Narrow Proofs May Be Spacious: Separating Space and Width in Resolution

Jakob Nordström

jakobn@kth.se

Theory Group
KTH Computer Science and Communication

KTH CSC Theory Group Seminar June 8th, 2006

Executive Summary of Talk (1 / 2)

Resolution: proof system for refuting CNF formulas Perhaps *the* most studied system in proof complexity Also used in many real-world automated theorem provers

- Haken (1985): exponential lower bound on proof length (# clauses in a resolution proof)
- Ben-Sasson & Wigderson (1999): lower bound on length in terms of proof width (size of largest clause in proof)
- Results on width lead to question whether other complexity measures could yield interesting insights as well

Executive Summary of Talk (2 / 2)

- Esteban & Torán (1999): proof space (maximal # clauses in memory while verifying proof)
- Many lower bounds for space proven All turned out to match width bounds! Coincidence?
- Atserias & Dalmau (2003): space ≥ width − constant for k-CNF formulas
- Problem left open: Do space and width coincide or not?

We resolve this question: separation of space and width

Outline

- Background
 - Preliminaries
 - Overview of Previous Work
- Pebble Games and Resolution
 - Pebble Games
 - Pebbling Contradictions
 - Resolution Refutations of Pebbling Contradictions
- A Separation of Space and Width
 - Interpreting Clauses as Pebbles
 - Many Pebbles Imply Many Clauses
 - The Induced Black-White Pebble Game
 - Putting It All Together
- Conclusion and Open Problems

Some Notation and Terminology

- Literal a: variable x or its negation \overline{x}
- Clause $C = a_1 \lor ... \lor a_k$: set of literals At most k literals: k-clause
- CNF formula F = C₁ ∧ . . . ∧ C_m: set of clauses k-CNF formula: CNF formula consisting of k-clauses (assume k fixed)

Some More Notation and Terminology

- Vars(·): set of variables in clause or formula
 Lit(·): set of literals in clause or formula
- ullet Truth value assignment α makes
 - clause true if one literal true
 - CNF formula true if all clauses true
- F ⊨ D: semantical implication, α(F) true ⇒ α(D) true for all truth value assignments α
- $[n] = \{1, 2, ..., n\}$

Resolution Rule

Resolution rule:

$$\frac{B \vee x \quad C \vee \overline{x}}{B \vee C}$$

Observation

If F is a satisfiable CNF formula and D is derived from clauses $C_1, C_2 \in F$ by the resolution rule, then $F \wedge D$ is satisfiable.

Prove *F* unsatisfiable by deriving the unsatisfiable empty clause 0 (the clause with no literals) from *F* by resolution

Resolution Rule

Resolution rule:

$$\frac{B \vee x \quad C \vee \overline{x}}{B \vee C}$$

Observation

If F is a satisfiable CNF formula and D is derived from clauses $C_1, C_2 \in F$ by the resolution rule, then $F \wedge D$ is satisfiable.

Prove *F* unsatisfiable by deriving the unsatisfiable empty clause 0 (the clause with no literals) from *F* by resolution

Resolution Rule

Resolution rule:

$$\frac{B \vee x \quad C \vee \overline{x}}{B \vee C}$$

Observation

If F is a satisfiable CNF formula and D is derived from clauses $C_1, C_2 \in F$ by the resolution rule, then $F \wedge D$ is satisfiable.

Prove F unsatisfiable by deriving the unsatisfiable empty clause 0 (the clause with no literals) from F by resolution

```
Sequence of sets of clauses, or clause configurations, \{\mathbb{C}_0, \dots, \mathbb{C}_\tau\} such that \mathbb{C}_0 = \emptyset and \mathbb{C}_t follows from \mathbb{C}_{t-1} by:
```

```
Download \mathbb{C}_t = \mathbb{C}_{t-1} \cup \{C\} for clause C \in F (axiom)

Erasure \mathbb{C}_t = \mathbb{C}_{t-1} \setminus \{C\} for clause C \in \mathbb{C}_{t-1}

Inference \mathbb{C}_t = \mathbb{C}_{t-1} \cup \{B \lor C\} for clause B \lor C inferred by resolution rule from B \lor x, C \lor \overline{x} \in \mathbb{C}_{t-1}
```

Resolution derivation $\pi: F \vdash D$ of clause D from F: Derivation $\{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ such that $D \in \mathbb{C}_\tau$

Resolution refutation of F:

```
Sequence of sets of clauses, or clause configurations, \{\mathbb{C}_0,\dots,\mathbb{C}_{\tau}\} such that \mathbb{C}_0=\emptyset and \mathbb{C}_t follows from \mathbb{C}_{t-1} by: 

Pownload \ \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{C\} \ \text{for clause} \ C\in F \ \text{(axiom)} \ \text{Erasure} \ \mathbb{C}_t=\mathbb{C}_{t-1}\setminus\{C\} \ \text{for clause} \ C\in \mathbb{C}_{t-1} \ \text{Inference} \ \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{B\vee C\} \ \text{for clause} \ B\vee C \ \text{inferred by resolution rule from} \ B\vee x, C\vee \overline{x}\in\mathbb{C}_{t-1} \ \text{Resolution derivation} \ \pi:F\vdash D \ \text{of clause} \ D \ \text{from} \ F:
```

Resolution refutation of F:

```
Sequence of sets of clauses, or clause configurations, \{\mathbb{C}_0,\dots,\mathbb{C}_{\tau}\} such that \mathbb{C}_0=\emptyset and \mathbb{C}_t follows from \mathbb{C}_{t-1} by: 

\begin{array}{c} \textit{Download} \ \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{\textit{C}\}\ \text{for clause}\ \textit{C}\in\textit{F}\ (\text{axiom}) \\ \textit{Erasure}\ \mathbb{C}_t=\mathbb{C}_{t-1}\setminus\{\textit{C}\}\ \text{for clause}\ \textit{C}\in\mathbb{C}_{t-1} \\ \textit{Inference}\ \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{\textit{B}\lor\textit{C}\}\ \text{for clause}\ \textit{B}\lor\textit{C}\ \text{inferred by} \\ \textit{resolution rule from}\ \textit{B}\lor\textit{x},\textit{C}\lor\bar{\textit{x}}\in\mathbb{C}_{t-1} \end{array}
```

Resolution derivation $\pi: F \vdash D$ of clause D from F: Derivation $\{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ such that $D \in \mathbb{C}_\tau$

Resolution refutation of F:

```
Sequence of sets of clauses, or clause configurations, \{\mathbb{C}_0,\dots,\mathbb{C}_{	au}\} such that \mathbb{C}_0=\emptyset and \mathbb{C}_t follows from \mathbb{C}_{t-1} by: 

\begin{array}{c} \textit{Download} & \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{C\} \text{ for clause } C\in F \text{ (axiom)} \\ \textit{Erasure } & \mathbb{C}_t=\mathbb{C}_{t-1}\setminus\{C\} \text{ for clause } C\in\mathbb{C}_{t-1} \\ \textit{Inference } & \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{B\vee C\} \text{ for clause } B\vee C \text{ inferred by resolution rule from } B\vee x, C\vee \overline{x}\in\mathbb{C}_{t-1} \end{array}
```

Resolution derivation $\pi: F \vdash D$ of clause D from F: Derivation $\{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ such that $D \in \mathbb{C}_\tau$

Resolution refutation of F:

```
Sequence of sets of clauses, or clause configurations, \{\mathbb{C}_0,\dots,\mathbb{C}_{\tau}\} such that \mathbb{C}_0=\emptyset and \mathbb{C}_t follows from \mathbb{C}_{t-1} by: 

\begin{array}{c} \textit{Download} & \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{C\} \text{ for clause } C\in F \text{ (axiom)} \\ \textit{Erasure } \mathbb{C}_t=\mathbb{C}_{t-1}\setminus\{C\} \text{ for clause } C\in\mathbb{C}_{t-1} \\ \textit{Inference } \mathbb{C}_t=\mathbb{C}_{t-1}\cup\{B\vee C\} \text{ for clause } B\vee C \text{ inferred by resolution rule from } B\vee x, C\vee \overline{x}\in\mathbb{C}_{t-1} \end{array}
```

Resolution derivation $\pi: F \vdash D$ of clause D from F: Derivation $\{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ such that $D \in \mathbb{C}_\tau$

Resolution refutation of F:

Derivation Length, Width and Space

- Length $L(\pi)$ of derivation $\pi : F \vdash D$ # distinct clauses in all of π
- Width W(π) of derivation π : F ⊢ D
 # literals in largest clause in π
- Space $Sp(\pi)$ of derivation $\pi : F \vdash D$ # clauses in largest clause configuration $\mathbb{C}_t \in \pi$

- 1. p
- 2. c
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Length so far	0
Width so far	0
Space so far	0

Empty start configuration

- 1. *p*.
- 2. *c*
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Γ	<i>p</i> ₁	-

Length so far	1
Width so far	1
Space so far	1

Download axiom 1: p_1

- 1. p
- 2. *c*
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

<i>p</i> ₁ <i>q</i> ₁	

Length so far	2
Width so far	1
Space so far	2

Download axiom 2: q_1

- 1. *p*
- 2.
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

-	p_1				•
	q_1				
Ī	\overline{p}_1	٧	\overline{q}_1	V	<i>u</i> ₁

Length so far	3
Width so far	3
Space so far	3

Download axiom 5: $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

- 1. *p*
- 2. c
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

<i>p</i> ₁				•
q_1				
\overline{p}_1	V	\overline{q}_1	V	<i>u</i> ₁

Length so far	3
Width so far	3
Space so far	3

- 1. *p*.
- 2. q
- 3. r_1
- 4. 3
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

p_1
q_1
$\overline{p}_1 \vee \overline{q}_1 \vee u_1$
$\overline{q}_1 \vee u_1$

Length so far	4
Width so far	3
Space so far	4

Infer $\overline{q}_1 \lor u_1$ from p_1 and $\overline{p}_1 \lor \overline{q}_1 \lor u_1$

- 1. *p*
- q
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

p_1			•
q_1			
\overline{p}_1	$\vee \overline{q}_1$	V	<i>u</i> ₁
\overline{q}_1	$\vee u_1$		

Length so far	4
Width so far	3
Space so far	4

Erase clause $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

- 1. p
- 2. c
- 3. *r*
- 4. *s*
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \bar{z}_1

$$p_1$$
 q_1
 $\overline{q}_1 \lor u_1$

Length so far	4
Width so far	3
Space so far	4

Erase clause $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

- 1. p
- 2. q
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

$\frac{p_1}{q_1}$	∨ <i>u</i> ₁	

Length so far	4
Width so far	3
Space so far	4

Erase clause p_1

- 1. p
- 2. (
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

$$\frac{q_1}{\overline{q}_1} \vee u_1$$

Length so far	4
Width so far	3
Space so far	4

Erase clause p₁

- 1. p
- 2. (
- 3. r_1
- 4. *s*
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

q_1		
\overline{q}_1	V	<i>U</i> ₁

Length so far	4
Width so far	3
Space so far	4

Infer u_1 from q_1 and $\overline{q}_1 \vee u_1$

- 1. p
- 2. *c*
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

•	$\frac{q_1}{\overline{q}_1}$	٧	<i>u</i> ₁	

Length so far	5
Width so far	3
Space so far	4

Infer u_1 from q_1 and $\overline{q}_1 \vee u_1$

- 1. p
- q
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

$\frac{q_1}{\overline{q}_1}$	V	<i>u</i> ₁	
<i>u</i> ₁			

Length so far	5
Width so far	3
Space so far	4

Erase clause $\overline{q}_1 \vee u_1$

- 1. p
- 2. c
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

9 ₁ U ₁	

Length so far	5
Width so far	3
Space so far	4

Erase clause $\overline{q}_1 \vee u_1$

- 1. p
- q
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

q ₁ <i>u</i> ₁	

Length so far	5
Width so far	3
Space so far	4

Erase clause q_1

- 1. p
- 2. c
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

Γ	<i>u</i> ₁		•

Length so far	5
Width so far	3
Space so far	4

Erase clause q₁

- 1. p
- q
- 3. *i*
- 4. 3
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Γ	u_1	
	<i>r</i> ₁	

Length so far	6
Width so far	3
Space so far	4

Download axiom 3: r_1

- 1. *p*
- q
- 3. *r*
- 4. *s*
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Length so far	7
Width so far	3
Space so far	4

Download axiom 4: s₁

- 1. p
- q
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

u_1
<i>r</i> ₁
s_1
$\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Length so far	8
Width so far	3
Space so far	4

Download axiom 6: $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- 1. *p*
- q
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

u_1		
<i>r</i> ₁		
s_1		
$\overline{r}_1 \vee \overline{s}_1$	V	<i>V</i> ₁

Length so far	8
Width so far	3
Space so far	4

Infer $\overline{s}_1 \vee v_1$ from r_1 and $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- 1. *p*.
- 2. q_1
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

u_1
<i>r</i> ₁
s_1
$\overline{r}_1 \vee \overline{s}_1 \vee v_1$
$\overline{s}_1 \lor v_1$

Length so far	9
Width so far	3
Space so far	5

Infer $\overline{s}_1 \vee v_1$ from r_1 and $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- 1. p
- q
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

u ₁
<i>r</i> ₁
s_1
$\overline{r}_1 \vee \overline{s}_1 \vee v_1$
$\overline{s}_1 \vee v_1$

Length so far	9
Width so far	3
Space so far	5

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- 1. *p*
- q
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

u_1			
<i>r</i> ₁			
s_1			
\overline{s}_1	\vee	<i>V</i> ₁	

Length so far	9
Width so far	3
Space so far	5

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- 1. *p*
- q
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

u_1			
<i>r</i> ₁			
s_1			
\overline{s}_1	\vee	<i>V</i> ₁	

Length so far	9
Width so far	3
Space so far	5

Erase clause r₁

- 1. *p*
- 2. c
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

u_1			
S_1			
\overline{s}_1	\vee	<i>V</i> ₁	
·		•	

Length so far	9
Width so far	3
Space so far	5

Erase clause r₁

- 1. p
- 2. *q*₁
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Γ	<i>u</i> ₁	
	<i>S</i> ₁	
	$\overline{s}_1 \vee v_1$	
İ		

Length so far	9
Width so far	3
Space so far	5

Infer v_1 from s_1 and $\overline{s}_1 \vee v_1$

- 1. *p*
- 2. *q*₁
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

u_1			
<i>S</i> ₁			
\overline{s}_1	\vee	<i>V</i> ₁	
<i>V</i> ₁			

Length so far	10
Width so far	3
Space so far	5

Infer v_1 from s_1 and $\overline{s}_1 \vee v_1$

- 1. *p*
- q
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

$$\begin{bmatrix} u_1 \\ s_1 \\ \overline{s}_1 \lor v_1 \\ v_1 \end{bmatrix}$$

Length so far	10
Width so far	3
Space so far	5

Erase clause $\overline{s}_1 \vee v_1$

- 1. *p*
- q
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

Length so far	10
Width so far	3
Space so far	5

Erase clause $\overline{s}_1 \vee v_1$

- 1. p
- q
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

Length so far	10
Width so far	3
Space so far	5

Erase clause s₁

- 1. p
- 2. c
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

<i>u</i> ₁ <i>v</i> ₁	

Length so far	10
Width so far	3
Space so far	5

Erase clause s₁

- 1. *p*
- 2.
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

u ₁				-
<i>V</i> ₁				
\overline{u}_1	٧	\overline{v}_1	٧	<i>Z</i> ₁

Length so far	11
Width so far	3
Space so far	5

Download axiom 7: $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

- 1. *p*
- 2. *q*₁
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

<i>u</i> ₁				-
<i>v</i> ₁				
\overline{u}_1	V	\overline{v}_1	V	<i>Z</i> ₁

Length so far	11
Width so far	3
Space so far	5

Infer $\overline{v}_1 \lor z_1$ from u_1 and $\overline{u}_1 \lor \overline{v}_1 \lor z_1$

- 1. *p*
- 2. (
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

u_1
<i>V</i> ₁
$\overline{u}_1 \vee \overline{v}_1 \vee z_1$
$\overline{v}_1 \vee z_1$

Length so far	12
Width so far	3
Space so far	5

Infer $\overline{v}_1 \lor z_1$ from u_1 and $\overline{u}_1 \lor \overline{v}_1 \lor z_1$

- 1. p
- 2. c
- 3. r_1
- 4. *s*
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

u_1	-
<i>v</i> ₁	
$\overline{u}_1 \vee \overline{v}_1 \vee \overline{v}_1$	Z ₁
$\overline{v}_1 \vee z_1$	

Length so far	12
Width so far	3
Space so far	5

Erase clause $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

- 1. *p*
- 2. (
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

$$U_1$$
 V_1
 $\overline{V}_1 \lor Z_1$

Length so far	12
Width so far	3
Space so far	5

Erase clause $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

- 1. *p*
- 2. q
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

<i>u</i> ₁	
<i>V</i> ₁	
$\overline{v}_1 \vee$	<i>Z</i> ₁

Length so far	12
Width so far	3
Space so far	5

Erase clause u₁

- 1. *p*
- 2. *c*
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

$$\overline{V}_1$$
 $\overline{V}_1 \lor Z_1$

Length so far	12
Width so far	3
Space so far	5

Erase clause u₁

- 1. *p*
- 2. *q*₁
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Γ	<i>V</i> ₁	
	$\overline{v}_1 \vee z_1$	
İ		
ļ		

Length so far	12
Width so far	3
Space so far	5

Infer z_1 from v_1 and $\overline{v}_1 \vee z_1$

- 1. *p*
- 2.
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

$\frac{v_1}{\overline{v}_1} \lor z_1$	
<i>Z</i> ₁	

Length so far	13
Width so far	3
Space so far	5

Infer z_1 from v_1 and $\overline{v}_1 \vee z_1$

- 1. p
- 2. *c*
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

$$\begin{bmatrix}
v_1 \\
\overline{v}_1 \lor z_1
\end{bmatrix}$$

Length so far	13
Width so far	3
Space so far	5

Erase clause $\overline{v}_1 \vee z_1$

- 1. p
- 2. c
- 3. *r*
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Length so far	13
Width so far	3
Space so far	5

Erase clause $\overline{v}_1 \vee z_1$

- 1. *p*
- q
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

<i>v</i> ₁ <i>z</i> ₁	

Length so far	13
Width so far	3
Space so far	5

Erase clause v₁

- 1. p
- 2. *c*
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Γ	<i>z</i> ₁		

Length so far	13
Width so far	3
Space so far	5

Erase clause v₁

- 1. p
- 2. *c*
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

\overline{Z}_1	
_'	

Length so far	14
Width so far	3
Space so far	5

Download axiom 8: \overline{z}_1

- 1. *p*
- 2. *q*₁
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Z_1		
\overline{Z}_1		
•		

Length so far	14
Width so far	3
Space so far	5

Infer 0 from z_1 and \overline{z}_1

- 1. p
- 2. *q*₁
- 3. r_1
- 4. s
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

$\frac{Z_1}{\overline{Z}_1}$		

Length so far	15
Width so far	3
Space so far	5

Infer 0 from z_1 and \overline{z}_1

Length, Width and Space of Refuting F

Length of refuting F is

$$L(F \vdash 0) = \min_{\pi: F \vdash 0} \{L(\pi)\}$$

Width of refuting F is

$$W(F \vdash 0) = \min_{\pi: F \vdash 0} \{W(\pi)\}$$

Space of refuting F is

$$Sp(F \vdash 0) = \min_{\pi: F \vdash 0} \{Sp(\pi)\}$$

$$egin{array}{ll} L(Fdash0) &\leq 2^{(\# \, ext{variables in} \, F \, + \, 1)} \ W(Fdash0) &\leq \# \, ext{variables in} \, F \ Sp(Fdash0) &\leq \min(\# \, ext{variables in} \, F, \# \, ext{clauses in} \, F) + \mathcal{O}(1) \end{array}$$

Length, Width and Space of Refuting F

Length of refuting F is

$$L(F \vdash 0) = \min_{\pi: F \vdash 0} \{L(\pi)\}$$

Width of refuting F is

$$W(F \vdash 0) = \min_{\pi: F \vdash 0} \{W(\pi)\}$$

Space of refuting F is

$$Sp(F \vdash 0) = \min_{\pi: F \vdash 0} \{Sp(\pi)\}$$

$$L(F \vdash 0) \leq 2^{(\# \text{ variables in } F + 1)}$$

$$W(F \vdash 0) \leq \# \text{ variables in } F$$

$$Sp(F \vdash 0) \leq min(\# variables in F, \# clauses in F) + O(1)$$

Connection between Length and Width

A narrow resolution proof is necessarily short. For a proof in width w, $(2 \cdot |Vars(F)|)^w$ is an upper bound on the number of possible clauses.

There is a kind of converse to this:

Theorem (Ben-Sasson & Wigderson 1999)

The width of refuting a k-CNF formula F over n variables is

$$W(F \vdash 0) = \mathcal{O}\left(\sqrt{n\log L(F \vdash 0)}\right).$$

This bound on width in terms of length is essentially optimal (Bonet & Galesi 1999).

Connection between Length and Width

A narrow resolution proof is necessarily short.

For a proof in width w, $(2 \cdot |Vars(F)|)^w$ is an upper bound on the number of possible clauses.

There is a kind of converse to this:

Theorem (Ben-Sasson & Wigderson 1999)

The width of refuting a k-CNF formula F over n variables is

$$W(F \vdash 0) = \mathcal{O}\left(\sqrt{n\log L(F \vdash 0)}\right).$$

This bound on width in terms of length is essentially optimal (Bonet & Galesi 1999).

Connection between Space and Width

All previously shown lower bounds on space coincide with lower bounds on width—true in general?

Theorem (Atserias & Dalmau 2003)

For any unsatisfiable k-CNF formula F it holds that

$$Sp(F \vdash 0) \ge W(F \vdash 0) - \mathcal{O}(1).$$

But do space and width always coincide?

Or is there a k-CNF formula family $\{F_n\}_{n=1}^{\infty}$ such that

Connection between Space and Width

All previously shown lower bounds on space coincide with lower bounds on width—true in general?

Theorem (Atserias & Dalmau 2003)

For any unsatisfiable k-CNF formula F it holds that

$$Sp(F \vdash 0) \ge W(F \vdash 0) - \mathcal{O}(1).$$

But do space and width always coincide? Or is there a k-CNF formula family $\{F_n\}_{n=1}^{\infty}$ such that $Sp(F_n \vdash 0) = \omega(W(F_n \vdash 0))$?

Connection between Space and Width

All previously shown lower bounds on space coincide with lower bounds on width—true in general?

Theorem (Atserias & Dalmau 2003)

For any unsatisfiable k-CNF formula F it holds that

$$Sp(F \vdash 0) \ge W(F \vdash 0) - \mathcal{O}(1).$$

But do space and width always coincide?

Or is there a k-CNF formula family $\{F_n\}_{n=1}^{\infty}$ such that

$$Sp(F_n \vdash 0) = \omega(W(F_n \vdash 0))$$
?

Pebbles Games on Graphs

One-player game played on directed acyclic graphs (DAGs)

- Devised for studying programming languages and compiler construction
- Have found a variety of applications in complexity theory

Conventions

- V(G) denote the vertices of a DAG G
- vertices with indegree 0 are sources
- vertices with outdegree 0 are targets

Only consider DAGs with single target z and and indegree 2 for all non-source vertices

Formal Definition of Pebble Game

Pebble configuration: pair of subsets $\mathbb{P} = (B, W)$ of black- and white-pebbled vertices

Black-white pebbling: sequence $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ such that $\mathbb{P}_0 = (\emptyset, \emptyset)$ and \mathbb{P}_t follows from \mathbb{P}_{t-1} by one of the rules:

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all all immediate predecessors have pebbles on them

Goal: reach $\mathbb{P}_{\tau} = (\{z\}, \emptyset)$ using few pebbles

Formal Definition of Pebble Game

Pebble configuration: pair of subsets $\mathbb{P} = (B, W)$ of black- and white-pebbled vertices

Black-white pebbling: sequence $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ such that $\mathbb{P}_0 = (\emptyset, \emptyset)$ and \mathbb{P}_t follows from \mathbb{P}_{t-1} by one of the rules:

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all all immediate predecessors have pebbles on them

Goal: reach $\mathbb{P}_{\tau} = (\{z\}, \emptyset)$ using few pebbles

Pebble configuration: pair of subsets $\mathbb{P} = (B, W)$ of black- and white-pebbled vertices

Black-white pebbling: sequence $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ such that $\mathbb{P}_0 = (\emptyset, \emptyset)$ and \mathbb{P}_t follows from \mathbb{P}_{t-1} by one of the rules:

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Oan always place white pebble on (empty) vertex
- Can remove white pebble from v if all all immediate predecessors have pebbles on them

Pebble configuration: pair of subsets $\mathbb{P} = (B, W)$ of black- and white-pebbled vertices

Black-white pebbling: sequence $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ such that $\mathbb{P}_0 = (\emptyset, \emptyset)$ and \mathbb{P}_t follows from \mathbb{P}_{t-1} by one of the rules:

- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all all immediate predecessors have pebbles on them

Pebble configuration: pair of subsets $\mathbb{P} = (B, W)$ of black- and white-pebbled vertices

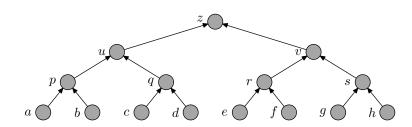
Black-white pebbling: sequence $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ such that $\mathbb{P}_0 = (\emptyset, \emptyset)$ and \mathbb{P}_t follows from \mathbb{P}_{t-1} by one of the rules:

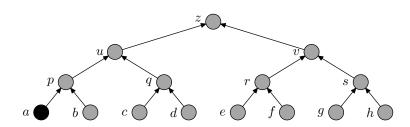
- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all all immediate predecessors have pebbles on them

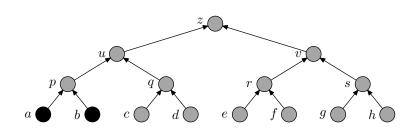
Pebble configuration: pair of subsets $\mathbb{P} = (B, W)$ of black- and white-pebbled vertices

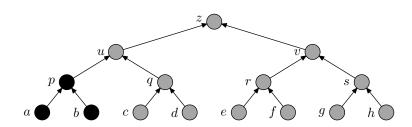
Black-white pebbling: sequence $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ such that $\mathbb{P}_0 = (\emptyset, \emptyset)$ and \mathbb{P}_t follows from \mathbb{P}_{t-1} by one of the rules:

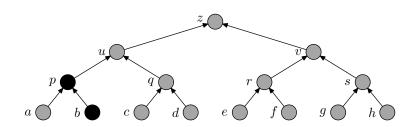
- Can place black pebble on (empty) vertex v if all immediate predecessors have pebbles on them
- Can always remove black pebble from vertex
- Can always place white pebble on (empty) vertex
- Can remove white pebble from v if all all immediate predecessors have pebbles on them

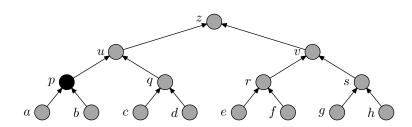


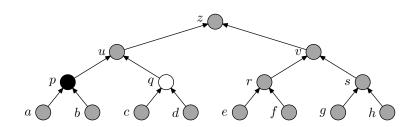


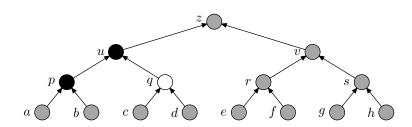


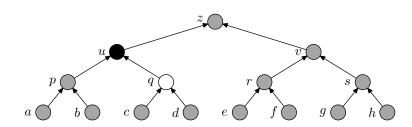


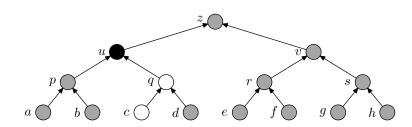


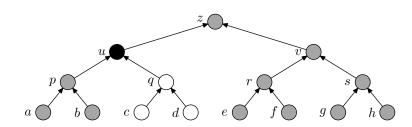


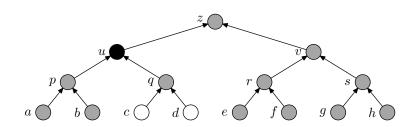


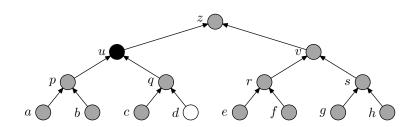


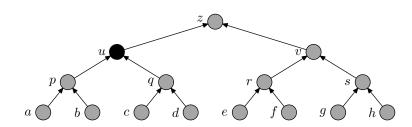


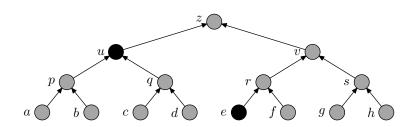


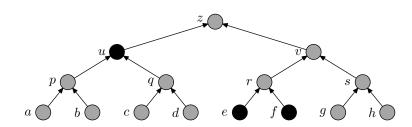


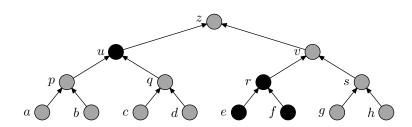


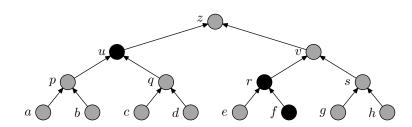


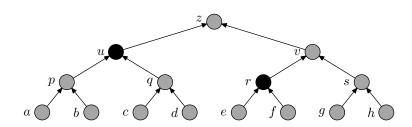


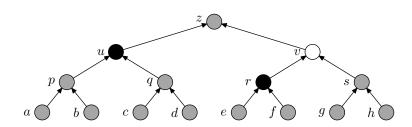


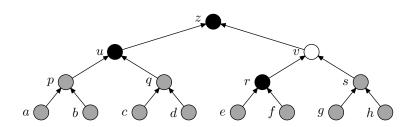


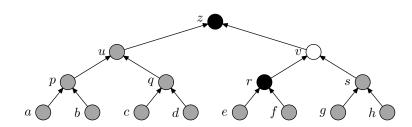


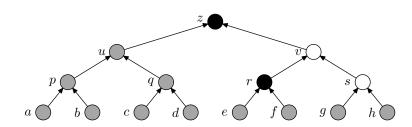


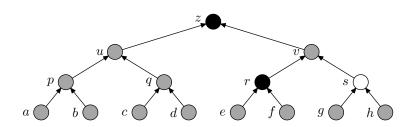


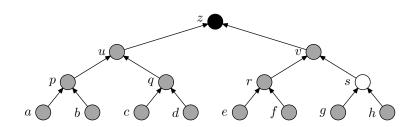


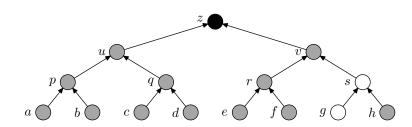


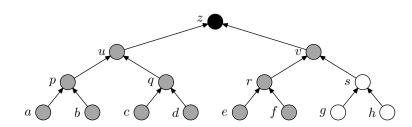


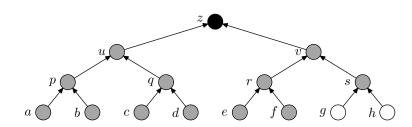


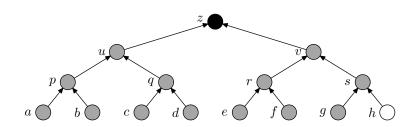


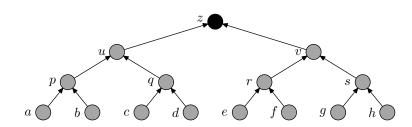












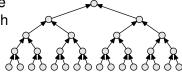
Pebbling Price

- Cost of pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$: max # pebbles in any $\mathbb{P}_t = (B_t, W_t)$
- Black-white pebbling price BW-Peb(G) of DAG G is minimal cost of any pebbling reaching ($\{z\},\emptyset$)
- (Black) pebbling price Peb(G) is minimal cost of any pebbling reaching ({z}, ∅) using black pebbles only (W_t = ∅ for all t)

Pebbling Price of Binary Trees

Let T_h denote complete binary tree of height h considered as DAG with edges directed towards root

Pebbling price of T_h is



$$Peb(T_h) = h + 2$$

(easy induction over the tree height)

Black-white pebbling price is

$$BW$$
-Peb $(T_h) = \left\lfloor \frac{h}{2} \right\rfloor + 3 = \Omega(h)$

(Lengauer & Tarjan 1980)

Definition of Pebbling Contradiction

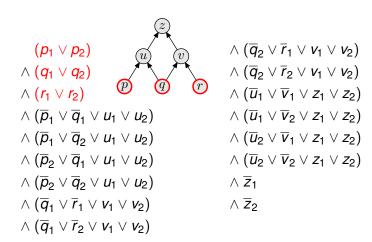
CNF formula encoding pebble game on DAG G with sources S, unique target z and all non-source vertices having indegree 2

Associate *d* variables v_1, \ldots, v_d with every vertex $v \in V(G)$

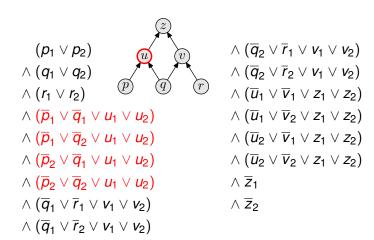
The *d*th degree pebbling contradiction Peb_G^d over G is the conjunction of the following (written as clauses):

- $\bigvee_{i=1}^{d} s_i$ for all $s \in S$ (source axioms)
- $(\bigvee_{i=1}^d u_i \wedge \bigvee_{j=1}^d v_j) \rightarrow \bigvee_{l=1}^d w_l$ for all $w \in V(G) \setminus S$, where u, v are the two predecessors of w (pebbling axioms)
- $\bigwedge_{i=1}^{d} \overline{z}_i$ (target axioms)

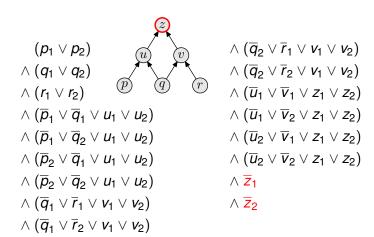
Pebbling Contradiction $Peb_{\Pi_2}^2$ for Pyramid of Height 2



Pebbling Contradiction $Peb_{\Pi_2}^2$ for Pyramid of Height 2



Pebbling Contradiction $Peb_{\Pi_2}^2$ for Pyramid of Height 2



Pebbling Contradictions Easy w.r.t. Length and Width

 Peb_G^d is an unsatisfiable (2+d)-CNF formula with

- $d \cdot |V(G)|$ variables
- $\mathcal{O}(d^2 \cdot |V(G)|)$ clauses

Can be refuted by deriving $\bigvee_{i=1}^{d} v_i$ for all $v \in V(G)$ inductively in topological order and resolving with target axioms \overline{z}_i , $i \in [d]$

It follows that

$$\bullet \ L(F \vdash 0) = \mathcal{O}(d^2 \cdot |V(G)|)$$

$$\bullet \ W(F \vdash 0) = \mathcal{O}(d)$$

(Ben-Sasson et al. 2000)

Upper bounds:

- Arbitrary DAGs G optimal black pebbling of G + proof from previous slide: $Sp(Peb_G^d \vdash 0) \leq Peb(G) + \mathcal{O}(1)$
- Binary trees T_h improvement by Esteban & Torán (2003): $Sp(Peb_{T_h}^2 \vdash 0) \leq \left\lceil \frac{2h+1}{3} \right\rceil + 3 = \frac{2}{3}Peb(T_h) + \mathcal{O}(1)$
- Only one variable / vertex
 Ben-Sasson (2002): $Sp(Peb_G^1 \vdash 0) = \mathcal{O}(1)$ for arbitrary G

Upper bounds:

- Arbitrary DAGs G optimal black pebbling of G + proof from previous slide: $Sp(Peb_G^d \vdash 0) \leq Peb(G) + \mathcal{O}(1)$
- Binary trees T_h improvement by Esteban & Torán (2003): $Sp(Peb_{T_h}^2 \vdash 0) \leq \left\lceil \frac{2h+1}{3} \right\rceil + 3 = \frac{2}{3}Peb(T_h) + \mathcal{O}(1)$
- Only one variable / vertex
 Ben-Sasson (2002): $Sp(Peb_G^1 \vdash 0) = \mathcal{O}(1)$ for arbitrary G

Upper bounds:

- Arbitrary DAGs G optimal black pebbling of G + proof from previous slide: $Sp(Peb_G^d \vdash 0) \leq Peb(G) + \mathcal{O}(1)$
- Binary trees T_h improvement by Esteban & Torán (2003): $Sp(Peb_{T_h}^2 \vdash 0) \leq \left\lceil \frac{2h+1}{3} \right\rceil + 3 = \frac{2}{3}Peb(T_h) + \mathcal{O}(1)$
- Only one variable / vertex
 Ben-Sasson (2002): $Sp(Peb_G^1 \vdash 0) = \mathcal{O}(1)$ for arbitrary G

Upper bounds:

- Arbitrary DAGs G optimal black pebbling of G + proof from previous slide: $Sp(Peb_G^d \vdash 0) \leq Peb(G) + \mathcal{O}(1)$
- Binary trees T_h improvement by Esteban & Torán (2003): $Sp(Peb_{T_h}^2 \vdash 0) \leq \left\lceil \frac{2h+1}{3} \right\rceil + 3 = \frac{2}{3}Peb(T_h) + \mathcal{O}(1)$
- Only one variable / vertex
 Ben-Sasson (2002): $Sp(Peb_G^1 \vdash 0) = \mathcal{O}(1)$ for arbitrary G

Our Results

Theorem

Let $Peb_{T_h}^d$ denote the pebbling contradiction of degree $d \geq 2$ defined over the complete binary tree of height h. Then the space of refuting $Peb_{T_h}^d$ in resolution is $Sp(Peb_{T_h}^d \vdash 0) = \Theta(h)$.

Corollary

For all $k \ge 4$, there is a family of k-CNF formulas $\{F_n\}_{n=1}^{\infty}$ of size $\mathcal{O}(n)$ with refutation width $W(F_n \vdash 0) = \mathcal{O}(1)$ and refutation space $Sp(F_n \vdash 0) = \Theta(\log n)$.

Proof Idea

Prove lower bounds on space of $\pi : Peb_G^d \vdash 0$ by

- Interpreting set of clauses $\mathbb{C}_t \in \pi$ in terms of black and white pebbles on G
- Showing that if \mathbb{C}_t induces N black and white pebbles it contains at least N clauses (if $d \ge 2$)
- **3** Establishing that $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ induces black-white pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_\tau\}$ (works only for binary trees T_h)

Then some $\mathbb{C}_t \in \pi$ must induce $BW ext{-}Peb(T_h)$ pebbles $\|\mathbb{C}_t| \geq BW ext{-}Peb(T_h) = \Omega(h)$ ψ $Sp(Peb_{T_h}^d \vdash 0) = \Omega(h)$

Proof Idea

Prove lower bounds on space of $\pi : Peb_G^d \vdash 0$ by

- Interpreting set of clauses $\mathbb{C}_t \in \pi$ in terms of black and white pebbles on G
- ② Showing that if \mathbb{C}_t induces N black and white pebbles it contains at least N clauses (if $d \geq 2$)
- **3** Establishing that $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ induces black-white pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_\tau\}$ (works only for binary trees T_h)

Then some $\mathbb{C}_t \in \pi$ must induce $\mathit{BW-Peb}(T_h)$ pebbles

$$egin{aligned} & \downarrow & & \downarrow \ |\mathbb{C}_t| \geq extit{BW-Peb}(T_h) = \Omega(h) & & \downarrow \ & Spig(extit{Peb}_{T_h}^d dash 0ig) = \Omega(h) \end{aligned}$$

1. *p*₁

Source Source

2. *q*₁ 3. *r*₁

 S_1

Source

4.

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

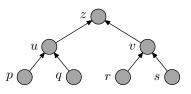
Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ 8. \overline{z}_1

Target



Empty start configuration

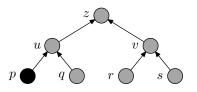
- 1. *p*₁
- 2. *q*₁
- 3. *r*₁
- 4. s_1
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

 p_1

- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. *z*₁

- Source
- Source Source
- Source
- Pebbling Pebbling
- Pebbling
- Target

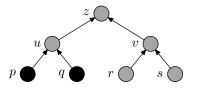
Download axiom 1: p_1



- p_1
- Source Source q_1
- 3. r_1

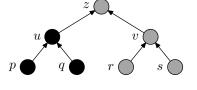
4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target



Download axiom 2: q_1

- 1. p_1 Source
- 2. q_1 Source 3. r_1 Source
- 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target



$$\begin{array}{c}
p_1 \\
q_1 \\
\overline{p}_1 \vee \overline{q}_1 \vee u_1
\end{array}$$

Download axiom 5: $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source

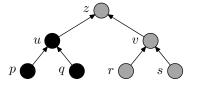
3.
$$r_1$$
 Source 4. s_1 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target



$$\begin{bmatrix}
p_1 \\
q_1 \\
\overline{p}_1 \vee \overline{q}_1 \vee u_1
\end{bmatrix}$$

Infer
$$\overline{q}_1 \vee u_1$$
 from p_1 and $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

1.
$$p_1$$

Source Source q_1

3. r_1 4. S_1

Source Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

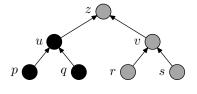
Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

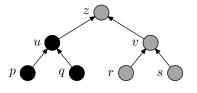
8. \overline{Z}_1 Target

Infer $\overline{q}_1 \vee u_1$ from p_1 and $\overline{p}_1 \vee \overline{q}_1 \vee u_1$



- p_1
- Source Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

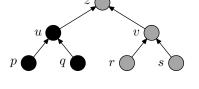


$$\begin{array}{c}
p_1 \\
q_1 \\
\overline{p}_1 \lor \overline{q}_1 \lor u_1 \\
\overline{q}_1 \lor u_1
\end{array}$$

Erase clause $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source Pebbling
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target



$$p_1$$
 q_1
 $\overline{q}_1 \lor u_1$

Erase clause $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

- p_1
- 2. q_1
- 3. r_1
- 4. S_1
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

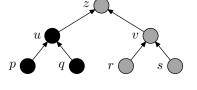
Source Source

Source

Source Pebbling

Pebbling

Target



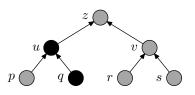
$$rac{oldsymbol{p}_1}{q_1} \ \overline{q}_1 ee u_1$$

Erase clause p₁

- 1. *p*₁
- 2. *q*₁
- 3. *r*₁
- 4. s_1
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. <u>Z</u>₁

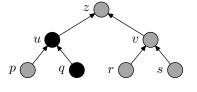
- Source
- Source
 - Source Source
- Pebbling Pebbling
 - Pebbling
 - Target

Erase clause p₁



- p_1
- 2. q_1
- 3. r_1 4. S_1
- $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

- Source Source
- Source
- Source Pebbling
- Pebbling
 - **Pebbling**



$$\frac{q_1}{\overline{q}_1} \vee u_1$$

Infer u₁ from q_1 and $\overline{q}_1 \vee u_1$

- p_1
- 2. q_1
- 3. r_1 S_1
- 4.
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

Source Source

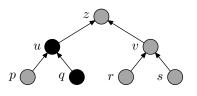
Source

Source

Pebbling Pebbling

Pebbling

Target



$$rac{q_1}{\overline{q}_1}ee u_1 \ rac{u_1}{\overline{u}_1}$$

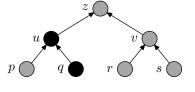
Infer u_1 from q_1 and $\overline{q}_1 \vee u_1$

- p_1
- Source 2. Source q_1
- 3. r_1

4. S_1

- Source Source
- $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- **Pebbling**

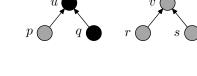
8. \overline{Z}_1 Target



Erase clause $\overline{q}_1 \vee u_1$

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target



Erase clause $\overline{q}_1 \vee u_1$

١.	P_1
\sim	

Source Source q_1

3. r_1

 S_1

Source Source

 $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

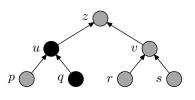
Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{Z}_1

Target



Erase clause q₁

Ι.	P_1
^	

Source Source q_1

3. r_1

 S_1

Source Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ **Pebbling**

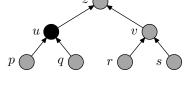
6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Target

8. \overline{Z}_1



U₁

Erase clause q₁

- 1. *p*₁
- 2. q_1
- 3. *r*₁
- 4. s_1
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Source Source

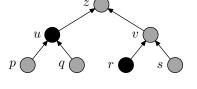
Source

Source

Pebbling Pebbling

Pebbling

Target



Download axiom 3: r_1

Jakob Nordström

- 1. p_1
- 2. q_1
- 3. *r*₁
- 4.
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. *Z*₁

Source Source

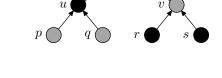
Source

Source

Pebbling Pebbling

Pebbling

Target



Download axiom 4: s₁

1.
$$p_1$$
 Source 2. q_1 Source

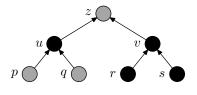
$$rac{1}{3}$$
. $rac{1}{7}$ Source

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling
7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8.
$$\overline{z}_1$$
 Target



$$\begin{bmatrix} u_1 \\ r_1 \\ s_1 \\ \overline{r}_1 \vee \overline{s}_1 \vee v_1 \end{bmatrix}$$

Download axiom 6: $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Ι.	ρ_1	Source
2.	q_1	Source

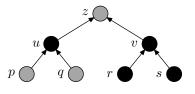
3.
$$r_1$$
 Source

4.
$$s_1$$
 Source
5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target



$$\begin{bmatrix} u_1 \\ r_1 \\ s_1 \\ \overline{r}_1 \vee \overline{s}_1 \vee v_1 \end{bmatrix}$$

Infer
$$\overline{s}_1 \vee v_1$$
 from r_1 and $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

1.
$$p_1$$
 Source Source

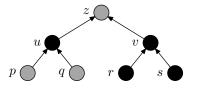
2.
$$q_1$$
 Source Source

3.
$$r_1$$
 Source 4. s_1 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

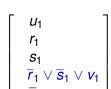
8.
$$\overline{z}_1$$
 Target

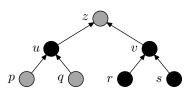


$$\begin{array}{c|c} u_1 \\ r_1 \\ \hline s_1 \\ \hline r_1 \lor \overline{s}_1 \lor v_1 \\ \hline \overline{s}_1 \lor v_4 \\ \end{array}$$

Infer
$$\overline{s}_1 \vee v_1$$
 from r_1 and $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- 1. p_1 Source 2. q_1 Source
- $3. r_1$ Source
- 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target

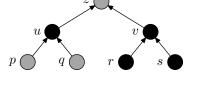




Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- Source p_1 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

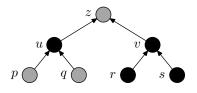


$$\begin{bmatrix}
u_1 \\
r_1 \\
s_1 \\
\overline{s}_1 \lor v_1
\end{bmatrix}$$

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
 - Pebbling Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
 - **Pebbling**
- 8. \overline{Z}_1 Target

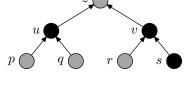


$$\begin{array}{c|c} u_1 \\ r_1 \\ \hline s_1 \\ \hline \overline{s}_1 \lor v_1 \end{array}$$

Erase clause r₁

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target



$$egin{array}{c|c} u_1 & s_1 \ \hline s_1 ee v_1 & \end{array}$$

Erase clause r₁

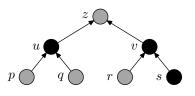
Source

- p_1 2.
 - Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
 - **Pebbling**
- 8. \overline{Z}_1

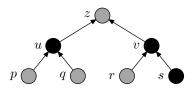
Target

Infer v₁ from s_1 and $\overline{s}_1 \vee v_1$



- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source Pebbling
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target



Infer v₁ from s_1 and $\overline{s}_1 \vee v_1$

Source p_1 2. Source q_1

3. r_1 4. S_1

Source Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

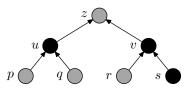
Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ 8. \overline{Z}_1

Target



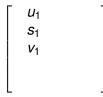
$$\begin{bmatrix} u_1 \\ s_1 \\ \overline{s}_1 \lor v_1 \\ v_1 \end{bmatrix}$$

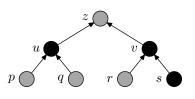
Erase clause $\overline{s}_1 \vee v_1$

- Source p_1 2. Source q_1
- 3. r_1

4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

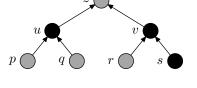




Erase clause $\overline{s}_1 \vee v_1$

- Source p_1 2. Source q_1
- 3. r_1 4. S_1

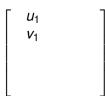
- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target

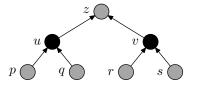


Erase clause s1

- p_1 2.
- Source Source q_1
- 3. r_1 4. S_1

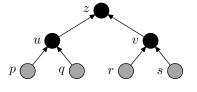
- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ **Pebbling**
- 8. \overline{Z}_1 Target





Erase clause s₁

- 1. p_1 Source
- 2. q_1 Source 3. r_1 Source
- 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target



$$\begin{array}{c}
u_1 \\
v_1 \\
\overline{u}_1 \vee \overline{v}_1 \vee z_1
\end{array}$$

Download axiom 7: $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1.	p_1	Source
2	a.	Source

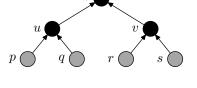
2.
$$q_1$$
 Source 3. r_1 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

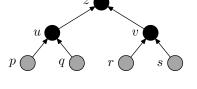


$$\begin{bmatrix} u_1 \\ v_1 \\ \overline{u}_1 \vee \overline{v}_1 \vee z_1 \end{bmatrix}$$

Infer
$$\overline{v}_1 \lor z_1$$
 from u_1 and $\overline{u}_1 \lor \overline{v}_1 \lor z_1$

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- **Pebbling**
- 8. \overline{Z}_1
- Target



Infer $\overline{v}_1 \vee z_1$ from u_1 and $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1.	p_1	Source
^		0

2.
$$q_1$$
 Source

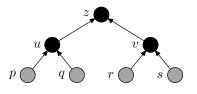
3.
$$r_1$$
 Source

4.
$$s_1$$
 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target



$$\begin{array}{c}
u_1 \\
v_1 \\
\overline{u}_1 \vee \overline{v}_1 \vee z_1 \\
\overline{v}_1 \vee z_1
\end{array}$$

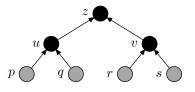
Erase clause $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

- p_1
- Source 2. Source q_1
- 3. r_1

4. S_1

- Source Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
 - **Pebbling**
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ 8. \overline{Z}_1

Target

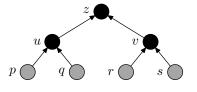


$$u_1$$
 v_1
 $\overline{v}_1 \lor z_1$

Erase clause $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

- 1. *p*₁
- 2. *q*₁
- 3. *r*₁
- 4. s_1
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

- Source Source
- Source Source
- Pebbling
- Pebbling Pebbling
 - Target

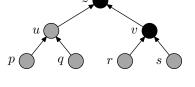


Erase clause u₁

- p_1
- Source 2. Source q_1
- 3. r_1 4. S_1

- Source Source
- $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- **Pebbling**

8. \overline{Z}_1 Target



Erase clause u₁

- 1. *p*₁
- 2. q_1 Source
- 3. *r*₁ 4. *s*₁

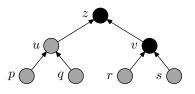
Source Source

Source

- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
 - Pebbling Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ F 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ F
 - Pebbling

8. \overline{z}_1

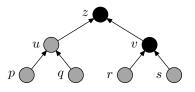
Infer z_1 from v_1 and $\overline{v}_1 \lor z_1$



- 1. *p*₁
- 2. q₁
- 3. *r*₁
- 4. *s*₁
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

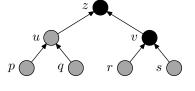
- Source Source
- Source
- Source
- Pebbling Pebbling
 - Pebbling
- Target

Infer z_1 from v_1 and $\overline{v}_1 \lor z_1$



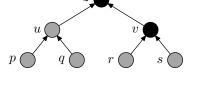
- p_1
- 2. q_1
- 3. r_1
- 4. S_1
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{Z}_1

- Source Source
- Source
- Source Pebbling
- - **Pebbling**
- Target



Erase clause $\overline{V}_1 \vee Z_1$

- 1. p_1 Source
- 2. q_1 Source
- 3. r_1 Source 4. s_1 Source
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling
- 8. \overline{z}_1 Target



$$Z_1$$

Erase clause $\overline{v}_1 \vee z_1$

Source

1. *p*₁

2. q_1 Source

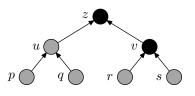
3. r_1 Source

4. s_1 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target



Erase clause v₁

1. p_1 Source

2. q_1 Source

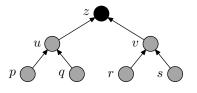
3. r_1 Source

4. s_1 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target



*Z*₁

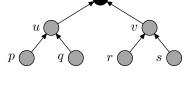
Erase clause v₁

- p_1
- Source 2. Source q_1
- 3. r_1

- Source Source
- 4. S_1 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- Pebbling

Pebbling

- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ 8. \overline{Z}_1
- Target



$$\frac{Z_1}{\overline{Z}_1}$$

Download axiom 8: \overline{z}_1

1. *p*₁ 2. *a*₁

Source Source

2. *q*₁ 3. *r*₁

 S_1

Source

4.

Source Pebbling

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

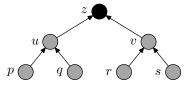
Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. *z*₁

Target



 $\frac{Z_1}{\overline{Z}_1}$

Infer 0 from z_1 and \overline{z}_1

- 1. *p*₁
- 2. q_1
- 3. *r*₁
- 4. *s*₁
- 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$
- 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$
- 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$
- 8. \overline{z}_1

Source Source

Source

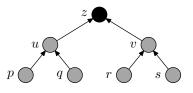
Source

Pebbling Pebbling

Pebbling

Target

Infer 0 from z_1 and \overline{z}_1



Intuition for Black and White Pebbles

Induced Black Pebble

 $\mathbb{C}_t \vDash \bigvee_{i=1}^d v_i \Leftrightarrow \text{black pebble on } v \text{ with no white pebbles below}$

How to interpret white pebbles on W below black pebble v? Getting white pebbles *off* vertices is exactly as hard as getting black pebbles *on* vertices

Assuming we could remove white pebbles from $W \Leftrightarrow \text{place}$ black pebbles on W, would have single black pebble on V left

Induced White Pebbles

 \mathbb{C}_t should induce white pebbles on W below v if assuming black pebbles on W, we get single black pebble on v That is, if $\mathbb{C}_t \cup \{\bigvee_{i=1}^d w_i \mid w \in W\} \models \bigvee_{i=1}^d v_i$.

Intuition for Black and White Pebbles

Induced Black Pebble

 $\mathbb{C}_t \vDash \bigvee_{i=1}^d v_i \Leftrightarrow \text{black pebble on } v \text{ with no white pebbles below}$

How to interpret white pebbles on W below black pebble v? Getting white pebbles off vertices is exactly as hard as getting black pebbles on vertices

Assuming we could remove white pebbles from $W \Leftrightarrow \text{place}$ black pebbles on W, would have single black pebble on v left

Induced White Pebbles

 \mathbb{C}_t should induce white pebbles on W below v if assuming black pebbles on W, we get single black pebble on v. That is, if $\mathbb{C}_t \cup \left\{\bigvee_{i=1}^d w_i \mid w \in W\right\} \vDash \bigvee_{i=1}^d v_i$.

Intuition for Black and White Pebbles

Induced Black Pebble

 $\mathbb{C}_t \vDash \bigvee_{i=1}^d v_i \Leftrightarrow \text{black pebble on } v \text{ with no white pebbles below}$

How to interpret white pebbles on W below black pebble v? Getting white pebbles off vertices is exactly as hard as getting black pebbles on vertices

Assuming we could remove white pebbles from $W \Leftrightarrow \text{place}$ black pebbles on W, would have single black pebble on v left

Induced White Pebbles

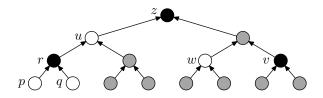
 \mathbb{C}_t should induce white pebbles on W below v if assuming black pebbles on W, we get single black pebble on v That is, if $\mathbb{C}_t \cup \{\bigvee_{i=1}^d w_i \mid w \in W\} \models \bigvee_{i=1}^d v_i$.

Example of Induced Pebble Subconfigurations

As an example, we would like the clause configuration

$$\mathbb{C} = \begin{bmatrix} \overline{u}_i \vee \overline{w}_j \vee \bigvee_{l=1}^d z_l & | & 1 \leq i, j \leq d \\ \overline{p}_i \vee \overline{q}_j \vee \bigvee_{l=1}^d r_l & | & 1 \leq i, j \leq d \\ \bigvee_{l=1}^d v_l & \end{bmatrix}$$

to induce the pebbles



Induced Pebbles and Clause Configuration Size

- Formalizing this yields interpretation of clause configuration \mathbb{C}_t derived from Peb_G^d in terms of pebbles on G
- Hope that resolution proof $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_{\tau}\}$ will correspond to black-white pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$ of G under this interpretation
- But to get lower bound on space from this we need to show that

$$\mathbb{C}_t$$
 induces many pebbles ψ \mathbb{C}_t contains many clauses

1. p_1 Source

2. q_1 Source

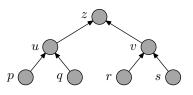
3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target



Empty start configuration

1. *p*₁ 2. *a*₁ Source Source

2. q_1 3. r_1

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

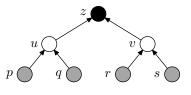
Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1

Target



$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$

Download axiom 7: $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

$$\rho_1$$

2. Source q_1

3.

Source

Source

4. S_1 Source Pebbling

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

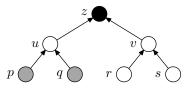
7. $\overline{U}_1 \vee \overline{V}_1 \vee Z_1$

Pebbling

 \overline{Z}_1 8.

Target

$$\overline{u}_1 \vee \overline{v}_1 \vee z_1
\overline{r}_1 \vee \overline{s}_1 \vee v_1$$



Download axiom 6: $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

2. q_1 Source Source

3.

Source

4. S_1

Source Pebbling

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

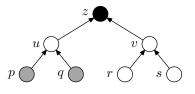
Pebbling

7. $\overline{U}_1 \vee \overline{V}_1 \vee Z_1$

Pebbling

 \overline{Z}_1 8.

Target



Infer
$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$$
 from $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ and $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Source

2. Source q_1

3. Source

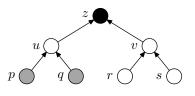
4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

 \overline{Z}_1 8. Target

$$\overline{u}_1 \vee \overline{v}_1 \vee z_1
\overline{r}_1 \vee \overline{s}_1 \vee v_1
\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$$



Infer
$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$$
 from $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ and $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source 4. s_1 Source

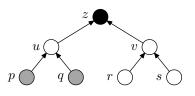
5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8. \overline{z}_1 Target

$$\overline{u}_1 \lor \overline{v}_1 \lor z_1
\overline{r}_1 \lor \overline{s}_1 \lor v_1
\overline{r}_1 \lor \overline{s}_1 \lor \overline{u}_1 \lor z_1$$



Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

1. p_1 Source

2. q_1 Source

3. r_1 Source

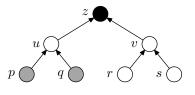
4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{u}_1 \vee \overline{v}_1 \vee z_1
\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$$



Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

1. p_1 Source

2. q_1 Source

3. r_1 Source

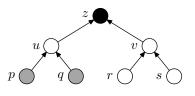
4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \lor \overline{v}_1 \lor z_1$ Pebbling 8. \overline{z}_1 Target

$$\overline{u}_1 \vee \overline{v}_1 \vee z_1
\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$$



Erase clause $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1. p_1 Source

2. q_1 Source

3. r_1 Source

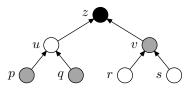
4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$$



Erase clause $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

1.
$$p_1$$
 Source

2. q_1 Source

3. r_1 Source 4. s_1 Source

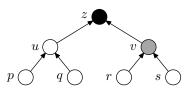
4. s_1 Source 5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1
\overline{p}_1 \vee \overline{q}_1 \vee u_1$$



Download axiom 5: $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Source

2. Source q_1

3. Source

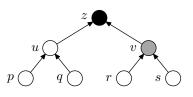
4. S_1 Source

 $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{Z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1
\overline{p}_1 \vee \overline{q}_1 \vee u_1$$



Infer
$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ and $\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$

1.
$$p_1$$
 Source 2. q_1 Source

3.
$$r_1$$
 Source

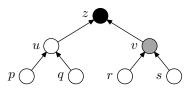
4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling 8. \overline{z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1
\overline{p}_1 \vee \overline{q}_1 \vee u_1
\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$



Infer
$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ and $\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$

1. p_1 Source 2. q_1 Source

3. r_1 Source

4. s_1 Source

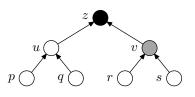
5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1
\overline{p}_1 \vee \overline{q}_1 \vee u_1
\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$



Erase clause $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

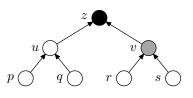
4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{Z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1
\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$



Erase clause $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

1. p_1 Source 2. q_1 Source

3. r_1 Source

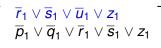
4. s_1 Source

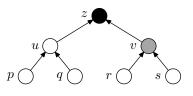
5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target





Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

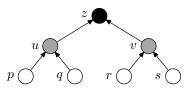
5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$



Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee \overline{u}_1 \vee z_1$

1.
$$p_1$$
 Source

2. q_1 Source

3. r_1 Source

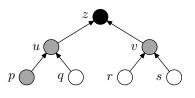
4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \lor \overline{v}_1 \lor z_1$ Pebbling 8. \overline{z}_1 Target

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 p_1



Download axiom 1: p₁

1.
$$p_1$$
 Source 2. q_1 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

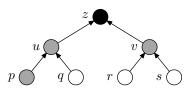
6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

$$p_1$$



Infer
$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from p_1 and $\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

1.
$$p_1$$
 Source 2. q_1 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

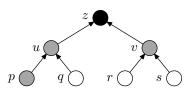
5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 p_1
 $\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$



Infer
$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from p_1 and $\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

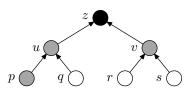
5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8. \overline{z}_1 Target

$$\overline{p}_1 \lor \overline{q}_1 \lor \overline{r}_1 \lor \overline{s}_1 \lor z_1$$
 p_1
 $\overline{q}_1 \lor \overline{r}_1 \lor \overline{s}_1 \lor z_1$



Erase clause p₁

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

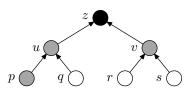
5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1 \\
\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$



Erase clause p₁

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

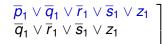
4.
$$s_1$$
 Source

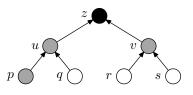
5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8. \overline{z}_1 Target





Erase clause

$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

1. p_1 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

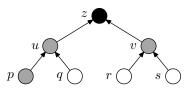
5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$



$$\overline{p}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

1.
$$p_1$$
 Source 2. q_1 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

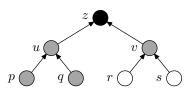
5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 q_1



Download axiom 2: q1

1.
$$p_1$$
 Source

2. q_1 Source

3. r_1 Source 4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

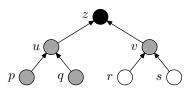
6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \lor \overline{v}_1 \lor z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

$$q_1$$



Infer
$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from q_1 and $\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source Source

4.
$$s_1$$
 Source

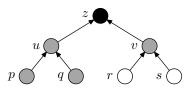
5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{q}_1 \lor \overline{r}_1 \lor \overline{s}_1 \lor z_1 \ q_1 \ \overline{r}_1 \lor \overline{s}_1 \lor z_1$$



Infer
$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 from q_1 and $\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

1.
$$p_1$$
 Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

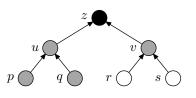
5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1
\underline{q}_1
\overline{r}_1 \vee \overline{s}_1 \vee z_1$$



Erase clause q1

1.	p_1	Source
Ι.	p_1	Source

2.
$$q_1$$
 Source

3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

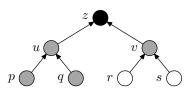
5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$
 Pebbling

8.
$$\overline{z}_1$$
 Target

$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1
\overline{r}_1 \vee \overline{s}_1 \vee z_1$$



Erase clause q1

1. p_1 Source

2. q_1 Source

3. r_1 Source

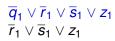
4. s_1 Source

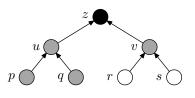
5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target





Erase clause $\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$

1. p_1 Source

2. q_1 Source

3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target



Erase clause
$$\overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee z_1$$

1. *p*₁ 2. *a*₁

Source Source

2. *q*₁ 3. *r*₁

Source

4. s₁

Source Pebbling

5. $\overline{p}_1 \lor \overline{q}_1 \lor u_1$ 6. $\overline{r}_1 \lor \overline{s}_1 \lor v_1$

Pebbling

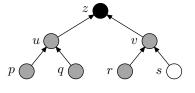
7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1

Target

$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 r_1



Download axiom 3: r_1

Source

1. *p*₁

2. q_1 Source

3. r_1 Source

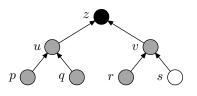
4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target

$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 r_1



Infer
$$\overline{s}_1 \vee z_1$$
 from r_1 and $\overline{r}_1 \vee \overline{s}_1 \vee z_1$

Source Source

Source

Source Pebbling

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

Pebbling

7.
$$\overline{u}_1 \vee \overline{v}_1 \vee z_1$$

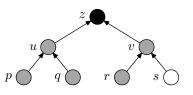
Pebbling

8.
$$\overline{z}_1$$

Target

$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$
 r_1
 $\overline{s}_1 \vee z_1$

Infer
$$\overline{s}_1 \lor z_1$$
 from r_1 and $\overline{r}_1 \lor \overline{s}_1 \lor z_1$



1. *p*₁ 2. *a*₁

Source Source

2. q_1 3. r_1

Source

4. s₁

Source Pebbling

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

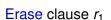
Pebbling

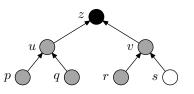
7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1

Target





Source Source

3. r_1

Source

4. s_1

Source Pebbling

5. $\overline{p}_1 \lor \overline{q}_1 \lor u_1$ 6. $\overline{r}_1 \lor \overline{s}_1 \lor v_1$

Pebbling

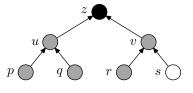
7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling Target

8. \overline{z}_1

$$\overline{r}_1 \vee \overline{s}_1 \vee z_1$$

 $\overline{s}_1 \vee z_1$



Erase clause r₁

1. *p*₁ 2. *q*₁ Source Source

3. r-

Source

4. s_1

Source Pebbling

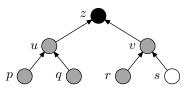
5. $\overline{p}_1 \lor \overline{q}_1 \lor u_1$ 6. $\overline{r}_1 \lor \overline{s}_1 \lor v_1$

Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling Target

8. \overline{z}_1



$$\frac{\overline{r}_1 \vee \overline{s}_1 \vee z_1}{\overline{s}_1 \vee z_1}$$

Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee z_1$

Source p_1 2. Source q_1

3. Source r_1

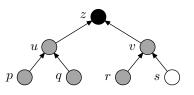
4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ **Pebbling**

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

 \overline{Z}_1 8. Target



Erase clause $\overline{r}_1 \vee \overline{s}_1 \vee z_1$

 p_1 2. q_1 Source Source

3. r_1 Source

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$

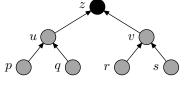
Pebbling Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

 \overline{Z}_1 8.

Target



$$\overline{s}_1 \lor z_1$$
 s_1

Download axiom 4: s1

Source

 p_1

2. Source q_1

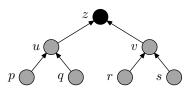
3. Source r_1

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ **Pebbling**

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

 \overline{Z}_1 8. Target



Infer z₁ from s_1 and $\overline{s}_1 \vee z_1$

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

Pebbling Pebbling

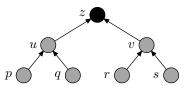
6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. \overline{z}_1

Target

Infer z_1 from s_1 and $\overline{s}_1 \vee z_1$



Source

2. Source q_1

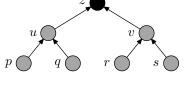
3. Source r_1

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ **Pebbling**

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

 \overline{Z}_1 8. Target



$$\overline{S}_1 \vee Z_1$$

 Z_1

Erase clause s₁

Source

2. q_1 Source

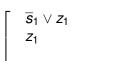
3. r_1 Source

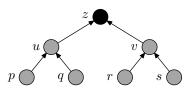
4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target





Erase clause s₁

 p_1

Source 2. Source q_1

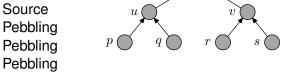
3. Source r_1

4. S_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ **Pebbling**

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

 \overline{Z}_1 8. Target



$$\overline{s}_1 \vee z_1$$
 z_1

Erase clause $\overline{s}_1 \vee z_1$

1.	p_1	Source
2	~	Source

2.
$$q_1$$
 Source

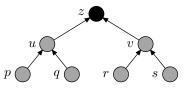
3.
$$r_1$$
 Source

4.
$$s_1$$
 Source

5.
$$\overline{p}_1 \vee \overline{q}_1 \vee u_1$$
 Pebbling

6.
$$\overline{r}_1 \vee \overline{s}_1 \vee v_1$$
 Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8.



Erase clause $\overline{s}_1 \vee z_1$

*Z*₁

Not True for d = 1 Variable per Vertex

1. *p*₁ 2. *q*₁

Source Source

3. r_1

Source

4. s₁

Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$

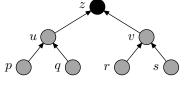
Pebbling Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$

Pebbling

8. Z₁

Target



Download axiom 8: \overline{z}_1

Not True for d = 1 Variable per Vertex

1. p_1 Source

2. q_1 Source

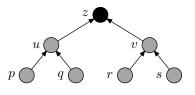
3. r_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling

6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling 7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target



Infer 0 from \overline{z}_1 and z_1

Not True for d = 1 Variable per Vertex

Source

2. q_1 Source

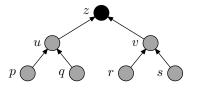
3. r_1 Source 4. s_1 Source

4. s_1 Source

5. $\overline{p}_1 \vee \overline{q}_1 \vee u_1$ Pebbling 6. $\overline{r}_1 \vee \overline{s}_1 \vee v_1$ Pebbling

7. $\overline{u}_1 \vee \overline{v}_1 \vee z_1$ Pebbling

8. \overline{z}_1 Target



Infer 0 from \overline{z}_1 and z_1

But Many Pebbles \Rightarrow Many Clause for d > 1

This "top-down" proof in space 3 generalizes to any DAG G

- In terms of our induced pebble configurations:
 white pebbles are free for d = 1!
- In a sense, this is exactly why $Sp(Peb_G^1 \vdash 0) = \mathcal{O}(1)$
- But for d > 1 variables per vertex we can prove that # clauses ≥ # induced pebbles

Clauses ≥ # Induced Pebbles (Theorem)

F implies *D* minimally if $F \models D$ but $F' \not\models D$ for all $F' \subsetneq F$.

Lemma

Suppose that F implies D minimally. For V any subset of variables, let $F_V = \{C \in F \mid Vars(C) \cap V \neq \emptyset\}$. Then for all $V \subseteq Vars(F) \setminus Vars(D)$ it holds that $|F_V| > |V|$.

Theorem

Suppose that $\mathbb C$ is a set of clauses derived from Peb_G^d for $d \geq 2$ and that $V \subseteq V(T)$ is a set of vertices such that $\mathbb C$ induces a black or white pebble on each $v \in V$. Then $|\mathbb C| \geq |V|$.

Clauses ≥ # Induced Pebbles (Theorem)

F implies *D* minimally if $F \models D$ but $F' \not\models D$ for all $F' \subsetneq F$.

Lemma

Suppose that F implies D minimally. For V any subset of variables, let $F_V = \{C \in F \mid Vars(C) \cap V \neq \emptyset\}$. Then for all $V \subseteq Vars(F) \setminus Vars(D)$ it holds that $|F_V| > |V|$.

Theorem

Suppose that $\mathbb C$ is a set of clauses derived from Peb_G^d for $d \geq 2$ and that $V \subseteq V(T)$ is a set of vertices such that $\mathbb C$ induces a black or white pebble on each $v \in V$. Then $|\mathbb C| \geq |V|$.

- If C induces N black pebbles and no white pebbles this is almost as if C implied N disjoint clauses
- If so, easy to believe that $|\mathbb{C}| \geq N$
- Problem: When \mathbb{C} induces white pebbles on W, we get a bound not for $|\mathbb{C}|$ but for $|\mathbb{C} \cup \{\bigvee_{i=1}^d w_i \mid w \in W\}|$
- But every white pebble w contributes only 1 clause $\bigvee_{i=1}^{d} w_i$ but d > 1 new variables
- \mathbb{C} must contain d-1 more clauses for every white pebble to eliminate these new variables
- Formalizing this yields the stated lower bound on $|\mathbb{C}|$ in # induced pebbles.

- If C induces N black pebbles and no white pebbles this is almost as if C implied N disjoint clauses
- If so, easy to believe that $|\mathbb{C}| \geq N$
- Problem: When \mathbb{C} induces white pebbles on W, we get a bound not for $|\mathbb{C}|$ but for $|\mathbb{C} \cup \{\bigvee_{i=1}^d w_i \mid w \in W\}|$
- But every white pebble w contributes only 1 clause $\bigvee_{i=1}^{d} w_i$ but d > 1 new variables
- \mathbb{C} must contain d-1 more clauses for every white pebble to eliminate these new variables
- Formalizing this yields the stated lower bound on $|\mathbb{C}|$ in # induced pebbles.

- If C induces N black pebbles and no white pebbles this is almost as if C implied N disjoint clauses
- If so, easy to believe that $|\mathbb{C}| \geq N$
- Problem: When $\mathbb C$ induces white pebbles on W, we get a bound not for $|\mathbb C|$ but for $|\mathbb C \cup \{\bigvee_{i=1}^d w_i \mid w \in W\}|$
- But every white pebble w contributes only 1 clause $\bigvee_{i=1}^{d} w_i$ but d > 1 new variables
- \mathbb{C} must contain d-1 more clauses for every white pebble to eliminate these new variables
- Formalizing this yields the stated lower bound on $|\mathbb{C}|$ in # induced pebbles.

- If C induces N black pebbles and no white pebbles this is almost as if C implied N disjoint clauses
- If so, easy to believe that $|\mathbb{C}| \geq N$
- Problem: When $\mathbb C$ induces white pebbles on W, we get a bound not for $|\mathbb C|$ but for $|\mathbb C \cup \{\bigvee_{i=1}^d w_i \mid w \in W\}|$
- But every white pebble w contributes only 1 clause $\bigvee_{i=1}^{d} w_i$ but d > 1 new variables
- \mathbb{C} must contain d-1 more clauses for every white pebble to eliminate these new variables
- Formalizing this yields the stated lower bound on $|\mathbb{C}|$ in # induced pebbles.

- If C induces N black pebbles and no white pebbles this is almost as if C implied N disjoint clauses
- If so, easy to believe that $|\mathbb{C}| \geq N$
- Problem: When $\mathbb C$ induces white pebbles on W, we get a bound not for $|\mathbb C|$ but for $|\mathbb C \cup \{\bigvee_{i=1}^d w_i \mid w \in W\}|$
- But every white pebble w contributes only 1 clause $\bigvee_{i=1}^{d} w_i$ but d > 1 new variables
- \mathbb{C} must contain d-1 more clauses for every white pebble to eliminate these new variables
- Formalizing this yields the stated lower bound on $|\mathbb{C}|$ in # induced pebbles.

- If C induces N black pebbles and no white pebbles this is almost as if C implied N disjoint clauses
- If so, easy to believe that $|\mathbb{C}| \geq N$
- Problem: When $\mathbb C$ induces white pebbles on W, we get a bound not for $|\mathbb C|$ but for $|\mathbb C \cup \{\bigvee_{i=1}^d w_i \mid w \in W\}|$
- But every white pebble w contributes only 1 clause $\bigvee_{i=1}^{d} w_i$ but d > 1 new variables
- \mathbb{C} must contain d-1 more clauses for every white pebble to eliminate these new variables
- Formalizing this yields the stated lower bound on $|\mathbb{C}|$ in # induced pebbles.

Induced Pebbles Break The Pebbling Rules

Unfortunately, our interpretation of $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_{\tau}\}$ does not yield "well-behaved" pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_{\tau}\}$

- Erasures can (and will) lead to large blocks of black and white pebbles suddenly just disappearing
- Need to keep track of exactly which white pebbles have been used to get a black pebble on a vertex

"Illegal" removal of white pebble from w OK if all black pebbles above w dependent on this white pebble are removed as well!

Induced Pebbles Break The Pebbling Rules

Unfortunately, our interpretation of $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ does not yield "well-behaved" pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_\tau\}$

- Erasures can (and will) lead to large blocks of black and white pebbles suddenly just disappearing
- Need to keep track of exactly which white pebbles have been used to get a black pebble on a vertex

"Illegal" removal of white pebble from w OK if all black pebbles above w dependent on this white pebble are removed as well!

Induced Pebbles Break The Pebbling Rules

Unfortunately, our interpretation of $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_\tau\}$ does not yield "well-behaved" pebbling $\mathcal{P} = \{\mathbb{P}_0, \dots, \mathbb{P}_\tau\}$

- Erasures can (and will) lead to large blocks of black and white pebbles suddenly just disappearing
- Need to keep track of exactly which white pebbles have been used to get a black pebble on a vertex

"Illegal" removal of white pebble from w OK if all black pebbles above w dependent on this white pebble are removed as well!

Pebble Subconfiguration $v\langle W \rangle$

Write $v\langle W \rangle$ to denote a pebble subconfiguration:

- black pebble on v together with
- white pebbles on W below v thanks to which we have the black pebble on v

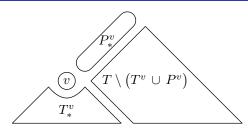
Redefine black-white pebble game in terms of moves with pebble subconfigurations instead of individual pebbles

Pebble Subconfiguration Terminology

For a pebble subconfiguration $v\langle W \rangle$:

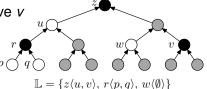
- White pebbles on $w \in W$ support black pebble on v.
- Black pebble on v is dependent on white pebbles on W (for $W = \emptyset$ call $v\langle \emptyset \rangle$ an independent black pebble).
- A set of pebble subconfigurations \mathbb{L} is a labelled pebble configuration or L-configuration.

Notation for Vertex Sets in Binary Tree T



- succ(v) immediate successor of v (\emptyset for root z)
- pred(v) immediate predecessors of v (\emptyset for leaf)
 - T^{ν} vertices in the complete subtree of T rooted at ν
 - T_*^{ν} T^{ν} without its root, i.e., $T^{\nu} \setminus \{\nu\}$
 - P^{v} vertices in the path from v to the root z of T
 - P_*^{ν} the path without ν , i.e., $P^{\nu} \setminus \{\nu\}$

For $u\langle U\rangle$ and $v\langle V\rangle$, if u is above v and U is below V then $u\langle U\rangle$ is stronger than $v\langle V\rangle$



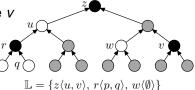
Formally

•
$$v\langle V\rangle \leq u\langle U\rangle$$
 if $T^v\setminus\bigcup_{w\in V}T^w\subseteq T^u\setminus\bigcup_{w\in U}T^w$

•
$$v\langle V \rangle \prec u\langle U \rangle$$
 if $v\langle V \rangle \leq u\langle U \rangle$ and $v\langle V \rangle \neq u\langle U \rangle$

Note that $v\langle\emptyset\rangle \prec z\langle u,w\rangle$ in picture above

For $u\langle U\rangle$ and $v\langle V\rangle$, if u is above v and U is below V then $u\langle U\rangle$ is stronger than $v\langle V\rangle$



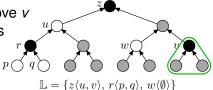
Formally:

•
$$v\langle V \rangle \leq u\langle U \rangle$$
 if $T^v \setminus \bigcup_{w \in V} T^w \subseteq T^u \setminus \bigcup_{w \in U} T^w$

•
$$v\langle V \rangle \prec u\langle U \rangle$$
 if $v\langle V \rangle \leq u\langle U \rangle$ and $v\langle V \rangle \neq u\langle U \rangle$

Note that $v\langle\emptyset\rangle \prec z\langle u,w\rangle$ in picture above

For $u\langle U\rangle$ and $v\langle V\rangle$, if u is above v and U is below V then $u\langle U\rangle$ is stronger than $v\langle V\rangle$



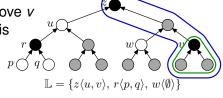
Formally:

•
$$v\langle V \rangle \leq u\langle U \rangle$$
 if $T^v \setminus \bigcup_{w \in V} T^w \subseteq T^u \setminus \bigcup_{w \in U} T^w$

•
$$v\langle V \rangle \prec u\langle U \rangle$$
 if $v\langle V \rangle \leq u\langle U \rangle$ and $v\langle V \rangle \neq u\langle U \rangle$

Note that $v\langle\emptyset\rangle \prec z\langle u, w\rangle$ in picture above

For $u\langle U\rangle$ and $v\langle V\rangle$, if u is above v and U is below V then $u\langle U\rangle$ is stronger than $v\langle V\rangle$



Formally:

•
$$v\langle V\rangle \leq u\langle U\rangle$$
 if $T^v \setminus \bigcup_{w \in V} T^w \subseteq T^u \setminus \bigcup_{w \in U} T^w$

•
$$v\langle V \rangle \prec u\langle U \rangle$$
 if $v\langle V \rangle \leq u\langle U \rangle$ and $v\langle V \rangle \neq u\langle U \rangle$

Note that $v\langle\emptyset\rangle \prec z\langle u, w\rangle$ in picture above

- Pebble placement: always black on v together with whites on pred(v), except for leaves where $pred(v) = \emptyset$
- Removal of white pebbles always allowed, but if so any black pebble dependent on these white pebbles must be removed as well
- "Traditional" removal of white pebble from w corresponds to merger of $v\langle V\rangle$ and $w\langle W\rangle$ into $v\langle (V\cup W)\setminus \{w\}\rangle$ followed by erasure of $v\langle V\rangle$ and $w\langle W\rangle$
- "Backward" pebbling moves to weaker pebble configurations possible—reversal moves

- Pebble placement: always black on v together with whites on pred(v), except for leaves where $pred(v) = \emptyset$
- Removal of white pebbles always allowed, but if so any black pebble dependent on these white pebbles must be removed as well
- "Traditional" removal of white pebble from w corresponds to merger of $v\langle V\rangle$ and $w\langle W\rangle$ into $v\langle (V\cup W)\setminus \{w\}\rangle$ followed by erasure of $v\langle V\rangle$ and $w\langle W\rangle$
- "Backward" pebbling moves to weaker pebble configurations possible—reversal moves

- Pebble placement: always black on v together with whites on pred(v), except for leaves where $pred(v) = \emptyset$
- Removal of white pebbles always allowed, but if so any black pebble dependent on these white pebbles must be removed as well
- "Traditional" removal of white pebble from w corresponds to merger of $v\langle V\rangle$ and $w\langle W\rangle$ into $v\langle (V\cup W)\setminus \{w\}\rangle$ followed by erasure of $v\langle V\rangle$ and $w\langle W\rangle$
- "Backward" pebbling moves to weaker pebble configurations possible—reversal moves

- Pebble placement: always black on v together with whites on pred(v), except for leaves where $pred(v) = \emptyset$
- Removal of white pebbles always allowed, but if so any black pebble dependent on these white pebbles must be removed as well
- "Traditional" removal of white pebble from w corresponds to merger of $v\langle V\rangle$ and $w\langle W\rangle$ into $v\langle (V\cup W)\setminus \{w\}\rangle$ followed by erasure of $v\langle V\rangle$ and $w\langle W\rangle$
- "Backward" pebbling moves to weaker pebble configurations possible—reversal moves

Definition (Labelled pebble game)

A labelled black-white pebbling, or L-pebbling, is a sequence $\mathcal{L} = \{\mathbb{L}_0, \dots, \mathbb{L}_{\tau}\}$ of L-configurations \mathbb{L}_t such that $\mathbb{L}_0 = \{\emptyset\}$ and \mathbb{L}_t is obtained from \mathbb{L}_{t-1} by one of the following:

```
Introduction \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle pred(v) \rangle\} for v \langle pred(v) \rangle \not\in \mathbb{L}_{t-1}

Merger \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle (V \cup W) \setminus \{w\} \rangle\} for v \langle V \rangle, w \langle W \rangle \in \mathbb{L}_{t-1} with w \in V

Reversal \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle V \rangle\} provided v \langle V \rangle \prec u \langle U \rangle for some u \langle U \rangle \in \mathbb{L}_{t-1}

Erasure \mathbb{L}_t = \mathbb{L}_{t-1} \setminus \{v \langle V \rangle\} for v \langle V \rangle \in \mathbb{L}_{t-1}

L-pebbling price L-Peb(T) defined as before
```

Definition (Labelled pebble game)

A labelled black-white pebbling, or L-pebbling, is a sequence $\mathcal{L} = \{\mathbb{L}_0, \dots, \mathbb{L}_{\tau}\}$ of L-configurations \mathbb{L}_t such that $\mathbb{L}_0 = \{\emptyset\}$ and \mathbb{L}_t is obtained from \mathbb{L}_{t-1} by one of the following:

```
Introduction \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle pred(v) \rangle\} for v \langle pred(v) \rangle \notin \mathbb{L}_{t-1}

Merger \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle (V \cup W) \setminus \{w\} \rangle\} for v \langle V \rangle, w \langle W \rangle \in \mathbb{L}_{t-1} with w \in V

Reversal \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle V \rangle\} provided v \langle V \rangle \prec u \langle U \rangle for some u \langle U \rangle \in \mathbb{L}_{t-1}

Erasure \mathbb{L}_t = \mathbb{L}_{t-1} \setminus \{v \langle V \rangle\} for v \langle V \rangle \in \mathbb{L}_{t-1}
```

Definition (Labelled pebble game)

A labelled black-white pebbling, or L-pebbling, is a sequence $\mathcal{L} = \{\mathbb{L}_0, \dots, \mathbb{L}_{\tau}\}$ of L-configurations \mathbb{L}_t such that $\mathbb{L}_0 = \{\emptyset\}$ and \mathbb{L}_t is obtained from \mathbb{L}_{t-1} by one of the following:

```
Introduction \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle pred(v) \rangle\} for v \langle pred(v) \rangle \notin \mathbb{L}_{t-1}

Merger \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle (V \cup W) \setminus \{w\} \rangle\} for v \langle V \rangle, w \langle W \rangle \in \mathbb{L}_{t-1} with w \in V
```

Reversal $\mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v\langle V\rangle\}$ provided $v\langle V\rangle \prec u\langle U\rangle$ for some $u\langle U\rangle \in \mathbb{L}_{t-1}$

Erasure
$$\mathbb{L}_t = \mathbb{L}_{t-1} \setminus \{v\langle V \rangle\}$$
 for $v\langle V \rangle \in \mathbb{L}_{t-1}$

L-pebbling price L-Peb(T) defined as before

Definition (Labelled pebble game)

A labelled black-white pebbling, or L-pebbling, is a sequence $\mathcal{L} = \{\mathbb{L}_0, \dots, \mathbb{L}_{\tau}\}$ of L-configurations \mathbb{L}_t such that $\mathbb{L}_0 = \{\emptyset\}$ and \mathbb{L}_t is obtained from \mathbb{L}_{t-1} by one of the following:

```
Introduction \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle pred(v) \rangle\} for v \langle pred(v) \rangle \notin \mathbb{L}_{t-1}

Merger \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle (V \cup W) \setminus \{w\} \rangle\} for v \langle V \rangle, w \langle W \rangle \in \mathbb{L}_{t-1} with w \in V

Reversal \mathbb{L}_t = \mathbb{L}_{t-1} \cup \{v \langle V \rangle\} provided v \langle V \rangle \prec u \langle U \rangle for some u \langle U \rangle \in \mathbb{L}_{t-1}
```

Leading price I - Peb(T) defined as before

Definition (Labelled pebble game)

A labelled black-white pebbling, or L-pebbling, is a sequence $\mathcal{L} = \{\mathbb{L}_0, \dots, \mathbb{L}_{\tau}\}$ of L-configurations \mathbb{L}_t such that $\mathbb{L}_0 = \{\emptyset\}$ and \mathbb{L}_t is obtained from \mathbb{L}_{t-1} by one of the following:

$$\begin{array}{ll} \textit{Introduction} & \mathbb{L}_t = \mathbb{L}_{t-1} \cup \left\{ v \langle \textit{pred}(v) \rangle \right\} \; \text{for} \; v \langle \textit{pred}(v) \rangle \not\in \mathbb{L}_{t-1} \\ & \textit{Merger} \; \mathbb{L}_t = \mathbb{L}_{t-1} \cup \left\{ v \langle (V \cup W) \setminus \{w\} \rangle \right\} \; \text{for} \\ & v \langle V \rangle, w \langle W \rangle \in \mathbb{L}_{t-1} \; \text{with} \; w \in V \\ & \textit{Reversal} \; \mathbb{L}_t = \mathbb{L}_{t-1} \cup \left\{ v \langle V \rangle \right\} \; \text{provided} \; v \langle V \rangle \prec u \langle U \rangle \; \text{for} \\ & \text{some} \; u \langle U \rangle \in \mathbb{L}_{t-1} \\ & \textit{Erasure} \; \mathbb{L}_t = \mathbb{L}_{t-1} \setminus \left\{ v \langle V \rangle \right\} \; \text{for} \; v \langle V \rangle \in \mathbb{L}_{t-1} \\ \end{aligned}$$

Definition (Labelled pebble game)

A labelled black-white pebbling, or L-pebbling, is a sequence $\mathcal{L} = \{\mathbb{L}_0, \dots, \mathbb{L}_{\tau}\}$ of L-configurations \mathbb{L}_t such that $\mathbb{L}_0 = \{\emptyset\}$ and \mathbb{L}_t is obtained from \mathbb{L}_{t-1} by one of the following:

$$\begin{array}{ll} \textit{Introduction} & \mathbb{L}_t = \mathbb{L}_{t-1} \cup \left\{ v \langle \textit{pred}(v) \rangle \right\} \; \text{for} \; v \langle \textit{pred}(v) \rangle \not\in \mathbb{L}_{t-1} \\ & \textit{Merger} \; \mathbb{L}_t = \mathbb{L}_{t-1} \cup \left\{ v \langle (\textit{V} \cup \textit{W}) \setminus \left\{ w \right\} \rangle \right\} \; \text{for} \\ & v \langle \textit{V} \rangle, \, w \langle \textit{W} \rangle \in \mathbb{L}_{t-1} \; \text{with} \; w \in \textit{V} \\ & \textit{Reversal} \; \mathbb{L}_t = \mathbb{L}_{t-1} \cup \left\{ v \langle \textit{V} \rangle \right\} \; \text{provided} \; v \langle \textit{V} \rangle \prec u \langle \textit{U} \rangle \; \text{for} \\ & \text{some} \; u \langle \textit{U} \rangle \in \mathbb{L}_{t-1} \\ & \textit{Erasure} \; \mathbb{L}_t = \mathbb{L}_{t-1} \setminus \left\{ v \langle \textit{V} \rangle \right\} \; \text{for} \; v \langle \textit{V} \rangle \in \mathbb{L}_{t-1} \\ \end{aligned}$$

L-pebbling price L-Peb(T) defined as before

Reversal moves might seem harmless but are dangerous

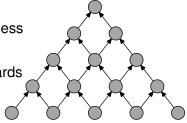
- White pebbles may slide upwards and black pebbles may slide downwards
- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

For T_h a complete binary tree of height hL-Peb $(T_h) = \Theta(BW$ -Peb $(T_h)) = \Theta(h)$.

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards



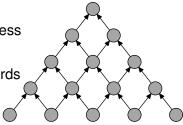
- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

For T_h a complete binary tree of height h $L\text{-Peb}(T_h) = \Theta(BW\text{-Peb}(T_h)) = \Theta(h)$.

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards



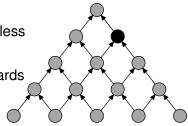
- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

For T_h a complete binary tree of height h $L\text{-Peb}(T_h) = \Theta(BW\text{-Peb}(T_h)) = \Theta(h)$.

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards



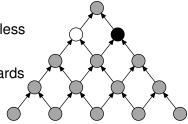
- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

For T_h a complete binary tree of height h, L-Peb $(T_h) = \Theta(BW$ -Peb $(T_h)) = \Theta(h)$.

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

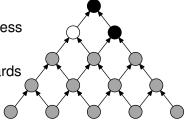


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

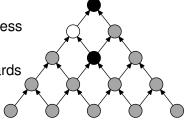


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

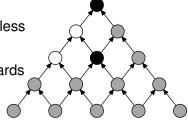


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

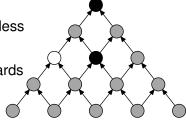


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

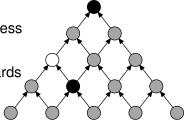


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

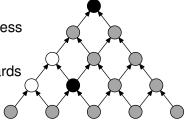


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

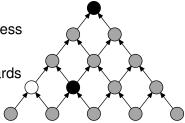


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

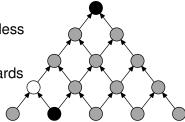


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

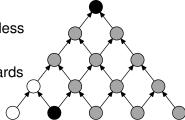


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

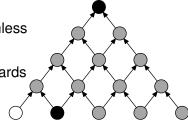


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

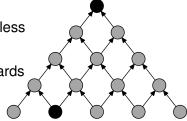


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

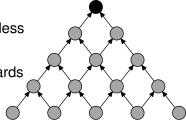


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards

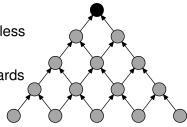


- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Reversal moves might seem harmless but are dangerous

 White pebbles may slide upwards and black pebbles may slide downwards



- Destroys pebbling price for general graphs
- But still pebbling price $\Omega(h)$ for binary trees T_h

Theorem

Formal Definition of Induced Pebble Subconfigurations

Formal definition of induced pebbles turns out quite involved:

Definition (Induced L-configuration)

If for a vertex v there is a *minimal* set $W' \subseteq T \setminus P^v$ such that

•
$$\mathbb{C} \cup \{\bigvee_{i=1}^d w_i \mid w \in W'\} \models \bigvee_{u \in P^v} \bigvee_{i=1}^d u_i$$
 but

$$\bullet \ \mathbb{C} \cup \left\{ \bigvee_{i=1}^d w_i \mid w \in W' \right\} \nvDash \bigvee_{u \in P_*^v} \bigvee_{i=1}^d u_i$$

then $\mathbb C$ induces the pebble subconfiguration $v\langle W \rangle$ for

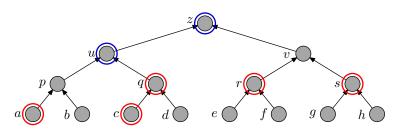
$$W = \{ w \in W' \cap T_*^v \mid P_*^w \cap W' = \emptyset \}.$$

The induced L-configuration $\mathbb{L}(\mathbb{C})$ of a clause configuration \mathbb{C} consists of all such induced pebble subconfigurations v(W).

Example Induced Pebble Subconfiguration

For d = 1, the clause configuration

$$\mathbb{C} = [\overline{a}_1 \vee \overline{c}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee u_1 \vee z_1]$$

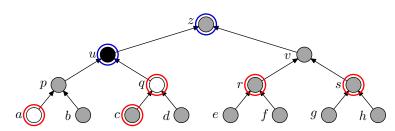


induces the pebble subconfiguration $u\langle a, q \rangle$

Example Induced Pebble Subconfiguration

For d = 1, the clause configuration

$$\mathbb{C} = [\overline{a}_1 \vee \overline{c}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee u_1 \vee z_1]$$

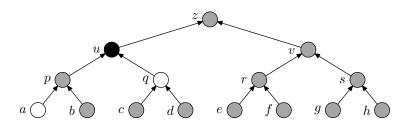


induces the pebble subconfiguration $u\langle a, q \rangle$

Example Induced Pebble Subconfiguration

For d = 1, the clause configuration

$$\mathbb{C} = \left[\overline{a}_1 \vee \overline{c}_1 \vee \overline{q}_1 \vee \overline{r}_1 \vee \overline{s}_1 \vee u_1 \vee z_1 \right]$$



induces the pebble subconfiguration $u\langle a, q \rangle$

Resolution Derivations Induce Labelled Pebblings

Technical detail: study derivations of $\bigvee_{i=1}^{d} z_i$ from $^*Peb_T^d = Peb_T^d \setminus \{\overline{z}_1, \dots, \overline{z}_d\}$ instead

(Same space
$$Sp(Peb_{T_h}^d \vdash 0) = Sp(*Peb_{T_h}^d \vdash \bigvee_{i=1}^d z_i)$$
 anyway)

Theorem

Let $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_{\tau}\}$ be a derivation of $\bigvee_{i=1}^d z_i$ from *Peb $_T^d$

Then the induced L-configurations $\{\mathbb{L}(\mathbb{C}_0), \ldots, \mathbb{L}(\mathbb{C}_{\tau})\}$ form the "backbone" of an L-pebbling \mathcal{L} of T in the following sense:

All transitions $\mathbb{L}(\mathbb{C}_t) \leadsto \mathbb{L}(\mathbb{C}_{t+1})$ can be done with L-pebbling moves in such a way that $cost(\mathcal{L}) = \mathcal{O}(\max_{t \in [\tau]} \{ cost(\mathbb{L}(\mathbb{C}_t)) \})$

Resolution Derivations Induce Labelled Pebblings

Technical detail: study derivations of $\bigvee_{i=1}^{d} z_i$ from $^*Peb_T^d = Peb_T^d \setminus \{\overline{z}_1, \dots, \overline{z}_d\}$ instead

(Same space
$$Sp(Peb_{T_h}^d \vdash 0) = Sp(*Peb_{T_h}^d \vdash \bigvee_{i=1}^d z_i)$$
 anyway)

Theorem

Let $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_{\tau}\}$ be a derivation of $\bigvee_{i=1}^d z_i$ from *Peb $_T^d$.

Then the induced L-configurations $\{\mathbb{L}(\mathbb{C}_0), \dots, \mathbb{L}(\mathbb{C}_{\tau})\}$ form the "backbone" of an L-pebbling \mathcal{L} of T in the following sense:

All transitions $\mathbb{L}(\mathbb{C}_t) \rightsquigarrow \mathbb{L}(\mathbb{C}_{t+1})$ can be done with L-pebbling moves in such a way that $cost(\mathcal{L}) = \mathcal{O}(\max_{t \in [\tau]} \{cost(\mathbb{L}(\mathbb{C}_t))\})$.

Main Theorem

Theorem

The space of refuting the pebbling contradiction of degree $d \ge 2$ over the complete binary tree of height h in resolution is $Sp(Peb_{T_h}^d \vdash 0) = \Theta(h)$.

Proof sketch.

- Upper bound easy (use "black-pebbling" resolution proof)
- For lower bound, let $\pi = \{\mathbb{C}_0, \dots, \mathbb{C}_{\tau}\}$ be derivation of $\bigvee_{i=1}^{d} z_i$ from *Peb $_{T_h}^d$ in minimal space = $Sp(Peb_{T_h}^d \vdash 0)$
- Then there is some $\mathbb{C}_t \in \pi$ that induces $\Omega(h)$ pebbles in T_h
- Thus $Sp(\pi) \ge |\mathbb{C}_t| \ge \#$ pebbles induced by $\mathbb{C}_t = \Omega(h)$.

A Separation of Space and Width in Resolution

Corollary

For all $k \ge 4$, there is a family of k-CNF formulas $\{F_n\}_{n=1}^{\infty}$ of size $\mathcal{O}(n)$ with refutation width $W(F_n \vdash 0) = \mathcal{O}(1)$ and refutation space $Sp(F_n \vdash 0) = \Theta(\log n)$.

Proof.

We know $W(Peb_G^d \vdash 0) = \mathcal{O}(d)$ for all G.

Fix $d \ge 2$, let $F_n = Peb_{T_h}^d$ for $h = \lfloor \log(n+1) \rfloor$ and use the Main Theorem.

Conclusion

- First lower bound on space in resolution which is not the consequence of a lower bound on width but instead separates the two measures
- Answers an open question in several previous papers
- We believe that it should be possible to strengthen this result in (at least) two ways

Open Problems

Extend to arbitrary DAGs

Conjecture 1

For G an arbitrary DAG with a unique target and with all vertices having indegree 0 or 2, if $d \ge 2$ it holds that $Sp(Peb_G^d \vdash 0) = \Omega(BW-Peb(G))$.

Would yield almost optimal separation $\Omega(n/\log n)$ between space and width

Best conceivable is $\Omega(n)$

Open Problems (cont.)

Generalize to k-DNF resolution and prove space hierarchy

k-DNF resolution: lines in proof not disjunctive clauses but disjunctions of conjunctions of size $\leq k$

Conjecture 2

For k-DNF resolution refutations of pebbling contradictions defined over complete binary trees T_h of height h, fixing k it holds that $Sp_{\Re es(k+1)}(Peb_{T_h}^{k+1} \vdash 0) = \mathcal{O}(1)$ but $Sp_{\Re es(k)}(Peb_{T_h}^{k+1} \vdash 0) = \Omega(h)$.

Would show that k-DNF resolution proof systems for increasing k form strict space hierarchy

Related Question for k-DNF Resolution

- For minimally unsatisfiable CNF formulas it is well-known that # clauses > # variables
- What about size of minimally unsatisfiable sets of k-DNF formulas in terms of number of variables?
- Good lower bound would probably be enough to prove space hierarchy for k-DNF resolution

References

Full-length version of this paper published as ECCC Technical Report TR05-066

Available at

eccc.hpi-web.de/eccc-reports/2005/TR05-066/

Extended abstract in proceedings of 38th ACM Symposium on Theory of Computing (STOC '06)

That's basically it!

(modulo all the gory technical details)