = {S0, . . . , Sτ} such that Sτ =

{
[B]〈W〉

}
.

The blob-pebbling price of a DAG G is Blob-Peb(G) = Blob-Peb([z]〈∅〉), i.e., the
minimal cost of any complete blob-pebbling of G.

We will also write W(S) to denote the set of all white-pebbled vertices in S,
including non-chargeable ones.

9.3 Resolution Derivations Induce Blob-Pebblings

For simplicity, in this section, as well as in the next one, we will write v1, . . . , vd

instead of x(v)1, . . . , x(v)d for the d variables associated with v in a dth degree
pebbling contradiction. That is, in Sections 9.3 and 9.4 lower-case letters with
subscripts will denote only variables in propositional logic and nothing else.

As in the previous chapter, we find it more natural to ignore the target ax-
ioms z1, . . . , zd and focus on resolution derivations of

∨d
l=1 zl from the rest of the

formula rather than resolution refutations of all of Pebd
G. Recall that we write

*Pebd
G = Pebd

G \
{
z1, . . . , zd

}
to denote the pebbling formula over G with the tar-

get axioms in the pebbling contradiction removed (Definition 8.8). Then we know
from Lemma 8.9 that for any DAG G with sink z, it holds that Sp(Pebd

G ` 0) =
Sp(*Pebd

G `
∨d

l=1 zl). In view of this, from now on we will only consider resolution
derivations from *Pebd

G and try to convert clause configurations in such derivations
into sets of blob subconfigurations.

Also as in the previous chapter, to avoid cluttering the notation with an exces-
sive amount of brackets, we will sometimes use sloppy notation for sets. We will
allow ourselves to omit curly brackets around singleton sets when this is clear from
context, writing for instance V ∪ v instead of V ∪ {v} and [B ∪ b]〈W ∪ w〉 instead
of [B ∪ {b}]〈W ∪ {w}〉. Also, we will sometimes omit the curly brackets around
sets of vertices in black blobs and write, for instance, [u, v] instead of [{u, v}].
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9.3.1 Definition of Induced Configurations and Theorem Statement
Recall from Definition 8.8 that if r is a non-source with predecessors pred(r) =
{p, q}, we say that the axioms for r in *Pebd

G is the set

Axd(r) =
{
pi ∨ qj ∨

∨d
l=1 rl | i, j ∈ [d]

}
(9.5)

and if r is a source, we define Axd(r) =
{∨d

i=1 ri

}
. For V a set of vertices in G, we

let Axd(V ) =
{
Axd(v) | v ∈ V

}
. Also, we will again use the shorthand notation

B(V ) =
{∨d

i=1 vi | v ∈ V
}

(9.6)

and
All+(V ) =

∨
v∈V

∨d
i=1 vi (9.7)

from Definition 8.12. As before, we say that a set of clauses C implies a clause D
minimally if C � D but for all C′ $ C it holds that C′ 2 D. We say that C implies
a clause D maximally if C � D but for all D′ $ D it holds that C′ 2 D′. To define
our translation of clauses into blob subconfigurations, we use implications that are
in a sense both minimal and maximal. We remind the reader that the vertex set
lpp(B) of legal pebble positions for white pebbles with respect to the chain B was
defined in Equation (9.4).

Definition 9.9 (Induced blob subconfiguration). Let G be a blob-pebblable
DAG and C a clause configuration derived from *Pebd

G. Then C induces the blob
subconfiguration [B]〈W〉 if there is a clause set CB ⊆ C and a vertex set S ⊆ G \B
with W = S ∩ lpp(B) such that

CB ∪ B(S) � All+(B) (9.8a)

but for which it holds for all strict subsets C′
B $ CB , S′ $ S and B′ $ B that

C′
B ∪ B(S) 2 All+(B) , (9.8b)

CB ∪ B(S′) 2 All+(B) , and (9.8c)
CB ∪ B(S) 2 All+(B′) . (9.8d)

We write S(C) to denote the set of all blob subconfigurations induced by C.
To save space, when all conditions (9.8a)–(9.8d) hold, we write

CB ∪ B(S) B All+(B) (9.9)

and refer to this as precise implication or say that the clause set CB ∪ B(S) implies
the clause All+(B) precisely. Also, we say that the precise implication CB ∪ B(S) B
All+(B) witnesses the induced blob subconfiguration [B]〈W〉.



9.3. RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS 167

In the following, we will use the definition of precise implication B also for
clauses All+(V ) where the vertex set V is not a chain.

Let us see that this definition agrees with the intuition presented in Section 9.1.
An atomic black pebble on a single vertex v corresponds, as promised, to the fact
that

∨d
i=1 vi is implied by the current set of clauses. A black blob on V with-

out supporting white pebbles is induced precisely when the disjunction All+(V ) =∨
v∈V

∨d
i=1 vi of the corresponding clauses follow from the clauses in memory, but no

disjunction over a strict subset of vertices V ′ $ V is implied. Finally, the support-
ing white pebbles just indicate that if we indeed had the information corresponding
to black pebbles on these vertices, the clause corresponding to the supported black
blob could be derived. Remember that our cost measure does not take into account
the size of blobs. This is natural since we are interested in clause space, and since
large blobs, in an intuitive sense, corresponds to large (i.e., wide) clauses rather
than many clauses.

The main result of this section is as follows.

Theorem 9.10. Let π =
{
C0, . . . , Cτ

}
be a resolution derivation of

∨d
i=1 zi from

*Pebd
G for a blob-pebblable DAG G. Then the induced blob-pebbling configurations{

S(C0), . . . , S(Cτ )
}

form the “backbone” of a complete blob-pebbling P of G in the
sense that

• S(C0) = ∅,

• S(Cτ ) = {[z]〈∅〉}, and

• for every t ∈ [τ ], the transition S(Ct−1) S(Ct) can be accomplished in accor-
dance with the blob-pebbling rules in cost max

{
cost(S(Ct−1)), cost(S(Ct))

}
+

O(1).

In particular, to any resolution derivation π : *Pebd
G `

∨d
i=1 zi we can associate a

complete blob-pebbling Pπ of G such that cost(Pπ) ≤ maxC∈π

{
cost(S(C))

}
+ O(1).

We prove the theorem by forward induction over the derivation π. By the
pebbling rules in Definition 9.7, any subconfiguration [B]〈W〉 may be erased freely
at any time. Consequently, we need not worry about subconfigurations disappearing
during the transition from Ct−1 to Ct. What we do need to check, though, is that
no subconfiguration [B]〈W〉 appears inexplicably in S(Ct) as a result of a derivation
step Ct−1  Ct, but that we can always derive any [B]〈W〉 ∈ S(Ct) \ S(Ct−1) from
S(Ct−1) by the blob-pebbling rules. Also, when several pebbling moves are needed
to get from S(Ct) to S(Ct−1), we need to check that these intermediate moves do
not affect the pebbling cost by more than an additive constant.

The proof boils down to a case analysis of the different possibilities for the
derivation step Ct−1  Ct. Since the analysis is quite lengthy, we divide it into
subsections. But first of all we need some technical lemmas.
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9.3.2 Some Technical Lemmas

The next three lemmas are not hard, but will prove quite useful. The first two
lemmas were proven already in Chapter 8, but we repeat them here for reference.

Lemma 8.17 (restated). Suppose that C,D are clauses and that C is a set of
clauses. Then C ∪

{
C
}
� D if and only if C � a ∨D for all a ∈ Lit(C).

Lemma 8.26 (restated). Let C be a set of clauses and D a clause such that
C � D minimally and a ∈ Lit(C) but a 6∈ Lit(C). Then a ∈ Lit(D).

Lemma 9.11. Suppose that C � D minimally. Then no literal from D can occur
negated in C, i.e., it holds that {a | a ∈ Lit(D)} ∩ Lit(C) = ∅.

Proof. Suppose not. Let C1 = {C ∈ C | ∃a such that a ∈ Lit(C) and a ∈ Lit(D)}
and C2 = C \ C1. Since C2 2 D, there exists a truth value assignment α such
that α(C2) = 1 and α(D) = 0. But then we must have α(C1) = 1, since every
C ∈ C1 contains a negated literal a from D, and these literals are all set to true
by α. Contradiction.

We also need the following key technical lemma connecting implication with
inflation moves (which can be seen to be a parallel of Lemma 8.16).

Lemma 9.12. Let C be a clause set derived from *Pebd
G. Suppose that B is a

chain and that S ⊆ G \ B is a vertex set such that C ∪ B(S) � All+(B) and let
W = S ∩ lpp(B). Then the blob subconfiguration [B]〈W〉 is derivable by inflation
from some [B′]〈W ′〉 ∈ S(C).

Proof. Pick C′ ⊆ C, S′ ⊆ S and B′ ⊆ B minimal such that C′ ∪ B(S′) � All+(B′).
Then C′ ∪ B(S′) B All+(B′) by definition. Note, furthermore, that B′ 6= ∅ since
the clause set on the left-hand side must be non-contradictory. Also, C′ 6= ∅ since
B′ ∩ S′ ⊆ B ∩ S = ∅, so by Lemma 8.26 it cannot be that B(S′) � All+(B′). This
means that C induces [B′]〈W ′〉 for W ′ = S′ ∩ lpp(B′). We claim that [B′]〈W ′〉
can be inflated to [B]〈W〉, from which the lemma follows.

To verify this claim, note that first two conditions B′ ⊆ B and B ∩ W ′ ⊆
B ∩ S = ∅ for inflation moves in Definition 9.7 clearly hold by construction. As to
the third condition, we have

W ′ ∩ lpp(B) =
(
S′ ∩ lpp(B′)

)
∩ lpp(B) ⊆ S ∩ lpp(B) = W

which proves the claim.

We now start the case analysis in the proof of Theorem 9.10 for the different
possible derivation steps in a resolution derivation.
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9.3.3 Erasure
Suppose that Ct = Ct−1 \ {C} for C ∈ Ct−1. It is easy to see that the only
possible outcome of erasing clauses is that blob subconfigurations disappear. We
note for future reference that this implies that the blob-pebbling cost decreases
monotonically when going from S(Ct−1) to S(Ct).

9.3.4 Inference
Suppose that Ct = Ct−1 ∪ {C} for some clause C derived from Ct−1. No blob sub-
configurations can disappear at an inference move since Ct−1 ⊆ Ct. Suppose that
[B]〈W〉 is a new subconfiguration at time t arising from CB ⊆ Ct−1 and S ⊆ G \B
such that W = S ∩ lpp(B) and CB ∪ {C} ∪ B(S) B All+(B). Since C is derived
from Ct−1, we have Ct−1 � C. Thus it holds that Ct−1 ∪ B(S) � All+(B) and
Lemma 9.12 tells us that [B]〈W〉 is derivable by inflation from S(Ct−1).

Since no subconfiguration disappears, the pebbling cost increases monotonically
when going from S(Ct−1) to S(Ct) for an inference step, which is again noted for
future reference.

9.3.5 Axiom Download
This is the interesting case. Assume that a new blob subconfiguration [B]〈W〉 is
induced at time t as the result of a download of an axiom C ∈ Axd(r). Then C
must be one of the clauses inducing the subconfiguration, and we get that there are
CB ⊆ Ct−1 and S ⊆ G \B with W = S ∩ lpp(B) such that

CB ∪ {C} ∪ B(S) B All+(B) . (9.10)

Our intuition is that download of an axiom clause C ∈ Axd(r) in the resolution
derivation should correspond to an introduction of [r]〈pred(r)〉 in the induced blob-
pebbling. We want to prove that any other blob subconfiguration [B]〈W〉 in S(Ct)
is derivable by the pebbling rules from S(Ct−1) ∪ [r]〈pred(r)〉. Also, we need
to prove that the pebbling moves needed to go from S(Ct−1) to S(Ct) do not
increase the blob-pebbling cost by more than an additive constant compared to
max

{
cost(S(Ct−1)), cost(S(Ct))

}
= cost(S(Ct)), where the equality holds since no

subconfigurations can disappear when we add clauses to the clause configuration.
We do the proof by a case analysis over r depending on where in the graph this

vertex is located in relation to B. To simplify the proofs for the different cases, we
first show a general technical lemma about pebble induction at axiom download.

Lemma 9.13. Suppose that Ct = Ct−1 ∪ C for C ∈ Axd(r) and that [B]〈W〉 is a
new blob subconfiguration induced at time t as witnessed by (9.10). Then:

1. r /∈ S.

2. pred(r) ∩ B = ∅.
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3. If r /∈ B, then Ct−1 induces [B]〈W ∪ ({r} ∩ lpp(B))〉 if r is a source, and
otherwise this subconfiguration can be derived from S(Ct−1) by inflation.

4. If r is a non-source vertex and v ∈ pred(r) is such that v ∈ lpp(B) \ S, then
we can derive [B ∪ v]〈S ∩ lpp(B ∪ v)〉 from S(Ct−1) by inflation.

Proof. Suppose that [B]〈W〉 ∈ S(Ct) \ S(Ct−1). For part 1, noting that B(r) � C
for C ∈ Axd(r) we see that r /∈ S, as otherwise the implication (9.10) cannot be
precise since C can be omitted.

If r is a source part 2 is trivial, so suppose pred(r) = {p, q} and C = pi ∨ qj ∨∨d
l=1 rl. Then it follows from Lemma 9.11 that {p, q} ∩ B = ∅.

For part 3, if r is a source, we have C =
∨d

i=1 ri and (9.10) becomes

CB ∪ B(S ∪ r) B All+(B) (9.11)

for S ∪ r ⊆ G \B, which shows that Ct−1 induces

[B]〈(S ∪ r) ∩ lpp(B)〉 = [B]〈(S ∩ lpp(B)) ∪ (r ∩ lpp(B))〉
= [B]〈(W ∪ (r ∩ lpp(B))〉 .

(9.12)

If r is a non-source we do not get a precise implication but still have

CB ∪ B(S ∪ r) � All+(B) (9.13)

and Lemma 9.12 yields that [B]〈(S ∪ r) ∩ lpp(B)〉 = [B]〈W ∪ (r ∩ lpp(B))〉 is
derivable by inflation from S(Ct−1).

If v ∈ pred(r) in part 4, the downloaded axiom can be written on the form
C = C ′ ∨ vi. Applying Lemma 8.17 on (9.10) we get

CB ∪ B(S) � All+(B) ∨ vi ⊆ All+(B ∪ v) . (9.14)

By assumption, we have that B ∪ v is a chain and that S ⊆ G \ (B ∪ v), so
Lemma 9.12 says that the subconfiguration [B ∪ v]〈S ∩ lpp(B ∪ v)〉 is derivable
from S(Ct−1) by inflation.

What we get from Lemma 9.13 is not in itself sufficient to derive the new blob
subconfiguration [B]〈W〉 in the blob-pebble game, but the lemma provides sub-
configurations that will be used as building blocks in the derivations of [B]〈W〉
below.

Now we are ready for the case analysis over the vertex r for the downloaded
axiom clause C ∈ Axd(r). Recall that the assumption is that there exists a blob
subconfiguration [B]〈W〉 ∈ S(Ct) \ S(Ct−1) induced through (9.10) for CB ⊆ Ct−1

and S ⊆ G \B with W = S ∩ lpp(B). Remember also that we want to explain all
new subconfigurations in S(Ct) \S(Ct−1) in terms of blob-pebbling moves from the
set of subconfigurations S(Ct) ∪ {[r]〈pred(r)〉}. As illustrated in Figure 9.3, the
cases for the vertex r are:
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B

b = bot(B)

⋃
Pin(B) \B

G
\b
M

G \
(
Gb

M ∪
⋃

Pin(B)
)

Figure 9.3: Cases for vertex r w.r.t. blob B at download of axiom C ∈ Axd(r).

1. r ∈ G \
(
Gb

M ∪
⋃

Pin(B)
)

for b = bot(B),

2. r ∈
⋃

Pin(B) \B,

3. r ∈ B \ {b} for b = bot(B),

4. r = bot(B), and

5. r ∈ G
\b
M for b = bot(B).

Case 1: r ∈ G \
(
Gb

M ∪
⋃

Pin(B)
)

for b = bot(B)

If r ∈ G\
(
Gb

M ∪
⋃

Pin(B)
)
, this means that the vertex r is outside the set of vertices

covered by source paths via B to top(B). In other words, r /∈ lpp(B) ∪ B and
part 3 of Lemma 9.13 yields that

[
B
]〈

W ∪ (r ∩ lpp(B))
〉

= [B]〈W〉 is derivable
from S(Ct−1) by inflation. Note that we need no intermediate subconfigurations in
this case.
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Case 2: r ∈
⋃

Pin(B) \B

This is the first more challenging case, and we do it in some detail to show how
the reasoning goes. The proofs for the rest of the cases are analogous and will be
presented in slightly more condensed form.

The condition r ∈
⋃

Pin(B) \B says that the vertex r is located on some path
from bot(B) via B to top(B) strictly above the bottom vertex b = bot(B). In
particular, this means that r cannot be a source vertex. Let pred(r) = {p, q} and
denote the downloaded axiom clause C = pi ∨ qj ∨

∨d
l=1 rl.

Part 3 of Lemma 9.13 says that we can derive the blob subconfiguration

[B]〈W ∪ (r ∩ lpp(B))〉 = [B]〈W ∪ r〉 (9.15)

by inflation from S(Ct−1), where the equality holds since r ∈
⋃

Pin(B) \ B ⊆
lpp(B) by Definition 9.6. Also, since r is on some path above b, at least one of the
predecessors of r must be located on some path from b as well. That is, translating
what was just said into our notation we have that the fact that r ∈

⋃
Pin(B) ∩ GO

\b
implies that either p ∈

⋃
Pin(B) or q ∈

⋃
Pin(B) or both. By symmetry, we get

two cases: p ∈
⋃

Pin(B), q /∈
⋃

Pin(B) and {p, q} ⊆
⋃

Pin(B). Let us look at
them in order.

I. p ∈
⋃

Pin(B), q /∈
⋃

Pin(B): We make a subcase analysis depending on
whether p ∈ B ∪ W or not. Recall from part 2 of Lemma 9.13 that p /∈ B.
The two remaining cases are p ∈ W and p /∈ B ∪ W .

(a) p ∈ W : Let v be the uppermost vertex in B below p, or in formal
notation

v = top(Gp
M ∩ B) . (9.16)

Such a vertex v must exist since p ∈
⋃

Pin(B) \ B. Since p is above
v and is a predecessor of r, it lies on some path from v to r, i.e., p ∈⋃

Pin({v, r}) \ {v, r}. For the sibling q we have q /∈
⋃

Pin({v, r}). This
is so since q /∈

⋃
Pin(B) and for any path P ∈ Pin({v, r}) it holds

that P ⊆
⋃

Pin(B) since there is nothing in between v and r in B,
i.e.,

(⋃
Pin({v, r}) \ {v, r}

)
∩ B = ∅. Also, q /∈ G

\p
M ⊇ G

\v
M because

of the Sibling non-reachability property 9.4. Hence, it must hold that
q /∈ lpp({v, r}).
We can use this information to make blob-pebbling moves resulting in
[B]〈W〉 as follows. First introduce [r]〈p, q〉 and inflate this subconfigu-
ration to

[v, r]〈{p, q} ∩ lpp({v, r})〉 = [v, r]〈p〉 . (9.17)

Then derive the subconfiguration [B]〈W ∪ r〉 in (9.15) by inflation from
S(Ct−1). Finally, merge the two subconfigurations (9.15) and (9.17).
The result of this merger move is [B ∪ v]〈W ∪ p〉 = [B]〈W〉.
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(b) p /∈ B ∪ W : Note that p ∈ Pin(B) \ B by assumption. Also, it must
hold that p /∈ S since otherwise we would get the contradiction p ∈
S ∩ (Pin(B) \B) ⊆ S ∩ lpp(B) = W . Thus, p ∈ lpp(B) \ S and part 4
of Lemma 9.13 yields that we can derive the blob subconfiguration

[B ∪ p]〈Wp〉 for Wp ⊆ W (9.18)

by inflation from S(Ct−1), where Wp = S ∩ lpp(B ∪ p) ⊆ S ∩ lpp(B) = W
since lpp(B ∪ p) ⊆ lpp(B) if p ∈

⋃
Pin(B). (This last claim is easily

verified directly from Definition 9.6.)
With v = top(Gp

M ∩ B) as in (9.16), introduce [r]〈p, q〉 and inflate to
[v, r]〈p〉 as in (9.17). Merging the subconfigurations (9.17) and (9.18)
yields

[B ∪ {v, r}]〈Wp〉 = [B ∪ r]〈Wp〉 (9.19)
and a second merger of the resulting subconfiguration (9.19) with the
subconfiguration in (9.15) produces [B]〈W ∪ Wp〉 = [B]〈W〉.

This finishes the case p ∈
⋃

Pin(B), q /∈
⋃

Pin(B).

II. {p, q} ⊆
⋃

Pin(B): By part 2 of Lemma 9.13 {p, q} ∩ B = ∅, so {p, q} ⊆
Pin(B) \ B. By symmetry, we have the following subcases for p and q with
respect to membership in B and W .

(a) {p, q} ⊆ W ,
(b) p ∈ W, q /∈ W ,
(c) {p, q} ∩ (B ∪ W ) = ∅.

We analyze these subcases one by one.

(a) {p, q} ⊆ W : This is easy. Just introduce [r]〈p, q〉 and merge this sub-
configuration with the subconfiguration (9.15) to get [B]〈W ∪ {p, q}〉 =
[B]〈W〉.

(b) p ∈ W, q /∈ W : In this case it must hold that q /∈ S since otherwise
we would have q ∈ S ∩ (Pin(B) \ B) ⊆ S ∩ lpp(B) = W contradicting
the assumption. Thus q ∈ (Pin(B) \ B) \ S ⊆ lpp(B) \ S and part 4 of
Lemma 9.13 allows us to derive

[B ∪ q]〈Wq〉 for Wq ⊆ W (9.20)

by inflation from S(Ct−1). Here we have Wq = S ∩ lpp(B ∪ q) ⊆
S ∩ lpp(B) = W since lpp(B ∪ q) ⊆ lpp(B) when q ∈

⋃
Pin(B).

Introduce [r]〈p, q〉 and merge with the subconfiguration (9.20) to get

[B ∪ r]〈Wq ∪ p〉 (9.21)

and then merge (9.21) with the subconfiguration [B]〈W ∪ r〉 from (9.15)
to get [B]〈W ∪ Wq ∪ p〉 = [B]〈W〉.
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(c) {p, q} ∩B ∪W = ∅: Just as for the vertex q in case case IIb, here it holds
for both p and q that {p, q} ⊆ lpp(B) \ S. Part 4 of Lemma 9.13 yields
subconfigurations [B ∪ p]〈Wp〉 for Wp ⊆ W as in (9.18) and [B ∪ q]〈Wq〉
for Wq ⊆ W as in (9.20) derived by inflation from S(Ct−1).
Introduce [r]〈p, q〉 and merge with (9.18) on p to get

[B ∪ r]〈Wp ∪ q〉 (9.22)

and then merge (9.22) with (9.20) on q resulting in

[B ∪ r]〈Wp ∪ Wq〉 . (9.23)

Finally, merge (9.23) with (9.15) on r to get [B]〈W ∪ Wp ∪ Wq〉 =
[B]〈W〉.

This concludes the case r ∈
⋃

Pin(B) \ B. We can see that in all subcases,
the new blob subconfiguration [B]〈W〉 is derivable from S(Ct−1) ∪ [r]〈pred(r)〉 by
inflation moves followed by mergers on some subset of {p, q, r}.

Let us analyze the cost of deriving [B]〈W〉. We want to bound the cost of
the intermediate subconfigurations that are used in the transition from S(Ct−1) to
S(Ct) but are not present in S(Ct). We first note that for the subconfigurations
[B]〈W ∪ r〉, [B ∪ p]〈Wp〉, [B ∪ q]〈Wq〉 and [B ∪ r]〈W ′〉 for various W ′ ⊆ W , the
chargeable vertices are all subsets of the chargeable vertices of the final subconfigu-
ration [B]〈W〉. This is so since b = bot(B) is the bottom vertex in all these black
blobs, and all chargeable white vertices are contained in W ∩ Gb

M. The subconfigu-
rations [r]〈p, q〉 and [v, r]〈p〉 for v = top(Gp

M ∩ B) can incur an extra cost, however,
but this cost is clearly bounded by |{p, q, r, v}| = 4.

Case 3: r ∈ B \ {b} for b = bot(B)

First we note that in this case, we can no longer use part 3 of Lemma 9.13 to derive
the blob subconfiguration [B]〈W ∪ r〉 of (9.15). The vertex r cannot be added to
the support S since it is contained in B. Also, we note that r cannot be a source
since it is above the bottom vertex b. As usual, let us write pred(r) = {p, q}.

Observe that just as in case 2 (Section 9.3.5) we must have either p ∈
⋃

Pin(B)
or q ∈

⋃
Pin(B) or both. By symmetry we get the same two cases for membership of

p and q in
⋃

Pin(B), namely p ∈
⋃

Pin(B), q /∈
⋃

Pin(B) and {p, q} ⊆
⋃

Pin(B).

I. p ∈
⋃

Pin(B), q /∈
⋃

Pin(B): As before, p /∈ B by part 2 of Lemma 9.13. We
make a subcase analysis depending on whether p ∈ W or p /∈ B ∪ W .
As in (9.16) we let v = top(Gp

M ∩ B) and note that p ∈
⋃

Pin({v, r}) \ {v, r}.
For q we have q /∈

⋃
Pin({v, r}) since q /∈

⋃
Pin(B) but {v, r} ⊆

⋃
Pin(B)

and there is nothing in between v and r in B. Also, q /∈ G
\p
M ⊇ G

\v
M because of

the Sibling non-reachability property 9.4. Hence, it holds that q /∈ lpp({v, r}).
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(a) p ∈ W : Introduce [r]〈p, q〉 and inflate to [v, r]〈{p, q} ∩ lpp({v, r})〉 =
[v, r]〈p〉 as in (9.17) and continue the inflation to [B ∪ {v, r}]〈W ∪ p〉=
[B]〈W〉.

(b) p /∈ B ∪ W : Just as in case 2, p /∈ W implies p /∈ S, so p ∈ lpp(B) \ S
and we can use part 4 of Lemma 9.13 to derive [B ∪ p]〈Wp〉 for Wp ⊆ W
as in (9.18). Introduce [r]〈p, q〉, inflate to [v, r]〈p〉 as in (9.17) and merge
(9.17) and (9.18) on p resulting in [B ∪ {v, r}]〈Wp〉 = [B]〈Wp〉, which
can be inflated to [B]〈W〉.

II. {p, q} ⊆
⋃

Pin(B): We have the same possibilities to consider for containment
of p and q in B ∪ W as in case 2(II) on page 173.

(a) {p, q} ⊆ W : This is immediate. Introduce the subconfiguration [r]〈p, q〉
and inflate to [B ∪ r]〈W ∪ {p, q}〉 = [B]〈W〉.

(b) p ∈ W, q /∈ B ∪ W : Apply part 4 of Lemma 9.13 to derive [B ∪ q]〈Wq〉
for Wq ⊆ W by inflation from S(Ct−1). Then introduce [r]〈p, q〉 and
merge on q to get the subconfiguration [B ∪ r]〈Wq ∪ p〉 = [B]〈Wq ∪ p〉,
which can be inflated further to [B]〈Wq ∪ p ∪ W 〉 = [B]〈W〉.

(c) {p, q} ∩ (B ∪ W ) = ∅: In the same way as in case IIb, derive the sub-
configurations [B ∪ p]〈Wp〉 and [B ∪ q]〈Wq〉 with Wp ∪ Wq ⊆ W from
S(Ct−1) by inflation. Introduce [r]〈p, q〉 and merge twice, first on p and
then on q, to get [B]〈Wp ∪ Wq〉, which can be inflated to [B]〈W〉.

This concludes the case r ∈ B \ {b}. We see that in all subcases the new blob
subconfiguration [B]〈W〉 is derivable from S(Ct−1) ∪ [r]〈pred(r)〉 by inflation moves
followed by mergers on some subset of {p, q}, possibly followed by one more inflation
move.

As in the previous case, the bottom vertex in all of the black blobs [B ∪ p],
[B ∪ q] and [B ∪ r] is b = bot(B), and the corresponding chargeable white pebbles
are subsets of those of W . The extra cost caused by the subconfigurations [r]〈p, q〉
and [v, r]〈p〉 is at most 4.

Case 4: r = bot(B)

If r is a source, any [B]〈W〉 with r ∈ B can be derived by introducing [r]〈pred(r)〉 =
[r]〈∅〉 and inflating. Suppose therefore that r = bot(B) is not a source and let
pred(r) = {p, q}. Then it holds that {p, q} ⊆ G

\r
M ⊆ lpp(B), i.e., the vertex sets

B ∪ p and B ∪ q are both chains.
By symmetry, we have three cases for p and q with respect to membership in

W . (It is still true that {p, q} ∩ B = ∅ by part 2 of Lemma 9.13.)

(a) {p, q} ⊆ W : Immediate. Introduce the subconfiguration [r]〈p, q〉 and inflate
it to [B ∪ r]〈W ∪ {p, q}〉 = [B]〈W〉.
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(b) p ∈ W, q /∈ W : Enlist the help of our old friend Lemma 9.13, part 4, to
derive [B ∪ q]〈Wq〉 for Wq ⊆ W by inflation from S(Ct−1) (where Wq ⊆
W holds since lpp(B ∪ v) ⊆ lpp(B) if v ∈ G

\b
M). Introduce [r]〈p, q〉 and

merge with [B ∪ q]〈Wq〉 to get [B ∪ r]〈Wq ∪ p〉 = [B]〈Wq ∪ p〉. Then inflate
[B]〈Wq ∪ p〉 to [B]〈Wq ∪ p ∪ W 〉 = [B]〈W〉.

(c) {p, q} ∩ W = ∅: Following an established tradition, mimic case b and derive
[B ∪ p]〈Wp〉 and [B ∪ q]〈Wq〉 with Wp ∪ Wq ⊆ W by inflation from S(Ct−1).
Introduce [r]〈p, q〉, do two mergers to get [B]〈Wp ∪ Wq〉 and inflate to [B]〈W〉.

This takes care of the case r = b. Again, in all subcases our new subconfigu-
ration [B]〈W〉 is derivable from S(Ct−1) ∪ [r]〈pred(r)〉 by inflation moves followed
by mergers on some subset of {p, q}, possibly followed by one more inflation move.

This time the blobs [B ∪ p] and [B ∪ q] can cause an extra intermediate cost
of 1 each for the bottom vertices p and q, and [r]〈p, q〉 potentially adds an extra
cost 1 for r, giving that the intermediate extra cost is bounded by 3.

Case 5: r ∈ G
\b
M for b = bot(B)

This final case is very similar to the previous case r = bot(B). Note first that
r ∈ G

\b
M ⊆ lpp(B). If r is a source, then C =

∨d
i=1 ri and we have

CB ∪ {C} ∪ B(S) = CB ∪ B(S ∪ r) B All+(B) (9.24)

at time t − 1, which shows that [B]〈W ∪ r〉 ∈ S(Ct−1). Hence, we can introduce
[r]〈pred(r)〉 = [r]〈∅〉 and merge on r to get [B]〈W〉.

As usual, the more interesting case is when r is a non-source with pred(r) =
{p, q}. The case analysis is just as in case 4 (Section 9.3.5). However, note that
now we can again use part 3 of Lemma 9.13 to derive [B]〈W ∪ r〉 from S(Ct−1) by
inflation since it holds that r /∈ B.

(a) {p, q} ⊆ W : Introducing [r]〈p, q〉 and merging with [B]〈W ∪ r〉 yields [B]〈W〉.

(b) p ∈ W, q /∈ W : Appeal to part 4 of Lemma 9.13 to get [B ∪ q]〈Wq〉 for
Wq ⊆ W by inflation from S(Ct−1). Introduce [r]〈p, q〉 and merge to get
[B ∪ r]〈Wq ∪ p〉, and merge again with [B]〈W ∪ r〉 to get [B]〈W〉.

(c) {p, q} ∩W = ∅: As in case b above for q, derive [B ∪ p]〈Wp〉 and [B ∪ q]〈Wq〉
with Wp ∪ Wq ⊆ W by inflation from S(Ct−1). Introduce [r]〈p, q〉 and do two
mergers to get [B ∪ r]〈Wp ∪ Wq〉. Finally merge [B ∪ r]〈Wp ∪ Wq〉 with
[B]〈W ∪ r〉 to get [B]〈W〉.

This takes care of the case r = G
\b
M. We note that in all subcases of this case,

[B]〈W〉 is derivable from S(Ct−1) ∪ [r]〈pred(r)〉 by inflation moves followed by
mergers on some subset of {p, q, r}. Again, the extra intermediate pebbling cost is
bounded by |{p, q, r}| = 3.
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9.3.6 Wrapping up the Proof of Theorem 9.10

If π =
{
C0, . . . , Cτ

}
is a derivation of

∨d
i=1 zi from *Pebd

G, it is easily verified from
Definition 9.9 that S(C0) = S(∅) = ∅ and S(Cτ ) = S({

∨d
i=1 zi}) = {[z]〈∅〉}.

In Sections 9.3.3, 9.3.4, and 9.3.5, we have shown how to do the intermediate
blob-pebbling moves to get from S(Ct−1) to S(Ct) in the case of erasure, inference
and axiom download, respectively. For erasure and inference, the blob-pebbling
cost changes monotonically during the transition S(Ct−1)  S(Ct). In the case
of axiom download, there can be an extra cost of 4 incurred for deriving each
[B]〈W〉 ∈ S(Ct) \ S(Ct−1). We have no a priori upper bound on

∣∣S(Ct) \ S(Ct−1)
∣∣,

but if we just derive the new subconfigurations one by one and erase all intermediate
subconfigurations in between these derivations, we will keep the total extra cost
below 4.

This shows that the complete blob-pebbling Pπ of G associated to a resolution
derivation π : *Pebd

G `
∨d

i=1 zi by the construction in this section has blob-pebbling
cost bounded from above by cost(Pπ) ≤ maxC∈π

{
cost(S(C))

}
+ 4. Theorem 9.10

is thereby proven.

9.4 Induced Blob Configurations and Clause Set Size

In this section we prove that if a set of clauses C induces a blob-pebbling con-
figuration S(C) according to Definition 9.9, then the cost of S(C) as specified in
Definition 9.8 is at most |C| provided that d ≥ 2. That is, the cost of an induced
blob-pebbling configuration provides a lower bound on the size of the set of clauses
inducing it.

To simplify the proofs, we will reuse the notation Varsd(U), V (C), and CJUK
from Definition 8.28 on page 116. Let us also recall some technical results about
CNF formulas that will come in handy in the proof of Theorem 9.16. Intuitively,
we will use Lemma 8.24 together with Lemma 8.26 to argue that if a clause set C
induces a lot of subconfigurations, then there must be a lot of variable occurrences
in C for variables corresponding to these vertices. We will also need the fact that a
minimally unsatisfiable CNF formula must have more clauses than variables, which
we restate here for reference.

Theorem 8.27 (restated). Suppose that F implies D minimally. For any sub-
set of variables V of F , let FV = {C ∈ F | Vars(C) ∩ V 6= ∅} denote the set of
clauses containing variables from V . Then if V ⊆ Vars(F ) \Vars(D), it holds that
|FV | > |V |.

Given that Lemmas 8.24 and 8.26 tell us that many induced subconfigurations
implies the presence of many variables in C, we will use Theorem 8.27 to demon-
strate that a lot of different variable occurrences will have to translate into a lot
of different clauses, provided that the pebbling degree d is at least 2. Before we
prove this formally, let us try to provide some intuition for why it should be true
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by studying two special cases. Recall the notation B(V ) =
{∨

i∈[d] vi

∣∣v ∈ V
}

and
All+(V ) =

∨
v∈V

∨
i∈[d] vi from Definition 8.12.

Example 9.14. Suppose that C is a clause set derived from *Pebd
G that induces N

independent black blobs B1, . . . , BN that are pairwise disjoint, i.e., Bi ∩ Bj = ∅ if
i 6= j. Then the implications

C � All+(Bi) (9.25)

hold for i = 1, . . . , N . Remember that since *Pebd
G is non-contradictory, so is C.

It is clear that a non-contradictory clause set C satisfying (9.25) for i = 1, . . . , N
is quite simply the set

C =
{
All+(Bi)

∣∣i = 1, . . . N
}

(9.26)

consisting precisely of the clauses implied. Also, it seems plausible that this is
the best one can do. Informally, if there would be strictly fewer clauses than N ,
some clause would have to mix variables from different blobs Bi and Bj . But then
Lemma 8.26 says that there will be extra clauses needed to “neutralize” the literals
from Bj in the implication C � All+(Bi) and vice versa, so that the total number
of clauses would have to be strictly greater than N .

As it turns out, the proof that |C| ≥ N when C induces N pairwise disjoint and
independent black blobs is very easy. Suppose on the contrary that (9.25) holds
for i = 1, . . . , N but that |C| < N . Let α be a satisfying assignment for C. Choose
α′ ⊆ α to be any minimal partial truth value assignment fixing C to true. Then
for the size of the domain of α′ we have |Dom(α′)| < N , since at most one distinct
literal is needed for every clause C ∈ C to fix it to true. This means that there is
some Bi such that α′ does not set any variables in Varsd(Bi). Consequently α′ can
be extended to an assignment α′′ setting C to true but All+(Bi) to false, which is a
contradiction. With some more work, and using Theorem 8.27, one can show that
|C| > N if variables from distinct blobs are mixed.

Note that the above argument works for any pebbling degree including d = 1.
Intuitively, this means that one can charge for black blobs even in the case of first
degree pebbling formulas.
Example 9.15. Suppose that the clause set C induces an blob subconfiguration
[B]〈W〉 with W 6= ∅, and let us assume for simplicity that C is minimal and W = S
so that the implication

C ∪ B(W ) � All+(B) (9.27)

holds and is minimal. We claim that |C| ≥ |W |+ 1 provided that d > 1.
Since by definition B ∩ W = ∅ we have Vars(All+(B)) ∩ Vars(B(W )) = ∅,

and Theorem 8.27 yields that |C ∪ B(W )| ≥ |CJW K ∪ B(W )| > |Vars(B(W ))|.
This is not quite what we want—we have a lower bound on |C ∪ B(W )|, but what
we need is a bound on |C|. But if we observe that |Vars(B(W ))| = d|W | while
|B(W )| = |W |, we get the claimed inequality

|C| ≥ |Vars(B(W ))| − |B(W )|+ 1 = (d− 1)|W |+ 1 ≥ |W |+ 1 . (9.28)
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We remark that this time we had to use that d > 1 in order to get a lower bound
on the clause set size. And indeed, it is not hard to see that a single clause on the
form C = v1 ∨

∨
w∈W w1 can induce an arbitrary number of white pebbles if d = 1.

Intuitively, white pebbles can be had for free in first degree pebbling formulas.
In general, matters are more complicated than in Examples 9.14 and 9.15. If

[B1]〈W1〉 and [B2]〈W2〉 are two induced blob subconfigurations, the black blobs B1

and B2 need not be disjoint, the supporting white pebbles W1 and W2 might also
intersect, and the black blob B1 can intersect the supporting white pebbles W2 of
the other blob. Nevertheless, if we choose with some care which vertices to charge
for, the intuition provided by our examples can still be used to prove the following
theorem (which is the parallel of Theorem 8.29).

Theorem 9.16. Suppose that G is a blob-pebblable DAG and let C be a set of
clauses derived from the pebbling formula *Pebd

G for d ≥ 2. Then |C| ≥ cost(S(C)).

Proof. Let S(C) =
{
[Bi]〈Wi〉

∣∣i ∈ [m]
}

be set set of induced blob subconfigurations.
By Definition 9.8, we have cost(S(C)) =

∣∣B ∪ WM
∣∣ where

B =
{
bot(Bi)

∣∣[Bi]〈Wi〉 ∈ S(C)
}

(9.29)

and
WM =

⋃
[Bi]〈Wi〉∈S(C)

(
Wi ∩ G

bot(Bi)
M

)
. (9.30)

We need to prove that |C| ≥
∣∣B ∪ WM

∣∣.
We first show that all vertices in B ∪ WM are represented in some clause in C.

By Definition 9.9, for each [Bi]〈Wi〉 ∈ S(C) there is a clause set Ci ⊆ C and a
vertex set Si ⊆ G \Bi with Wi = Si ∩ lpp(Bi) ⊆ Si such that

Ci ∪ B(Si) � All+(Bi) (9.31)

and such that this implication does not hold for any strict subset of Ci, Si or Bi.
Fix (arbitrarily) such Ci and Si for every [Bi]〈Wi〉 ∈ S(C) for the rest of this proof.

For the induced black blobs Bi we claim that Bi ⊆ V (Ci), which certainly
implies bot(Bi) ∈ V (C). To establish this claim, note that for any v ∈ Bi we can
apply Lemma 8.24 with D1 =

∨d
j=1 vj and D2 = All+(Bi \ {v}) on the implication

(9.31), which yields that the vertex v must be represented in Ci ∪ B(Wi) by some
positive literal vj . Since Bi ∩ Si = ∅, we have Vars(B(Si)) ∩ Vars(All+(Bi)) = ∅
and thus vj ∈ Lit(Ci).

Also, we claim that Si ⊆ V (Ci). To see this, note that since Bi ∩ Si = ∅ and
the implication (9.31) is minimal, it follows from Lemma 8.26 that for every w ∈ Si,
all literals wj , j ∈ [d], must be present in Ci. Thus, in particular, it holds that
Wi ∩ G

bot(Bi)
M ⊆ V (Ci).

We now prove by induction over subsets R ⊆ B ∪ WM that |CJRK| ≥ |R|. The
theorem clearly follows from this since |C| ≥ |CJRK|. (The reader can think of R as
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the set of vertices representing the subconfigurations [Bi]〈Wi〉 ∈ S(C) in the clause
set C.)

The base case |R| = 1 is immediate, since we just demonstrated that all vertices
r ∈ R are represented in C.

For the induction step, suppose that |CJR′K| ≥ |R′| for all R′ $ R. Pick a
“topmost” vertex r ∈ R, i.e., such that GO

\r ∩ R = ∅. We associate a blob subcon-
figuration [Bi]〈Wi〉 ∈ S(C) with r as follows. If r = bot(Bi) for some [Bi]〈Wi〉, fix
[Bi]〈Wi〉 arbitrarily to such a subconfiguration. Otherwise, there must exist some
[Bi]〈Wi〉 such that r ∈ Wi ∩ G

bot(Bi)
M , so fix any such subconfiguration. We note

that it holds that
R ∩ GO

bot(Bi)
⊆ {r} (9.32)

for [Bi]〈Wi〉 chosen in this way.
Consider the clause set Ci ⊆ C and vertex set Si ⊇ Wi from (9.31) associated

with [Bi]〈Wi〉 above. Clearly, by construction r ∈ V (Ci) is one of the vertices of R
mentioned by Ci. We claim that the total number of vertices in R mentioned by
Ci is upper-bounded by the number of clauses in Ci mentioning these vertices, i.e.,
that ∣∣CiJRK

∣∣ ≥ ∣∣R ∩ V (Ci)
∣∣ . (9.33)

Let us first see that this claim is sufficient to prove the theorem. To this end, let

R[i] = R ∩ V (Ci) (9.34)

denote the set of all vertices in R mentioned by Ci and assume that |CiJRK| =
|CiJR[i]K| ≥ |R[i]|. Observe that CiJR[i]K ⊆ CJRK, since Ci ⊆ C and R[i] ⊆ R. Or
in words: the set of clauses in Ci mentioning vertices in R[i] is certainly a subset
of all clauses in C mentioning any vertex in R. Also, by construction Ci does not
mention any vertices in R \R[i] since R[i] = R ∩ V (Ci). That is,

CJR \R[i]K ⊆ CJRK \ Ci (9.35)

in our notation. Combining the (yet unproven) claim (9.33) for CiJRK = CiJR[i]K
asserting that

∣∣CiJR[i]K
∣∣ ≥ |R[i]| with the induction hypothesis for R \ R[i] ⊆

R \ {r} $ R, we get ∣∣CJRK
∣∣ = ∣∣CiJRK

.
∪ (C \ Ci)JRK

∣∣
≥
∣∣CiJR ∩ V (Ci)K

.
∪ CJR \ V (Ci)K

∣∣
=
∣∣CiJR[i]K

∣∣+ ∣∣CJR \R[i]K
∣∣ (9.36)

≥ |R[i]|+ |R \R[i]|
= |R|

and the theorem follows by induction.
It remains to verify the claim (9.33) that |CiJR[i]K| ≥ |R[i]| for R[i] = R ∩

V (Ci) 6= ∅. To do so, recall first that r ∈ R[i]. Thus, R[i] 6= ∅ and if R[i] = {r} we
trivially have |CiJR[i]K| ≥ 1 = |R[i]|. Suppose therefore that R[i] % {r}.
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We want to apply Theorem 8.27 on the formula F = Ci ∪ B(Si) on the left-hand
side of the minimal implication (9.31). Let R′ = R[i] \ {r}, write R′ = R1

.
∪R2 for

R1 = R′ ∩ Si and R2 = R′ \R1, and consider the subformula

FR′ =
{
C ∈

(
Ci ∪ B(Si)

)∣∣V (C) ∩ R′ 6= ∅
}

= CiJR′K ∪ B(R1)
(9.37)

of F = Ci ∪ B(Si). A key observation for the concluding part of the argument is
that by (9.32) we have Varsd(R′) ∩ Vars(All+(Bi)) = ∅.

For each w ∈ R1, the clauses in B(R1) contain d literals w1, . . . , wd and these
literals must all occur negated in Ci by Lemma 8.26. For each u ∈ R2, the clauses
in CiJR′K contain at least one variable ui. Appealing to Theorem 8.27 with the
subset of variables Varsd(R′) ∩ Vars(Ci) ⊆ Vars(F ) \Vars(All+(Bi)), we get∣∣FR′

∣∣ = ∣∣CiJR′K ∪ B(R1)
∣∣

≥
∣∣Varsd(R′) ∩ Vars(Ci)

∣∣+ 1 (9.38)
≥ d
∣∣R1

∣∣+ ∣∣R2

∣∣+ 1 ,

and rewriting this as ∣∣CiJR[i]K
∣∣ ≥ ∣∣CiJR′K

∣∣
=
∣∣FR′

∣∣− ∣∣B(R1)
∣∣

≥ (d− 1)
∣∣R1

∣∣+ ∣∣R2

∣∣+ 1

≥
∣∣R[i]

∣∣
(9.39)

establishes the claim.

We have two concluding remarks. Firstly, we note that the place where the
condition d ≥ 2 is needed is the very final step (9.39). This is where an attempted
lower bound proof for first degree pebbling formulas *Peb1

G would fail for the reason
that the presence of many white pebbles in S(C) says absolutely nothing about the
size of the clause set C inducing these pebbles. Secondly, another crucial step in
the proof is that we can choose our representative vertices r ∈ R so that (9.32)
holds. It is thanks to this fact that the inequalities in (9.38) go through. The way
we make sure that (9.32) holds is to charge only for (distinct) bottom vertices in
the black blobs, and only for supporting white pebbles below these bottom vertices.

9.5 A Tight Bound for Blob-Pebbling the Pyramid

Having come this far in our proof construction, we know that resolution derivations
induce blob-pebblings. We also know that blob-pebbling cost gives a lower bound
on clause set size and hence on the space of the derivation. The final component
needed to make the proof of Theorem 2.3 complete is to show lower bounds on the
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blob-pebbling price Blob-Peb(Gn) for some nice family of blob-pebblable directed
acyclic graphs {Gn}∞n=1.

Perhaps the first idea that comes to mind is to try to establish lower bounds
on blob-pebbling price by reducing this problem to the problem of proving lower
bounds for the standard black-white pebble game of Definition 5.1. This is what we
did in Chapter 8 for the restricted case of trees. There, for the labelled pebblings Lπ

that one gets from resolution derivations π : *Pebd
T `
∨d

i=1 zi in the labelled pebble
game, we presented an explicit procedure for transforming any Lπ into a complete
black-white pebbling P of T in asymptotically the same cost. The lower bound on
pebbling price in the labelled pebble game then followed by using the known lower
bound for black-white pebbling of trees in Theorem 5.2.

Unfortunately, the blob-pebble game seems more difficult than the labelled peb-
ble game to analyze in terms of standard black-white pebbling. The problem is
the inflation rule (in combination with the cost function). It is not hard to show
that without inflation, the blob-pebble game is essentially just a disguised form of
black-white pebbling (this follows from Lemma 8.30). Thus, if we could convert
any blob-pebbling into an equivalent pebbling not using inflation moves without in-
creasing the cost by more than, say, some constant factor, we would be done. But
in contrast to the case for the labelled pebble game in Chapter 8 played on binary
trees, we are not able to transform blob-pebblings into black-white pebblings in a
cost-preserving way.

Instead, what we do is to prove lower bounds directly for the blob-pebble game.
This is not immediately clear how to do, since the lower bound proofs for black-
white pebbling price in, for instance, [34, 42, 49, 55] all break down for the more
general blob-pebble game. We are only able to obtain lower bounds for the limited
class of blob-pebblable DAGs (Definition 9.5) that are also layered (Definition 6.2).
We show that for all such DAGs Gh of height h that are spreading in the sense of
Definition 6.44, it holds that Blob-Peb(Gh) = Θ(h). In particular, this bound holds
for pyramids Πh since they are spreading by Theorem 6.45.

The constant factor that we get in our lower bound is moderately small and
explicit. In fact, we believe that it should hold that Blob-Peb(Gh) ≥ h/2+O(1) for
layered spreading graphs Gh of height h, just as in the standard black-white pebble
game. As we have not made any real attempt to get optimal constants, the factor
in our lower bound can be improved with a minor effort, but additional ideas seems
to be needed to push the constant all the way up to 1

2 .

9.5.1 Definitions and Notation for Blob-Pebbling Price Lower Bound
Recall that a vertex set U hides a black pebble on b if it blocks all source paths
visiting v. For a blob B, which is a chain by Definition 9.6, it appears natural
to extend this definition by requiring that U should block all paths going through
all of B. We recall the terminology and notation from Definition 6.5 that a black
blob B and a path P agree with each other, or that P is a path via B, if B ⊆ P ,
and that Pvia(B) denotes the set of all source paths agreeing with B.
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Definition 9.17 (Blocked black blob). A vertex set U blocks a blob B if U
blocks all paths P ∈ Pvia(B).

A terminological aside: Recalling the discussion in Section 6.5 it seems natural
to say that U blocks a black blob B rather than hides it, since standing at the
sources we might “see” the beginning of B, but if we try to walk any path via B
we will fail before reaching the top of B since U blocks the path. This distinction
between hiding and blocking turns out to be a very important one in our lower
bound proof for blob-pebbling price. Of course, if B is an atomic black pebble, i.e.,
|B| = 1, the hiding and blocking relations coincide.

Let us next define what it means to block a blob-pebbling configuration.

Definition 9.18 (Unblocked paths). For [B]〈W 〉 an blob subconfiguration, the
set of unblocked paths for [B]〈W 〉 is

unblocked([B]〈W 〉) = {P ∈ Pvia(B) | P ∩ W = ∅}

and we say that U blocks [B]〈W 〉 if U blocks all paths in unblocked([B]〈W 〉). We
say that U blocks the blob-pebbling configuration S if U blocks all [B]〈W 〉 ∈ S. If
so, we say that U is a blocker of [B]〈W 〉 or S, respectively, or a blocking set for
[B]〈W 〉 or S.

Comparing to Section 6.5, note that when blocking a path P ∈ Pvia(B), U can
only use the white pebbles W that are associated with B in [B]〈W〉. Although
there might be white pebbles from other subconfigurations [B′]〈W ′〉 6= [B]〈W〉 that
would be really helpful, U cannot enlist the help of the white pebbles in W ′ when
blocking B. The reason for defining the blocking relation in this way is that these
white pebbles can suddenly disappear due to pebbling moves performed on such
subconfigurations [B′]〈W ′〉.

Reusing the definition of measure in Definition 6.18 on page 67, we generalize
the concept of potential to blob-pebbling configurations as follows.

Definition 9.19 (Blob-pebbling potential). The potential of a blob-pebbling
configuration S is

pot(S) = min{m(U) : U blocks S} .

If U is such that U blocks S and U has minimal measure m(U) among all blocking
sets for S, we say that U is a minimum-measure blocking set for S.

To compare blob-pebbling potential with the black-white pebbling potential in
Definition 6.19, consider the following examples with vertex labels as in our running
example pyramid in Figures 6.2 and 6.4–6.6.
Example 9.20. Consider the blob-pebbling configuration S =

{
[z]〈y1〉, [z]〈y2〉

}
.

Then the minimum-measure blocker for S is U = {z}, but the standard black-
white pebble configuration P = (B,W ) = ({z}, {y1, y2}) with pebbles on the same
vertices has U = ∅ as minimum-measure hiding set.
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Example 9.21. For the blob-pebbling configuration S =
{
[z]〈∅〉, [y1]〈x1, x2〉

}
, the

minimum-measure blocker is again U = {z}. In comparison, for the standard
black-white pebble configuration P = (B,W ) = ({z, y1}, {x1, x2}) we have the
minimum-measure hiding set U = {x3}.
Remark 9.22. Perhaps it is also worth pointing out that Definition 9.19 is indeed
a strict generalization of Definition 6.19. Given a black-white pebble configuration
P = (B,W ) we can construct an equivalent blob-pebbling configuration S(P) with
respect to potential by setting

S(P) =
{[

b
]〈

W ∩ Gb
M

〉∣∣b ∈ B
}

(9.40)

but as the examples above show going in the other direction is not possible.
Since we have accumulated a number of different minimality criteria for blocking

sets, let us pause to clarify the terminology:

• The vertex set U is a subset-minimal, or just minimal, blocker for the blob-
pebbling configuration S if no strict subset U ′ $ U is a blocking set for S.

• U is a minimum-measure blocking set for S if it has minimal measure among
all blocking sets for S (and thus yields the potential of S).

• U is a minimum-size blocking set for S if it has minimal size among all blocking
sets for S.

Note that we can assume without loss of generality that minimum-measure and
minimum-size blockers are both subset-minimal, since throwing away superfluous
vertices can only decrease the measure and size, respectively. However, minimum-
measure blockers need not have minimal size and vice versa. For a simple example of
this, consider (with vertex labels as in Figures 6.2 and 6.4–6.6) the blob-pebbling
configuration S =

{
[z]〈w3, w4〉

}
and the two blocking sets U1 = {z} and U2 =

{w1, w2}.

9.5.2 A Lower Bound Assuming a Generalized LHC Property
For the blob-pebble game, a useful generalization of Property 6.21 on page 68 turns
out to be the following.

Property 9.23 (Generalized limited hiding-cardinality property). We say
that a blob-pebbling configuration S on a layered blob-pebblable DAG G has the
Generalized limited hiding-cardinality property with parameter CK if there is a ver-
tex set U such that

1. U blocks S,

2. pot(S) = m(U), i.e., U is a minimum-measure blocker of S,

3. |U | ≤ CK · cost(S).
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For brevity, in what follows we will just refer to the Generalized LHC property.
We say that the graph G has the Generalized LHC property with parameter

CK if all blob-pebbling configurations S on G have the Generalized LHC property
with parameter CK .

When the parameter CK is clear from context, we will just write that S or G
has the Generalized LHC property.

For all layered blob-pebblable DAGs Gh of height h that have the Generalized
LHC property and are spreading, it holds that Blob-Peb(Gh) = Θ(h). The proof of
this fact is very much in the spirit of the proofs of Lemma 6.22 and Theorem 6.24,
although the details are slightly more complicated.

Theorem 9.24 (Analogue of Theorem 6.24). Suppose that Gh is a layered blob-
pebblable DAG of height h possessing the Generalized LHC property 9.23 with some
parameter CK . Then for any unconditional blob-pebbling P =

{
S0 = ∅, S1, . . . , Sτ

}
of Gh it holds that

pot(St) ≤ (2CK + 1) ·max
s≤t

{cost(Ss)} . (9.41)

In particular, for any family of layered blob-pebblable DAGs Gh that are also spread-
ing in the sense of Definition 6.44, we have Blob-Peb(Gh) = Θ(h).

We make two separate observations before presenting the proof.

Observation 9.25. For any layered DAG Gh of height h, Blob-Peb(Gh) = O(h).

Proof. Any layered DAG Gh can be black-pebbled with h + O(1) pebbles by The-
orem 6.9 on page 61, and it is easy to see that a blob-pebbling can mimic a black
pebbling in the same cost.

Observation 9.26. If Gh is a layered blob-pebblable DAG of height h that is spread-
ing in the sense of Definition 6.44, then potGh

([z]〈∅〉) = h + 2.

Proof. This is fairly similar to the corresponding case for pyramids in Lemma 6.23.
Note, though, that in contrast to Lemma 6.23, here we cannot get the statement
from the Generalized LHC property, but instead have to prove it directly.

Since [z] is an atomic blob, the blocking and hiding relations coincide. The set
U = {z} hides itself and has measure h + 2. We show that any other blocking set
must have strictly larger measure.

Suppose that z is hidden by some vertex set U ′ 6= {z}. This U ′ is minimal
without loss of generality. In particular, we can assume that U ′ is tight in the sense
of Definition 6.25 and that U ′ = U ′TzU. Then by Corollary 6.33 it holds that U ′

is hiding-connected. Letting L = minlevel
(
U ′) and setting j = h in the spreading

inequality (6.10), we get that
∣∣U ′
∣∣ ≥ 1 + h − L and hence m

(
U ′) ≥ mL

(
U ′) ≥

L + 2(1 + h− L) = 2h− L + 2 > h + 2 since L < h.
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Proof of Theorem 9.24. The statement in the theorem follows from combining Ob-
servations 9.25 and 9.26 with the inequality (9.41). Hence, just as for Theorem 6.24
the crux of the matter is the induction proof needed to get this inequality.

Suppose that Ut is such that it blocks St and pot(St) = m(Ut). By the inductive
hypothesis, we have that pot(St) ≤ (2CK +1) ·maxs≤t{cost(Ss)}. We want to show
for St+1 that pot(St+1) ≤ (2CK + 1) ·maxs≤t+1{cost(Ss)}. Clearly, this follows if
we can prove that

pot(St+1) ≤ max{pot(St), (2CK + 1) · cost(St)} . (9.42)

We also note that if Ut blocks St+1 we are done, since if so pot(St+1) ≤ m(Ut) =
pot(St).

We make a case analysis depending on the type of move in Definition 9.7 made
to get from St to St+1. Analogously with the proof of Lemma 6.22, we want to
show that we can use Ut to block St+1 as long as the move is not an introduction
on a source vertex and then use the Generalized LHC property to take care of such
black pebble placements on sources.

Erasure St+1 = St \
{
[B]〈W〉

}
for [B]〈W〉 ∈ St. Obviously, Ut blocks St+1 ⊆ St.

Inflation St+1 = St ∪
{
[B]〈W〉

}
for [B]〈W〉 inflated from some [B′]〈W ′〉 ∈ St

such that

B′ ⊆ B , (9.43a)
W ′ ∩ lpp(B) ⊆ W , and (9.43b)

B ∩ W ′ = ∅ . (9.43c)

We claim that Ut blocks [B]〈W〉 and thus all of St+1. Let us first argue
intuitively why. Suppose that P is any source path agreeing with B. This
path also agrees with B′, and so must be blocked by Ut ∪ W ′ by assumption.
If Ut blocks B we are done. We can worry, though, that Ut does not block P ,
but that instead P was blocked by some w ∈ W ′ that disappeared as a result
of the inflation move. But if w ∈ W ′ is on a path via B, it cannot have
disappeared, so this can never happen.
We now write down the formal details. With the notation in Definition 9.18,
fix any path P ∈ unblocked([B]〈W 〉). Note that P ∩ W = ∅ by definition.
We need to show that P ∩ Ut 6= ∅. Let us assume without loss of generality
that P ends in top(B), for Ut blocks [B]〈W〉 precisely if it blocks the paths
P ∩ G

top(B)
M for all P ∈ unblocked([B]〈W 〉). We note that by definition, the

fact that P agrees with a chain V and ends in top(V ) implies that

P ⊆ V
.
∪ lpp(V ) . (9.44)

Since P agrees with B, or in formal notation P ∈ Pvia(B), and since B′ ⊆ B
by (9.43a), we have P ∈ Pvia(B′). By assumption, Ut blocks [B′]〈W ′〉, which
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in particular means that Ut ∪ W ′ intersects the path P agreeing with B′. We
get

∅ 6= P ∩
(
Ut ∪ W ′) [

by definition of blocking
]

= (P ∩ Ut)∪
(
(P \B) ∩ W ′) [

since B ∩ W ′ = ∅ by (9.43c)
]

= (P ∩ Ut) ∪
(
P ∩ lpp(B) ∩ W ′) [

since P ⊆ B
.
∪ lpp(B) by (9.44)

]
⊆ (P ∩ Ut) ∪ (P ∩ W )

[
lpp(B) ∩ W ′ ⊆ W by (9.43b)

]
= P ∩ Ut

[
since P ∩ W = ∅

]
so P ∩ Ut 6= ∅ and the desired conclusion that Ut blocks the path P follows.

Merger St+1 = St ∪
{
[B]〈W〉

}
for [B]〈W〉 derived by merger of two subconfigu-

rations [B1]〈W1〉, [B2]〈W2〉 ∈ St such that

B1 ∩ W2 = ∅ , (9.45a)
B2 ∩ W1 = {v∗} , (9.45b)

B = (B1 ∪ B2) \ {v∗} , and (9.45c)
W =

(
(W1 ∪ W2) \ {v∗}

)
∩ lpp(B) . (9.45d)

Let us again first argue informally that if a set of vertices Ut blocks two sub-
configurations [B1]〈W1〉 and [B2]〈W2〉, it must also block their merger. Let P
be any path via B, and suppose in addition that P visits the merger vertex v∗.
If so, P agrees with B2 and must be blocked by Ut ∪ W2. If on the other hand
P agrees with B but does not visit v∗, it is a path via B1 that in addition
does not pass through the white pebble in W1 eliminated in the merger. This
means that Ut ∪ W1 \ {v∗} must block P . Again, we have to argue that the
blocking white vertices do not disappear when we apply the intersection with
lpp(B) in (9.45d), but this is straightforward to verify.

So let us show formally that Ut blocks [B]〈W〉, i.e., that it must hold for
any path P ∈ unblocked([B]〈W〉) that P ∩ Ut 6= ∅. As above, without loss
of generality we consider only paths P ending in top(B) = top(B1 ∪ B2).
Recall that

Bi ∩ Wi = ∅ (9.46)

holds for all subconfigurations by definition. Also, the set inclusion

lpp(B ∪ {v∗}) ⊆ lpp(B) \ {v∗} (9.47)

is easy to verify. We divide the analysis into two subcases.
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1. P ∈ Pvia(B1 ∪ B2) = Pvia(B ∪ {v∗}). If so, in particular it holds that
P ∈ Pvia(B2) and since Ut blocks [B2]〈W2〉 we have

∅ 6= P ∩
(
Ut ∪ W2

) [
by definition

]
= (P ∩ Ut)∪

(
(P \ (B1 ∪ B2)) ∩ W2

) [
by (9.45a) & (9.46)

]
= (P ∩ Ut) ∪

(
P ∩ lpp(B1 ∪ B2) ∩ W2

) [
by (9.44)

]
= (P ∩ Ut)∪

(
P ∩ lpp(B ∪ v∗) ∩ W2

) [
by (9.45c)

]
⊆ (P ∩ Ut)∪

(
P ∩ (W2 \ {v∗}) ∩ lpp(B)

[
by (9.47)

]
⊆ (P ∩ Ut) ∪ (P ∩ W )

[
by (9.45d)

]
= P ∩ Ut

[
since P ∩ W = ∅

]
so Ut blocks the path P in this case.

2. P ∈ Pvia(B)\Pvia(B ∪ {v∗}). This means that B ⊆ P but B ∪ {v∗} *
P , so the path P does not pass through v∗. Since P agrees with B1 and
Ut blocks [B1]〈W1〉 by assumption, we get that

∅ 6= P ∩
(
Ut ∪ W1

) [
by definition

]
= (P ∩ Ut)∪

(
(P \B) ∩ W1

) [
(9.45b) & (9.46)

]
= (P ∩ Ut) ∪

(
P ∩ lpp(B) ∩ W1

) [
by (9.44)

]
= (P ∩ Ut) ∪

(
P ∩ (W1 \ {v∗}) ∩ lpp(B)

) [
since v∗ /∈ P

]
⊆ (P ∩ Ut) ∪ (P ∩ W )

[
by (9.45d)

]
= (P ∩ Ut)

[
since P ∩ W = ∅

]
and Ut blocks the path P in this case as well.

Introduction St+1 = St ∪
{
[v]〈pred(v)〉

}
. Clearly, Ut blocks St+1 if v is a non-

source vertex, i.e., if pred(v) 6= ∅, since Ut blocks St and [v]〈pred(v)〉 blocks
itself.

Suppose however that v is a source vertex, so that the subconfiguration in-
troduced is [v]〈∅〉. As in the proof of Lemma 6.22, Ut does not necessarily
block St+1 any longer but Ut+1 = Ut ∪ {v} clearly does. For j > 0, it holds
that Ut+1{�j} = Ut{�j} and thus mj(Ut+1) = mj(Ut). On the bottom level
j = 0, using that |Ut| ≤ CK ·cost(St) Generalized LHC property 9.23 we have

m0(Ut+1) = 2 · |Ut+1| = 2 · (|Ut|+ 1) ≤
2 ·
(
CK · cost(St) + 1

)
≤ 2 ·

(
CK · cost(St+1) + 1

)
≤

2 ·
(
CK · cost(St+1) + cost(St+1)

)
≤ 2(CK + 1) · cost(St+1) (9.48)
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and we get that

pot(St+1) ≤ m(Ut+1) ≤ maxj

{
mj(Ut+1)

}
≤ max

{
m(Ut), (2CK + 1) · cost(St+1)

}
=

max
{
pot(St), (2CK + 1) · cost(St+1)

}
(9.49)

which is what is needed for the induction step to go through.

We see that regardless of the pebbling move made in the transition St  St+1, the
inequality (9.42) holds. The theorem follows by the induction principle.

Hence, in order to prove a lower bound on Blob-Peb(Gh) for layered spreading
graphs Gh, it is sufficient to find some constant CK such that these DAGs can be
shown to possess the Generalized LHC property 9.23 with parameter CK .

9.5.3 Some Structural Transformations
As we tried to indicate by presenting the small toy blob-pebbling configurations in
Examples 9.20 and 9.21, the potential in the blob-pebble game behaves somewhat
differently from the potential in the standard pebble game. There are (at least)
two important differences:

• Firstly, for the white pebbles we have to keep track of exactly which black
pebbles they can help to block. This can lead to slightly unexpected conse-
quences such as the blocking set U and the set of white pebbles overlapping.

• Secondly, for black blobs there is a much wider choice where to block the
blob-pebbles than for atomic pebbles. It seems that to minimize the potential,
blocking black blobs on (reasonably) low levels should still be a good idea.
However, we cannot a priori exclude the possibility that if a lot of black blobs
intersect in some high-level vertex, adding this vertex to a blocking set U
might be a better idea.

In this subsection we address the first of these issues. The second issue, which turns
out to be much trickier, is dealt with in the next subsection.

One simplifying observation is that we do not have to prove Property 9.23 for
arbitrary blob-pebbling configurations. Below, we show that one can do some tech-
nical preprocessing of the blob-pebbling configurations so that it suffices to prove
the Generalized LHC property for the subclass of configurations resulting from this
preprocessing.1 Throughout this subsection, we assume that the parameter CK is
some fixed constant.

1Note that we did something similar in Section 6.5 after Lemma 6.28, when we argued that
if U is a minimum-measure hiding set for P = (B, W ), we can assume without loss of generality
that U ∪ W is tight. For if not, we just prove the Limited hiding-cardinality property for some
tight subset U ′ ∪ W ′ ⊆ U ∪ W instead. This is wholly analogous to the reasoning here, but since
matters become more complex we need to be a bit more careful.



190 CHAPTER 9. TOWARDS SEPARATING SPACE AND LENGTH

We start slowly by taking care of a pretty obvious redundancy. Let us say that
the blob subconfiguration [B]〈W〉 is self-blocking if W blocks B. The blob-pebbling
configuration S is self-blocker-free if there are no self-blocking subconfigurations in S.
That is, if [B]〈W〉 is self-blocking, W needs no extra help blocking B. Perhaps the
simplest example of this is [B]〈W〉 = [v]〈pred(v)〉 for a non-source vertex v. The
following proposition is immediate.

Proposition 9.27. For S any blob-pebbling configuration, let S′ be the blob-pebbling
configuration with all self-blockers in S removed. Then cost(S′) ≤ cost(S), pot(S′) =
pot(S) and any blocking set U ′ for S′ is also a blocking set for S.

Corollary 9.28. Suppose the Generalized LHC property holds for self-blocker-free
blob-pebbling configurations. Then the Generalized LHC property holds for all blob-
pebbling configurations.

Proof. If S is not self-blocker-free, take the maximal S′ ⊆ S that is and the blocking
set U ′ that the Generalized LHC property provides for this S′. Then U ′ blocks S and
since the two configurations S and S′ have the same blocking sets their potentials are
equal, so pot(S) = m(U ′). Finally, we have that |U | ≤ CK · cost(S′) ≤ CK · cost(S).
Thus the Generalized LHC property holds for S.

We now move on to a more interesting observation. Looking at the blob-pebbling
configuration S =

{
[z]〈y1〉, [z]〈y2〉

}
in Example 9.20, it seems that the white pebbles

really do not help at all. One might ask if we could not just throw them away?
Perhaps somewhat surprisingly, the answer is yes, and we can capture the intuitive
concept of necessary white pebbles and formalize it as follows.

Definition 9.29 (White sharpening). Given S =
{
[Bi]〈Wi〉

}
i∈[m]

, we say that
S′ is a white sharpening of S if S′ =

{
[B′

i]〈W ′
i 〉
}

i∈[m]
for B′

i = Bi and W ′
i ⊆ Wi.

That is, a white sharpening removes white pebbles and thus makes the blob-
pebbling configuration stronger or “sharper” in the sense that the cost can only
decrease and the potential can only increase.

Proposition 9.30. If S′ is a white sharpening of S it holds that cost(S′) ≤ cost(S)
and pot(S′) ≥ pot(S). More precisely, any blocking set U ′ for S′ is also a blocking
set for S.

Proof. The statement about cost is immediate from Definition 9.8. The statement
about potential clearly follows from Definition 9.19 since it holds that any blocking
set U ′ for S′ is also a blocking set for S.

In the next definition, we suppose that there is some fixed but arbitrary ordering
of the vertices in G, and that the vertices are considered in this order.

Definition 9.31 (White elimination). For [B]〈W〉 a subconfiguration and U
any blocking set for [B]〈W〉, write W = {w1, . . . , ws}, set W 0 := W and iteratively
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perform the following for i = 1, . . . , s: If U ∪ (W i−1 \ {wi}) blocks B, set W i :=
W i−1\{wi}, otherwise set W i := W i−1. We define the white elimination of [B]〈W〉
with respect to U to be W-elim([B]〈W〉, U) = [B]〈W s〉 for W s the final set resulting
from the procedure above.

For S a blob-pebbling configuration and U a blocking set for S, we define

W-elim(S, U) =
{
W-elim([B]〈W〉, U)

∣∣[B]〈W〉 ∈ S
}

. (9.50)

We say that the elimination is strict if S 6= W-elim(S, U). If S = W-elim(S, U) we
say that S is white-eliminated, or W-eliminated for short, with respect to U .

Clearly W-elim(S, U) is a white sharpening of S. And if we pick the right U ,
we simplify the problem of proving the Generalized LHC property a bit more.
Lemma 9.32. If U is a minimum-measure blocking set for S, then it holds that
S′ = W-elim(S, U) is a white sharpening of S such that pot(S′) = pot(S) and U
blocks S′.
Proof. Since S′ = W-elim(S, U) is a white sharpening of S (which is easily verified
from Definitions 9.29 and 9.31), it holds by Proposition 9.30 that pot(S′) ≥ pot(S).
Looking at the construction in Definition 9.31, we also see that the white pebbles
are “sharpened away” with care so that U remains a blocking set. Thus m(U) ≥
pot(S′) = pot(S) = m(U), and the lemma follows.

Corollary 9.33. Suppose that the Generalized LHC property holds for the set of
all blob-pebbling configurations S having the property that for all minimum-measure
blocking sets U for S it holds that S = W-elim(S, U). Then the Generalized LHC
property holds for all blob-pebbling configurations.
Proof. This is essentially the same reasoning as in the proof of Corollary 9.28 plus
induction. Let S be any blob-pebbling configuration. Suppose that there exists a
minimum-measure blocker U for S such that S is not W-eliminated with respect
to U . Let S1 = W-elim(S, U). Then cost(S1) ≤ cost(S) by Proposition 9.30 and
pot(S1) = pot(S) by Lemma 9.32.

If there is a minimum-measure blocker U1 for S1 such that S1 is not W-elimi-
nated with respect to U1, set S2 = W-elim(S1, U1). Continuing in this manner, we
get a chain S1, S2, S3, . . . of strict W-eliminations such that cost(S1) ≥ cost(S2) ≥
cost(S3) . . . and pot(S1) = pot(S2) = pot(S3) = . . . This chain must terminate
at some configuration Sk since the total number of white pebbles (counted with
repetitions) decreases in every round.

Let Uk be the blocker that the Generalized LHC property provides for Sk. Then
Uk blocks S, pot(S) = pot(Sk) = m(Uk), and |Uk| ≤ CK · cost(Sk) ≤ CK · cost(S).
Thus the Generalized LHC property holds for S.

We note that in particular, it follows from the construction in Definition 9.31
combined with Corollary 9.33 that we can assume without loss of generality for any
blocking set U and any blob-pebbling configuration S that U does not intersect the
set of white-pebbled vertices in S.
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z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Minimum-measure but non-tight blocking set.

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(b) Tight but non-connected blocker for blob.

Figure 9.4: Two blob-pebbling configurations with problematic blocking sets.

Proposition 9.34. If S = W-elim(S, U), then it holds that U ∩ W(S) = ∅.

Proof. Any w ∈ W(S) ∩ U would have been removed in the W-elimination.

9.5.4 A Proof of the Generalized Limited Hiding-Cardinality Property
We are now ready to embark on the proof of the Generalized LHC property for
layered spreading DAGs.

Theorem 9.35. All layered blob-pebblable DAGs that are spreading possess the
Generalized limited hiding-cardinality property 9.23 with parameter CK = 13.

Since pyramids are spreading graphs by Theorem 6.45, this is all that we need
to get the lower bound on blob-pebbling price on pyramids from Theorem 9.24. We
note that the parameter CK in Theorem 9.35 can easily be improved. However,
our main concern here is not optimality of constants but clarity of exposition.

We prove Theorem 9.35 by applying the preprocessing in the previous subsection
and then (almost) reducing the problem to the standard black-white pebble game.
However, some twists are added along the way since our potential measure for blobs
behave differently from Klawe’s potential measure for black and white pebbles. Let
us first exemplify two problems that arise if we try to do naive pattern matching
on Klawe’s proof for the standard black-white pebble game.

In the standard black-white pebble game, if U is a minimum-measure hiding set
for P = (B,W ), Lemma 6.28 tells us that we can assume without loss of generality
that U ∪ W is tight. This is not true in the blob-pebble game, not even after the
transformations in Section 9.5.3.
Example 9.36. Consider S = {[w1]〈u2, u3〉, [w4, x3]〈u4, u5〉, [x2, y2, z]〈∅〉} in Fig-
ure 9.4(a) with blocking set U = {x2, u1, u6}. It can be verified that U is a
minimum-measure blocking set and that the configuration S is W-eliminated with
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respect to U , but the set U ∪W(S) = {u1, u2, u3, u4, u5, u6, x2} is not tight (because
of x2).

This can be handled, but a more serious problem is that even if the set U ∪ W
blocking the chain B is tight, there is no guarantee that the vertices in U ∪ W
end up in the same connected component of the hiding set graph H(U ∪ W ) in
Definition 6.30.
Example 9.37. Consider the single-blob configuration S = {[u5, z]〈∅〉} drawn in
Figure 9.4(b). It is easy to verify that U = {v4, y2} is a subset-minimal blocker
of S and also a tight vertex set. This highlights the fact that blocking sets for
blob-pebbling configurations can have rather different properties than hiding sets
for standard pebbles. In particular, a minimal blocking set for a single blob can
have several “isolated” vertices at large distances from one another. Among other
problems, this leads to difficulties in defining connected components of blocking
sets for subconfigurations.

The naive attempt to generalize Definition 6.30 of connected components in a
hiding set graph to blocking sets would place the vertices v4 and y2 in different
connected components {v4} and {y2}, none of which blocks S = {[u5, z]〈∅〉}. This
is not what we want (compare Corollary 6.33 for hiding sets for black-white pebble
configurations). We remark that there really cannot be any other sensible definition
that places v4 and y2 in the same connected component either, at least not if we want
to appeal to the spreading properties in Definition 6.44. Since the level difference
in U is 3 but the size of the set is only 2, the spreading inequality (6.10) cannot
hold for this set.

To get around this problem, we will instead use connected components defined
in terms of hiding the singleton black pebbles given by the bottom vertices of
our blobs. For a start, recalling Definitions 6.16 and 9.17, let us make an easy
observation relating the hiding and blocking relations for a blob.

Observation 9.38. If a vertex set V hides some vertex b ∈ B, then V blocks B.

Proof. If V blocks all paths visiting b, then in particular it blocks the subset of
paths that not only visits b but agree with all of B.

We will focus on the case when the bottom vertex of a blob is hidden.

Definition 9.39 (Hiding blob-pebbling configurations). We say that the ver-
tex set U hides the subconfiguration [B]〈W〉 if U ∪ W hides the vertex bot(B), and
that U hides the blob-pebbling configuration S if U hides all [B]〈W〉 ∈ S.

If U does not hide [B]〈W 〉, then U blocks [B]〈W 〉 only if U ∩ GO
bot(B) does.

Proposition 9.40. Suppose that a vertex set U in a layered DAG G blocks but
does not hide the subconfiguration [B]〈W 〉 and that [B]〈W 〉 does not block itself.
Then U ∩ G

bot(B)
M does not block [B]〈W 〉, but there is a subset U ′ ⊆ U ∩ GO

bot(B)

that blocks [B]〈W 〉.
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Proof. Suppose that U ∪ W blocks B but does not hide b = bot(B), and that W
does not block B. Then there is a source path P2 via B such that P2 ∩ W = ∅.
Also, there is a source path P1 to b such that P1 ∩ (U ∪ W ) = ∅. Let P =(
P1 ∩ Gb

M

)
∪
(
P2 ∩ GO

b

)
be the source path that starts like P1 and continues like

P2 from b onwards. Clearly,

P ∩
((

U ∩ Gb
M

)
∪ W

)
=
(
P1 ∩ (U ∪ W )

)
∪
(
P2 ∩ W

)
= ∅ (9.51)

so U ∩ Gb
M does not block [B]〈W 〉.

Suppose that U ∩GO
b does not block [B]〈W 〉. Since U ∪W does not hide b, there

is some source path P1 to b with P1 ∩ (U ∪W ) = ∅. Also, since U ∪W blocks B but(
U ∩GO

b

)
∪W does not, there is a source path P2 via B such that P2 ∩ (U ∪W ) 6= ∅

but P2 ∩ (U ∪ W ) ∩ GO
b = ∅. But then let P =

(
P1 ∩ Gb

M

)
∪
(
P2 ∩ GO

b

)
be the

source path that starts like P1 and continues like P2 from b onwards. We get that
P agrees with B and that P ∩ (U ∪ W ) = ∅, contradicting the assumption that U
blocks [B]〈W 〉.

We want to distinguish between subconfigurations that are hidden and subcon-
figurations that are just blocked, but not hidden. To this end, let us introduce the
notation

SH(S, U) =
{
[B]〈W〉 ∈ S

∣∣U hides [B]〈W〉
}

(9.52)

to denote the subconfigurations in S hidden by U and

SB(S, U) = S \ SH(S, U) (9.53)

to denote the subconfigurations that are just blocked. We write

BH(S, U) = {bot(B) | [B]〈W 〉 ∈ SH(S, U)} (9.54)
BB(S, U) = {bot(B) | [B]〈W 〉 ∈ SB(S, U)} (9.55)

to denote the black bottom vertices in these two subsets of subconfigurations and
note that we can have BH(S, U) ∩ BB(S, U) 6= ∅. The white pebbles in these subsets
located below the bottom vertices of the black blobs that they are supporting are
denoted

WM
H(S, U) =

{
W ∩ Gb

M

∣∣[B]〈W 〉 ∈ SH(S, U), b = bot(B)
}

(9.56)
and

WM
B(S, U) =

{
W ∩ Gb

M

∣∣[B]〈W 〉 ∈ SB(S, U), b = bot(B)
}

. (9.57)

This notation will be used heavily in what follows, so we give a couple of simple
but hopefully illuminating examples before we continue.
Example 9.41. Consider the blob-pebbling configurations and blocking sets in Fig-
ure 9.5. For the blob-pebbling configuration

S1 =
{
[s4, y1, z]〈v2〉, [u3, w3]〈s3〉, [w4, x3]〈v5〉

}
(9.58)
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z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) S1 in Example 9.41.

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(b) S2 in Example 9.41.

Figure 9.5: Blob-pebbling configurations with hidden and just blocked blobs.

with blocking set U1 = {v3, v4} in Figure 9.5(a), the vertex set {v4, v5} hides w4 =
bot([w4, x3]) but [s4, y1, z] is blocked but not hidden by {v2, v3, v4} and [u3, w3] is
blocked but not hidden by {v3}. Thus, we have

SH(S1, U1) =
{
[w4, x3]〈v5〉

}
SB(S1, U1) =

{
[s4, y1, z]〈v2〉, [u3, w3]〈s3〉

}
BH(S1, U1) = {w4}
BB(S1, U1) = {s4, u3}
WM

H(S1, U1) = {v5}
WM

B(S1, U1) = {s3}

in this example. For the configuration

S2 =
{
[s4, v4, w3, x3, y2]〈∅〉, [w2, y1]〈s3, u3, x1〉, [w4]〈v5〉

}
(9.59)

with blocker U2 = {s2, u4, u5} in Figure 9.5(b), it is straightforward to verify that

SH(S2, U2) =
{
[w2, y1]〈s3, u3, x1〉, [w4]〈v5〉

}
SB(S2, U2) =

{
[s4, v4, w3, x3, y2]〈∅〉

}
BH(S2, U2) = {w2, w4}
BB(S2, U2) = {s4}
WM

H(S2, U2) = {s3, u3, v5}
WM

B(S2, U2) = ∅

are the corresponding sets.
Let us also use the opportunity to illustrate Definition 9.31. The blob-pebbling

configuration S1 is not W-eliminated with respect to U1, since U1 also blocks this
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configuration with the white pebble on s3 removed. However, a better idea measure-
wise is to change the blocking set for S1 to U ′

1 = {s4, v4}, which has measure
m(U ′

1) = 4 < 6 = m(U1). The vertex set U2 can be verified to be a minimum-
measure blocker for S2, but when S2 is W-eliminated with respect to U2 the white
pebble on x1 disappears.

As a final remark in this example, we comment that although we have not indi-
cated explicitly in Figures 9.5(a) and 9.5(b) which white pebbles W are associated
with which black blob B (as was done in Figure 9.4(a)), this is uniquely determined
by the requirement in Definition 9.6 that W ⊆ lpp(B).

For the rest of this section we will assume without loss of generality (in view
of Proposition 9.27 and Corollary 9.33) that we are dealing with a blob-pebbling
configuration S and a minimum-measure blocker U of S such that S is free from
self-blocking subconfigurations and is W-eliminated with respect to U . As an aside,
we note that it is not hard to show (using Definition 9.31 and Proposition 9.40) that
this implies that WM

B(S, U) = ∅. We will tend to drop the arguments S and U for
SH , SB ,BH ,BB ,WM

H , and WM
B , since from now on the blob-pebbling configuration

S and the blocker U will be fixed. With this notation, Theorem 9.35 clearly follows
if we can prove the following lemma.

Lemma 9.42. Let S be any blob-pebbling configuration on a layered spreading DAG
and U be any blocking set for S such that

1. pot(S) = m(U), i.e., U is a minimum-measure blocker of S,

2. S is free from self-blocking subconfigurations and is W-eliminated with respect
to U , and

3. U has minimal size among all blocking sets U ′ for S such that pot(S) = m(U ′).

Then |U | ≤ 13 ·
∣∣BH ∪ BB ∪ WM

H

∣∣.
The proof is by contradiction, although we will have to work harder than for

the corresponding Theorem 6.35 for black-white pebbling and also use (the proof
of) the latter theorem as a subroutine. Thus, for the rest of this section, let us
assume on the contrary that U has all the properties stated in Lemma 9.42 but
that |U | > 13 ·

∣∣BH ∪ BB ∪ WM
H

∣∣. We will show that this leads to a contradiction.
For the subconfiguration in SH that are hidden by U , one could argue that

matters should be reasonably similar to the case for standard black-white pebbling,
and hopefully we could apply similar reasoning as in Section 6.5 to prove something
useful about the vertex set hiding these subconfigurations. The subconfigurations
in SB that are just blocked but not hidden, however, seem harder to get a handle
on (compare Example 9.37).

Let UH ⊆ U be a smallest vertex set hiding SH and let UB = U \ UH . The
set UB consists of vertices that are not involved in any hiding of subconfigurations
in SH , but only in blocking subconfigurations in SB on levels above their bottom
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vertices. As a first step towards proving Lemma 9.42, and thus Theorem 9.35, we
want to argue that UB cannot be very large.

Consider the blobs in SB . By definition they are not hidden, but are blocked at
some level above level(bot(B)). Since the vertices in UB are located on high levels,
a naive attempt to improve the blocking set would be to pick some vertex u ∈ UB

and replace it by the vertices in BB corresponding to the subconfigurations in SB

that u is involved in blocking, i.e., by the set

Bu =
{
bot(B)

∣∣U \ {u} does not block [B]〈W〉 ∈ SB

}
. (9.60)

Note that Bu is lower down in the graph than u, so (U \ {u}) ∪ Bu is obtained
from U by moving vertices downwards and by construction (U \{u}) ∪ Bu blocks S.
But by assumption, U has minimal potential and cardinality, so this new blocking
set cannot be an improvement measure- or cardinality-wise. The same holds if we
extend the construction to subsets U ′ ⊆ UB and the corresponding bottom vertices
BU ′ ⊆ BB . By assumption we can never find any subset such that (U \{U ′}) ∪ BU ′

is a better blocker than U . It follows that the cost of the blobs that UB helps to
block must be larger than the size of UB , and in particular that |UB | ≤ |BB |. Let
us write this down as a lemma and prove it properly.

Lemma 9.43. Let S be any blob-pebbling configuration on a layered DAG and U
be any blocking set for S such that pot(S) = m(U), U has minimal size among
all blocking sets U ′ for S with pot(S) = m(U ′), and S is free from self-blocking
subconfigurations and is W-eliminated with respect to U . Then if UH ⊆ U is any
smallest set hiding SH and UB = U \ UH , it holds that |UB | ≤ |BB |.

Before proving this lemma, we note the immediate corollary that if the whole
blocking set U is significantly larger than cost(S), the lion’s share of U by ne-
cessity consists not of vertices blocking subconfigurations in SB , but of vertices
hiding subconfigurations in SH . And recall that we are indeed assuming, to get a
contradiction, that U is large.

Corollary 9.44. Assume that S and U are as in Lemma 9.42 but with |U | >
13 ·

∣∣BH ∪ BB ∪ WM
H

∣∣. Let UH ⊆ U be a smallest set hiding SH . Then it holds that
|UH | > 12 ·

∣∣BH ∪ BB ∪ WM
H

∣∣.
As was indicated in the informal discussion preceding Lemma 9.43, the proof

of the lemma uses the easy observation that moving vertices downwards can only
decrease the measure.

Observation 9.45. Suppose that U , V1 and V2 are vertex sets in a layered DAG
such that U ∩ V2 = ∅ and there is a one-to-one (but not necessarily onto) mapping
f : V1 7→ V2 with the property that level(v) ≤ level(f(v)). Then m(U ∪ V1) ≤
m(U ∪ V2).
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Proof. This follows immediately from Definition 6.18 on page 67 since the mapping
f tells us that

|(U ∪ V1){�j}| ≤ |U{�j}|+ |V1{�j}| ≤ |U{�j}|+ |f(V1{�j})|
≤ |U{�j}|+ |V2{�j}| ≤ |(U ∪ V2){�j}|

for all j.

Proof of Lemma 9.43. Note first that by Proposition 9.40, for every [B]〈W〉 ∈ SB

with b = bot(B) it holds that U ∩ GO
b = (UH

.
∪UB) ∩ GO

b blocks [B]〈W〉. Therefore,
all vertices in UB needed to block [B]〈W〉 can be found in UB ∩GO

b . Rephrasing this
slightly, the blob-pebbling configuration S is blocked by UH

.
∪
(
UB ∩

⋃
b∈BB

GO
b

)
,

and since U is subset-minimal we get that

UB = UB ∩
⋃

b∈BB
GO

b . (9.61)

Consider the bipartite graph with BB and UB as the left- and right-hand vertices,
where the neighbours of each b ∈ BB are the vertices N(b) = UB ∩GO

b in UB above b.
We have that N(BB) = UB ∩

⋃
b∈BB

GO
b = UB by (9.61). Let B′ ⊆ BB be a largest

set such that
∣∣N(B′)∣∣ <

∣∣B′∣∣. If B′ = BB we are done since this is the inequality
|UB | < |BB |. Suppose therefore that B′ $ BB and |UB | = |N(BB)| > |BB |.

For all B′′ ⊆ BB \ B′ we must have
∣∣N(B′′) \N

(
B′
)∣∣ ≥ ∣∣B′′∣∣, for otherwise B′′

could be added to B′ to yield an even larger set B∗ = B′ ∪ B′′ with
∣∣N(B∗)∣∣ < |B∗|

contrary to the assumption that B′ has maximal size among all sets with this
property. It follows by Hall’s marriage theorem that there must exist a matching of
BB \B′ into N

(
BB \B′

)
\N
(
B′
)

= UB \N
(
B′
)
. Thus,

∣∣BB \B′
∣∣ ≤ ∣∣UB \N

(
B′
)∣∣ and

in addition it follows from the way our bipartite graph is constructed that every
b ∈ BB \ B′ is matched to some u ∈ UB \N

(
B′
)

with level(u) ≥ level(b).
Clearly, all subconfigurations in

S1
B =

{
[B]〈W〉 ∈ SB

∣∣ bot(B) ∈ BB \ B′
}

(9.62)

are blocked by BB \B′ (even hidden by this set, to be precise). Also, as was argued
in the beginning of the proof, every [B]〈W〉 ∈ SB with b = bot(B) is blocked by
UH ∪

(
UB ∩ GO

b

)
= UH ∪ N(b), so all subconfigurations in

S2
B =

{
[B]〈W〉 ∈ SB

∣∣ bot(B) ∈ B′
}

(9.63)

are blocked by UH ∪ N
(
B′
)

where
∣∣N(B′)∣∣ < ∣∣B′∣∣. And we know that SH is blocked

(even hidden) by UH . It follows that if we let

U∗ = UH ∪ N
(
B′
)
∪
(
BB \ B′

)
(9.64)

we get a vertex set U∗ that blocks SH ∪ S1
B ∪ S2

B = S, has measure m
(
U∗) ≤ m(U)

because of Observation 9.45, and has size∣∣U∗∣∣ ≤ |UH |+
∣∣N(B′)∣∣+ ∣∣BB \ B′

∣∣ < |UH |+
∣∣B′∣∣+ ∣∣BB \ B′

∣∣ = |U | (9.65)
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strictly less than the size of U . But this is a contradiction, since U was chosen to
be of minimal size. The lemma follows.

The idea in the remaining part of the proof is as follows: Fix some smallest
subset UH ⊆ U that hides SH , and let UB = U \ UH . Corollary 9.44 says that
UH is the totally dominating part of U and hence that UH is very large. But UH

hides the blob subconfigurations in SH very much in a similar way as for hiding
sets in the standard black-white pebble game. And we know from Section 6.5 that
such sets need not be very large. Therefore we want to use Klawe-like ideas to
derive a contradiction by transforming UH locally into a (much) better blocking
set for SH . The problem is that this might leave some subconfigurations in SB not
being blocked any longer (note that in general UB will not on its own block SB).
However, since we have chosen our parameter CK = 13 for the Generalized LHC
property 9.23 so generously and since the transformation in Section 6.5 works for
the (non-generalized) LHC property with parameter 1, we expect our locally trans-
formed blocking set to be so much cheaper that we can afford to take care of any
subconfigurations in SB that are no longer blocked simply by adding all bottom
vertices for all black blobs in these subconfigurations to the blocking set.

We will not be able to pull this off by just making one local improvement of
the hiding set as was done in Section 6.5, though. The reason is that the local
improvement to UH could potentially be very small, but lead to very many sub-
configurations in SB becoming unblocked. If so, we cannot afford adding new
vertices blocking these subconfigurations without risking to increase the size and/or
potential of our new blocking set too much. To make sure that this does not
happen, we instead make multiple local improvements of UH simultaneously. Our
next lemma says that we can do this without losing control of how the measure
behaves.

Lemma 9.46 (Generalization of Lemma 6.40). Suppose U1, . . . , Uk, V1, . . . , Vk,
and Y are vertex sets in a layered graph such that for all i, j ∈ [k] with i 6= j
it holds that Ui -m Vi, Vi ∩ Vj = ∅, Ui ∩ Vj = ∅ and Y ∩ Vi = ∅. Then
m
(
Y ∪

⋃k
i=1 Ui

)
≤ m

(
Y ∪

⋃k
i=1 Vi

)
.

Proof. By induction over k. The base case k = 1 is Lemma 6.40 on page 78.
For the induction step, let Y ′ = Y ∪

⋃k−1
i=1 Ui. Since Uk -m Vk and Y ′ ∩ Vk = ∅

by assumption, we get from Lemma 6.40 that

m
(
Y ∪

⋃k
i=1 Ui

)
= m

(
Y ′ ∪ Uk

)
≤

m
(
Y ′ ∪ Vk

)
= m

(
Y ∪

⋃k−1
i=1 Ui ∪ Vk

)
. (9.66)

Letting Y ′′ = Y ∪ Vk, we see that (again by assumption) it holds for all i, j ∈ [k−1],
i 6= j, that Ui -m Vi, Vi ∩ Vj = ∅, Ui ∩ Vj = ∅ and Y ′′ ∩ Vi = ∅. Hence, by the
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induction hypothesis we have

m
(
Y ∪

⋃k−1
i=1 Ui ∪ Vk

)
= m

(
Y ′′ ∪

⋃i−1
k=1 Ui

)
≤

m
(
Y ′′ ∪

⋃i−1
k=1 Vi

)
= m

(
Y ∪

⋃k
i=1 Vi

)
(9.67)

and the lemma follows.

We also need an observation about the white pebbles in SH .

Observation 9.47. For any [B]〈W 〉 ∈ SH with b = bot(B) it holds that W =
W ∩ Gb

M.

Proof. This is so since S is W-eliminated with respect to U . Since U ∪ W hides
b = bot(B), any vertices in W ∩ GO

b are superfluous and will be removed by the
W-elimination procedure in Definition 9.31.

Recalling from (9.56) that WM
H =

{
W ∩ Gb

M

∣∣[B]〈W 〉 ∈ SH , b = bot(B)
}

this
leads to the next, simple but crucial observation.

Observation 9.48. The vertex set UH ∪ WM
H hides the vertices in BH in the sense

of Definition 6.16.

That is, we can consider
(
BH ,WM

H

)
to be almost2 a standard black-white pebble

configuration. This sets the stage for applying the machinery of Section 6.5.
Appealing to Lemma 6.28 on page 72, let X ⊆ UH

.
∪WM

H be the unique, minimal
tight set such that

VXW = VUH

.
∪WM

HW (9.68)

and define

WM
T = WM

H ∩ X (9.69a)
UT = UH ∩ X (9.69b)

to be the vertices in WM
H and UH that remains in X after the bottom-up pruning

procedure of Lemma 6.28.
Let H = H(G, X) be the hiding set graph of Definition 6.30 for X = UT

.
∪WM

T .
Suppose that V1, . . . , Vk are the connected components of H, and define for i =
1, . . . , k the vertex sets

Bi
H = BH ∩ Vi (9.70a)

Wi
H = WM

H ∩ Vi (9.70b)
U i

H = UH ∩ Vi (9.70c)

2Not quite, since we might have BH ∩ WM
H 6= ∅. But at least we know that UH ∩ WM

H = ∅ by
W-elimination and the roles of U and W in U ∪ W are fairly indistinguishable in Klawe’s proof
anyway, so this does not matter.
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to be the black, white and “hiding” vertices within component Vi, and

Wi
T = WM

T ∩ Vi (9.70d)
U i

T = UT ∩ Vi (9.70e)

to be the vertices of WM
H and UH in component Vi that “survived” when moving to

the tight subset X. Note that we have the disjoint union equalities WM
H =

.⋃
k
i=1Wi

H ,
UH =

.⋃
k
i=1U

i
H , et cetera for all of these sets.

Let us also generalize Definition 6.18 of measure and partial measure to multi-
sets of vertices in the natural way, where we charge separately for each copy of
every vertex. This is our way of doing the bookkeeping for the extra vertices that
might be needed later to block SB in the final step of our construction.

This brings us to the key lemma stating how we will locally improve the blocking
sets.

Lemma 9.49 (Generalization of Lemma 6.46). With the assumptions on the
blob-pebbling configuration S and the vertex set U as in Lemma 9.42 and with nota-
tion as above, suppose that U i

H ∪ Wi
H hides Bi

H , that H
(
U i

T ∪ Wi
T

)
is a connected

graph, and that ∣∣U i
H

∣∣ ≥ 6 ·
∣∣Bi

H ∪ Wi
H

∣∣ . (9.71)

Then we can find a multi-set U i
∗ ⊆ VU i

T ∪Wi
T W that hides the vertices in Bi

H , has⌊
|U i

H |/3
⌋

extra copies of some fixed but arbitrary vertex on level LU =maxlevel
(
U i

H

)
,

and satisfies U i
∗ -m U i

H and
∣∣U i

∗
∣∣ <

∣∣U i
H

∣∣ (where U i
∗ is measured and counted as a

multi-set with repetitions).

Proof. Let U i
∗ be the set found in Lemma 6.43 on page 79, which certainly is in

VU i
T ∪ Wi

T W, together with the prescribed extra copies of some (fixed but arbitrary)
vertex that we place on level maxlevel

(
VU i

H ∪ Wi
HW
)
≥ LU to be on the safe side.

By Lemma 6.43, U i
∗ hides Bi

H , and the size of U i
∗ counted as a multi-set with

repetitions is ∣∣U i
∗
∣∣ ≤ ∣∣Bi

H

∣∣+ ⌊|U i
H |/3

⌋
≤
(

1
6 + 1

3

)
·
∣∣U i

H

∣∣ < ∣∣U i
H

∣∣ . (9.72)

It remains to show that U i
∗ -m U i

H .
The proof of this last measure inequality is very much as in Lemma 6.46, but

with the distinction that the connected graph that we are dealing with is defined
over U i

T

.
∪ Wi

T , but we count the vertices in U i
H

.
∪ Wi

H . Note, however, that by
construction these two unions hide exactly the same set of vertices, i.e.,

VU i
T

.
∪Wi

T W = VU i
H

.
∪Wi

HW . (9.73)

Recall that by Definition 6.39 on page 78, what we need to do in order to show
that U i

∗ -m U i
H is to find for each j an l ≤ j such that mj

(
U i
∗
)
≤ ml

(
U i

H

)
. As in

Lemma 6.46, we divide the proof into two cases.
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1. If j ≤ minlevel
(
U i

T ∪ Wi
T

)
= minlevel

(
U i

H ∪ Wi
H

)
, we get

mj
(
U i
∗
)

= j + 2 ·
∣∣U i

∗{�j}
∣∣ [

by definition of mj(·)
]

≤ j + 2 ·
∣∣U i

∗
∣∣ [

since V {�j} ⊆ V for any V
]

≤ j + 2 ·
(
|Bi

H |+
⌊
|U i

H |/3
⌋) [

by Lemma 6.43 + extra vertices
]

< j + 2 ·
∣∣U i

H

∣∣ [
by the assumption in (9.71)

]
= j + 2 ·

∣∣U i
H{�j}

∣∣ [
U i

H{�j} = U i
H

]
= mj(U i

H)
[

by definition of mj(·)
]

and we can choose l = j in Definition 6.39.

2. Consider instead j > minlevel
(
U i

T ∪ Wi
T

)
and let L = minlevel

(
U i

T ∪ Wi
T

)
.

Since the black pebbles in Bi
H are hidden by U i

T ∪Wi
T , i.e., Bi

H ⊆ VU i
T ∪ Wi

T W
in formal notation, recollecting Definition 6.41 and Observation 6.42, part 2,
we see that

L�j

(
Bi

H

)
≤ L�j

(
VU i

T ∪ Wi
T W
)

(9.74)

for all j. Also, since U i
T ∪ Wi

T is a hiding-connected vertex set in a spreading
graph G, combining Definition 6.44 with the fact that U i

T ∪ Wi
T ⊆ U i

H ∪ Wi
H

we can derive that

j + L�j

(
VU i

T ∪ Wi
T W
)
≤ L +

∣∣U i
T ∪ Wi

T

∣∣ ≤ L +
∣∣U i

H ∪ Wi
H

∣∣ . (9.75)

Together, (9.74) and (9.75) say that

j + L�j

(
Bi

H

)
≤ L +

∣∣U i
H ∪ Wi

H

∣∣ (9.76)

and using this inequality we can show that

mj(U i
∗) = j + 2 ·

∣∣U i
∗{�j}

∣∣ [
by definition of mj(·)

]
≤ j + L�j

(
Bi

H

)
+
∣∣Bi

H

∣∣+ 2 ·
⌊
|U i

H |/3
⌋ [

by Lemma 6.43
]

≤ L +
∣∣U i

H ∪ Wi
H

∣∣+ ∣∣Bi
H

∣∣+ 2 ·
⌊
|U i

H |/3
⌋ [

by (9.76)
]

≤ L + 5
3

∣∣U i
H

∣∣+ ∣∣Bi
H

∣∣+ ∣∣Wi
H

∣∣ [
|A ∪ B| ≤ |A|+ |B|

]
≤ L + 5

3

∣∣U i
H

∣∣+ 2 ·
∣∣Bi

H ∪ Wi
H

∣∣ [
|A|+|B| ≤ 2 · |A ∪B|

]
≤ L + 2 ·

∣∣U i
H

∣∣ [
by (9.71)

]
= L + 2 · |U i

H{�L}|
[

L ≤ minlevel(U i
H)
]

= mL(U i
H)

[
by definition of mL(·)

]
Thus, the partial measure of U i

H at the minimum level L is always at least as
large as the partial measure of U i

∗ at levels j above this minimum level, and
we can choose l = L in Definition 6.39.

Consequently, U i
∗ -m U i

H and the lemma follows.
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Now we want to determine in which connected components of the hiding set
graph H we should apply Lemma 9.49. Loosely put, we want to be sure that
changing U i

H to U i
∗ is worthwhile, i.e., that we gain enough from this transformation

to compensate for the extra hassle of reblocking blobs in SB that turn unblocked
when we change U i

H . With this in mind, let us define the weight of a component
Vi in H as

w(Vi) =

{⌈
|U i

H |/6
⌉

if
∣∣U i

H

∣∣ ≥ 6 ·
∣∣Bi

H ∪ Wi
H

∣∣,
0 otherwise.

(9.77)

The idea is that a component Vi has large weight if the hiding set U i
H in this

component is large compared to the number of bottom black vertices in Bi
H hidden

and the white pebbles Wi
H helping U i

H to hide Bi
H . If we concentrate on changing

the hiding sets in components with non-zero weight, we hope to gain more from the
transformation of U i

H into U i
∗ than we lose from then having to reblocking SB . And

since UH is large, the total weight of the non-zero-weight components is guaranteed
to be reasonably large.

Proposition 9.50. With notation as above, the total weight of all connected com-
ponents V1, . . . ,Vk in the hiding set graph H = H

(
G, UT ∪ WM

T

)
is
∑k

i=1 w(Vi) >∣∣BH ∪ BB ∪ WM
H

∣∣.
Proof. The total size of the union of all subsets U i

H ⊆ UH with sizes
∣∣U i

H

∣∣ <

6 ·
∣∣Bi

H ∪ Wi
H

∣∣ resulting in zero-weight components Vi in H is clearly strictly less
than

6 ·
k∑

i=1

∣∣Bi
H ∪ Wi

H

∣∣ = 6 ·
∣∣BH ∪ WM

H

∣∣ ≤ 6 ·
∣∣BH ∪ BB ∪ WM

H

∣∣ . (9.78)

Since according to Corollary 9.44 we have that
∣∣UH

∣∣ ≥ 12 ·
∣∣BH ∪ BB ∪ WM

H

∣∣, it
follows that the size of the union

⋃
w(Vi)>0 U i

H of all subsets U i
H corresponding to

non-zero-weight components Vi must be strictly larger than 6 ·
∣∣BH ∪ BB ∪ WM

H

∣∣.
But then

∑
w(Vi)>0

w(Vi) ≥
∑

w(Vi)>0

⌈
|U i

H |/6
⌉
≥ 1

6
·

∣∣∣∣∣ ⋃
w(Vi)>0

U i
H

∣∣∣∣∣ > ∣∣BH ∪ BB ∪ WM
H

∣∣ (9.79)

as claimed in the proposition.

We have now collected all tools needed to establish the Generalized limited
hiding-cardinality property for spreading graphs. Before we wrap up the proof, let
us recapitulate what we have shown so far.

We have divided the blocking set U into a disjoint union UH

.
∪UB of the vertices

UH not only blocking but actually hiding the subconfigurations in SH ⊆ S, and the
vertices UB just helping UH to block the remaining subconfigurations in SB = S\SH .
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In Lemma 9.43 and Corollary 9.44, we proved that if U is large (which we are
assuming) then UB must be very small compared to UH , so we can basically just
ignore UB . If we want to do something interesting, it will have to be done with UH .

And indeed, Lemma 9.49 tells us that we can restructure UH to get a new
vertex set hiding SH and make considerable savings, but that this can lead to SB

no longer being blocked. By Proposition 9.50, there is a large fraction of UH that
resides in the non-zero-weight components of the hiding set graph H (as defined
in Equation (9.77)). We would like to show that by judiciously performing the
restructuring of Lemma 9.49 in these components, we can also take care of SB .

More precisely, we claim that we can combine the hiding sets U i
∗ obtained in

Lemma 9.49 with some subsets of UH ∪ UB and BB into a new blocking set U∗

for all of SH ∪ SB = S in such a way that the measure m
(
U∗) does not exceed

m(U) = pot(S) but so that
∣∣U∗

∣∣ < |U |. But this contradicts the assumptions in
Lemma 9.42. It follows that the conclusion in Lemma 9.42, which we assumed to
be false in order to derive a contradiction, must instead be true. That is, any set
U that is chosen as in Lemma 9.42 must have size |U | ≤ 13 ·

∣∣BH ∪ BB ∪ WM
H

∣∣.
This in turn implies Theorem 9.35, i.e., that layered spreading graphs possess the
Generalized limited hiding-cardinality property that we assumed in order to get a
lower bound on blob-pebbling price, and we are done.

We proceed to establish this final claim. Our plan is once again to do some
bipartite matching with the help of Hall’s theorem. Create a weighted bipartite
graph with the vertices in BB =

{
bot(B)

∣∣[B]〈W〉 ∈ SB

}
on the left-hand side

and with the non-zero-weight connected components among V1, . . . , Vk in H in the
sense of (9.77) acting as “supervertices” on the right-hand side. Reorder the indices
among the connected components V1, . . . , Vk if needed so that the non-zero-weight
components are V1, . . . , Vk′ . All vertices in the weighted graphs are assigned weights
so that each right-hand side supervertex Vi gets its weight according to (9.77), and
each left-hand vertex has weight 1.3 We define the neighbours of each fixed vertex
b ∈ BB to be

N(b) =
{
Vi

∣∣w(Vi) > 0 and maxlevel
(
U i

H

)
> level(b)

}
, (9.80)

i.e., all non-zero-weight components Vi that contain vertices in the hiding set UH

that could possibly be involved in blocking any subconfiguration [B]〈W〉 ∈ SB

having bottom vertex bot(B) = b. This is so since by Proposition 9.40, any vertex
u ∈ UH helping to block such a subconfiguration [B]〈W〉 ∈ SB must be strictly
above b. Thus, if the highest-level vertices in U i

H are on a level below b, no vertex
in U i

H can be responsible for blocking [B]〈W〉.
Let B′ ⊆ BB be a largest set such that w

(
N
(
B′
))
≤
∣∣B′∣∣. We must have

N
(
B′
)
6=
⋃k′

i=1 Vi (9.81)

3Or, if we like, we can equivalently think of an unweighted graph, where each Vi is a cloud of
w(Vi) unique and distinct vertices, and where N(b) in (9.80) always contains either all or none of
these vertices.
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since w
(⋃k′

i=1 Vi

)
>
∣∣BH ∪ BB ∪ WM

H

∣∣ ≥ ∣∣BB

∣∣ by Proposition 9.50. For all B′′ ⊆
BB \ B′ it holds that

w
(
N
(
B′′
)
\N

(
B′
))
≥
∣∣B′′∣∣ (9.82)

since otherwise B′ would not be of largest size as assumed above. The inequal-
ity (9.82) plugged into Hall’s marriage theorem tells us that there is a matching of
the vertices in BB \B′ to the components in

⋃k′

i=1 Vi \N
(
B′
)
6= ∅ with the property

that no component Vi gets matched with more than w(Vi) vertices from BB \ B′.
Reorder the components in the hiding set graph H so that the matched com-

ponents in H are V1, . . . , Vm and the rest of the components are Vm+1, . . . , Vk and
so that U1

H , . . . , Um
H and Um+1

H , . . . , Uk
H are the corresponding subsets of the hiding

set UH . Then pick good local blockers U i
∗ ⊆ Vi as in Lemma 9.49 for all components

V1, . . . , Vm. Now the following holds:

1. By construction and assumption, respectively, we know that the vertex set
union

⋃m
i=1 U i

∗ ∪
⋃k

i=m+1 U i
H blocks (and even hides) SH .

2. All subconfigurations in

S1
B =

{
[B]〈W〉 ∈ SB

∣∣ bot(B) ∈ B′
}

(9.83)

are blocked by UB ∪ N
(
B′
)

= UB ∪
⋃k

i=m+1 U i
H , as we have not moved any

elements in U above B′.

3. With notation as in Lemma 9.46, let Y = UB ∪
⋃k

i=m+1 U i
H and consider U i

∗
and U i

H for i = 1, . . . ,m. We have U i
∗ -m U i

H for i = 1, . . . ,m by Lemma 9.49.
Also, since UH ∩ UB = ∅ and U i

∗ ⊆ Vi and U i
H ⊆ Vi for V1, . . . , Vk pairwise

disjoint sets of vertices, it holds for all i, j ∈ [m], i 6= j, that U i
∗ ∩ U j

∗ = ∅,
U i

H ∩ U j
H = ∅, U i

∗ ∩ U j
H = ∅ and Y ∩ U j

H = ∅. Therefore, the conditions in
Lemma 9.46 are satisfied and we conclude that

m
(
UB ∪

⋃m
i=1 U i

∗ ∪
⋃k

i=m+1 U i
H

)
= m

(
Y ∪

⋃m
i=1 U i

∗
)

≤ m
(
Y ∪

⋃m
i=1 U i

H

)
= m

(
UB ∪

⋃m
i=1 U i

H ∪
⋃k

i=m+1 U i
H

)
= m(U) ,

(9.84)

where we note that UB ∪
⋃m

i=1 U i
∗ ∪

⋃k
i=m+1 U i

H is measured as a multi-set
with repetitions. Also, we have the strict inequality∣∣UB ∪

⋃m
i=1 U i

∗ ∪
⋃k

i=m+1 U i
H

∣∣ < |U | , (9.85)

where again the multi-set is counted with repetitions.
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4. It remains to take care of the potentially unblocked subconfigurations in

S2
B =

{
[B]〈W〉 ∈ SB

∣∣ bot(B) ∈ BB \ B′
}

. (9.86)

But we derived above that there is a matching of BB \ B′ to V1, . . . , Vm such
that no Vi is chosen by more than

w(Vi) =
⌈
|U i

H |/6
⌉
≤
⌊
|U i

H |/3
⌋

(9.87)

vertices from BB \ B′ (where we used that
∣∣U i

H

∣∣ ≥ 6 if w(Vi) > 0 to get the
last inequality). This means that there is a spare blocker vertex in U i

∗ for
each b ∈ BB \ B′ that is matched to Vi. Also, by the definition of neighbours
in our weighted bipartite graph, each b is matched to a component with
maxlevel

(
U i

H

)
> level(b). By Observation 9.45, lowering these spare vertices

from maxlevel
(
U i

H

)
to level(b) can only decrease the measure.

Finally, throw away any remaining multiple copies in our new blocking set, and
denote the resulting set by U∗. We have that U∗ blocks S and that m

(
U∗) ≤ m(U)

but
∣∣U∗

∣∣ < |U |. This is a contradiction since U was chosen to be of minimal size,
and thus Lemma 9.42 must hold. But then Theorem 9.35 follows immediately as
well, as was noted above.

9.5.5 Proof Recap for Theorem 2.3 and Optimality of Result
Let us conclude this chapter by recalling why the tight bound on clause space for
refuting pebbling contradictions in Theorem 2.3 now follows and by showing that
the current construction cannot be pushed to give a better result.

Theorem 9.51 (rephrasing of Theorem 2.3). Suppose that Gh is a layered
blob-pebblable DAG of height h that is spreading. Then the clause space of refuting
the pebbling contradiction Pebd

Gh
of degree d > 1 is Sp(Pebd

Gh
` 0) = Θ(h).

Proof. The O(h) upper bound on clause space follows from the bound Peb(Gh) ≤
h + O(1) on the black pebbling price in Lemma 6.9 on page 61 combined with the
bound Sp(Pebd

G ` 0) ≤ Peb(G) + O(1) from Proposition 5.10 on page 53.
For the lower bound, we instead consider the pebbling formula *Pebd

Gh
without

target axioms x(z)1, . . . , x(z)d and use that by Lemma 8.9 on page 104 it holds
that Sp

(
Pebd

Gh
` 0
)

= Sp
(
*Pebd

Gh
`
∨d

i=1 x(z)i

)
. Fix any resolution derivation

π : *Pebd
Gh
`
∨d

i=1 x(z)i and let Pπ be the complete blob-pebbling of the graph G

associated to π in Theorem 9.10 such that cost(Pπ) ≤ maxC∈π

{
cost(S(C))

}
+O(1).

On the one hand, Theorem 9.16 says that cost(S(C)) ≤ |C| provided that d > 1,
so in particular it must hold that cost(Pπ) ≤ Sp(π) + O(1). On the other hand,
cost(Pπ) ≥ Blob-Peb(Gh) by definition, and by Theorems 9.24 and 9.35 it holds
that Blob-Peb(Gh) = Ω(h). Thus Sp(π) = Ω(h), and the theorem follows.
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Plugging in pyramid graphs Πh in Theorem 9.51, we get k-CNF formulas Fn

of size Θ(n) with refutation clause space Θ(
√

n). This is the best we can get from
pebbling formulas over spreading graphs.

Theorem 9.52. Let G be any layered spreading graph and suppose that Pebd
G has

formula size and number of clauses Θ(n). Then Sp
(
Pebd

G ` 0
)

= O(
√

n).

Proof. Suppose that G has height h. Then Sp
(
Pebd

G ` 0
)

= O(h) as was noted
above. The size of Pebd

G, as well as the number of clauses, is linear in the number of
vertices |V (G)|. We claim that the fact that G is spreading implies that |V (G)| =
Ω
(
h2
)
, from which the theorem follows.

To prove the claim, let VL denote the vertices of G on level L. Then |V (G)| =∑h
L=0|VL|. Obviously, for any L the set VL hides the sink z of G. Fix for every L

some arbitrary minimal subset V ′
L ⊆ VL hiding z. Then V ′

L is tight, the graphH(V ′
L)

is hiding-connected by Corollary 6.33, and setting j = h in the spreading inequality
(6.10) we get that

∣∣V ′
L

∣∣ ≥ 1 + h− L. Hence |V (G)| ≥
∑h

L=0|V ′
L| = Ω

(
h2
)
.

The proof of Theorem 9.52 can also be extended to cover the original definition
in [49] of spreading graphs that are not necessarily layered, but we omit the details.





Chapter 10

Short Proofs May Be Spacious

In this chapter, we finally resolve the open question about the relationship between
refutation clause space and refutation length in resolution by establishing an opti-
mal separation of these two proof complexity measures. This result is joint work
with Eli Ben-Sasson [20].

In the first section of this chapter, we state a special case of our result and
give an overview of the proof. In subsequent sections, we present the full proof
of a somewhat more general result. Some intuition, terminology and notation is
repeated from previous chapters in order to make the exposition self-contained for
readers skipping directly to this optimal result.

We remark that although the lower bounds on space in this chapter are strictly
better than those in Chapters 8 and 9, the results are, in a sense, nevertheless
incomparable since we are proving lower bounds for different formulas families.

10.1 Outline of Proof of a Special Case

The key to the optimal separation is to study more general variants of pebbling
contradictions. Namely, given a DAG G, we fix some non-constant Boolean function
fd : {0, 1}d 7→ {0, 1} and define a pebbling contradiction Pebd

G[f] as the conjunction
of clauses encoding the following statements:

• For each source vertex s, fd(s1, . . . , sd) holds.

• For a non-source vertex r with immediate predecessors p and q, the implica-
tion

(
fd(p1, . . . , pd) ∧ fd(q1, . . . , qd)

)
→ fd(r1, . . . , rd) holds.

• For the (unique) sink vertex z, ¬fd(z1, . . . , zd) holds.

Traditionally, the function fd(v1, . . . , vd) has been
∨d

i=1 vi, and these formulas
Pebd

G[∨] are also the variant of pebbling contradictions studied in Chapters 8
and 9. In this chapter, we instead use pebbling contradictions Pebd

G[⊕] where

209
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z

x y

u v w

(a) Our old friend the pyramid graph Π2 of height 2.

(u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)
∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ z1 ∨ z2

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ z1 ∨ z2

(b) The corresponding XOR-pebbling contradiction.

Figure 10.1: XOR-pebbling contradiction Peb2
Π2

[⊕] for the pyramid graph Π2.

fd(v1, . . . , vd) =
⊕d

i=1vi denotes the exclusive or of the variables. A small exam-
ple of such an XOR-pebbling contradiction is presented in Figure 10.1. For such
formulas, it turns out that we can prove lower bounds on clause space in terms of
pebbling price for any DAG G.

Theorem 2.5 (restated). The space of refuting XOR-pebbling contradictions over
any DAG G in resolution is lower-bounded by the black-white pebbling price of G,
provided that the number of variables per vertex is at least 2.
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If we fix the number of variables per vertex and study DAGs with constant
fan-in, it is easy to show that XOR-pebbling contradictions can be refuted in linear
length and constant width. Using the family of DAGs provided by Theorem 5.5
and proving Theorem 2.5 in a slightly more general setting than stated above, we
get our optimal separation of space and length.

Corollary 2.6 (restated). For all k ≥ 6 there is a family {Fn}∞n=1 of k-CNF
formulas of size O(n) that can be refuted in resolution in length L(Fn ` 0) = O(n)
and width W(Fn ` 0) = O(1) but require space Sp(Fn ` 0) = Ω(n/ log n).

As has been discussed previously, a refutation in length O(n) is always possible
to carry out in space O(n/ log n), so the separation of space and length in Corol-
lary 2.6 is asymptotically optimal. Since any (unsatisfiable) formula of size O(n) is
refutable in width O(n), the separation of space and width is also very nearly op-
timal, except for perhaps by a logarithmic factor. As an extra bonus, we note that
while the constructions in Chapters 8 and 9 are quite intricate and the proofs very
involved, our optimal lower bound proof is relatively clean and straightforward.

10.1.1 Recap of Intuitive Proof Idea
All along, we have been trying to give a proof of a lower bound on the resolution
refutation space of pebbling contradictions structured as follows:

1. First, find a natural interpretation of clause configurations in a refutation of
the formula Pebd

G[f] in terms of black and white pebbles on the DAG G.

2. Then, prove that this interpretation captures pebbling in the sense that for
any refutation of Pebd

G, consecutive clause configurations translates into con-
secutive pebble configurations in a legal black-white pebbling of G.

3. Finally, show that the interpretation captures space in the sense that if a
clause set induces N pebbles, then it must contain at least N clauses.

Unfortunately, as we have seen this idea does not quite work “off the shelf.”
Pebblings of DAGs and resolution refutations of CNF formulas are very different
objects, and there is no reason a priori that there should be a tight connection
between the two. However, relaxing our requirements for the correspondence, in
Chapters 8 and 9 we made essentially the proof idea above work for two special
cases. In the rest of this section, we describe the modifications made in Chapters 8
and 9 and then outline how, using our new approach, we can make the bits and
pieces fit together to yield the optimal results in Theorem 2.5 and Corollary 2.6.

10.1.2 Formalizing the Idea and Encountering Problems
Recall that the black-white pebble game played on a DAG G can be viewed as a
way of proving the end result of the calculation described by G. Black pebbles de-
note proven partial results of the computation. White pebbles denote assumptions
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about partial results which have been used to derive other partial results (i.e., black
pebbles), but these assumptions will have to be verified for the calculation to be
complete. The final goal is a black pebble on the sink z and no other pebbles in the
graph, corresponding to an unconditional proof of the end result of the calculation.

Translating this to pebbling contradictions Pebd
G[f], it turns out that a fruitful

way to think of a black pebble on v is that it should correspond to “truth of
fd(v1, . . . , vd)”. A white pebble on a vertex w can be understood to mean that
we need to assume the partial result on w to derive the black pebbles above w in
the graph. Needing to assume the truth of w is the opposite of knowing the truth
of w, so extending the reasoning above we get that a white-pebbled vertex should
correspond to “falsity of fd(v1, . . . , vd)”.

Developing this intuitive correspondence one step further, we find that it seems
natural that a set of clauses C on the blackboard should be translated into a black
pebble on v “supported by” white pebbles on w ∈ W below v if C implies that if
fd(w1, . . . , wd) holds for all w ∈ W , then fd(v1, . . . , vd) must also hold, i.e., if the
implication

C � fd(v1, . . . , vd) ∨
∨

w∈W

¬fd(w1, . . . , wd) (10.1)

is true. And if C satisfies many different implications on the form (10.1), then
C should correspond to many such black pebbles with associated white pebbles.
The idea to interpret clauses in terms of pebbles as in (10.1) by looking not at the
structure of the clauses in C but only on the “semantic content”, i.e., which set of
clauses C implies, was the key insight in Chapter 8 and is also used in Chapter 9
as well as the present chapter.

To make this more concrete, Figure 10.2 presents an example of such a transla-
tion for a set of clauses derived from the XOR-pebbling contradiction Peb2

Π2
[⊕] in

Figure 10.1. It is straightforward to verify that the clause set C on the blackboard
in Figure 10.2(a) implies x1⊕x2 and that C ∪ {v1⊕v2, w1⊕w2} implies y1⊕y2, so
we get black pebbles on x and y and white pebbles on v and w in Figure 10.2(b).
This translation from clauses to pebbles is arguably quite straightforward, and it
seems that it should yield legal black-white pebblings for all “well-behaved” reso-
lution refutations using some kind of pebbling strategy as the guiding idea when
refuting Pebd

G[f].
The problem is that we have no guarantee that the resolution refutations will

be “well-behaved”. On the one hand, it might appear plausible that for a formula
defined in terms of pebble games, the refutation would somehow need to have a
pebbling of G in mind when refuting a pebbling contradiction over G. On the other
hand, for all we know there might be some shortcut exploiting other properties of
the formula, and maybe the refutation making this shortcut produces clauses that
do not fit into the framework sketched above.

Although it is hard to give an example that is at the same time both small and
convincing, this turns out to be a serious problem. Some clauses that look strange
we can just ignore, but it turns out that a particularly tricky case is when clauses



10.1. OUTLINE OF PROOF OF A SPECIAL CASE 213



x1 ∨ x2

x1 ∨ x2

v1 ∨ w1 ∨ y1 ∨ y2

v1 ∨ w1 ∨ y1 ∨ y2

v2 ∨ w1 ∨ y1 ∨ y2

v2 ∨ w1 ∨ y1 ∨ y2

v1 ∨ w2 ∨ y1 ∨ y2

v1 ∨ w2 ∨ y1 ∨ y2

v2 ∨ w2 ∨ y1 ∨ y2

v2 ∨ w2 ∨ y1 ∨ y2


(a) Clauses on blackboard.

z

x y

u v w

(b) Corresponding pebbles in the graph.

Figure 10.2: Translating XOR-pebbling contradiction clauses to pebbles.

are derived that imply that fd(b1, . . . , bd) is true not for a single vertex b but for
some vertex in a set B of size |B| > 1, i.e., when we have implications on the form

C �
∨
b∈B

fd(b1, . . . , bd) ∨
∨

w∈W

¬fd(w1, . . . , wd) . (10.2)

On the one hand it can be shown that we cannot afford to ignore such clauses, but
on the other hand there appears to be no way that we can interpret them in terms
of black and white pebbles without making some component in the proof idea in
Section 10.1.1 break down.

The problem with implications such as (10.2) is something that arises not only
in the current chapter but also in Chapters 8 and 9, but the ways to circumvent
this problem is very different in the three chapters. In the remaining part of this
subsection, we discuss what ideas were explored in Chapters 8 and 9, leading up
our current construction.

The key idea in Chapter 8 was to relax the translation function to saying,
roughly, that clauses resulting in implications on the form (10.2) are interpreted as
a black pebble on the lowermost vertex b of B and white pebbles on all vertices
W ′ ⊆ W below b. This translation was shown to capture clause space in the
sense that the number of pebbles are at most the number of clauses. However, in
order to accommodate the pebble movements that can result during a refutation,
the pebbling rules had to be changed to allow “sliding moves” of white pebbles
upwards and black pebbles downwards. For this new game it could be shown that
known lower bounds on black-white pebbling break down completely even for very
simple graphs, for instance for pyramid graphs. But for the simplest case, namely
DAGs that are trees, we established that this new game is essentially equivalent to
the standard black-white pebble game, yielding a tight logarithmic bound on clause
space for pebbling contradictions over trees.
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To cope with more general DAGs, in Chapter 9 the notion that clauses should
correspond to black and white pebbles was sacrificed. Instead, another pebble game
(of sorts) was invented, with white pebbles just as before, but with black blobs
that can cover multiple vertices instead of single-vertex black pebbles. A blob on a
vertex set B can be thought of saying that fd(b1, . . . , bd) holds for some b ∈ B, and
the implication (10.2) is interpreted as corresponding to white pebbles on W and a
single black blob on B. When the rules of this blob-pebble game are defined in the
right way, it can be shown that resolution refutations of pebbling contradictions
over G correspond to pebblings of G for a very general class of DAGs, including
(a slight modification of) the DAGs {Gn}∞n=1 in Theorem 5.5 of size O(n) having
black-white pebbling price Ω(n/ log n).

Sadly, now proving lower bounds on pebbling price in our blob-pebble game
becomes a formidable challenge. Difficulties arise because we can no longer charge
for every vertex covered by a black pebble but only at most 1 for every distinct black
blob, and sometimes even very much less than that if the blobs intersect too much.
Also, we cannot charge for all white pebbles but only for pebbles located below
blobs. Therefore, we are not able to prove lower bounds on blob-pebbling price for
general DAGs (and in particular not for the Gilbert-Tarjan DAGs in Theorem 5.5.
However, using ideas from [49] proving bounds on black-white pebbling price for
pyramid graphs and a class of related DAGs, in Chapter 9 we showed corresponding
tight bounds on blob-pebbling price for (almost) the same class of DAGs, resulting,
in particular, in a tight Θ(

√
n) bound on space.

10.1.3 Detailed Outline of Optimal Lower Bound Proof

In this chapter, we, in a sense, unite the two approaches in Chapters 8 and 9.
The decisive ingredient in making this work, however, is to look not at standard
pebbling contradictions Pebd

G[∨] but instead focus on XOR-pebbling contradictions
Pebd

G[⊕] as in Figure 10.1.
We still cannot hope to get resolution refutations and pebblings to match per-

fectly, so we devise yet another pebble game, which we call the resolution-pebbling
game, or just res-pebbling game for short. In this game we have ordinary black and
white pebbles covering single vertices, but subsets of black pebbles B and white
pebbles W are associated in subconfigurations [B]〈W 〉. The pebble configuration at
any point in time t consists of a set Rt =

{
[Bi]〈Wi〉

∣∣i = 1, . . . ,m
}

of such subcon-
figurations, and the pebbling moves are performed not on individual pebbles but
on entire subconfigurations. The pebbling moves are as follows:

Download At any time, derive [v]〈pred(v)〉 for pred(v) the immediate predecessors
of v.

Resolution From [B1]〈W1 ∪ {v}〉 and [B2 ∪ {v}]〈W2〉 such that B1 ∩ W2 = ∅,
derive [B1 ∪ B2]〈W1 ∪ W2〉.
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Weakening From [B]〈W 〉, derive [B ∪ B′]〈W ∪ W ′〉 provided that (B ∪ B′) ∩
(W ∪ W ′) = ∅.

Erasure Any [B]〈W 〉 may be erased at any time.

The game starts with the graph G being empty, i.e., R0 = ∅, and ends when
Rτ =

{
[z]〈∅〉

}
for the unique sink z of G, corresponding to a single black pebble on

z and no other pebbles in the DAG.
Let us try to provide some intuition for the pebbling rules. From a pebbling

perspective, the download rule is just the familiar fact that we can always place
white pebbles on the immediate predecessors of a vertex v and then black-pebble
v itself. The resolution rule says roughly that we can remove a white pebble from
v if we first place a black pebble there. Since v can only be black-pebbled when
the predecessors of v have pebbles on them, this rule is roughly equivalent to the
combination of the black-white pebbling rules that a white pebble can be removed
if all predecessors are pebbled and that a black pebble can always be removed.
The other two rules are harder to understand in terms of black-white pebbling. In
particular, the weakening rule allowing us to place black pebbles anywhere might
seem somewhat dangerous, and similarly the erasure rule allowing us to remove any
white pebbles at any time. It is not hard to see that relaxing the rules in standard
black-white pebbling in this way destroys the pebble game completely.

However, the rules make more sense from a resolution derivation perspective. If
we think of black pebbles as truth, white pebbles as falsity, and subconfiguration
as disjunctions, then the download rule seems to correspond to axiom download in
resolution. The resolution rule corresponds to resolving two clauses, and the condi-
tion B1 ∩ W2 = ∅ then means simply that the resolvent should not contain both a
literal and its negation and thus be trivially true. The weakening rule corresponds
to weakening in resolution, i.e., deriving a weaker statement that something that
we already know, and again the condition (B ∪ B′) ∩ (W ∪ W ′) = ∅ just says
that the result should not be something trivially true. Finally, erasure is simply
the parallel of erasure of a clause.

So far, the game can be seen to be in essence a variant of the blob-pebble game
in Chapter 9, albeit with some nice simplifications, but a fundamental difference is
that the cost of a pebble configuration R is now cost(R) =

∣∣⋃
[Bi]〈Wi〉∈R(Bi ∪Wi)

∣∣,
i.e., we can charge for every pebbled vertex again. We define the resolution-pebbling
price Res-Peb(G) of G to be the cheapest pebbling of G reaching

{
[z]〈∅〉

}
.

Using this resolution-pebbling game, we construct a lower bound proof as out-
lined in Section 10.1.1. First, we establish that any resolution refutation of a
XOR-pebbling contradiction can be interpreted as a res-pebbling on the DAG in
terms of which this formula is defined. Intuitively, the reason that this works is
that we can use the weakening rule to analyze apparently non-optimal steps in the
refutation.

Theorem 10.1. Let Pebd
G[⊕] denote the XOR-pebbling contradiction of degree d ≥

1 over a DAG G with a unique sink z and all non-source vertices having indegree 2.
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Then there is a translation function from sets of clauses derived from Pebd
G[⊕] into

sets of subconfigurations
{
[Bi]〈Wi〉

∣∣i = 1, . . . ,m
}

such that any resolution refuta-
tion π of Pebd

G[⊕] corresponds to a res-pebbling Rπ of G under this translation.

The translation function is basically that C corresponds to all [B]〈W 〉 such that

C �
∨
b∈B

⊕d
i=1bi ∨

∨
w∈W

¬
⊕d

i=1wi (10.3)

and such that this implication does not hold for any strict subset B′ $ B or
W ′ $ W . Using this translation of clauses into pebbles, we prove that the clause
configurations C0, C1, . . . , Cτ in a resolution derivation π correspond to “snapshots”
at different time intervals of a res-pebbling Rπ of the DAG G. Furthermore, we
show that the cost of this pebbling is essentially upper-bounded by the largest cost
we see at any of the snapshots. There may be many pebbling moves needed to
go from the pebble configuration corresponding to Ct to the one corresponding to
Ct+1, but the maximal cost during this intermediate pebbling moves is at most an
additive constant larger than the cost of the pebble configuration corresponding to
Ct or Ct+1. Therefore, the cost of the res-pebbling Rπ yields a lower bound on the
space of the resolution refutation π.

Theorem 10.2. If π is a refutation of a XOR-pebbling contradiction Pebd
G[⊕] of

fixed degree d > 1, then the cost of the associated res-pebbling Pπ is bounded by the
space of π by cost(Rπ) ≤ Sp(π) + O(1).

This is the place in the proof where it is crucial that we are working with XOR-
pebbling contradictions Pebd

G[⊕] and not standard pebbling contradictions Pebd
G[∨]

using logical or. In the blob-pebble game in Chapter 9, no matter how large B is
we can only charge (at most) 1 for B, since only one clause is needed to imply∨

b∈B

∨d
i=1 bi. However, if C �

∨
b∈B

⊕d
i=1bi and C does not imply the XOR of any

strict subset of B, then it is not hard to show that |C| ≥ |B|. And this linear lower
bound can be generalized to any set of subconfigurations [B1]〈W1〉, . . . , [Bm]〈Wm〉
no matter how the [Bi]〈Wi〉 intersect with one another.

Finally, we need lower bounds on res-pebbling price. Since the resolution-
pebbling game is a different game than standard black-white pebbling, known
bound on black-white pebbling price in the literature do not apply. However, by
showing that a a res-pebbling can never do better than a standard black-white
pebbling, we can nevertheless reduce res-pebbling price to black-white pebbling
price.

Theorem 10.3. For any DAG G with a unique sink z and all non-source vertices
having fan-in 2, it holds that Res-Peb(G) ≥ BW-Peb(G).

On the face of it, the resolution-pebbling game might seem quite different from
the standard black-white pebble game. The lower bounds on black-white pebbling
depend critically on the fact that the rules for black pebble placement and white
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pebble removal are very strict. In the resolution-pebbling game, however, we can
always remove any white pebbles by doing an erasure, and by weakening we can
always black-pebble any vertex although no white pebbles are not even near this
vertex. However, the fact that we collect black pebbles B and white pebbles W
in subconfigurations [B]〈W〉, and only allow operations on these subconfigurations,
makes it relatively straightforward to show Theorem 10.3. The proof hinges on two
observations:

1. Given any res-pebbling R using weakening, we can always find another res-
pebbling R′ which is at least as cheap and never makes any weakening moves.

2. The res-pebbling game without the weakening rule is in effect just a disguised
version of the standard black-white pebble game.

Putting all of this together, we can prove our main theorem.
Theorem 2.5 (restated). Let Pebd

G[⊕] denote the pebbling contradiction of fixed
degree d > 1 defined over a DAG G with a unique sink z and all non-source ver-
tices having fan-in 2. Then the clause space of refuting Pebd

G[⊕] by resolution is
Sp(Pebd

G[⊕] ` 0) ≥ BW-Peb(G)−O(1).
Proof. Let π be any resolution refutation of Pebd

G[⊕] and consider the associated
res-pebbling Rπ provided by Theorem 10.1. On the one hand, we know that
cost(Rπ) ≤ Sp(π) + O(1) by Theorem 10.2, provided that d > 1. On the other
hand, Theorem 10.3 tells us that the cost of any res-pebbling of G is BW-Peb(G),
so, in particular, we must have cost(Rπ) ≥ BW-Peb(G). Combining these two
bounds on cost(Rπ), we see that Sp(π) ≥ BW-Peb(G)−O(1).

With a minor additional effort, we get the separation between space and length
as a corollary.
Corollary 2.6 (restated). For all k ≥ 6 there is a family {Fn}∞n=1 of k-CNF
formulas of size O(n) such that L(Fn ` 0) = O(n) and W(Fn ` 0) = O(1) but
Sp(Fn ` 0) = Ω(n/ log n).
Proof sketch. Let {Gn}∞n=1 be the family of DAGs in Theorem 5.5 with size O(n)
and pebbling price BW-Peb(Gn) = Ω(n/ log n). Then if we fix d ≥ 2 to some
constant and set Fn = Pebd

Gn
[⊕], we get a family of 3d-CNF formulas of size O(n)

that can be refuted in length L(Fn ` 0) = O(n) and width W(Fn ` 0) = O(1) but
according to Theorem 2.5 require clause space Sp(Fn ` 0) = Ω(n/ log n). Proving a
slightly more general version of the theorem, we can get the same result for k-CNF
formulas for any k ≥ 6.

10.2 Generalized Pebbling Contradictions

In this section we present the generalization of the formulas in Definition 5.6 that
we use to prove the optimal separation of space and length. In order to make the
formal definition, we first need to introduce some auxiliary notation.



218 CHAPTER 10. SHORT PROOFS MAY BE SPACIOUS

For any non-constant Boolean function fd : {0, 1}d 7→ {0, 1} we fix some canoni-
cal representation of it as a CNF formula. We will use the notation ~x = {x1, . . . , xd},
where d is assumed to be clear from context, so that fd(~x) is another way of writing
fd(x1, . . . , xd). We let Cl [fd(~x)] denote the set of clauses in the canonical repre-
sentation of fd and Cl [¬fd(~x)] denote the clauses in the canonical representation
of its negation. For instance, we have

Cl [∨2(~x)] = {x1 ∨ x2} and Cl [¬∨2(~x)] = {x1, x2} (10.4)

for logical or and

Cl [⊕2(~x)] = {x1 ∨ x2, x1 ∨ x2} and Cl [¬⊕2(~x)] = {x1 ∨ x2, x1 ∨ x2} (10.5)

for logical exclusive or. The general definitions for exclusive or are

Cl [⊕d(~x)] =
{∨d

i=1x
νi
i

∣∣∑d
i=1νi ≡ d (mod 2)

}
(10.6)

and
Cl [¬⊕d(~x)] =

{∨d
i=1x

νi
i

∣∣∑d
i=1νi 6≡ d (mod 2)

}
(10.7)

from which we can see that Cl [⊕d(~x)] and Cl [¬⊕d(~x)] both are d-CNFs. We will
also be interested in the function saying that k out of d variables are true, which
we will denote k-trued. To give an example, for 2-true4 we have

Cl [2-true4(~x)] =


x1 ∨ x2 ∨ x3,

x1 ∨ x2 ∨ x4,

x1 ∨ x3 ∨ x4,

x2 ∨ x3 ∨ x4

 (10.8)

and

Cl [¬2-true4(~x)] =



x1 ∨ x2,

x1 ∨ x3,

x1 ∨ x4,

x2 ∨ x3,

x2 ∨ x4,

x3 ∨ x4


(10.9)

and in general we have

Cl [k-trued(~x)] =
{∨

i∈Sxi

∣∣S ⊆ [d], |S| = d− k + 1
}

(10.10)
and

Cl [¬k-trued(~x)] =
{∨

i∈Sxi

∣∣S ⊆ [d], |S| = k
}

. (10.11)

Clearly, 1-trued(x1, . . . , xd) is just another way of writing the function
∨d

i=1 xi, and
d-trued(x1, . . . , xd) =

∧d
i=1 xi.
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For convenience of notation, we also define the disjunction C ∨ D of two clause
sets C and D to be the clause set

C ∨ D = {C ∨D | C ∈ C, D ∈ D} . (10.12)

This notation extends to more than two clause sets in the natural way. Using the
notation above, we define pebbling contradictions as follows.

Definition 10.4 (Generalized pebbling contradiction). Suppose that G is
a DAG with sources S, a unique sink z and with all non-source vertices having
indegree 2, that d > 0 is an integer, and that fd : {0, 1}d 7→ {0, 1} is any non-
constant Boolean function. Associate d distinct variables v1, . . . , vd with every
vertex v ∈ V (G). The dth degree pebbling contradiction over G with respect to fd,
denoted Pebd

G[fd], is the conjunction over the following clauses:

• Cl [fd(~s)] for all s ∈ S (source axioms),

• Cl [¬fd(~u)] ∨ Cl [¬fd(~v)] ∨ Cl [fd(~w)] for all w ∈ V (G) \ S, where u, v are the
two predecessors of w (pebbling axioms),

• Cl [¬fd(~z)] for the sink z (target or sink axioms).

In general, the formula Pebd
G[fd] is an unsatisfiable CNF formula of width at

most 3d with at most O
(
23d · |V (G)|

)
clauses over d · |V (G)| variables. To be

slightly more precise, the width of the formula is easily seen to be W
(
Pebd

G[fd]
)

=
2 ·W(Cl [¬fd(~x)]) + W(Cl [fd(~x)]).

When the function fd comes from some general family of functions defined for
all arities, as will be the case in the rest of this chapter, we will often skip the
arity subscript and write just Pebd

G[f]. We will refer to the formulas Pebd
G[⊕]

as XOR-pebbling contradictions and the formulas Pebd
G[k-true ] as k-true-pebbling

contradictions. It is easy to verify that the width of k-true-pebbling contradictions
is W

(
Pebd

G[k-true ]
)

= d + k + 1.

Proposition 10.5. For any G as in Definition 10.4, if d is constant there is
a refutation π : Pebd

G[f]` 0 in length L(π) = O(|V (G)|) and width W(π) = O(1).
Also, Pebd

G[f] is refutable in clause space Sp
(
Pebd

G[f] ` 0
)

= O
(
Peb(G)

)
.

Proof. This is just a generalization of the proofs of Propositions 5.7 and 5.10. Given
any black pebbling of G, we construct a resolution refutation of Pebd

G[f] such that
if at some point in time there are black pebbles on a set of vertices V , then we have
the clauses

⋃
v∈V Cl [fd(~v)] in memory. When some new vertex v is pebbled, we

derive Cl [fd(~v)] using the axiom clauses for v plus the clauses already in memory.
We claim that this can be done in constant extra space if d is fixed. When a
black pebble is removed from v, we erase the clauses Cl [fd(~v)]. We conclude the
resolution refutation by resolving Cl [fd(~z)] for the sink z with all sink axioms
Cl [¬fd(~z)], which can also be done in constant space. It is clear that given our
claims about the constant extra space needed, this yields a resolution refutation in
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space linear in the pebbling cost. In particular, given an optimal black pebbling
of G, we get a refutation in space O

(
Peb(G)

)
.

To prove the claim, note first that it trivially holds for source vertices v, since
Cl [fd(~v)] is a set of axiom clauses of size O

(
2d
)

= O(1). Suppose for a non-
source vertex r with predecessors p and q that at some point in time a black
pebble is placed on r. Then p and q must be black-pebbled, so by induction we
have the clauses Cl [fd(~p)] and Cl [fd(~q)] in memory. Download all pebbling axioms
Cl [¬fd(~p)] ∨ Cl [¬fd(~q)] ∨ Cl [fd(~r)] for r. Then

Cl [fd(~p)] ∪ Cl [fd(~q)] ∪ Cl [¬fd(~p)] ∨ Cl [¬fd(~q)] ∨ Cl [fd(~r)] � Cl [fd(~r)] (10.13)

and since resolution is sound this means that we can derive Cl [fd(~r)] from the
clauses on the left-hand side of (10.13). Furthermore, since the clauses contain 3d
variables, this subderivation can be performed in length at most O

(
23d
)
, width at

most O(d), and space at most O
(
23d
)
, which are all constant if d is constant.

To get the statements for length and width, consider a pebbling that black-
pebbles all vertices once in topological order without ever removing a pebble. This
yields a refutation in length L(π) = O

(
23d · |V (G)|

)
and width O(d), i.e., in linear

length and constant width when d is fixed.

The following observation is rather immediate, but nevertheless it might be
helpful to state it explicitly.

Observation 10.6. Suppose for any non-constant Boolean function fd that C ∈
Cl [fd(~x)] and that ρ is any partial truth value assignment such that ρ(C) = 0. Then
for all D ∈ Cl [¬fd(~x)] it holds that ρ(D) = 1.

Proof. If ρ(C) = 0 this means that ρ(fd) = 0. Then clearly ρ(¬fd) = 1, so, in
particular, ρ must fix all clauses D ∈ Cl [¬fd(~x)] to true.

10.3 The Resolution-Pebbling Game

In this section we define our modified pebble game and show that the pebbling price
in this game is lower-bounded by the standard black-white pebbling price. In the
following, we will almost exclusively discuss DAGs with a unique sink and with all
vertices having indegree 0 or 2. We will refer to such DAGs as single-sink fan-in 2
DAGs for brevity. From now on, by “DAG” we mean “single-sink fan-in 2 DAG”
unless stated otherwise.

The resolution-pebbling game is in a sense fairly similar to the blob-pebble
game in Chapter 9, but in contrast to the blob-pebble game we do not place any
restrictions on what B can look like or where the associated white pebbles W can
be located relative to B.

Definition 10.7 (Res-pebbling subconfiguration). If B and W are sets of
vertices in a single-sink fan-in 2 DAG G with B 6= ∅, B ∩W = ∅, we say that [B]〈W 〉
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is a res-pebbling subconfiguration, or just subconfiguration, in G with black pebbles
on B and white pebbles on W supporting B. We also say that B is dependent
on W . If W = ∅, we say that B is independent. A set of subconfigurations
R =

{
[Bi]〈Wi〉

∣∣i = 1, . . . ,m
}

is a res-pebbling configuration.

The simplification of the definition of subconfigurations also makes the pebble
game less complicated compared to Chapter 9.

Definition 10.8 (Resolution-pebbling game). For G a single-sink fan-in 2
DAG G, a res-pebbling from R0 to Rτ in G is a sequence R =

{
R0, . . . , Rτ

}
of

res-pebbling configurations such that for t ∈ [τ ], Rt is obtained from Rt−1 by one
of the following rules:

Download Rt = Rt−1 ∪ {[v]〈pred(v)〉} for any vertex v.

Resolution Rt = Rt−1 ∪
{
[B1 ∪ B2]〈W1 ∪ W2〉

}
if there are subconfigurations

[B1]〈W1 ∪ {v}〉, [B2 ∪ {v}]〈W2〉 ∈ Rt−1 such that B1 ∩ W2 = ∅.

Weakening Rt = Rt−1 ∪
{
[B ∪ B′]〈W ∪ W ′〉

}
if [B]〈W〉 ∈ Rt−1 and (B ∪ B′) ∩

(W ∪ W ′) = ∅.

Erasure Rt = Rt−1 \
{
[B]〈W〉

}
for [B]〈W〉 ∈ Rt−1.

A complete res-pebbling of G is a res-pebbling R with R0 = ∅ and Rτ =
{
[z]〈∅〉

}
for z the unique sink of G.

The cost of a pebble configuration R is cost(R) =
∣∣⋃

RBiWi∈R(Bi ∪ Wi)
∣∣ and

the cost of a res-pebbling R =
{
R0, . . . , Rτ

}
is cost(R) = maxt∈[τ ]{cost(Rt)}. The

resolution-pebbling price Res-Peb(G) of G is the cheapest complete pebbling of G.

We now prove that no resolution-pebbling can make a cheaper pebbling of a
DAG G than an optimal black-white pebbling.

Theorem 10.3 (restated). For any single-sink fan-in 2 DAG G it holds that
Res-Peb(G) ≥ BW-Peb(G).

This theorem follows immediately from the following two lemmas.

Lemma 10.9. Given any complete res-pebbling R of G using weakening, there
is a complete res-pebbling R′ which never makes any weakening moves and has
cost(R′) ≤ cost(R).

Lemma 10.10. Given any complete res-pebbling R′ of G that does not make any
weakening moves, there is a complete standard black-white pebbling P of G such
that cost(P) ≤ cost(R′).

Proof of Lemma 10.9. We construct a shadow pebbling that matches download,
resolution, and erasure moves but ignores weakening moves. Such a pebbling can
have at most the same cost as the pebbling that it is shadowing.
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Formally, given any complete res-pebbling R =
{
R0, . . . , Rτ

}
of G, we construct

our pebbling R′ =
{
R′

0, . . . , R′
τ

}
inductively by maintaining the following invari-

ant: For every Rt ∈ R there is a surjective function gt : Rt 7→ R′
t such that for

gt([B]〈W〉) = [b]〈W ′〉 it holds that b ∈ B and W ′ ⊆ W . If we can construct such a
function gt for every t we are clearly done, since cost(R′

t) = cost(gt(Rt)) ≤ cost(Rt)
and we must have gτ ([z]〈∅〉) = {[z]〈∅〉}. The base case R0 = ∅ is trivial. We make
a case analysis over the pebbling move made at time t.

Download Rt = Rt−1 ∪ {[v]〈pred(v)〉}: Make the same download move in R′, set
gt([v]〈pred(v)〉) = [v]〈pred(v)〉 and let gt = gt−1 for all other subconfigura-
tions in Rt−1.

Erasure Rt = Rt−1 \
{
[B]〈W〉

}
: Set R′

t = gt−1(Rt) (which might result in an
erasure or leave R′

t = R′
t−1 unchanged).

Weakening Rt = Rt−1 ∪
{
[B ∪ B′]〈W ∪ W ′〉

}
for some [B]〈W〉 ∈ Rt−1: set

gt([B ∪ B′]〈W ∪ W ′〉) = gt−1([B]〈W〉) and let gt = gt−1 for all other sub-
configurations (leaving R′

t = R′
t−1 unchanged).

Resolution Rt = Rt−1 ∪
{
[B1 ∪ B2]〈W1 ∪ W2〉

}
derived from [B1]〈W1 ∪ {v}〉

and [B2 ∪ {v}]〈W2〉 in Rt−1: This is the only nontrivial case. Let us write
[b1]〈W ′

1〉 = gt−1([B1]〈W1 ∪ {v}〉) and [b2]〈W ′
2〉 = gt−1([B2 ∪ {v}]〈W2〉). We

note that by the induction hypothesis we have b1 ∈ B1 ⊆ B1 ∪ B2 and
W ′

2 ⊆ W2 ⊆ W1 ∪ W2. There are three subcases to consider:

1. v /∈ W ′
1: Then it holds that W ′

1 ⊆ W1 ⊆ W1 ∪ W2, so we can set
gt([B1 ∪ B2]〈W1 ∪ W2〉) = [b1]〈W ′

1〉.
2. v 6= b2: In this case we have b2 ∈ B2 ⊆ B1 ∪ B2 and we can define

gt([B1 ∪ B2]〈W1 ∪ W2〉) = [b2]〈W ′
2〉.

3. If none of the above two cases hold, we have v = b2 and v ∈ W ′
1, so we

can resolve [b1]〈W ′
1〉 and [b2]〈W ′

2〉 to get [b1]〈(W ′
1 ∪ W ′

2) \ {b2}〉 and set
gt([B1 ∪ B2]〈W1 ∪ W2〉) = [b1]〈(W ′

1 ∪ W ′
2) \ {b2}〉.

Let gt = gt−1 for all other subconfigurations in Rt−1.

Since in all cases we can construct a surjective function gt : Rt 7→ R′
t satisfying the

invariant conditions, the lemma follows.

Proof of Lemma 10.10. This second lemma holds since the res-pebbling game with-
out weakening moves is just a poorly disguised version of the black-white pebble
game. The erasure rule might seem to allow uncontrolled white pebble removal,
but without loss of generality a subconfiguration [B]〈W〉 is erased precisely when
it has been used for the last time in a resolution move, and if so the net change of
white pebbles on G is at most 1. This white pebbles on, say, w has been removed
only if there is currently a black pebble on w. But since this can only happen if
all predecessors of w either are pebbled now or have been pebbled before, this does
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not really change anything compared to the standard black-white pebbling rule for
white pebble removal. The formal details of the proof, which are straightforward if
somewhat tedious, can be found in the proof of Lemma 8.30. (The labelled pebble
game in Definition 8.5 without reversal moves is easily seen to be identical to the
resolution-pebbling game without weakening moves.)

10.4 Derivations Induce Resolution-Pebblings

The next step in our construction is to show that resolution refutations can be
interpreted in terms of resolution-pebblings. As in Chapters 8 and 9, we get a
cleaner correspondence between resolution and res-pebblings if we ignore the sink
axioms Cl [¬fd(~z)] and instead study resolution derivations of Cl [fd(~z)] from the
rest of the formula rather than resolution refutations of all of Pebd

G[f].
Let us write *Pebd

G[f] = Pebd
G[f] \ Cl [¬fd(~z)] to denote the pebbling formula

over G with the target axioms in the pebbling contradiction removed. The next
lemma is the formal statement saying that as long as we keep the pebbling degree d
constant, we may just as well study resolution derivations of Cl [fd(~z)] from *Pebd

G[f]
instead of refutations of Pebd

G[f] without losing more than a constant term.

Lemma 10.11. For any single-sink fan-in 2 DAG G with sink z, it holds that
Sp(Pebd

G[f] ` 0) = Sp(*Pebd
G[f] ` Cl [fd(~z)]) + O

(
2d
)
.

Proof. For any resolution derivation π∗ : *Pebd
G[f]`Cl [fd(~z)], we can get a refuta-

tion of Pebd
G[f] from π∗ in at most O

(
2d
)

extra space by downloading all target
axioms Cl [¬fd(~z)] and then, keeping all clauses in memory, deriving the empty
clause in additional space d + O(1) (since any formula over n variables is refutable
in space n + O(1) by [39]).

In the other direction, suppose we have a refutation π : Pebd
G[f]` 0. Consider

the restricted refutations π�ρ(¬C) for all C ∈ Cl [fd(~z)]. These restrictions satisfy all
sink axioms by Observation 10.6, so these axioms are never used in the restricted
resolution refutations π�ρ(¬C). Also, by Proposition 4.17 these restricted refutations
all have space at most Sp(π). Removing the restrictions again, this means that we
get resolution derivations πC : *Pebd

G[f]`C for all C ∈ Cl [fd(~z)] (we must get
derivations of some C ′ ⊆ C, and since resolution is sound we must have C ′ = C).
There are at most 2d clauses in Cl [fd(~z)], and by performing all derivations πC ,
C ∈ Cl [fd(~z)], one after another and saving all final clauses C in memory, we get
a derivation π∗ : *Pebd

G[f]`Cl [fd(~z)] in space at most Sp(π) + 2d.

In view of Lemma 10.11, from now on we will only consider resolution derivations
from *Pebd

G[f] and try to convert clause configurations in such derivations into sets
of res-pebbling subconfigurations. Note that since *Pebd

G[f] is non-contradictory
and resolution is sound, this means that any clause set C derived from *Pebd

G[f] is
satisfiable.

To avoid cluttering the notation with an excessive amount of brackets, we will
use sloppy notation for sets. We will sometimes omit curly brackets around singleton
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sets when no confusion can arise, writing, for instance, V ∪ v instead of V ∪ {v} and
[B ∪ b]〈W ∪ w〉 instead of [B ∪ {b}]〈W ∪ {w}〉. Also, we will sometimes omit the
curly brackets around sets of vertices in [B]〈W〉 when we enumerate their members,
writing, for instance, [b1, b2, b3]〈w1, w2, w3〉 instead of [{b1, b2, b3}]〈{w1, w2, w3}〉.

10.4.1 Definition of Induced Configurations and Theorem Statement
For the rest of this section, let f(x1, . . . , xd) be some arbitrary but fixed (non-
constant) Boolean function. If r is a non-source vertex with predecessors pred(r) =
{p, q}, we say that the axioms for r in *Pebd

G[f] are

Axd(r) = Cl [¬fd(~p)] ∨ Cl [¬fd(~q)] ∨ Cl [fd(~r)] (10.14)

where we recall that Cl [¬fd(~p)] ∨ Cl [¬fd(~q)] ∨ Cl [fd(~r)] is the set of clauses{
C¬p ∨ C¬q ∨ Cr

∣∣C¬p ∈ Cl [¬fd(~p)], C¬q ∈ Cl [¬fd(~q)], Cr ∈ Cl [fd(~r)]
}

, (10.15)

and if r is a source, we define

Axd(r) = Cl [fd(~r)] . (10.16)

For U a set of vertices in G, we let Axd(U) =
⋃

u∈U Axd(u). Note that with this
notation, we have *Pebd

G[f] =
⋃

v∈V (G) Axd(v).
Recall that we say that a set of clauses C implies a clause D minimally if C � D

but for all C′ $ C it holds that C′ 2 D. We say that C implies a clause D maximally
if C � D but for all D′ $ D it holds that C′ 2 D′. To define our translation of
clauses to res-pebbling subconfigurations, we use implications that are in a sense
both minimal and maximal. The following definition is similar in spirit to that in
Chapter 9, but again it is simpler thanks to the fact that we have a simpler pebble
game.

Definition 10.12 (Induced res-pebbling subconfiguration). Let G be a DAG
and C a set of clauses derived from *Pebd

G[f]. Then C induces the res-pebbling
subconfiguration [B]〈W〉 if there is a clause set D ⊆ C such that

D �
∨
b∈B

fd(~b) ∨
∨

w∈W

¬fd(~w) (10.17a)

but for which it holds for all strict subsets D′ $ D, B′ $ B and W ′ $ W that

D′ 2
∨
b∈B

fd(~b) ∨
∨

w∈W

¬fd(~w) , (10.17b)

D 2
∨

b∈B′

fd(~b) ∨
∨

w∈W

¬fd(~w) , and (10.17c)

D 2
∨
b∈B

fd(~b) ∨
∨

w∈W ′

¬fd(~w) . (10.17d)
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To save space, when all conditions (10.17a)–(10.17d) hold, we write

D B
∨
b∈B

fd(~b) ∨
∨

w∈W

¬fd(~w) (10.18)

and refer to this as precise implication. We also say that the clause set D implies∨
b∈B fd(~b) ∨

∨
w∈W ¬fd(~w) precisely. We write

R(C) =

{
[B]〈W〉

∣∣∣∣∣ ∃D ⊆ C s.t. D B
∨
b∈B

fd(~b) ∨
∨

w∈W

¬fd(~w)

}
(10.19)

to denote the set of all res-pebbling subconfigurations induced by C.

The main result of this section is as follows.

Theorem 10.13. Let π =
{
C0, . . . , Cτ

}
be a resolution derivation of Cl [fd(~z)] from

*Pebd
G[f] for some arbitrary non-constant function f. Then the induced res-pebbling

configurations
{
R(C0), . . . , R(Cτ )

}
form the “backbone” of a complete res-pebbling

R of G in the sense that

• R(C0) = ∅,

• R(Cτ ) = {[z]〈∅〉}, and

• for every t ∈ [τ ], the transition from R(Ct−1) to R(Ct) can be accomplished
in accordance with the res-pebbling rules in such a way that the intermediate
pebbling cost is upper-bounded by max

{
cost(R(Ct−1)), cost(R(Ct))

}
+ O(1).

In particular, to any resolution derivation π : *Pebd
G[f]`Cl [fd(~z)] we can associate

a complete res-pebbling Rπ of G such that cost(Rπ) ≤ maxC∈π

{
cost(R(C))

}
+O(1).

Clearly, Lemma 10.11 and Theorem 10.13 together imply Theorem 10.2.
We prove Theorem 10.13 by forward induction over the derivation π. By the

pebbling rules in Definition 10.8, any subconfiguration [B]〈W〉 may be erased freely
at any time. Consequently, we need not worry about subconfigurations disappearing
during the transition from Ct−1 to Ct. What we do need to check, though, is that
no subconfiguration [B]〈W〉 appears inexplicably in R(Ct) as a result of a derivation
step Ct−1  Ct, but that we can always derive any [B]〈W〉 ∈ R(Ct)\R(Ct−1) from
R(Ct−1) by the res-pebbling rules. Also, when several pebbling moves are needed
to get from R(Ct) to R(Ct−1), we need to check that these intermediate moves do
not affect the pebbling cost by more than an additive constant.

The proof boils down to a case analysis of the different possibilities for the
derivation step Ct−1  Ct. For clarity, we divide the analysis of the different cases
into subsections. But first of all we need some technical results.
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10.4.2 Some Easy But Useful Technical Observations
The next two observations are fairly obvious once one deciphers what they say, but
they will prove very useful in the proof of Theorem 10.13. We present their proofs
for completeness.

Observation 10.14. If If C is a clause set derived from *Pebd
G[f] such that C �∨

b∈B fd(~b)∨
∨

w∈W ¬fd(~w), then there is a subconfiguration [B′]〈W ′〉 ∈ R(C) such
that B′ ⊆ B and W ′ ⊆ W . In particular, [B]〈W 〉 is derivable by weakening from
R(C).

Proof. Just pick any minimal clause set C′ ⊆ C, and any minimal vertex sets
B′ ⊆ B and W ′ ⊆ W such that the implication C′ �

∨
b∈B′ fd(~b) ∨

∨
w∈W ′ ¬fd(~w)

holds. (We note that B′ 6= ∅ since *Pebd
G[f] 2

∨
w∈W ¬fd(w1, . . . , wd) and reso-

lution is sound.) But then by Definition 10.12, it holds that C′ B
∨

b∈B′ fd(~b) ∨∨
w∈W ′ ¬fd(~w), so [B′]〈W ′〉 ∈ R(C).

A particularly interesting application of Observation 10.14 is given in the next
observation.

Observation 10.15. If C is a clause set derived from *Pebd
G[f] and C ∈ Axd(r)

is an axiom clause for some vertex r ∈ V (G) such that

C ∪ {C} �
∨
b∈B

fd(~b) ∨
∨

w∈W

¬fd(~w) , (10.20)

then:

1. It always holds that C �
∨

b∈B fd(~b)∨
∨

w∈W ∪{r} ¬fd(~w), so if r /∈ B we can
derive [B]〈W ∪ r〉 from R(C) by weakening.

2. If r is a non-source vertex and q is a predecessor of r, then the implication
C �

∨
b∈B ∪{q} fd(~b) ∨

∨
w∈W ¬fd(~w) holds. In particular, if q /∈ W we can

derive [B ∪ q]〈W 〉 from R(C) by weakening.

Proof. If C ∈ Axd(r), then by (10.14) and (10.16) there is a subclause D ⊆ C
such that D ∈ Cl [fd(~r)]. Suppose that α is any truth value assignment such that
α(C) = 1 but α

(∨
b∈B fd(~b) ∨

∨
w∈W ¬fd(~w)

)
= 0 (if there is no such α then we are

already done). Then we must have α(C) = 0 since otherwise we get a contradiction
to (10.20), so in particular α(D) = 0. But then α

(
¬fd(r1, . . . , rd)

)
= 1. Hence, any

assignment α that satisfies C must also satisfy
∨

b∈B fd(~b) ∨
∨

w∈W ∪{r} ¬fd(~w).
Applying Observation 10.14, we get part 1 above.

Part 2 is very similar. If C ∈ Axd(r) for a non-source vertex r with q ∈
pred(r), there is a subclause D ⊆ C such that D ∈ Cl [¬fd(~q)] (compare (10.15)
above). Let us again pick any truth value assignment α such that α(C) = 1 but
α
(∨

b∈B fd(~b) ∨
∨

w∈W ¬fd(~w)
)

= 0. Then it must hold that α(C) = 0, but this
implies that α(D) = 0 and α

(
fd(q1, . . . , qd)

)
= 1.
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We are now ready for the case analysis in the proof of Theorem 10.13 for the
different possible derivation steps in a resolution derivation.

10.4.3 Erasure

Suppose that Ct = Ct−1 \ {C} for C ∈ Ct−1. It is easy to see that the only
possible outcome of erasing clauses is that res-pebbling subconfigurations disappear.
We note for future reference that this implies that the res-pebbling cost decreases
monotonically when going from R(Ct−1) to R(Ct).

10.4.4 Inference

Suppose that Ct = Ct−1 ∪ {C} for some clause C derived from Ct−1. No res-
pebbling subconfigurations can disappear at an inference move since Ct−1 ⊆ Ct.
Suppose that [B]〈W〉 is a new subconfiguration at time t arising from D ⊆ Ct−1

precisely implying
∨

b∈B fd(~b) ∨
∨

w∈W ¬fd(~w). Since C is derived from Ct−1, we
have Ct−1 � C. Thus it holds that Ct−1 �

∨
b∈B fd(~b) ∨

∨
w∈W ¬fd(~w) and Obser-

vation 10.14 tells us that [B]〈W〉 is derivable by weakening from R(Ct−1).
Since no subconfiguration disappears, the pebbling cost increases monotonically

when going from R(Ct−1) to R(Ct) for an inference step, which is again noted for
future reference.

10.4.5 Axiom Download

This is the interesting case. Assume that a new res-pebbling subconfiguration
[B]〈W〉 is induced at time t as the result of a download of an axiom C ∈ Axd(r).
Then C must be one of the clauses inducing the subconfiguration, and we get that
there is a clause set C ⊆ Ct−1 such that

C ∪ {C} B
∨
b∈B

fd(~b) ∨
∨

w∈W

¬fd(~w) . (10.21)

Our intuition is that download of an axiom clause C ∈ Axd(r) in the resolution
derivation should correspond to an introduction of [r]〈pred(r)〉 in the induced res-
pebbling. We want to prove that any other res-pebbling subconfiguration [B]〈W〉
in R(Ct) is derivable by the pebbling rules from R(Ct−1) ∪

{
[r]〈pred(r)〉

}
. Also,

we need to prove that the pebbling moves needed to go from R(Ct−1) to R(Ct)
do not increase the res-pebbling cost by more than an additive constant compared
to max

{
cost(R(Ct−1)), cost(R(Ct))

}
= cost(R(Ct)), where the equality holds since

no subconfigurations induced by Ct−1 can disappear when we add clauses to Ct−1.
As a warm-up, let us consider the case when r is a source, i.e., pred(r) = ∅ and

C ∈ Axd(r) = Cl [fd(~r)]. We make a case analysis depending on whether r ∈ B in
(10.21) or not.
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1. r ∈ B: In this case we need no further analysis. Just make the download
move [r]〈∅〉 and weaken [r]〈∅〉 to get [B ∪ r]〈W 〉 = [B]〈W〉.

2. r /∈ B: By part 1 of Observation 10.15, we can derive [B]〈W ∪ r〉 by weak-
ening from R(Ct−1). Then [B]〈W〉 can be derived by a download of [r]〈∅〉
followed by a resolution of [B]〈W ∪ r〉 and [r]〈∅〉.

We see that when r is a source, we can get from R(Ct−1) to R(Ct) by a download
of [r]〈∅〉 and possibly some weakenings and resolutions.

The case when r is a non-source is a bit more involved, but the general idea is
the same. Suppose for the rest of this section that C ∈ Axd(r) for some fixed vertex
r with pred(r) = {p, q}. This means that C can be written C = C¬p ∨C¬q ∨Cr for
some C¬p ∈ Cl [¬fd(~p)], C¬q ∈ Cl [¬fd(~q)], and Cr ∈ Cl [fd(~r)], and we can rewrite
(10.21) as

C ∪
{
C¬p ∨ C¬q ∨ Cr

}
B
∨
b∈B

fd(~b) ∨
∨

w∈W

¬fd(~w) . (10.22)

Let us also assume that

Ct−1 2
∨
b∈B

fd(~b) ∨
∨

w∈W

¬fd(~w) (10.23)

since otherwise we can derive [B]〈W〉 by an weakening move from R(Ct−1) (using
Observation 10.14) and be done. Recall that by definition, we have B ∩ W = ∅.
Observe that it must hold that

{p, q} ∩ B = ∅ , (10.24)

since if, say, q ∈ B, we could apply part 1 of Observation 10.15 to get that the
implication in (10.23) in fact holds for B = B ∪ {q} contrary to assumption. In
the same way, we see that

r /∈ W (10.25)

since otherwise part 2 of Observation 10.15 shows that the implication (10.23) on
the contrary is true for W = W ∪ {r}.

As in the case when r was a source vertex, the induction step is by a case analysis
depending on whether or not r ∈ B in the implication (10.22) (which, we remind
ourselves, is just (10.21) with added information about what the downloaded axiom
clause C looks like).

1. r ∈ B: We split this case into subcases depending on whether p, q ∈ W or
not. By the symmetry of p and q, we have the following three possibilities to
consider:

(a) {p, q} ⊆ W ,
(b) p ∈ W , q /∈ W ,
(c) {p, q} ∩ W = ∅.
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We analyze these cases in order.

(a) {p, q} ⊆ W : This is the easiest case. Since by assumption r ∈ B
and {p, q} ⊆ W , the subconfiguration [B]〈W〉 ∈ R(Ct) can be de-
rived by a download of [r]〈p, q〉 followed by a weakening of [r]〈p, q〉 to
[B ∪ r]〈W ∪ {p, q}〉 = [B]〈W 〉.

(b) p ∈ W , q /∈ W : In this case [r]〈p, q〉 cannot be weakened to [B]〈W〉, since
q /∈ W . We need to find some way to eliminate the white pebble on q.
But since q /∈ W , part 2 of Observation 10.15 says that we can derive
[B ∪ q]〈W 〉 by weakening from R(Ct−1). Using this subconfiguration,
we can derive [B]〈W〉 as follows:

• download [r]〈p, q〉,
• derive [B ∪ q]〈W 〉 from R(Ct−1) by weakening,
• resolve [r]〈p, q〉 and [B ∪ q]〈W 〉 to get [B ∪ r]〈W ∪ p〉 = [B]〈W〉.

Note that the resolution move is in accordance with the rules since {r} ∩
W = ∅ as noted in (10.25) and (B ∪ {q}) ∩ {p, q} = {q} as noted
in (10.24).

(c) {p, q} ∩ W = ∅: Now both p and q have to be eliminated if we are to use
[r]〈p, q〉 to derive [B]〈W〉, but by applying part 2 of Observation 10.15
twice we see that we can derive [B ∪ p]〈W 〉 and [B ∪ q]〈W 〉 by weak-
ening from R(Ct−1). Using this fact, we can perform a pebbling to get
[B]〈W〉 as follows:

• download [r]〈p, q〉,
• derive [B ∪ q]〈W 〉 from R(Ct−1) by weakening,
• resolve [r]〈p, q〉 with [B ∪ q]〈W 〉 on q to get [B ∪ r]〈W ∪ p〉 =

[B]〈W ∪ p〉,
• derive [B ∪ p]〈W 〉 from R(Ct−1) by weakening,
• conclude by resolving [B]〈W ∪ p〉 with [B ∪ p]〈W 〉 on p, resulting

in the subconfiguration [B]〈W〉.
Of course, it needs to be checked that all resolution moves are legal, but
this follows from (10.24) and (10.25).

This concludes the analysis for the case r ∈ B for a non-source vertex r.

2. r /∈ B: This case is quite similar to the previous case r ∈ B. Here also we
make a subcase analysis depending on whether |pred(r) ∩ W | is equal to 2,
1 or 0.
Before we do this, though, we observe that there is a particular subconfigura-
tion that will be useful for us. Since we are now assuming that r /∈ B, part 1
of Observation 10.15 says that [B]〈W ∪ r〉 is derivable by weakening from
R(Ct−1). This subconfiguration will play an important role in the pebblings
below.
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(a) {p, q} ⊆ W : To get the subconfiguration [B]〈W〉 from R(Ct−1) in this
case, first derive the subconfiguration [B]〈W ∪ r〉 just mentioned by
weakening from R(Ct−1), then download [r]〈p, q〉, and finally resolve
the two to get [B]〈W ∪ {p, q}〉 = [B]〈W〉. This resolution move is in
accordance with the rules since B ∩ {p, q} = ∅ according to (10.24) and
{r} ∩ (W ∪ {r}) = {r}.

(b) p ∈ W , q /∈ W : Just as in case 1b, part 2 of Observation 10.15 says
that [B ∪ q]〈W 〉 is derivable from R(Ct−1) by weakening. Now do the
following pebbling moves:

• download [r]〈p, q〉,
• derive [B ∪ q]〈W 〉 from R(Ct−1) by weakening using part 2 of Ob-

servation 10.15 as in case 1b,
• resolve [r]〈p, q〉 with [B ∪ q]〈W 〉 on q to get [B ∪ r]〈W ∪ p〉,
• use part 1 of Observation 10.15 to derive [B]〈W ∪ r〉 by weakening,

from R(Ct−1) by weakening,
• finally, resolve [B ∪ r]〈W ∪ p〉 with [B]〈W ∪ r〉 on the vertex r to

get [B]〈W ∪ p〉 = [B]〈W〉.
(c) {p, q} ∩ W = ∅: As in case 1c, appeal to part 2 of Observation 10.15

twice to find subconfigurations [B ∪ p]〈W 〉, [B ∪ q]〈W 〉 derivable from
R(Ct−1) by weakening. Using that [B]〈W ∪ r〉 also can be derived from
R(Ct−1) by weakening, we can make the following sequence of pebbling
moves:

• download [r]〈p, q〉,
• derive [B ∪ q]〈W 〉 by weakening,
• resolve [r]〈p, q〉 and [B ∪ q]〈W 〉 on q to derive [B ∪ r]〈W ∪ p〉,
• derive [B ∪ p]〈W 〉 by weakening,
• resolve [B ∪ r]〈W ∪ p〉 and [B ∪ p]〈W 〉 on p to derive [B ∪ r]〈W 〉,
• derive [B]〈W ∪ r〉 by weakening,
• finally, resolve [B ∪ r]〈W 〉 and [B]〈W ∪ r〉 on r resulting in [B]〈W〉.

Double-checking the set intersections and inclusions shows that all these
moves are legal.

This concludes the analysis for the case r /∈ B.

10.4.6 Summing up the Proof of Theorem 10.13
If π =

{
C0, . . . , Cτ

}
is a derivation of Cl [fd(~z)] from *Pebd

G[f], it is easily verified
from Definition 10.12 that R(C0) = R(∅) = ∅ and R(Cτ ) = R(Cl [fd(~z)]) = {[z]〈∅〉}.

In Sections 10.4.3, 10.4.4, and 10.4.5, we have shown how to do the intermediate
res-pebbling moves to get from S(Ct−1) to S(Ct) in the case of erasure, inference
and axiom download, respectively. For erasure and inference, the blob-pebbling
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cost changes monotonically during the transition S(Ct−1)  S(Ct). In the case of
axiom download, all pebbles used in the intermediate moves are still on the DAG
in S(Ct) except possibly for the pebbles on {r} ∪ pred(r), so the extra intermediate
cost is upper-bounded by 3.

This shows that the complete res-pebbling Rπ of the DAG G associated to any
resolution derivation π : *Pebd

G[f]`Cl [fd(~z)] by the construction in this section has
res-pebbling cost bounded from above by cost(Rπ) ≤ maxC∈π

{
cost(R(C))

}
+ 3.

Theorem 10.13 is thereby proven.

10.5 Res-Pebbling Price Lower-Bounds Space

Everything said so far, and, in particular, everything in Section 10.4, applies to
any (non-constant) Boolean function f and any pebbling degree d ∈ N+. In order
to clinch the proof of our lower bounds on space, however, in this final section we
need to focus on a particular kind of functions f(x1, . . . , xd) having the property
that no single variable xi determines the value of f(x1, . . . , xd). In particular, this
means that we need at least d ≥ 2 variables per vertex.
Definition 10.16 (Non-authoritarian function). We will call a Boolean func-
tion f over d variables x1, . . . , xd non-authoritarian if for any variable xi and any
truth value α(xi) = νi assigned to xi, α can be extended to a truth value assign-
ment α′ satisfying f(x1, . . . , xd) and another truth value assignment α′′ falsifying
f(x1, . . . , xd). If f does not satisfy this requirement, then we will call the function
authoritarian.

The following observations are immediate:
• The functions

⊕d
i=1xi are non-authoritarian if d > 1.

• The functions k-trued(x1, . . . , xd) are non-authoritarian if 1 < k < d.

• However, all functions
∨d

i=1 xi = 1-trued(x1, . . . , xd) are authoritarian.
As opposed to the analogous results in Chapters 8 and 9, which were proven for
the authoritarian function

∨d
i=1 xi, the lower bounds proven in this section will

depend crucially on the fact that the function f(x1, . . . , xd) that we use is non-
authoritarian. What we are going to prove is that if a set of clauses C derived
from Pebd

G[f] for some non-authoritarian function f induces a res-pebbling con-
figuration R(C) according to Definition 10.12, then the cost of R(C) as specified
in Definition 10.8 is at most |C|. That is, the cost of an induced res-pebbling
configuration provides a lower bound on the size of the set of clauses inducing it.

Recall that we say that a vertex u is represented in a clause C, and that C
mentions u, if Varsd(u) ∩ Vars(C) 6= ∅, where Varsd(u) = {u1, . . . , ud}. We write
V (C) to denote all vertices represented in a clause set C.

The following lemma says that if [B]〈W〉 is induced by C, then all vertices in
B ∪ W are represented in any minimal subset of clauses C′ ⊂ C inducing [B]〈W〉.
This holds for any function f.
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Lemma 10.17. Consider the pebbling contradiction *Pebd
G[f] for any non-constant

Boolean function f and suppose that C is a set of clauses derived from *Pebd
G[f]

such that [B]〈W〉 ∈ R(C). Then B ∪ W ⊆ V (C).

Proof. Fix any subset of clauses C′ ⊆ C such that C′ B
∨

b∈B fd(~b)∨
∨

w∈W ¬fd(~w).
Consider any v ∈ (B ∪W )\V (C′) and suppose without loss of generality that v ∈ B.
By Definition 10.12 it holds that C′ 2

∨
b∈B\{v} fd(~b) ∨

∨
w∈W ¬fd(~w), so there is

an assignment α such that α(C′) = 1 and α
(∨

b∈B\{v} fd(~b) ∨
∨

w∈W ¬fd(~w)
)

= 0.
Change the values of the variables v1, . . . , vd in α as needed to get an α′ with
α′(f(v1, . . . , vd)) = 0. Then α′

(∨
b∈B fd(~b) ∨

∨
w∈W ¬fd(~w)

)
= 0, since we did

not touch Varsd
(
(B ∪ W ) \ {v}

)
, so we must have α′(C′) = 0. But this means

that there is some clause C ∈ C′ with α(C) = 1 but α′(C) = 0, and this clause
mentions v.

Using Lemma 10.17 and in addition assuming that f is non-authoritarian, we
can prove the lower bound that we need.

Theorem 10.18. Suppose that C is a set of clauses derived from the pebbling con-
tradiction *Pebd

G[f] for any non-authoritarian function f. Then |C| > cost(R(C)) =∣∣⋃
[B]〈W〉∈R(C)(B ∪ W )

∣∣.
Proof. Let us write

V ∗ =
⋃

[B]〈W〉∈R(C)(B ∪ W ) (10.26)

to denote all pebbled vertices in the configuration induced by C. Consider the
bipartite graph with clauses in C on the left-hand side and vertices in V ∗ on the
right-hand side. We draw an edge between C ∈ C and v ∈ V ∗ if C mentions v.
That is, the set of neighbours of C is N(C) = V (C) ∩ V ∗. By Lemma 10.17 we
have V ∗ ⊆ V (C), so every v ∈ V ∗ is the neighbour of some C ∈ C.

Let C1 ⊆ C be a set of maximal size such that |C1| > |N(C1)|. If C1 = C
we are done, so suppose this is not the case. We show that C1 6= C leads to a
contradiction.

To this end, let C2 = C\C1 6= ∅ and define the vertex sets V ∗
1 = N(C1) and V ∗

2 =
V ∗\V ∗

1 . Note that we must have V ∗
2 ⊆ N(C2) since N(C) = N(C1) ∪ N(C2) = V ∗.

By the maximality of C1 it must hold for all D ⊆ C2 that |D| ≤
∣∣N(D)\V ∗

1

∣∣, because
otherwise C′ = C1 ∪ D would be a larger set with |C′| > |N(C′)|. But this means
that by Hall’s marriage theorem, there is a matching M of C2 into N(C2)\V ∗

1 = V ∗
2 .

Consider any subconfiguration [B]〈W〉 such that (B ∪ W ) ∩ V ∗
2 6= ∅ and let C′ ⊆ C

be any clause set such that

C′ B
∨
b∈B

fd(~b) ∨
∨

w∈W

¬fd(~w) . (10.27)

We claim that we can construct a truth value assignment α that makes C′ true
but

∨
b∈B fd(~b) ∨

∨
w∈W ¬fd(~w) false. This is clearly a contradiction, and so the

theorem follows.
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To prove the claim, let C′
i = C′ ∩ Ci, Bi = B ∩ V ∗

i , and Wi = W ∩ V ∗
i for

i = 1, 2. Since B1 ∪ W1 $ B ∪ W by construction, the minimality condition in
(10.27) yields that

C′
1 2

∨
b∈B1

fd(~b) ∨
∨

w∈W1

¬fd(~w) (10.28)

so we can find a truth value assignment α1 that sets C′
1 to true, all f(b1, . . . , bd),

b ∈ B1, to false, and all f(w1, . . . , wd), w ∈ W1, to true. Note that α1 need only
assign values to variables in Varsd

(
B1 ∪ W1

)
. For C′

2, we use the matching M into
V ∗

2 to find a distinct vertex v(C) for every C ∈ C′
2 and a literal over some variable

v(C)i ∈ Varsd
(
v(C)

)
that fixes C to true. Let α2 be this assignment. We stress

that α2 assign values to at most one variable vi for any v ∈ B2 ∪ W2. But since
f is non-authoritarian, this means that we can extend α2 to an assignment still
satisfying C′

2 but setting all f(b1, . . . , bd), b ∈ B2, to false and all f(w1, . . . , wd),
w ∈ W2, to true. It follows that α = α1 ∪ α2 is a truth value assignment such that
α(C′) = 1 but α(

∨
b∈B fd(~b) ∨

∨
w∈W ¬fd(~w)) = 0, which proves the claim.

Let us conclude this section by recollecting why Theorem 2.5 and Corollary 2.6
now follow.

Theorem 10.19 (strengthened version of Theorem 2.5). Let Pebd
G[f] be

a pebbling contradiction for any single-sink fan-in 2 DAG G, any fixed pebbling
degree d ≥ 2, and any non-authoritarian function f(x1, . . . , xd). Then it holds that
Sp
(
Pebd

G[f] ` 0
)
≥ BW-Peb(G)−O(1).

Proof. Consider instead the pebbling formula *Pebd
G[f] without sink axioms. By

Lemma 10.11 it holds that Sp
(
Pebd

G[f] ` 0
)

= Sp
(
*Pebd

G[f] ` Cl [fd(~z)]
)
+O(1) if d

is constant, so it is sufficient to prove lower bounds on the clause space of deriving
Cl [fd(~z)] from *Pebd

G[f] .
Fix any resolution derivation π : *Pebd

G[f]`Cl [fd(~z)] and let Rπ be the com-
plete res-pebbling of the graph G associated to π in Theorem 10.13 such that
cost(Rπ) ≤ maxC∈π

{
cost(R(C))

}
+ O(1). On the one hand, Theorem 10.18 says

that cost(R(C)) ≤ |C| for any C since f is non-authoritarian, so, in particular,
it must hold that cost(Rπ) ≤ Sp(π) + O(1). On the other hand, cost(Rπ) ≥
Res-Peb(G) ≥ BW-Peb(G) by Theorem 10.3. Thus Sp(π) ≥ BW-Peb(G) − O(1),
and the theorem follows. To get a statement of the form of Theorem 2.5, choose f
to be the non-authoritarian function f(x1, x2) = x1 ⊕ x2.

Proving Corollary 2.6 is now just a matter of picking the right DAGs Gn and
the right function f.

Corollary 2.6 (restated). For all k ≥ 6 there is a family {Fn}∞n=1 of k-CNF
formulas of size O(n) such that L(Fn ` 0) = O(n) and W(Fn ` 0) = O(1) but
Sp(Fn ` 0) = Ω(n/ log n).
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Proof. Let {Gn}∞n=1 be the family of single-sink fan-in 2 DAGs in Theorem 5.5
with size O(n) and black-white pebbling price BW-Peb(Gn) = Ω(n/ log n). Then
for any non-constant Boolean function f, the pebbling contradiction Pebd

Gn
[f] can

be refuted in length L
(
Pebd

Gn
[f] ` 0

)
= O(n) and width W

(
Pebd

Gn
[f] ` 0

)
= O(1)

if d is fixed to some constant by Proposition 10.5.
To get a lower bound on the clause space, we just pick f to be some suitable

non-authoritarian function. As has already been noted, functions
⊕d

i=1xi work
fine, but it would be nice to get the corollary for any clause width w ≥ 6 and
not only for clause widths divisible by 3. Therefore, we instead consider pebbling
contradictions Pebd

G[k-true ]. More precisely, for any fixed width w we choose f
to be the function 2-trued(x1, . . . , xd) for d = w − 3 specifying that fd(x1, . . . , xd)
is true precisely when there are at least 2 distinct variables xi and xj being true.
Since 1 < 2 < d if w ≥ 6, 2-trued(x1, . . . , xd) is non-authoritarian, and as was noted
above the width of Pebd

G[k-true ] is d + k + 1 = w. Hence, the corollary follows by
applying Theorem 2.5 on 2-true-pebbling contradictions.

We also note that somewhat intriguingly, width k = 6 is actually a tight lower
bound for the techniques used in this chapter (as opposed to in Chapters 8 and 9,
where the corresponding weaker bound on space can be made to hold for k-CNF for-
mulas of any width k ≥ 4). This is a consequence of the following easy observation.

Observation 10.20. If fd is a non-authoritarian function, then the clause width
of the corresponding pebbling contradiction Pebd

G[f] is at least 6.

Proof. If W
(
Cl [fd(~x)]

)
= 1 or W

(
Cl [¬fd(~x)]

)
= 1, there would exist a single vari-

ables xi being able to determine the value of f. Thus, we must have W
(
Pebd

G[f]
)

=
2 ·W(Cl [¬fd(~x)]) + W(Cl [fd(~x)]) ≥ 6.



Chapter 11

Understanding Space in Resolution

This chapter contains a brief report on ongoing work with Eli Ben-Sasson gener-
alizing the results in Chapter 10. It would be interesting to see if one could gain
additional insights from recasting Chapters 8 and 9 in this framework as well, but
we have not had the time to study that question.

We want to stress that the results presented in this chapter have been obtained
very, very recently, even more so than the results in Chapter 10, and the material
below is all very much work in progress at the time of submission of this thesis.

11.1 Substitution Formulas and Variable Support Size

Throughout this chapter, we will let fd denote any non-constant Boolean function
fd : {0, 1}d 7→ {0, 1} of arity d. We use the shorthand ~x = (x1, . . . , xd), so that
fd(~x) is just an equivalent way of writing fd(x1, . . . , xd).

As in Chapter 10, we assume some fixed canonical representations of fd and ¬fd

as CNF formulas and write Cl [fd(~x)] and Cl [¬fd(~x)] to denote the CNF formulas
over x1, . . . , xd that are logically equivalent to fd(x1, . . . , xd) and ¬fd(x1, . . . , xd),
respectively. Some examples of this notation were given in Section 10.2.

We want to define formally what it means to substitute fd for the variables
Vars(F ) in a CNF formula F . For notational convenience, we assume that F only
has variables x, y, z, et cetera, without subscripts, so that x1, . . . , xd, y1, . . . , yd,
z1, . . . , zd, . . . are new variables not occurring in F .
Definition 11.1 (Substitution formula). For a positive literal x, we define the
fd-substitution of x to be x[fd] = Cl [fd(~x)], i.e., the canonical representation of
fd(x1, . . . , xd) as a CNF formula. For a negative literal y, the fd-substitution is
y[fd] = Cl [¬fd(~y)]. The fd-substitution of a clause C = a1 ∨ · · · ∨ ak is the CNF
formula

C[fd] =
∧

C1∈a1[fd]

. . .
∧

Ck∈ak[fd]

(
C1 ∨ . . . ∨ Ck

)
(11.1)

and the fd-substitution of a CNF formula F is F [fd] =
∧

C∈F C[fd].
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With this notation, the generalized pebbling contradictions Pebd
G[fd] in Chap-

ter 10 are fd-substitutions of first-degree pebbling contradictions Peb1
G, and hence

Definition 11.1 is just a natural generalization of Definition 10.4. As another, more
concrete example, for C = x ∨ y and f2 = x1 ⊕ x2 we get that

C[f2] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2) .

(11.2)

We note that F [fd] is a CNF formula over d · |Vars(F )| variables containing at most
|F | · 2d·W(F ) clauses. (Recall that we defined a CNF formula as a set of clauses,
which means that |F | is the number of clauses in F .)

We have the following easy observation, the proof of which is presented for
completeness.

Observation 11.2. For any non-constant Boolean function fd : {0, 1}d 7→ {0, 1},
it holds that F [fd] is unsatisfiable if and only if F is unsatisfiable.

Proof. Suppose that F is satisfiable and let α be a truth value assignment such
that α(F ) = 1. Then we can satisfy F [fd] by choosing a truth value assignment α′

for Vars
(
F [fd]

)
in such a way that fd

(
α′(x1), . . . , α′(xd)

)
= α(x). For if C ∈ F is

satisfied by some literal ai set to true by α, then α′ will satisfy all clauses Ci ∈ ai[fd]
and thus also the whole CNF formula C[fd] in (11.1).

Conversely, suppose F is unsatisfiable and consider any truth value assignment
α′ for F [fd]. Then α′ defines a truth value assignment α for F in the natural way
by setting α(x) = fd

(
α′(x1), . . . , α′(xd)

)
, and we know that there is some clause

C ∈ F that is not satisfied by α. That is, for every literal ai ∈ C = a1 ∨ · · · ∨ ak

it holds that α(ai) = 0. But then α′ does not satisfy ai[fd], so there is some
clause C ′

i ∈ ai[fd] such that α′(C ′
i) = 0. This shows that α′ falsifies the disjunction

C ′
1 ∨ · · · ∨ C ′

k ∈ C[fd], and consequently F [fd] must also be unsatisfiable.

To state the results in this chapter, we also need to define a new proof complexity
measure which is related to, but weaker than, variable space.

Definition 11.3 (Variable support size). Let us say that the variable support
size, or just support size, of a clause set C is SuppSize(C) = |Vars(C)|, i.e., the num-
ber of variables mentioned in C. We define the support size of a resolution derivation
π = {C0, . . . , Cτ} to be SuppSize(π) = maxt∈[τ ]{SuppSize(C)} and the minimal
support size of refuting F is then SuppSize (F ` 0) = minπ:F ` 0{SuppSize(π)}.

The difference between variable space and variable support size is that the
variables space counts the number of variable occurrences in C with repetitions,
but for variable support size we only count each variable once no matter how often
it occurs. It follows that the support size of refuting a formula is always at most
linear in the formula size, while the refutation variable space could potentially be
quadratic in the formula size in the worst case. (As was noted in Section 4.3,
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though, no such formulas are known to exist, and we do not even know of any
superlinear lower bounds on variable space.)

Although the next result is stated for variable space in [16] (as quoted in The-
orem 5.11), the proof in [16] actually establishes the slightly stronger statement
below.

Theorem 11.4 ([16]). For any DAG G, it holds that SuppSize (Peb1
G ` 0) ≥

BW-Peb(G).

Combining Theorem 11.4 with Theorem 5.5 and Proposition 5.7, we get the
following corollary.

Corollary 11.5 ([16]). There exists a family of 3-CNF formulas {Fn}∞n=1 with
O(n) clauses and variables such that there are resolution refutations πn : Fn ` 0
in length L(πn) = O(n) and width W(πn) = O(1), but the support size of any
refutation is SuppSize (Fn ` 0) = Ω(n/ log n).

11.2 A General Theorem on Substitution and Space

Recall from Definition 10.16 that a non-authoritarian function fd is a function
such that no single variable xi can determine the value of fd(x1, . . . , xd). Our
next theorem says that we can convert lower bounds on variable support size into
lower bounds on clause space by making fd-substitutions using non-authoritarian
functions. Thus, the innocent-looking Corollary 11.5 above is in fact all we need to
get an optimal separation of clause space and length in resolution.

Theorem 11.6. Let F be any unsatisfiable CNF formula and fd : {0, 1}d 7→ {0, 1}
be any non-constant Boolean function. Then it holds that the substitution formula
F [fd] can be refuted in width

W
(
F [fd] ` 0

)
= O

(
d ·W(F ` 0)

)
and length

L
(
F [fd] ` 0

)
≤ min

π:F ` 0

{
L(π) · exp

(
O(d ·W(π))

)}
.

If in addition fd is non-authoritarian, it holds that

Sp
(
F [fd] ` 0

)
≥ SuppSize (F ` 0) ,

i.e., the clause space of refuting the substitution formula F [fd] is lower-bounded by
the variable support size of refuting the original formula F .

Note that if F is refutable simultaneously in linear length and constant width,
then the bound in Theorem 11.6 on L

(
F [fd] ` 0

)
becomes linear in L(F ` 0). And

the goal of the long, hard work in the papers [60, 63, 20] can be obtained instead
as an easy corollary of this theorem.



238 CHAPTER 11. UNDERSTANDING SPACE IN RESOLUTION

Corollary 11.7 (Corollary 2.6 restated). There is a family {Fn}∞n=1 of k-CNF
formulas of size O(n) such that L(Fn ` 0) = O(n) and W(Fn ` 0) = O(1) but
Sp(Fn ` 0) = Ω(n/ log n).
Proof. Fix any non-authoritarian function fd, do fd-substitution on the formulas
in Corollary 11.5, and appeal to Theorem 11.6.

11.3 Proof Sketch for the Substitution Space Theorem

Due to the fact that Theorem 11.6 was discovered only at a very late stage when
this thesis was already supposed to be ready to go to press, time constraints do
not allow us to present a full, polished proof. In this section, however, we try to
provide enough details to convince the reader that the theorem is indeed true.

The upper bounds on refutation width and length for F [fd] are not hard. Given
a resolution refutation π of F , we construct a refutation π′ : F [fd]` 0 mimick-
ing the derivation steps in π. When π downloads an axiom C, we download the
exp
(
O(d ·W(C))

)
axiom clauses in C[fd]. When π resolves C1 ∨ x and C2 ∨ x to

derive C1 ∨C2, we use the fact that resolution is implicationally complete to derive
(C1 ∨ C2)[fd] from (C1 ∨ x)[fd] and (C2 ∨ x)[fd].

The interesting part of the theorem, however, is of course how we can get lower
bounds on clause space for F [fd] from lower bounds on support size for F . The
idea is to look at refutations of F [fd] and “project” them down on refutations
of F . To do this, we re-use the definition of precise implication from Definitions 9.9
and 10.12.

Let us also, in this section, use the convention that any clause C can be written
C = C+ ∨ C−, where C+ =

∨
x∈Lit(C) x is the disjunction of the positive literals

in C and C− =
∨

y∈Lit(C) y is the disjunction of the negative literals. Also, for
brevity we do not write x ∈ Lit

(
C+
)

or y ∈ Lit
(
C−) below, but instead x ∈ C+

and y ∈ C− (which is still formally correct since a clause is a set of literals).
Definition 11.8 (Projected clauses). Let F be a CNF formula and fd a non-
constant Boolean function, and suppose that D is a set of clauses derived from F [fd].
Then we say that D projects the clause C = C+ ∨ C− on F (or, perhaps more
correctly, on Vars(F )) if there is a subset of clauses DC ⊆ D such that

DC B
∨

x∈C+

fd(~x) ∨
∨

y∈C−

¬fd(~y) (11.3)

and we write

projF (D) =
{
C
∣∣∃DC ⊆ D s.t. DC B

∨
x∈C+fd(~x) ∨

∨
y∈C−¬fd(~y)

}
(11.4)

to denote the set of all clauses that D projects on F .
Given that we now know how to translate clauses derived from F [fd] into clauses

over Vars(F ), the next step is to show that this translation preserves resolution
refutations.
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Theorem 11.9. Suppose that π =
{
D0, . . . , Dτ

}
is a resolution refutation of F [fd]

for some arbitrary unsatisfiable CNF formula F and some arbitrary non-constant
function fd. Then the sets of projected clauses

{
projF (D0), . . . , projF (Dτ )

}
form

the “backbone” of a resolution refutation πF of F in the sense that projF (D0) = ∅,
projF (Dτ ) = {0}, and all transitions from projF (Dt−1) to projF (Dt) for t ∈ [τ ]
can be accomplished by axiom downloads from F , inferences, erasures, and possibly
weakening steps in such a way that the variable support size in πF during these
intermediate derivation steps never exceeds maxD∈π

{
SuppSize(projF (D))

}
.

Section 10.4 does in fact present a proof of this theorem for the special case
when F = Peb1

G. The full proof of the general case is obtained by going through
the construction in Section 10.4 carefully and see that it can in fact be made to
work for arbitrary CNF formulas (and that additionally, we can get rid of the O(1)
term in the final bound).

If we are ready to believe that Theorem 11.9 can be proven in this way, the rest
is now easy. We just need the following fact.

Theorem 11.10. Suppose that D is a non-contradictory set of clauses derived from
F [fd] for some arbitrary unsatisfiable CNF formula F and some non-authoritarian
function fd. Then Sp(D) ≥ SuppSize(projF (D)).

But this is exactly Theorem 10.18, albeit expressed in different notation, so we
can just copy the proof in Section 10.5. And combining Theorems 11.9 and 11.10,
Theorem 11.6 follows. This concludes our proof sketch.





Part IV

Conclusion

241





Chapter 12

Concluding Remarks

The main contribution of this thesis is the sequence of results [60, 63, 20] leading
to an optimal separation of clause space and length in resolution. The same results
also yield an almost optimal separation of clause space and width. This answers
two questions in proof complexity that have been open for some years.

Furthermore, as a part of the ongoing research reported in Chapter 11 we observe
that our separation results appear to be an immediate corollary of a more general
(and more simple) statement about how properties of CNF formulas change under
substitution. We hope that there should be further interesting implications of this
theorem and are currently working on exploring this issue.

We can also see several other natural and interesting follow-up questions to
our results. This final chapter is an attempt to briefly outline some of these ques-
tions. While Section 12.1 mentions some remaining issues from our previous papers
that are raised mostly out of pure curiosity, Sections 12.2 and 12.3 discuss more
fundamental problems that seem interesting to pursue in the future.

12.1 Resolution Refutation Space of Pebbling Contradictions

The lower bounds on clause space in Chapters 8 and 9 were proven for the “stan-
dard” pebbling contradictions Pebd

G[∨] in Definition 5.6. In order to get the optimal
separation result in Chapter 10, however, we had to switch formulas to more gen-
eral pebbling contradictions Pebd

G[f] in Definition 10.4 for other functions f than
logical or. So, strictly speaking, the open question in, for instance, [16] about the
refutation clause space of pebbling contradictions remains.

Open Problem 1. Is it true that Sp
(
Pebd

G[∨] ` 0
)

= Ω
(
BW-Peb(G)

)
for any

single-sink fan-in 2 DAG G provided that d ≥ 2?

Given that we know that this bound holds for a reasonably large class of graphs,
we would find it surprising if it was not true in general.
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Another question, for which we have much less intuition, is whether it holds
that the refutation clause space of pebbling contradictions is in fact asymptotically
lower-bounded not by black-white pebbling price but by black pebbling price.

As has been hinted at in, for instance, Section 9.1, it seems that a resolution
refutation really cannot mimic a black-white pebbling in such a way that the num-
ber of clauses is upper-bounded by the number of pebbles. If one tries to transform
a black-white pebbling into a resolution refutation along the lines of Section 9.1,
it appears that the cost for white pebbles measured in terms of clauses very easily
becomes exponential rather than linear. The litmus test for this question would
be to study families of DAGs as in [47], where the black and black-white peb-
bling prices differ asymptotically, and determine the refutation clause space of, say,
XOR-pebbling contradictions over such DAGs.

Open Problem 2. Can it be that Sp
(
Pebd

G[⊕] ` 0
)

= Ω
(
Peb(G)

)
for any single-

sink fan-in 2 DAG G provided that d ≥ 2? Or is there a family of DAGs {Gn}∞n=1

such that Sp
(
Pebd

G[⊕] ` 0
)

= o
(
Peb(G)

)
? In particular, what is the refutation

clause space of XOR-pebbling contradictions over the graphs in [47]?

A third, slightly curious aspect of our results is that the bounds in Chapters 8
and 9 provide separations for k-CNF formulas only for k ≥ 4, and in Chapter 10 we
even have to choose k ≥ 6 to find k-CNF formula families that optimally separate
space and length. We know from [39] that any 2-CNF formula is refutable in
constant clause space, but should there not be 3-CNF formulas for which we could
prove similar space-length separations?

Given any CNF formula F , we can transform it to a 3-CNF formula by rewriting
every clause C = a1 ∨ . . . ∨ an in F wider than 3 as a conjunction of 3-clauses

y0 ∧
∧

1≤i≤n

(yi−1 ∨ ai ∨ yi) ∧ yn, (12.1)

for some new auxiliary variables y0, y1, . . . , yn unique for this clause C. Let us write
F̃ to denote the 3-CNF formula obtained from F in this way. It is easy to see that F̃
is unsatisfiable if and only if F is unsatisfiable. Also, it is straightforward to verify
that L

(
F̃ ` 0

)
≤ L(F ` 0) + W(F ) · L(F ) and Sp

(
F̃ ` 0

)
≤ Sp(F ` 0) + O

(
1
)
.

It would seem like a fruitful idea to rewrite pebbling contradictions Pebd
G[f] for

suitable functions f as 3-CNF formulas P̃ebd
G[f] and study the space complexity of

such formulas. For this to work, we would need lower bounds on the refutation
clause space of F̃ in terms of the refutation clause space of F , however.

Open Problem 3. Is it true that Sp
(
P̃eb2

G[⊕] ` 0
)
≥ BW-Peb(G)? In general,

can we prove lower bounds on Sp
(
F̃ ` 0

)
in terms of Sp(F ` 0), or are there

counter-examples where the two measures differ asymptotically?

We have not worked on the questions in Open Problem 3, but we would suspect
that the answer to the first one is “yes.”
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12.2 Space Lower Bounds for Stronger Proof Systems

It would be interesting to see whether our lower bounds can be extended to stronger
proof systems than resolution. One very natural candidate would be the k-DNF
resolution proof systems R(k) introduced by Krajíček [50], where the lines in the
proofs are k-DNF formulas instead of clauses and one can “resolve” over up to k
variables simultaneously.

It is easy to prove the generalization of Theorem 5.8 that pebbling contradictions
of degree d can be refuted in space SpR(k)

(
Pebd

G ` 0
)

= O(1) in k-DNF resolution
if d ≤ k. For pebbling degree d > k, one could argue that it seems plausible
that k-DNF resolution should be hard pressed to do anything better with Pebd

G

than ordinary resolution (i.e., 1-DNF resolution) can do with Peb2
G. But although

the difference between resolution and k-DNF resolution might appear small, going
from disjunctive clauses to 2-DNF formulas, or more generally from k-DNFs to
(k+1)-DNFs, increases the proof power exponentially [77]. And while many lower
bounds have been proven on k-DNF resolution proof length, for instance, in [3, 8, 9,
71, 77], it seems that the tools developed in these papers cannot be used to obtain
lower bounds on space.

A careful reading of our proofs reveals that the only place where we actually
use that the configurations in the derivations contain disjunctive clauses is when we
prove that the cost of the induced pebbles provide a lower bound for the number of
clauses in the configuration inducing them. The proofs that resolution derivations
induce pebblings (of one sort or another) work just as well for derivations that use
any sound derivation rules and operate with configurations containing arbitrary
logical formulas. The main difficulty if one tries to prove a lower bound on k-DNF
resolution refutation space for standard OR-pebbling contradictions Pebd

G[∨] ap-
pears to be that one needs an analogue of Theorem 8.27 for minimally unsatisfiable
sets of k-DNF formulas, with a strong lower bound on the number of k-DNF for-
mulas in terms of the number of variables. This result should then be plugged
into Theorem 8.29 or Theorem 9.16 to yield a lower bound for k-DNF resolution
refutation space. Unfortunately, to the best of our knowledge no such bounds for
minimally unsatisfiable sets of k-DNF formulas have been shown, and we do not
even have a clear intuition as to exactly what such an analogous result should look
like.

Given our new results in Chapter 10, one could of course try with, for instance,
XOR-pebbling contradictions Pebd

G[⊕] instead. However, it seems that also in this
case some additional ideas are needed to make the proof work.

We believe that both OR-pebbling contradictions Pebk+1
G [∨] and XOR-pebbling

contradictions Pebk+1
G [⊕] should separate k-DNF resolution and (k+1)-DNF reso-

lution with respect to space.

Open Problem 4. If we fix k, does it hold for pebbling contradiction of degree k+1
that SpR(k+1)

(
Pebk+1

G [f] ` 0
)

= O(1) but SpR(k)
(
Pebk+1

G [f] ` 0
)

= Ω(BW-Peb(G))
for f chosen to be or ∨, exclusive or ⊕, or any other suitable function?
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If this bound, or any non-constant lower bound, on the k-DNF resolution space
SpR(k)(Pebk+1

G [f] ` 0), could be proven, this would establish that the k-DNF resolu-
tion proof systems form a strict hierarchy with respect to space. Currently, all that
is known is the separation result in [38] for the restricted case of tree-like k-DNF
resolution. Also, understanding the question about the structure of minimally un-
satisfiable sets of k-DNF formulas that arises when one studies OR-pebbling contra-
dictions Pebd

G[∨] might be an interesting (and challenging) combinatorial problem
in its own right.

12.3 Trade-off Questions for Resolution

We also want to discuss some questions that are, perhaps, in a sense more related
to Theorem 2.8 and the other trade-off results presented in Chapter 7.

Recall that we know from [21] (see Theorem 4.19) that short resolution refuta-
tions imply the existence of narrow refutations, and that in view of this an appealing
proof search heuristic is to search exhaustively for refutations in minimal width.
One serious drawback of this approach, however, is that there is no guarantee that
the short and narrow refutations are the same one. On the contrary, the narrow
refutation π′ resulting from the proof in [21] is potentially exponentially longer
than the short proof π that we start with. However, we have no examples of formu-
las where the refutation in minimum width is actually known to be substantially
longer than the minimum-length refutation. Therefore, it would be valuable to
know whether this increase in length is necessary. That is, is there a formula family
which exhibits a length-width trade-off in the sense that there are short refutations
and narrow refutations, but all narrow refutations have a length blow-up (polyno-
mial or superpolynomial)? Or is the exponential blow-up in [21] just an artifact of
the proof?

Open Problem 5. If F is a k-CNF formula over n variables refutable in length L,
is it true that there is always a refutation π of F in width W(π) = O

(√
n log L

)
with length no more than, say, L(π) = O(L) or at most poly(L)?

A similar trade-off question can be posed for clause space. Given a refutation
in small space, we can prove using [10] (see Theorem 4.22) that there must also
exist a refutation in short length. But again, the short refutation resulting from
the proof is not the same as that with which we started. For concreteness, let us
fix the space to be constant. If a polynomial-size k-CNF formula has a refutation
in constant clause space, we know that it must be refutable in polynomial length.
But can we get a refutation in both short length and small space simultaneously?

Open Problem 6. Suppose that {Fn}∞n=1 is a family of polynomial-size k-CNF for-
mulas with refutation clause space Sp(Fn ` 0) = O(1). Does this imply that there
are refutations πn : Fn ` 0 simultaneously in length L(πn) = poly(n) and clause
space Sp(πn) = O(1)?
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Or can it be that restricting the clause space, we sometimes have to end up with
really long refutations? And what happens if the refutation clause space is small
but slowly growing? We would like to know what holds in this case, and how it
relates to the trade-off results for variable space in [45].

Finally, we note that all bounds on clause space proven so far is in the regime
where the space Sp(π) is less than the number of clauses |F | in F . This is quite
natural, since [39] proved that the size of the formula is an upper bound on the
minimal clause space needed, as was mentioned in Section 4.3.

Such lower bounds on space might not seem too relevant to clause learning
algorithms, since the size of the cache in practical applications usually will be
very much larger than the size of the formula. For this reason, it seems to be a
highly interesting problem to determine what can be said if we allow extra clause
space. Assume that we have a CNF formula F of size roughly n refutable in length
L(F ` 0) = L for L suitably large (say, L = poly(n) or L = nlog n or so). Suppose
that we allow clause space more than the minimum n+O(1), but less than the trivial
upper bound L/ log L. Can we then find a resolution refutation using at most that
much space and achieving at most a polynomial increase in length compared to the
minimum?

Open Problem 7 ([17]). Let F be any CNF formula with |F | = n clauses (or
|Vars(F )| = n variables). Suppose that L(F ` 0) = L. Does this imply that
there is a resolution refutation π : F ` 0 in clause space Sp(π) = O(n) and length
L(π) = poly(L)?

If so, this could be interpreted as saying that a smart enough clause learning
algorithm can potentially find any short resolution refutation in reasonable space
(and for formulas that cannot be refuted in short length we cannot hope to find
refutations efficiently anyway).

We conclude with a couple of comments on clause space versus clause learning.
Firstly, we note that it is unclear whether one should expect any fast progress

on Open Problem 7, at least if if our experience from the case where Sp(π) ≤ |F |
is anything to go by. Even in this “low-end regime,” establishing lower bounds on
space for formulas easy with respect to length has been quite challenging. However,
it certainly cannot be excluded that problems in the range Sp(π) > |F | might
be approached with different and more successful techniques, or perhaps even by
developing the ideas in Chapters 10 and 11 further.

Secondly, we would like to raise the question of whether, in spite of what was
just said before Open Problem 7, lower bounds on clause space can nevertheless
give indications as to which formulas might be hard for clause learning algorithms
and why.

Suppose that we know for some CNF formula F that Sp(F ` 0) is large. What
this tells us is that any algorithm, even a non-deterministic one making optimal
choices concerning which clauses to save or throw away at any given point in time,
will have to keep a fairly large number of “active” clauses in memory in order
to carry out the refutation. Since this is so, a real-life deterministic proof search
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algorithm, which has no sure-fire way of knowing which clauses are the right ones
to concentrate on at any given moment, might have to keep working on a lot of
extra clauses in order to be sure that the fairly large critical set of clauses needed
to find a refutation will be among the “active” clauses.

Intriguingly enough, pebbling contradictions might in fact be an example of this.
We know that these formulas are very easy with respect to length and width, having
constant-width refutations that are essentially as short as the formulas themselves.
But in [74], it was shown that state-of-the-art clause learning algorithms can have
serious problems with even moderately large pebbling contradictions. Namely, the
“grid pebbling formulas” in [74] are precisely our standard OR-pebbling contradic-
tions of degree d = 2 over pyramids.

Although we are certainly not arguing that this is the whole story—it was also
shown in [74] that the branching order is a critical factor, and that given some
extra structural information the algorithm can achieve an exponential speed-up—
we wonder whether the high lower bound on clause space can nevertheless be part
of the explanation. It should be pointed out that pebbling contradictions are the
only formulas we know of that are really easy with respect to length and width but
hard for clause space. And if there is empirical data showing that for these very
formulas clause learning algorithms can have great difficulties finding refutations,
it might be worth investigating whether this is just a coincidence or a sign of some
deeper connection.
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