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Introduction
Resolution

Resolution Width

Propositional Proof Systems
Proof Systems and Computational Complexity

What Is a Proof?
Claim: 25957 is the product of two primes.

True or false? What kind of proof would convince us?

I “I told you so. Just factor and check it yourself!”
Not much of a proof.

I “25957 = 101 · 257. 101 is prime since 101 ≡ 1 (mod 2)
and 101 ≡ 2 (mod 3) and 101 ≡ 1 (mod 5) and 101 ≡ 3
(mod 7). 257 is prime since . . . 257 ≡ 10 (mod 13).”
OK, but maybe even a bit of overkill.

I “25957 = 101 · 257; check yourself that these are primes.”

Key demand: A proof should be efficiently verifiable.
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Proof system

Proof system for a language L:

Deterministic algorithm P(s, π) that runs in time polynomial
in |s| and |π| such that

I for all s ∈ L there is a string π (a proof) such that
P(s, π) = 1,

I for all s 6∈ L it holds for all strings π that P(s, π) = 0.

Propositional proof system: proof system for the language
TAUT of all valid propositional logic formulas (or tautologies)
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Example Propositional Proof System
Example (Truth table)

p q r (p ∧ (q ∨ r)) ↔ ((p ∧ q) ∨ (p ∧ r))
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Certainly polynomial-time checkable measured in “proof” size
Why does this not make us happy?
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Proof System Complexity

Complexity compP of a proof system P:

Smallest g : N 7→ N such that s ∈ L if and only if there is a
proof π of size |π| ≤ g(|s|) such that P(s, π) = 1.

If a proof system is of polynomial complexity, it is said to be
polynomially bounded or p-bounded.

Example (Truth table continued)
Truth table is a propositional proof system, but of exponential
complexity!
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Proof systems and P vs. NP

Theorem (Cook & Reckhow 1979)
NP = co-NP if and only if there exists a polynomially bounded
propositional proof system.

Proof.
NP exactly the set of languages with p-bounded proof systems

⇒ TAUT ∈ co-NP since F is not a tautology iff ¬F ∈ SAT.
If NP = co-NP, then TAUT ∈ NP has a p-bounded proof
system by definition.

⇐ Suppose there exists a p-bounded proof system. Then
TAUT ∈ NP, and since TAUT is complete for co-NP it follows
that NP = co-NP.
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Polynomial Simulation
The guess is that NP 6= co-NP
Seems that proof of this is lightyears away
(Would imply P 6= NP as a corollary)

Proof complexity tries to approach this distant goal by studying
successively stronger propositional proof systems and relating
their strengths.

Definition (p-simulation)
P1 polynomially simulates, or p-simulates, P2 if there exists a
polynomial-time computable function f such that for all
F ∈ TAUT it holds that P2(F , π) = 1 iff P1(F , f (π)) = 1.

Weak p-simulation: compP1
= (compP2

)O(1) but we do not
know explicit translation function f from P2-proofs to P1-proofs
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Polynomial Equivalence

Definition (p-equivalence)
Two propositional proof systems P1 and P2 are polynomially
equivalent, or p-equivalent, if each proof system p-simulates
the other.

If P1 p-simulates P2 but P2 does not p-simulate P1, then P1 is
strictly stronger than P2.

Lots of results proven relating strength of different propositional
proof systems
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Proof Search Algorithms and Automatizability

But how do we find proofs?

Proof search algorithm AP for propositional proof system P:
deterministic algorithm with

I input: formula F
I output: P-proof π of F or report that F is falsifiable

Definition (Automatizability)
P is automatizable if there exists a proof search algorithm AP
such that if F ∈ TAUT then AP on input F outputs a P-proof
of F in time polynomial in the size of a smallest P-proof of F .
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Short Proofs Seem Hard to Find

Example (Truth table continued)
Truth table is (trivially) an automatizable propositional proof
system. (But the proofs we find are of exponential size, so this
is not very exciting.)

We want proof systems that are both
I strong (i.e., have short proofs for all tautologies) and
I automatizable (i.e., we can find these short proofs)

Seems that this is not possible (under reasonable complexity
assumptions)
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Resolution Width

Propositional Proof Systems and Unsatisfiable CNFs
Resolution Basics
Proof Length
Two Useful Tools

Transforming Tautologies to Unsatisfiable CNFs

Any propositional logic formula F can be converted to
formula F ′ in conjunctive normal form (CNF) such that

I F ′ only linearly larger than F
I F ′ unsatisfiable iff F tautology

Idea:

I Introduce new variable xG for each subformula G .
= H1 ◦H2

in F , ◦ ∈
{
∧,∨,→,↔

}
I Translate G to set of disjunctive clauses Cl(G) which

enforces that the truth value of xG is computed correctly
given truth values of xH1 and xH2
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Sketch of Transformation

Two examples for ∨ and → (∧ and ↔ are analogous):

G ≡ H1 ∨ H2 : Cl(G) :=
(
xG ∨ xH1 ∨ xH2

)
∧

(
xG ∨ xH1

)
∧

(
xG ∨ xH2

)
G ≡ H1 → H2 : Cl(G) :=

(
xG ∨ xH1 ∨ xH2

)
∧

(
xG ∨ xH1

)
∧

(
xG ∨ xH2

)
I Finally, add clause xF
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Propositional Proof Systems and Unsatisfiable CNFs
Resolution Basics
Proof Length
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Proof Systems for Refuting Unsatisfiable CNFs

Easy to verify that constructed CNF formula F ′ is unsatisfiable
iff F is a tautology

So any sound and complete proof system which produces
refutations of formulas in conjunctive normal form can be used
as a propositional proof system

This talk will focus on resolution, which is such a proof system
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Proof Length
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Some Notation and Terminology

I Literal a: variable x or its negation x
I Clause C = a1 ∨ . . . ∨ ak : set of literals

At most k literals: k -clause
I CNF formula F = C1 ∧ . . . ∧ Cm: set of clauses

k -CNF formula: CNF formula consisting of k -clauses
I Vars(·): set of variables in clause or formula

Lit(·): set of literals in clause or formula
I F � D: semantical implication, α(F ) true ⇒ α(D) true

for all truth value assignments α

I [n] = {1, 2, . . . , n}
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Propositional Proof Systems and Unsatisfiable CNFs
Resolution Basics
Proof Length
Two Useful Tools

Resolution Proof System
Resolution derivation π : F ` A of clause A from F :
Sequence of clauses π = {D1, . . . , Ds} such that Ds = A and
each line Di , 1 ≤ i ≤ s, is either

I a clause C ∈ F (an axiom)
I a resolvent derived from clauses Dj , Dk in π (with j , k < i)

by the resolution rule

B ∨ x C ∨ x
B ∨ C

resolving on the variable x

Resolution refutation of CNF formula F :
Derivation of empty clause 0 (clause with no literals) from F
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Example Resolution Refutation

F = (x ∨ z) ∧ (z ∨ y) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

1. x ∨ z Axiom 9. x ∨ y Res(1, 2)
2. z ∨ y Axiom 10. x ∨ y Res(3, 4)
3. x ∨ y ∨ u Axiom 11. x ∨ u Res(5, 6)
4. y ∨ u Axiom 12. x ∨ u Res(7, 8)
5. u ∨ v Axiom 13. x Res(9, 10)
6. x ∨ v Axiom 14. x Res(11, 12)
7. u ∨ w Axiom 15. 0 Res(13, 14)
8. x ∨ u ∨ w Axiom
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Resolution Sound and Complete

Resolution is sound and implicationally complete.

Sound If there is a resolution derivation π : F ` A
then F � A

Complete If F � A then there is a resolution derivation
π : F ` A′ for some A′ ⊆ A.

In particular,

F is unsatisfiable ⇔ ∃ resolution refutation of F

Short Proofs Are Narrow (Well, Sort of), But Are They Tight? TCS PhD Student Seminar April 3rd, 2006 20 / 63



Introduction
Resolution

Resolution Width

Propositional Proof Systems and Unsatisfiable CNFs
Resolution Basics
Proof Length
Two Useful Tools

Completeness of Resolution: Proof by Example
Decision tree:

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1x

y u

z u v w

Resulting resolution refutation:

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0

x x

x ∨ y x ∨ y x ∨ u x ∨ u
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Derivation Graph and Tree-Like Derivations

Derivation graph Gπ of a resolution derivation π:
directed acyclic graph (DAG) with

I vertices: clauses of the derivations
I edges: from B ∨ x and C ∨ x to B ∨ C for each application

of the resolution rule

A resolution derivation π is tree-like if Gπ is a tree
(We can make copies of axiom clauses to make Gπ into a tree)

Example
Our example resolution proof is tree-like.
(The derivation graph is on the previous slide.)
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Length

I Length L(F ) of CNF formula F is
# clauses in it

I Length of derivation π : F ` A is
# clauses in π (with repetitions)

I Length of deriving A from F is

L(F ` A) = min
π:F`A

{
L(π)

}
where minimum taken over all
derivations of A

I Length of deriving A from F in
tree-like resolution is LT (F ` A)
(min of all tree-like derivations)

1. x ∨ z
2. z ∨ y
3. x ∨ y ∨ u
4. y ∨ u
5. u ∨ v
6. x ∨ v
7. u ∨ w
8. x ∨ u ∨ w
9. x ∨ y

10. x ∨ y
11. x ∨ u
12. x ∨ u
13. x
14. x
15. 0



Length
15
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Resolution Basics
Proof Length
Two Useful Tools

Exponential Lower Bound for Proof Length

Theorem (Haken 1985)
There is a family of unsatisfiable CNF formulas

{
Fn

}∞
n=1 of size

polynomial in n such that L(Fn ` 0) = exp
(
Ω(n)

)
.

Also known: general resolution is exponentially stronger than
tree-like resolution (Bonet et al. 1998, Ben-Sasson et al. 1999)

Resolution widely used in practice anyway because of nice
properties for proof search algorithms (but is probably not
automatizable)

Theoretical point of view: we want to understand resolution
Gain insights and develop techniques that perhaps can be used
to attack more powerful proof systems
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Resolution Basics
Proof Length
Two Useful Tools

Weakening

In proofs, sometimes convenient to add a derivation rule for
weakening

B
B ∨ C

(for arbitrary clauses B, C).

Proposition
Any resolution refutation π : F ` 0 using weakening can be
transformed into a refutation π′ : F ` 0 without weakening in at
most the same length.

Proof.
Easy proof by induction over the resolution refutation.

Short Proofs Are Narrow (Well, Sort of), But Are They Tight? TCS PhD Student Seminar April 3rd, 2006 25 / 63



Introduction
Resolution

Resolution Width

Propositional Proof Systems and Unsatisfiable CNFs
Resolution Basics
Proof Length
Two Useful Tools

Weakening

In proofs, sometimes convenient to add a derivation rule for
weakening

B
B ∨ C

(for arbitrary clauses B, C).

Proposition
Any resolution refutation π : F ` 0 using weakening can be
transformed into a refutation π′ : F ` 0 without weakening in at
most the same length.

Proof.
Easy proof by induction over the resolution refutation.

Short Proofs Are Narrow (Well, Sort of), But Are They Tight? TCS PhD Student Seminar April 3rd, 2006 25 / 63



Introduction
Resolution

Resolution Width

Propositional Proof Systems and Unsatisfiable CNFs
Resolution Basics
Proof Length
Two Useful Tools

Restriction

Restriction ρ: partial truth value assignment
Represented as set of literals ρ = {a1, . . . , am} set to true by ρ

For a clause C, the ρ-restriction of C is

C|ρ =

{
1 if ρ∩Lit(C) 6= ∅
C \ {a | a ∈ ρ} otherwise

where 1 denotes the trivially true clause

For a formula F , define F |ρ =
∧

C∈F C|ρ
For a derivation π = {D1, . . . , Ds}, define π|ρ = {D1|ρ, . . . , Ds|ρ}
(with all trivial clauses 1 removed)
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Example Restriction
π =

1. x ∨ z Axiom in F
2. z ∨ y Axiom in F
3. x ∨ y ∨ u Axiom in F
4. y ∨ u Axiom in F
5. u ∨ v Axiom in F
6. x ∨ v Axiom in F
7. u ∨ w Axiom in F
8. x ∨ u ∨ w Axiom in F
9. x ∨ y Res(1, 2)

10. x ∨ y Res(3, 4)
11. x ∨ u Res(5, 6)
12. x ∨ u Res(7, 8)
13. x Res(9, 10)
14. x Res(11, 12)
15. 0 Res(13, 14)

π|x =
1. —
2. z ∨ y Axiom in F |x
3. —
4. y ∨ u Axiom in F |x
5. u ∨ v Axiom in F |x
6. v Axiom in F |x
7. u ∨ w Axiom in F |x
8. u ∨ w Axiom in F |x
9. —

10. —
11. u Res(5, 6)
12. u Res(7, 8)
13. —
14. 0 Res(11, 12)
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Restrictions Preserve Resolution Derivations

Proposition
If π : F ` A is a resolution derivation and ρ is a restriction on
Vars(F ), then π|ρ is a derivation of A|ρ from F |ρ , possibly using
weakening.

Proof.
Easy proof by induction over the resolution derivation.

In particular, if π : F ` 0 then π|ρ can be transformed into a
resolution refutation of F |ρ without weakening in at most the
same length as π.
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Two Technical Lemmas
Width is Upper-Bounded by Length

Width

I Width W(C) of clause C is |C|,
i.e., # literals

I Width of formula F or derivation
π is width of the widest clause in
the formula / derivation

I Width of deriving A from F is

W(F ` A) = min
π:F`A

{
W(π)

}
(No difference between tree-like and
general resolution)

Always W(F ` 0) ≤
∣∣Vars(F )

∣∣

1. x ∨ z
2. z ∨ y
3. x ∨ y ∨ u
4. y ∨ u
5. u ∨ v
6. x ∨ v
7. u ∨ w
8. x ∨ u ∨ w
9. x ∨ y

10. x ∨ y
11. x ∨ u
12. x ∨ u
13. x
14. x
15. 0︸ ︷︷ ︸

Width 3
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Definition of Width
Two Technical Lemmas
Width is Upper-Bounded by Length

Width and Length

A narrow resolution proof is necessarily short.

For a proof in width w ,
(
2 · |Vars(F )|

)w is an upper bound on
the number of possible clauses.

Ben-Sasson & Wigderson proved (sort of) that the
converse also holds.

If there is a short resolution refutation of F , then there is a
resolution refutation in small width as well.
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Technical Lemma 1

Lemma
If W

(
F |x ` A

)
≤ w then W

(
F ` A ∨ x

)
≤ w + 1

(possibly by use of the weakening rule).

Proof.
I Suppose π = {D1, . . . , Ds} derives A from F |x

in width W(π) ≤ w .
I Add the literal x to all clauses in π.
I Claim: this yields a legal derivation π′ from F

(possibly with weakening).
I If so, obviously W(π′) ≤ w + 1, and last line is A ∨ x .
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Definition of Width
Two Technical Lemmas
Width is Upper-Bounded by Length

Proof of Technical Lemma 1 (continued)

Proof of claim.
Need to show that each Di ∨ x ∈ π′ can be derived from
previous clauses by resolution and/or weakening.

Let Fx = {C ∈ F | x ∈ Lit(C)} be the set of all clauses of F
containing the literal x .

Three cases:

1. Di ∈ Fx |x : This means that Di ∨ x ∈ F , which is OK.
2. Di ∈ F |x \ Fx |x : This means that Di ∈ F , so Di ∨ x can be

derived by weakening.
3. Di derived from Dj , Dk ∈ π by resolution: By induction

Dj ∨ x and Dk ∨ x ∈ π′ derivable; resolve to get Di ∨ x .
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Technical Lemma 2
Lemma
If

I W
(
F |x ` 0

)
≤ w − 1 and

I W
(
F |x ` 0

)
≤ w

then
I W

(
F ` 0

)
≤ max {w , W(F )}.

Proof.
I Derive x in width ≤ w by Technical Lemma 1.
I Resolve x with all clauses C ∈ F containing literal x to get

F |x in width ≤ W(F ).
I Derive 0 from F |x in width ≤ w (by assumption).
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Definition of Width
Two Technical Lemmas
Width is Upper-Bounded by Length

Warm-Up: Tree-Like Resolution

Theorem (Ben-Sasson & Wigderson 1999)
For tree-like resolution, the width of refuting a CNF formula F is
bounded from above by

W(F ` 0) ≤ W(F ) + log2 LT (F ` 0).

Corollary
For tree-like resolution, the length of refuting a CNF formula F
is bounded from below by

LT (F ` 0) ≥ 2(W(F`0)−W(F )).
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Proof for Tree-Like Resolution (1 / 2)
Proof by nested induction over b and # variables n that

LT (F ` 0) ≤ 2b ⇒ W(F ` 0) ≤ W(F ) + b

Base cases:
b = 0 ⇒ proof of length 1 ⇒ empty clause 0 ∈ F
n = 1 ⇒ formula over 1 variable, i.e., x ∧ x ⇒ ∃ proof of width 1

Induction step:
Suppose for formula F with n variables that π is tree-like
refutation in length ≤ 2b

Last step in refutation π : F ` 0 is x x
0 for some x

Let πx and πx be the tree-like subderivations of x and x ,
respectively
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Proof for Tree-Like Resolution (2 / 2)

πx πx

x x
0Since L(π) = L(πx) + L(πx) + 1 ≤ 2b

(true since π is tree-like),
one of πx and πx has length ≤ 2b−1

Suppose w.l.o.g. L(πx) ≤ 2b−1

πx |x is a refutation of F |x in length ≤ 2b−1

⇒ by induction W
(
F |x ` 0

)
≤ W

(
F |x

)
+ b − 1 ≤ W(F ) + b − 1

πx |x is a refutation in length ≤ 2b of F |x with ≤ n − 1 variables
⇒ by induction W

(
F |x ` 0

)
≤ W

(
F |x

)
+ b ≤ W(F ) + b

Technical Lemma 2: W
(
F |x ` 0

)
≤ W(F ) + b − 1 and

W
(
F |x ` 0

)
≤ W(F ) + b ⇒ W

(
F ` 0

)
≤ W(F ) + b

(But construction leads to exponential blow-up in length, so
short proofs are not narrow after all)
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πx |x is a refutation in length ≤ 2b of F |x with ≤ n − 1 variables
⇒ by induction W

(
F |x ` 0

)
≤ W

(
F |x

)
+ b ≤ W(F ) + b

Technical Lemma 2: W
(
F |x ` 0

)
≤ W(F ) + b − 1 and

W
(
F |x ` 0

)
≤ W(F ) + b ⇒ W

(
F ` 0

)
≤ W(F ) + b

(But construction leads to exponential blow-up in length, so
short proofs are not narrow after all)
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Introduction
Resolution

Resolution Width

Definition of Width
Two Technical Lemmas
Width is Upper-Bounded by Length

The General Case

Theorem (Ben-Sasson & Wigderson 1999)
The width of refuting a CNF formula F over n variables in
general resolution is bounded from above by

W(F ` 0) ≤ W(F ) +O
(√

n log L(F ` 0)
)
.

Note: 2n+1 − 1 maximal possible proof length, so bound is

W(F ` 0) / W(F ) +
√

log(max possible) · log L(F ` 0)

This bound on width in terms of length is essentially optimal
(Bonet & Galesi 1999).
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Introduction
Resolution

Resolution Width

Definition of Width
Two Technical Lemmas
Width is Upper-Bounded by Length

The General Case: Corollary

Corollary
For general resolution, the length of refuting a CNF formula F
over n variables is bounded from below by

L
(
F ` 0

)
≥ exp

(
Ω

(
(W(F ` 0)−W(F ))2

n

))
.

Has been used to simplify many length lower bound proofs in
resolution (and to prove a couple of new ones)

Need W(F ` 0)−W(F ) = ω
(√

n
)

to get non-trivial bounds
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Resolution

Resolution Width

Definition of Width
Two Technical Lemmas
Width is Upper-Bounded by Length

(Not a) Proof of the General Case

Proof for tree-like resolution breaks down in general case

Not true that L(π) = L(πx) + L(πx) + 1
Subderivations πx and πx may share clauses!

πx πx

x x

0

Instead
I Look at very wide clauses in π

I Eliminate many of them by applying restriction setting
commonly occurring literal to true

I More complicated inductive argument
(still exponential blow-up in length)
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Part II

Resolution Width and Space
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Outline of Part II: Resolution Width and Space

Resolution Space
Definition of Space
Some Basic Properties

Combinatorial Characterization of Width
Boolean Existential Pebble Game
Existential Pebble Game Characterizes Resolution Width

Space is Greater than Width

Open Questions
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Definition of Space
Some Basic Properties

Introducing Space

I Results on width lead to question: Can other complexity
measures yield interesting insights as well?

I Esteban & Torán (1999) introduced proof space
(maximal # clauses in memory while verifying proof)

I Many lower bounds for space proven
All turned out to match width bounds!
Coincidence?

I Atserias & Dalmau (2003): space ≥ width − constant for
k -CNF formulas

The subject of the 2nd part of this talk
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Definition of Space
Some Basic Properties

Resolution Derivation (Revisited)

Sequence of sets of clauses, or clause configurations,
{C0, . . . , Cτ} such that C0 = ∅ and Ct follows from Ct−1 by:

Download Ct = Ct−1 ∪{C} for clause C ∈ F (axiom)
Erasure Ct = Ct−1 \ {C} for clause C ∈ Ct−1

Inference Ct = Ct−1 ∪{C ∨ D} for clause C ∨ D inferred by
resolution rule from C ∨ x , D ∨ x ∈ Ct−1

Resolution derivation π : F ` D of clause D from F :
Derivation {C0, . . . , Cτ} such that Cτ = {D}

Resolution refutation of F :
Derivation π : F ` 0 of empty clause 0 from F
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Definition of Space
Some Basic Properties

Example (Our Favourite Resolution Refutation Again)

1. x ∨ z Axiom 9. x ∨ y Res(1, 2)
2. z ∨ y Axiom 10. x ∨ y Res(3, 4)
3. x ∨ y ∨ u Axiom 11. x ∨ u Res(5, 6)
4. y ∨ u Axiom 12. x ∨ u Res(7, 8)
5. u ∨ v Axiom 13. x Res(9, 10)
6. x ∨ v Axiom 14. x Res(11, 12)
7. u ∨ w Axiom 15. 0 Res(13, 14)
8. x ∨ u ∨ w Axiom

 Empty start configuration
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x ∨ z
 Download axiom x ∨ z
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1. x ∨ z Axiom 9. x ∨ y Res(1, 2)
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Definition of Space
Some Basic Properties

Space

I Space of resolution derivation π = {C0, . . . , Cτ} is
max # clauses in any configuration

Sp
(
π
)

= max
t∈[τ ]

{
|Ct |

}
I Space of deriving D from F is

Sp(F ` D) = min
π:F`D

{
Sp(π)

}
As for length, the space measures in general and tree-like
resolution differ.

We concentrate on the interesting case: general resolution.
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Definition of Space
Some Basic Properties

Space / # variables

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0

x x

x ∨ y x ∨ y x ∨ u x ∨ uConsider decision
tree for F

n variables ⇒ height of decision tree at most n

By induction:
Clause at root of subtree of height h derivable in space h + 2

I Derive left child clause in space h + 1 and keep in memory
I Derive right child clause in space 1 + (h + 1)

I Resolve the two children clauses to get root clause

Theorem
Sp(F ` 0) ≤

∣∣Vars(F )
∣∣ + 2
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Definition of Space
Some Basic Properties

Minimally Unsatisfiable CNF formula

Definition
An unsatisfiable CNF formula F is minimally unsatisfiable if
removing any clause from F makes it satisfiable.

Example
F = (x ∨ z) ∧ (z ∨ y) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

is minimally unsatisfiable (but tedious to verify)

F |x = (z ∨ y) ∧ (y ∨ u) ∧ (u ∨ v)

∧ v ∧ (u ∨ w) ∧ (u ∨ w)

is not minimally unsatisfiable
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Definition of Space
Some Basic Properties

Min Unsat CNFs Have More Clauses than Variables
Lemma
Any minimally unsatisfiable CNF formula must have more
clauses than variables.

Proof.
I Consider bipartite graph on F × Vars(F ) with edges from

clauses to variables occurring in the clauses
I No matching, so by Hall’s theorem ∃ G ⊆ F such that
|G| > |N(G)| (where N(·) is the set of neighbours)

I Pick G of max size. Suppose G 6= F . Then G is satisfiable.
I Use Hall’s theorem again: must exist a matching between

F \G and Vars(F ) \ N(G).
I But then F = (F \G)∪G is satisfiable! Contradiction.
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Definition of Space
Some Basic Properties

Space / # clauses

Theorem
Sp(F ` 0) ≤ L(F ) + 1

Proof.
I Pick minimally unsatisfiable F ′ ⊆ F
I We know L(F ′) >

∣∣Vars(F ′)
∣∣

I Use bound in terms of # variables to get refutation in space
≤

∣∣Vars(F ′)
∣∣ + 2 ≤ L(F ′) + 1 ≤ L(F ) + 1
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Definition of Space
Some Basic Properties

Upper Bounds in # Clauses and # Variables Tight

We just showed

Sp(F ` 0) ≤ min
{

L(F ) + 1, |Vars(F )|+ 2
}

Thus the interesting question is which formulas demand this
much space, and which formulas can be refuted in e.g.
logarithmic or even constant space.

Theorem (Alekhnovich et al. 2000, Torán 1999)
There is a polynomial-size family {Fn}∞n=1 of
unsatisfiable 3-CNF formulas such that
Sp(F ` 0) = Ω

(
L(F )

)
= Ω

(∣∣Vars(F )
∣∣).
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Boolean Existential Pebble Game
Existential Pebble Game Characterizes Resolution Width

Informal Description of Existential Pebble Game
Game between Spoiler and Duplicator over CNF formula F
Duplicator claims formula is satisfiable
Spoiler wants to disprove this, but suffers from light senility
(can only keep p variable assignments in memory)

In each round, Spoiler

I picks a variable to which Duplicator must assign a value, or
I forgets a variable (can choose which)

In each round, Duplicator

I assigns value to chosen variable to get a non-falsifying
partial assignment to variables in Spoiler’s memory, or

I deletes value assigned to forgotten variable (knows which)
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Boolean Existential Pebble Game
Existential Pebble Game Characterizes Resolution Width

Formal Definition

Duplicator wins the Boolean existential p-pebble game over the
CNF formula F if there is a nonempty family H of partial truth
value assignments that do not falsify any clause in F and for
which the following holds:

1. If α ∈ H then |α| ≤ p.
2. If α ∈ H and β ⊆ α then β ∈ H.
3. If α ∈ H, |α| < p and x ∈ Vars(F ) then there exists a

β ∈ H such that α ⊆ β and x is in the domain of β.

H is called a winning strategy for Duplicator.

If there is no winning strategy for Duplicator, Spoiler wins the
game.
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Resolution Space
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Space is Greater than Width
Open Questions

Boolean Existential Pebble Game
Existential Pebble Game Characterizes Resolution Width

Constructive Strategies

If there is a winning strategy for Duplicator, then there is a
deterministic winning strategy that for each α ∈ H and each
move of Spoiler defines a move β for Duplicator.

Proposition
If Duplicator has no winning strategy, then there is a winning
strategy (in the form of a partial function from partial truth value
assignments to variable queries/deletions) for Spoiler.

Proof sketch.
The number of possible deterministic strategies for Duplicator is
finite, so Spoiler can build a strategy by evaluating all possible
responses to sequences of queries and deletions.
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Existential Pebble Game Characterizes Resolution Width

Existential Pebble Game Characterizes Width

It turns out that the Boolean existential p-pebble game
exactly characterizes resolution width.

Theorem (Atserias & Dalmau 2003)
The CNF formula F has a resolution refutation of width ≤ p
if and only if
Spoiler wins the existential (p+1)-pebble game on F.
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Narrow Proof Yields Winning Strategy for Spoiler

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0

x x

x ∨ y x ∨ y x ∨ u x ∨ uI Given π : F ` 0
with DAG Gπ.

I Spoiler starts at the vertex for 0 and inductively queries the
variable resolved upon to to get there

I Spoiler moves to the assumption clause D falsified by
Duplicator’s answer and forgets all variables not in D

I Repeat for the new clause et cetera
I Sooner or later Spoiler reaches a falsified axiom, having

used no more than W(π) + 1 variables simultaneously
(+1 is for the variable resolved on)
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Boolean Existential Pebble Game
Existential Pebble Game Characterizes Resolution Width

Winning Strategy for Spoiler Yields Narrow Proof
Given strategy for Spoiler, build DAG Gπ as follows:

I Start with 0 vertex. For x the first variable queried, make
vertices x , x with edges to 0.

I Inductively, let ρv be the unique minimal partial truth value
assignment falsifying the clause Dv at v .

I If move on ρv is deletion of y , make new vertex Dv \ {y , y}
with edge to Dv . Otherwise, if y is queried, make new
vertices D ∨ y , D ∨ y with edges to D.

I In the (finite) DAG G constructed, all sources are
(weakenings of) axioms of F , and by induction G describes
a resolution derivation with weakening.

I If we eliminate the weakening we get a derivation in width
at most p, since if |ρv | = p + 1 the next move for Spoiler
must be a deletion.
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Spoiler Strategy for Tight Proofs

The lower bound on space in terms of width follows from the
fact that Spoiler can use proofs in small space to construct
winning strategies with few pebbles.

Lemma
Let F be an unsatisfiable CNF formula with

I W
(
F

)
= w and

I Sp
(
F ` 0

)
= s.

Then
I Spoiler wins the existential (s+w−2)-pebble game on F.
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Proof of Lemma (1 / 2)

Given: proof π =
{
C0 = ∅, C1, . . . , Cτ = {0}

}
in space s

Spoiler constructs a strategy by inductively defining
partial truth value assignments ρt such that
ρt satisfies Ct by setting (at most) one literal per clause to true.

W.l.o.g. axiom downloads occur only for Ct of size |Ct | ≤ s − 2.

One memory slot must be saved for the resolvent, otherwise
the next step will be an erasure and we can inverse the order of
these two derivation steps.
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Proof of Lemma (2 / 2)

I At download of C ∈ F , Spoiler queries Duplicator about all
variables in C and keep the literal satisfying it, using at
most (s − 2) + w pebbles.

I When a clause is deleted, Spoiler deletes the
corresponding literal satisfying the clause from ρt
if necessary (i.e., if |ρt | = |Ct |).

I For inference steps, Spoiler sets ρt = ρt−1 since by
induction ρt−1 must satisfy the resolvent.

Now ρτ cannot satisfy Cτ = {0}, so Duplicator must fail at
some time prior to τ .

Thus Spoiler has a winning strategy with ≤ (s− 2) + w pebbles.
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Lower Bound on Space in Terms of Width

Theorem (Atserias & Dalmau 2003)
For any unsatisfiable k-CNF formula F (k fixed) it holds that

Sp(F ` 0)− 3 ≥ W(F ` 0)−W(F ).

Proof.
Combine the facts that:

I If Spoiler wins the existential (p+1)-pebble game on F ,
then W(F ` 0) ≤ p.

I If W
(
F

)
= w and Sp

(
F ` 0

)
= s, then Spoiler wins the

existential (s+w−2)-pebble game on F .
It follows that W(F ` 0) ≤ Sp(F ` 0) + W(F )− 3.
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Resolution Space
Combinatorial Characterization of Width

Space is Greater than Width
Open Questions

Open Questions
Atserias & Dalmau say that

Extra space > min 3
needed for any
resolution refutation

≥
Extra width > min W(F )
needed for any (minimally
unsatisfiable) formula

Follow-up questions:
1. Do space and width always coincide?

Or is there a k -CNF formula family {Fn}∞n=1 (for k fixed)
such that Sp(Fn ` 0) = ω(W(Fn ` 0))?

2. Can short resolution proofs be arbitrarily complex w.r.t.
space? Or is there a Ben-Sasson-Wigderson-style upper
bound on space in terms of length?

2nd question still open, but 1st question solved in 2005
(Attend the seminar on May 15th!)
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Thank you for your attention!
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