
On-demand high-capacity ride-sharing
via dynamic trip-vehicle assignment

—- Supplemental Material —-

Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli and Daniela Rus

Abstract

Ride sharing services are transforming urban mobility by providing timely and convenient transportation to
anybody, anywhere, anytime. These services present enormous potential for positive societal impacts with respect
to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the
potential of ride sharing. Recently, a large-scale study highlighted some of the benefits of car pooling, but was
limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general
mathematical model for real-time high-capacity ride sharing that (1) scales to large numbers of passengers and trips,
and (2) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm
starts from a greedy assignment and improves it via a constrained optimization, quickly returning solutions of good
quality and converging to the optimal assignment over time. For the first time, we quantify experimentally the
trade-off between fleet size, capacity, waiting time, travel delay, and operational costs for low to medium capacity
vehicles, such as taxis and van shuttles. The algorithm is validated with approximately 3 million rides extracted
from the New York City taxicab public dataset. Our experimental study considers ride sharing with rider capacity
of up to ten simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also
incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used
for many real-time multi-vehicle, multi-task assignment problems.

I. PROBLEM STATEMENT

A. Definitions
Consider two positions in space, q1 and q2, which can be encoded by their latitude and longitude

coordinates. A function τ(q1, q2) to compute the travel time from q1 to q2 is required. When a network
representation of the map is available, standard techniques for efficiently computing shortest paths can be
used [1]. The best methods can compute shortest paths on networks with 70 million edges in less than
a millisecond.

A request r is defined by a tuple {or, dr, trr, tplr , tpr, tdr , t∗r}, indicating its origin or, its destination dr, the
time of the request trr, the latest acceptable pick-up time tplr (initially given by tplr = trr + Ω with Ω the
maximum waiting time), the pick-up time tpr , the expected drop off time tdr , and the earliest possible time
at which the destination could be reached t∗r = trr + τ(or, dr).

The current state of a vehicle v is given by a tuple {qv, tv,Pv}, indicating its current position qv,
the current time tv and its passengers Pv = {p1, . . . , pnpass

v
}. A passenger p is a request that has been

picked-up by a vehicle.
A trip T = {r1, . . . , rnT

} is a set of requests that can be combined and served by a single vehicle. A
trip may have one or more candidate vehicles for execution.

Consider a fixed size m of the vehicle fleet, a fixed vehicle capacity ν (maximum number of passengers
in a vehicle), and a maximum delay ∆ tolerated by a request r. The delay is given by the difference between
the drop-off time and the minimal time to reach the destination, tdr − t∗r .

B. Problem statement
In this work we propose a general framework for the multi-vehicle multi-request routing capable of

addressing three main problems of ride-sharing or car-pooling.
• Compute, incrementally, an optimal assignment of a set of requests to a set of vehicles of given

capacity.
• Allow for continuous operation and assignment of incoming requests to a fleet of vehicles.
• Enable rebalancing of the fleet of vehicles.

Problem 1 (Batch assignment). Consider a set of requests R = {r1, . . . , rn}, a set of vehicles V =
{v1, . . . , vm} at their current state including passengers, and a function to compute travel times on the
road network. Compute the optimal assignment Σ of requests to vehicles that minimizes a cost function
C and that satisfies a set of constraints Z , including a maximum capacity ν of passengers per vehicle.

In particular, and not limited to, we will consider the following set of constraints Z:
• For each request r, its maximum waiting time tpr ≤ tplr ≤ trr + Ω.
• For each request or passenger r, its maximum travel delay tdr ≤ t∗r + ∆.
• For each vehicle, the maximum number of passengers npassv ≤ ν at any given time.
Ideally all the requests shall be assigned to a vehicle, but given the constraints, this might not always

be the case. Denote by Rok the set of requests assigned to a vehicle and Rko the set of requests that are
not served by any vehicle.

We define the cost C of an assignment Σ as the sum of travel delay over all passengers and assigned
requests plus a large enough cost cko for each non-assigned request. Formally,

C(Σ) =
∑
v∈V

∑
p∈Pv

δp +
∑
r∈Rok

δr +
∑
r∈Rko

cko. (1)

The method here presented is general and admits alternative constraints and cost function.
Given that the problem at hand is NP hard, obtaining an optimal assignment can be computationally

expensive. For practical applications it is required that a sub-optimal solution is returned within an allocated

runtime budget, which might be improved incrementally up to optimality. We refer to this as an anytime
algorithm.

Problem 2 (Anytime property). Devise a method to solve Problem 1, this is to obtain the optimal
assignment, which incrementally improves the quality of the solution. Given a limited computational
budget, a sub-optimal assignment Σ of requests to vehicles, is returned.

The proposed method of Section II addresses this two problems. Additionally, for real-time fleet
management, the method shall apply to continuous discovery and assignment of incoming requests.

Problem 3 (Continuous assignment). Consider a fixed number of vehicles m and incoming requests r(t)
with request time tr = t. Assign requests to a vehicles while respecting the constraints Z and minimizing
the cost C.

The proposed approach, described in Section IV is to perform batch assignment of the requests within
a short time span, for example every 30 seconds, to the fleet of vehicles. Problem 2 is invoked with the
predicted state of the fleet at the assignment time and the cumulated requests. Requests that have not been
picked-up by a vehicle within the previous assignment round are kept in the pool for assignment.

After the assignment, due to fleet imbalances, the set Rko of unassigned requests may not be empty,
and some empty vehicles Vidle may still by unassigned to any request. This may occur when the idle
vehicles are in areas far away from the area of current request, and due to the maximum waiting time and
delay constraints and vehicle capacity. Under the assumptions that, (a) ignored requests may wait longer
and request again, (b) it is likely that more requests occur in the same area where all requests can not
be satisfied and (c) there are not enough requests in the neighborhood of the idle cars, we propose the
following approach to rebalance the fleet by moving only the idle vehicles.

Problem 4 (Rebalancing). Consider Problem 3. Consider Problem 1 as a batch assignment to solve
Problem 3. Compute an assignment of the idle vehicles Vidle to the ignored requests in Rko to minimize
the sum of waiting times, with the constraint that either all requests or all the vehicles are assigned..

II. METHOD

In this section we describe a solution to Problem 1 and Problem 2.

A. Overview
Given a set of requests R = {r1, . . . , rn} and a set of vehicles V = {v1, . . . , vm} at their current

state including passengers, the algorithm computes an incrementally optimal solution and consists of the
following three steps, shown in the high-level overview of Figure 1:

1) Pairwise request-vehicle RV graph: The first step is to compute (a) which requests can be pairwise
combined, taking into account both their origin and destination, and (b) which vehicles can serve which
requests individually, given their current passengers.

2) Request-trip-vehicle RTV graph: The second step is to explore the regions of the graph for which
its induced subgraph is complete, or cliques, to find trips (groups of requests) that can be combined and
picked-up by a vehicle, while satisfying all the constraints. A request may form part of several potential
trips, and a trip might have several candidate vehicles for execution.

3) Optimal assignment: The last step is to, given the RTV graph of potential trips and pick-up vehicles,
compute the optimal assignment of one trip per vehicle at most. This is converted into an Integer Linear
Program ILP, which is solved incrementally.

B. Optimal route for fixed vehicle and passengers
Consider a vehicle v, with a set of passengers Pv and a small set of assigned requests Rv, which may

have different request times. The optimal travel path σv for the vehicle that minimizes the sum of delays∑
r∈Pv∪Rv

(tdr − t∗r) subject to the constraints Z (waiting time, delay and capacity) is given by a function

travel(v,Rv), (2)

which returns ”invalid” if no path exists. This vehicle routing problem is a computationally hard problem.
For vehicles with low capacity and fixed requests, such as taxis, the optimal path can be computed

via an exhaustive search. For vehicles with larger capacity, heuristic methods such as Lin-Kernighan [3],
Tabu search [2] or Simulated Annealing [5] may be used. In Figure 2 a representative vehicle with two
passengers is shown, with its past path and its optimal path for picking up three additional requests and
dropping off all passengers and requests. The vehicle has capacity four and it will drop-off one of the
passengers before picking up the last one.

	
Travel	 requests	

Vehicle	 status	

Pairwise	 	
RV-‐graph	 RTV-‐graph	 Assignment	

problem	 ILP	

Assignment	 Σ 	 	

Rebalancing	 LP	 KO	

OK	

	

	
	

	 	 	
	

(a)	 (b)	 (c)	 (d)	 (e)	

Fig. 1. Schematic overview of the proposed method for batch assignment of multiple requests to multiple vehicles of capacity ν. The
method consists of several steps leading to an integer linear optimization which provides an anytime optimal assignment. (a) Example of a
street network with four requests (orange human = origin, red triangle = destination) and two vehicles (yellow car = origin, red triangle =
destination of passenger). Vehicle 1 has one passenger and vehicle 2 is empty. (b) Pairwise shareability RV-graph of requests and vehicles.
Cliques of this graph are potential trips. (c) RTV-graph of candidate trips and vehicles which can execute them. A node (yellow triangle) is
added for requests that can not be satisfied. (d) Optimal assignment given by the solution of the ILP, where vehicle 1 serves requests 2 and
3 and vehicle 2 serves requests 1 and 4. (e) Planned route for the two vehicles and their assigned requests. In this case no rebalancing step
is required since all requests and vehicles are assigned.

Fig. 2. Past path (yellow) and optimal path (brown) for a vehicle (yellow dot) with two passengers and scheduled pick up of three requests
(star) and drop-offs (triangle).

C. Pairwise graph of vehicles and requests (RV-graph)
The first step of the method is to compute (a) which requests can be pairwise combined, and (b) which

vehicles can serve which requests individually, given their current passengers. This step builds on the idea
of share-ability graphs proposed by [6], but it is not limited to the requests and includes the vehicles at
their current state as well.

Two requests r1 and r2 are connected in the graph if they can potentially be combined. This is, if
a virtual vehicle starting at the origin of one of them could pick-up and drop-off both requests while
satisfying the constraints Z of maximum waiting time and delay. A cost

∑
r={1,2}

(tdr − t∗r) can be associated

to each edge e(r1, r2).
Likewise, a request r and a vehicle v are connected if the request can be served by the vehicle while

satisfying the constraints Z . This is, if travel(v, r) returns a valid trip that drops the current passengers
of the vehicle and the picked request r within the specified maximum waiting and delay times. The edge
is denoted by e(r, v).

Limits on the maximum number of edges per node can be imposed, trading-off optimality at the later
stages. Speed-ups such as the ones proposed in T-share [4] could be employed in this stage to prune the
most likely vehicles to pick up a request.

This graph, denoted RV-graph, gives an overview of which requests and vehicles might be shared. In
Figure 3 an example of the RV-graph is shown with 90 requests and 30 vehicles.

Fig. 3. Example of a pairwise RV-graph for 90 requests (star) and 30 vehicles (circle) with edges between two requests in dotted red and
between a request and a vehicle in solid green. The maximum waiting time and delay are three and six minutes in this example.

D. Graph of candidate trips and pick-ups (RTV-graph)
The second step of the method is to explore the regions of the RV-graph for which its induced subgraph

is complete, or cliques, to find feasible trips. Recall that a trip T is defined by a set of requests T =
{r1, . . . , rnT

}. A trip is feasible if the requests can be combined, picked-up and dropped-off by some
vehicle, while satisfying the constraints Z .

A request may form part of several feasible trips of varying size, and a trip might admit several different
vehicles for execution. The request-trip-vehicle RTV-graph contains edges e(r, T), between a request r
and a trip T and feasible edges e(T, v), between a trip T and a vehicle v. Namely,

∃ e(r, T)⇔ r ∈ T (3)

∃ e(T, v)⇔ travel(v, T) = ”valid” (4)

The following observations are made to efficiently compute feasible trips.

Lemma 1 (Cliques). A trip T can be feasible only if a clique in the RV-graph exists for all requests in
T and some vehicle v. Namely, if T is valid, then,

∃v ∈ V such that ∀r1, r2 ∈ T, e(r1, r2) and e(r1, v) exist

A stronger requirement for existence is the following, which leads to the idea of incrementally computing
trips of larger size.

Lemma 2 (Sub-feasibility). A trip T can be feasible only if there exists a vehicle v for which, for all
r ∈ T , the sub-trips T ′ = T \r are feasible (a sub-trip T ′ contains all the requests of T but one). Namely,

T feasible⇒ ∃v ∈ V such that ∀r ∈ T, e(T \ r, v) exists.

Therefore, a trip T only needs to by checked for existence if there exists a vehicle v for which all of its
sub-trips T ′ present an edge e(T ′, v) in the RTV-graph.

The algorithm to compute the feasible trips and edges proceeds incrementally in trip size for each
vehicle, as shown in Algorithm 1, where T is the list of feasible trips. With each node e(T, v), the cost
C of the trip and pick-up is stored. For each vehicle, a timeout can be set after which no more trips are
explored. This leads to suboptimality of the solution, but faster computation, removing longer trips.

Note that steps 7 and 12 of the Algorithm can be efficiently implemented by employing ordered lists
with respect to the request ids. This step can be parallelized among the vehicles.

Algorithm 1 Generation of RTV-graph
1: T = ∅
2: for each vehicle v ∈ V do
3: Tk = ∅ ∀k ∈ {1, . . . , ν}
4: [Add trips of size one]
5: for e(r, v) edge of RV-graph do
6: T1 ← T = {r}; Add e(r, T) and e(T, v)

7: [Add trips of size two]
8: for all {r1}, {r2} ∈ T1 and e(r1, r2) ∈ RV-graph do
9: if travel(v, {r1, r2}) = valid then

10: T2 ← T = {r1, r2}; Add e(ri, T) and e(T, v)

11: [Add trips of size k]
12: for k ∈ {3, . . . , ν} do
13: for all T1, T2 ∈ Tk−1 with |T1 ∪ T2| = k do
14: Denote T1 ∪ T2 = {r1, ..., rk}
15: if ∀i ∈ {1, ..., k}, {r1, ..., rk} \ ri ∈ Tk−1 then
16: if travel(v, T1 ∪ T2) = valid then
17: Tk ← T = T1 ∪ T2
18: Add e(ri, T), ∀ri ∈ T , and e(T, v)

19: T ←
⋃
i∈{1,...,ν} Ti

E. Optimal assignment of trips to vehicles
The last step of the method is to, given the RTV-graph of potential trips and pick-up vehicles, compute

the optimal assignment of vehicles to trips. This is formalized as an Integer Linear Program (ILP).
First, a greedy solution is computed, which serves as initial point for the ILP optimization.
1) Greedy assignment: Trips are assigned to vehicles iteratively in decreasing size of the trip and

increasing cost. The idea is the maximize the amount of requests served while minimizing cost. The
method to greedily maximize the cost function C of Equation 1 is described in Algorithm 2.

Algorithm 2 Greedy assignment
1: Rok = ∅; Vok = ∅
2: for k = ν; k > 0; k −− do
3: Sk := sort e(T, v) in increasing cost, ∀T ∈ Tk, v ∈ V
4: while Sk 6= ∅ do
5: pop e(T, v)← Sk
6: if ∀r ∈ T, r /∈ Rok and v /∈ Vok then
7: Rok ← {∀r ∈ T}; Vok ← v
8: Σgreedy ← e(T, v)

In the following, the optimization method to optimally assign trips to vehicles is described.
2) Variables: A binary variable εi,j ∈ {0, 1} is introduced for each edge e(Ti, vj) between a trip Ti ∈ T

and a vehicle vj ∈ V in the RTV-graph. If εi,j = 1 then vehicle vj is assigned to trip Ti. Denote by ETV
the set of {i, j} indexes for which an edge e(Ti, vj) exists in the RTV-graph.

An additional binary variable χk ∈ {0, 1} is introduced for each request rk ∈ R. These variables are
active, χk = 1, if the associated request rk can not be served by any vehicle and is ignored.

Denote the set of variables

X = {εi,j, χk; ∀e(Ti, vj) node in RTV-graph ∀rk ∈ R}. (5)

3) Cost: The cost function, equivalent to C(Σ) in Equation 1, is given by

C(X) :=
∑

i,j∈ETV

ci,jεi,j +
∑

k∈{0,...,n}

ckoχk, (6)

where the individual costs are given by the sum of delays,

ci,j =
∑
r∈Ti

(tdr − t∗r), as returned by travel(vj, Ti), (7)

and cko is a large enough constant to penalize ignored requests.
4) Constraints: Two types of constraints are included, as follows.
Each vehicle is assigned to a singe trip at most,∑

i∈IVj

εi,j ≤ 1 ∀vj ∈ V , (8)

where IVj denotes the indexes i for which an edge e(Ti, vj) exists in the RTV-graph.
Each request is assigned to a vehicle or ignored,∑

i∈IRk

∑
j∈ITi

εi,j + χk = 1 ∀rk ∈ R, (9)

where IRk denotes the indexes i for which an edge e(rk, Ti) exists in the RTV-graph and ITi denotes the
indexes j for which an edge e(Ti, vj) exists in the RTV-graph. This is, the trips of which the request
forms part and the vehicles that can service each of those trips.

5) Assignment: The optimal assignment is found by solving an ILP optimization defined by the
aforementioned variables, cost and constraints, as shown in Algorithm 3.

Starting from the greedy assignment, the ILP can be solved with state of the art solvers via branch
and bound with heuristics and duality gap checking. These algorithms can be parallelized and return a
suboptimal solution if stopped before convergence.

Algorithm 3 Optimal assignment
1: Initial guess: Σgreedy

2: Σoptim := arg min
X
C(X) (Eq. 6)

3: s.t.
∑
i∈IVj

εi,j ≤ 1 ∀vj ∈ V

4:
∑
i∈IRk

∑
j∈ITi

εi,j + χk = 1 ∀rk ∈ R

III. THEORETICAL GUARANTEES

A. Complexity

The number of binary variables in the ILP is equal to the number of edges e(T, v) in the RTV graph
plus the number of requests. In the worst case, where all possible trip combinations are explored and
feasible, it is

m
n!

ν!(n− ν)!
∼ O(mnν), (10)

where m is the number of vehicles, n the number of requests and ν the maximum capacity of the vehicles.
Nonetheless, this value would only be reached in a complete RV-graph where all vehicles can serve all
requests and all requests can be combined with each other. This is, where all possible trip combinations
up to capacity ν are feasible. In practice, the number of variables is orders of magnitude lower and at
most the number of cliques in the RV-graph.

The number of constraints is n+m, the number of requests plus the number of vehicles.

B. Anytime optimality and correctness

Theorem 1 (Optimality). The method is optimal, given enough computational time.

If all the steps of the method are executed until all possible trips and assignments are explored, the
ride-vehicle assignment method guarantees optimality of the assignment and routes, given the constraints
Z .

Proof: For any particular assignment between a trip T (set of requests) and a vehicle v, the function
travel(T, v) returns the optimal route, which can be computed exhaustively.

Consider the case where algorithms to compute the RV-graph and the RTV-graph are executed up to
completion, this is, until all possible trips of size lower or equal than the vehicle capacity are explored.
At that point, all combinations of riders and vehicles which satisfy the constraints have been explored
exhaustively and have been added in the RTV-graph. At this stage, all valid trip combinations are included
in the RTV-graph.

Next, the ILP assignment contains binary variables for all possible trip-vehicle assignments. This
problem is solved via branch and bound, which, given enough time, is guaranteed to return the optimal
assignment, although it may have to explore all possible assignments.

In the worst case, the algorithm can be seen as an exhaustive search which returns the optimal assignment
and routes. The advantage of the method is that, by decoupling the computation of valid routes and trips
from the assignment, good solutions can be found efficiently.

Theorem 2 (Correctness). The returned assignment and vehicle routes respect the constraints.

Proof: By construction, the function travel(T, v) returns a valid route (if one exists) that satisfies the
set of constraints. In our case, this is, the vehicle capacity, maximum waiting time and maximum delay
are respected. Therefore, in the RTV-graph, all included edges e(T, v) verify that a valid route exists, as
returned by travel(T, v).

The greedy assignment provides a feasible assignment of trips to vehicles from the RTV-graph by
construction. This is, each request is assigned at most to one vehicle. And the ILP optimization refines
this solution, while respecting the constraints. In the worst case, the ILP returns the greedy assignment.

These steps guarantee that the assignment and routes are valid.

Theorem 3 (Anytime optimality). The method is anytime optimal. The method is able to return a correct
solution quickly. Given additional computational resources, the solution is refined and the method returns
the best solution found up to that time.

Proof: The RTV-graph can be initialized with all valid trips with a single request per vehicle. If
additional computational resources are available, additional trips (of increasing number of requests) can
be explored and added to the RTV-graph.

A greedy assignment of trips to vehicles is computed quickly. The ILP, which returns an optimized
assignment, is then initialized from this greedy assignment and as time progresses explores additional
branches. If quitted at any time, it returns the best solution found up to that time. If run to completion,
it returns the optimal assignment, for the edges of the RTV-graph.

C. Heuristics for real-time execution
In practice, a time-out can be set both for the amount of time spent generating candidate trips for each

vehicle, and for the amount of time spent exploring the branches of the ILP. Alternatively, one may set a
limit on the number of vehicles considered per request, the number of candidate trips per vehicle or the
optimality gap of the ILP. These trade-off optimality for tractability and depend on the available resources.

To achieve real-time performance we employ a set of timeouts. If allowed to progress further, the
method would eventually find the optimal assignment.

We implemented the function travel(T, v), which computes the optimal route for given trip T and
vehicle v, as follows. If the number of passengers and requests is less or equal than four, we perform an
exhaustive search to compute the optimal route which satisfies the constraints. If the number of passengers
is greater than four, for each additional request we only check the routes that maintain the order of the
current passengers in the vehicle.

In the computation of the RV-graph one may set limits on the number of edges. In particular, we compute
the complete graph and, for each request, we keep a maximum of 30 links with candidate vehicles, in
particular those of lowest trip cost. Speed-ups such as the ones proposed in T-share [4] could be employed
in this stage to prune the most likely vehicles to pick up a request.

In the computation of the RTV-graph we specify a maximum amount of time, per vehicle, to explore
potential trips and add edges to the graph. In particular, we used a timeout of 0.2 seconds per vehicle.
This leads to sub-optimality of the solution, but faster computation, removing longer trips.

The ILP can be solved with state of the art solvers. In particular, we employed Mosek and set both an
optimality gap of 0.1% and a maximum run time of 15 seconds. This solvers employ heuristics in the
exploration of the branches of the problem.

D. Parallelization
All steps of the proposed method can be parallelized. We parallelized the computation of the RV-graph

among the requests. The computation of the RTV-graph can be performed in parallel as well, distributing
he computation among the vehicles. Finally, the ILP optimization is parallelized in most state of the art
solvers.

IV. CONTINUOUS APPLICATION WITH INCOMING REQUESTS

Here we describe a solution for Problem 3.
Consider a fixed vehicle fleet of size m and incoming requests r(t) with request time tr = t. A pool

of requests R is maintained where:
• new requests are added as they are received
• requests are removed when they are (a) picked up by a vehicle (they became passengers) or (b) they

could not be successfully matched and picked-up by any vehicle within the maximum waiting time
(they are ignored).

At a certain framerate (in our experiments we used 30s) a batch assignment of the requests to the fleet
of vehicles is computed by resolving Problem 2 with the predicted state of the fleet at the assignment
time (including passengers).

If a request is matched to a vehicle at any given iteration, its latest pick-up time is reduced to the
expected pick-up time by that vehicle and the cost χk of ignoring it is increased for subsequent iterations.
A request might be rematched to a different vehicle in subsequent iterations as long as its waiting time
decreases and until it is picked up. Once a request is picked-up it remains in that vehicle and can not be
rematched - the vehicle may still pick additional passengers.

In each iteration, the new assignment of requests to vehicles guarantees that the current passengers are
dropped-off within the maximum delay constraint, included in Z in Section II-B.

V. REBALANCING

Here we describe a solution for Problem 4.
After the assignment, due to fleet imbalances, the set Rko of unassigned requests may not be empty,

and some empty vehicles Vidle may still by unassigned to any request. This may occur when the idle
vehicles are in areas far away from the area of current request, and due to the maximum waiting time and
delay constraints and vehicle capacity. Under the assumptions that, (a) ignored requests may wait longer
and request again, (b) it is likely that more requests occur in the same area where all requests can not
be satisfied and (c) there are not enough requests in the neighborhood of the idle cars, we propose the
following approach to rebalance the fleet by moving only the idle vehicles.

To rebalance the vehicle fleet, after each batch assignment, the vehicles in Vidle are assigned to requests
in Rko to minimize the sum of travel times, with the constraint that either all requests or all the vehicles
are assigned. For this, we first compute the travel time τv,r of each individual request r - vehicle v pickup
and then obtain the optimum of the assignment via a fast Linear Program described in Algorithm 4. In
this approach, if all requests can be satisfied some vehicles may remain idle, saving fuel and distance
travelled, which is the case at night time.

Algorithm 4 Rebalancing
1: Given: the idle (empty, stopped and unassigned) vehicles Vidle, and the unassigned requests Rko.
2: Given: the shortest travel time τv,r for vehicle v ∈ Vidle to pick request r ∈ Rko.
3: Variables: Y = ∪v∈Vidle,r∈Rko

yv,r. Where yv,r ∈ R indicates individual assignments.
4:

5: Σrebalance := arg min
Y

∑
v∈Vidle

∑
r∈Rko

τv,r yv,r

6: s.t.
∑

v∈Vidle

∑
Rko

yv,r = min(|Vidle|, |Rko|)
7: 0 ≤ yv,r ≤ 1 ∀yv,r ∈ Y .
8:

9: Where |.| denotes the number of elements of a set.
10: The solution of this Linear Program is also a solution of the Integer Linear Program with yv,r ∈ {0, 1}.

VI. ROBUSTNESS ANALYSIS

In this section we present results to confirm the robustness of the proposed method with respect to the
length of the time window and the number - or density - of requests. We also present results highlighting
the influence of travel time and congestion.

In each figure we analyze (a) service rate (percentage of requests serviced), (b) average in car delay
δ − ω, (c) average waiting time ω, (d) average distance traveled by each vehicle during a single day,
(e) percentage of shared rides (number of passengers who shared a ride, divided by the total number
of picked-up passengers) and (f) average computational time for a 30 seconds iteration of the method,
in a 24 core 2.5GHz machine, including computation of the RV-graph, computation of the RTV-graph,
ILP assignment, rebalancing and data writing (higher levels of parallelization would drastically reduce
this computational time). The parameters employed in the simulation are specified in (SI Appendix, Sec.
III.C).

A. Interval length
In Figure 4 we show robustness results with respect to the interval length, this is, the period of time

for which requests are aggregated before a new assignment to the fleet of vehicles. We compare different
interval sizes of 10 s, 20 s, 30 s, 40 s and 50 seconds. Results are shown for a nominal case where we
employ a fleet of 2000 vehicles of capacity 4 and a maximum waiting time ∆ of 5 minutes. The points
shown represent the average over a week of data in Manhattan with about 3 million requests.

In the experimental analysis of the effects of ride sharing, shown in the results section of the main
paper, we employed a time window of 30 seconds, which we considered reasonable when taking into
account the computation cost of the approach and the time a person would be willing to wait for receiving
an assignment.

In Figure 4 we observe that the method is robust with respect to the time interval: the service rate
and percentage of shared rides is mostly unchanged, the mean in-car travel delay slightly decreases with
larger time intervals (better assignments are achieved), while both the mean waiting time and mean traveled
distance by each vehicle do increase slightly with larger time intervals (the user have to wait longer to
receive an assignment). The computational time of the method does increase with the size of the interval,
since more requests are jointly assigned.

B. Density of demand
In Figure 5 we show robustness results with respect to the density of demand, this is, the number of

travel requests. We compare three different densities, the nominal one of Manhattan with about 3 million
requests per week, half of the demand (x0.5) and double the demand (x2). To obtain half of the requests
(x0.5) we sorted all the requests of each day by time and removed every odd line, this leads to about
1.5 million requests per week, or 200,000 per day. To obtain double the requests (x2), we cumulated the
requests of the same day (e.g. Monday) for two consecutive weeks, this leads to about 6 million requests
per week, or 850,000 per day. Results are shown for two nominal cases where we employ (i) a fleet of
2000 vehicles of capacity 4 and a maximum waiting time ∆ of 5 minutes, and (ii) the same fleet but of
capacity 1 (standard taxis). The points shown represent the average over a week of data in Manhattan.

We observe that the approach is robust with the decrease and increase in the number of requests, and
that, as expected that performance metrics improve with a decrease in the number of requests.

(a) Mean service rate (b) Mean in-car travel delay δ − ω (c) Mean waiting time ω

(d) Mean distance travelled (e) Percentage of shared rides (f) Mean computational time

Fig. 4. Comparison of several performance metrics for varying interval size for the method, 10, 20, 30, 40 and 50 seconds. Results are
shown for a nominal case where we employ a fleet of 2000 vehicles of capacity 4 and a maximum waiting time ∆ of 5 minutes. The points
shown represent the average over a week of data in Manhattan with about 3 million requests.

(a) Mean service rate (b) Mean in-car travel delay δ − ω (c) Mean waiting time ω

(d) Mean distance travelled (e) Percentage of shared rides (f) Mean computational time

Fig. 5. Comparison of several performance metrics for varying density of requests. The nominal case [x1] is for a simulation with the real
requests in Manhattan, of about 3 million per week. The case [x0.5] contains only half of the requests, about 1.5 million per week. And the
case [x2] contains double the number of requests, about 6 million per week, or about 800,000 per day. Results are shown for two nominal
cases where we employ (i) a fleet of 2000 vehicles of capacity 4 and a maximum waiting time ∆ of 5 minutes, and (ii) the same fleet but
of capacity 1 (standard taxis). The points shown represent the average over a week of data in Manhattan.

C. Influence of congestion
In Figure 6 we show results highlighting the influence of travel time and congestion. In this experiments

we compare three different travel time estimates: (i) the mean daily travel time, (ii) the estimated travel
times for 12:00, and (iii) the estimated travel times for 19:00. Estimated travel times for each edge in
the road network of Manhattan where obtained from [6]. Results are shown for a nominal case where we
employ a fleet of 2000 vehicles of capacity 4 and a maximum waiting time ∆ of 5 minutes. The points
shown represent the average over a week of data in Manhattan with about 3 million requests.

We highlight two observations. First, when using the travel times for 12:00 (lower estimated travel
speed) the service rate is reduced by about 5% and the mean waiting time and travel delay slightly
increase. This is expected due to the lower travel speed during congested hours. Second, when using the
travel times for 19:00 (higher estimated travel speed) the service rate is increased by about 5% and the
mean waiting time and travel delay decrease considerably (20 and 10 seconds respectively). This is also
expected due to the higher travel speed and correlates with the longer distance traveled by the vehicles.

We observe that the mean travel time estimate provides a good estimate of the performance metrics,
closer to the ones from the ”rush hour” time than to those from ”low hour” time. This is in line with the
observation that travel speed in Manhattan remains pretty constant through-out the daytime. Furthermore,
by using the mean daily time estimate, we smoothen possible inaccuracies in the travel time estimates.

(a) Mean service rate (b) Mean in-car travel delay δ − ω (c) Mean waiting time ω

(d) Mean distance travelled (e) Percentage of shared rides (f) Mean computational time

Fig. 6. Comparison of several performance metrics when using three different travel time estimates: mean daily travel time, travel time
at 12:00 and travel time at 19:00. Results are shown for a nominal cases where we employ a fleet of 2000 vehicles of capacity 4 and a
maximum waiting time ∆ of 5 minutes. The points shown represent the average over a week of data in Manhattan.

VII. DATA

TABLE I
MEAN COMPUTATIONAL TIME FOR A 30 SECONDS BATCH ASSIGNMENT OF REQUESTS TO VEHICLES IN A 24 CORE 2.5GHZ PC.

Vehicles Capacity Waiting Time Mean Computational Time [s]
1000 1 120 2.90436
1000 1 300 6.23247
1000 1 420 10.0162
1000 2 120 2.99213
1000 2 300 6.64713
1000 2 420 26.3971
1000 4 120 3.55018
1000 4 300 8.952
1000 4 420 27.8819
1000 10 120 3.05873
1000 10 300 11.442
1000 10 420 34.1471
2000 1 120 6.76338
2000 1 300 11.7457
2000 1 420 15.2656
2000 2 120 7.78438
2000 2 300 12.1214
2000 2 420 33.8259
2000 4 120 7.74553
2000 4 300 17.2651
2000 4 420 57.557
2000 10 120 6.23868
2000 10 300 19.4179
2000 10 420 57.0266
3000 1 120 4.71717
3000 1 300 11.938
3000 1 420 17.923
3000 2 120 4.82994
3000 2 300 12.5836
3000 2 420 31.3838
3000 4 120 5.15316
3000 4 300 21.3322
3000 4 420 51.5582
3000 10 120 5.09283
3000 10 300 24.7557
3000 10 420 60.3936

TA
B

L
E

II
A

V
E

R
A

G
E

V
A

L
U

E
S

O
F

S
E

V
E

R
A

L
P

E
R

F
O

R
M

A
N

C
E

M
E

T
R

IC
S

F
O

R
R

ID
E

S
H

A
R

IN
G

O
V

E
R

A
W

H
O

L
E

W
E

E
K

W
IT

H
O

V
E

R
3

M
IL

L
IO

N
R

E
Q

U
E

S
T

S
.A

L
L

E
X

P
E

R
IM

E
N

T
S

IN
C

L
U

D
E

R
E

B
A

L
A

N
C

IN
G

E
X

C
E

P
T

F
O

R
T

H
O

S
E

IN
D

IC
A

T
E

D
W

IT
H

(N
.R

.)
N

E
X

T
T

O
T

H
E

V
E

H
IC

L
E

C
A

PA
C

IT
Y

.Ω
IS

T
H

E
M

A
X

IM
U

M
W

A
IT

IN
G

T
IM

E
A

N
D

∆
T

H
E

M
A

X
IM

D
E

L
A

Y
,I

N
C

L
U

D
IN

G
B

O
T

H
IN

-C
A

R
D

E
L

A
Y

A
N

D
W

A
IT

IN
G

T
IM

E
.S

E
R

V
IC

E
A

N
D

S
H

A
R

E
D

R
A

T
E

S
A

R
E

IN
P

E
R

O
N

E
.

V
eh

ic
le

s
C

ap
ac

ity
Ω

[s
]

∆
[s

]
Se

rv
ic

e
R

at
e

M
ea

n
W

ai
tin

g
[s

]
M

ea
n

In
-C

ar
D

el
ay

[s
]

M
ea

n
Pa

ss
en

ge
rs

Sh
ar

ed
R

at
e

M
ea

n
Tr

av
el

[k
m

]
10

00
1

12
0

24
0

0.
26

29
78

81
.5

58
1

0
0.

76
86

97
0

18
2.

02
7

10
00

1
30

0
60

0
0.

28
37

84
23

4.
68

9
0

0.
83

50
99

0
20

3.
59

8
10

00
1

42
0

84
0

0.
28

77
32

32
0.

61
5

0
0.

84
73

64
0

20
7.

77
3

10
00

2
12

0
24

0
0.

36
99

8
76

.3
79

2
44

.7
86

9
1.

16
23

3
0.

90
72

06
18

5.
03

2
10

00
2

30
0

60
0

0.
41

32
32

21
9.

23
6

13
4.

52
4

1.
50

66
2

0.
95

75
15

19
6.

47
6

10
00

2
42

0
84

0
0.

41
20

36
32

5.
38

6
17

1.
17

8
1.

56
67

0.
96

27
14

19
6.

66
3

10
00

4
12

0
24

0
0.

43
32

55
73

.5
06

6
52

.5
42

1
1.

37
39

4
0.

90
59

83
18

5.
51

3
10

00
4

n.
R

.
30

0
60

0
0.

37
31

23
18

3.
43

8
19

5.
72

5
1.

48
34

6
0.

94
27

83
11

7.
32

6
10

00
4

30
0

60
0

0.
58

08
54

17
6.

80
4

18
8.

71
6

2.
30

77
1

0.
94

32
85

19
3.

91
9

10
00

4
42

0
84

0
0.

60
32

13
25

8.
58

5
25

8.
44

6
2.

60
32

1
0.

95
07

14
19

0.
87

7
10

00
10

12
0

24
0

0.
44

00
09

73
.2

91
7

52
.8

04
1.

39
49

7
0.

90
29

17
18

5.
68

3
10

00
10

30
0

60
0

0.
66

91
58

15
7.

27
3

19
7.

28
2

2.
68

93
4

0.
90

50
23

19
4.

02
9

10
00

10
42

0
84

0
0.

75
18

2
20

3.
15

6
28

7.
46

1
3.

37
33

9
0.

89
98

95
18

9.
82

4
20

00
1

12
0

24
0

0.
48

14
58

77
.7

42
8

0
0.

70
08

87
0

15
4.

72
7

20
00

1
30

0
60

0
0.

52
43

16
22

0.
62

5
0

0.
76

94
03

0
17

5.
17

6
20

00
1

42
0

84
0

0.
53

24
92

28
9.

22
6

0
0.

78
28

02
0

17
9.

54
6

20
00

2
12

0
24

0
0.

64
54

92
73

.3
99

2
37

.0
94

5
1.

00
54

8
0.

87
96

7
15

5.
22

5
20

00
2

30
0

60
0

0.
74

58
78

20
1.

34
8

12
1.

65
6

1.
33

66
9

0.
95

51
98

16
4.

91
20

00
2

42
0

84
0

0.
75

39
14

28
8.

84
5

15
3.

13
8

1.
40

07
6

0.
96

38
8

16
5.

58
20

00
4

12
0

24
0

0.
70

91
23

71
.3

44
3

42
.9

12
1

1.
11

72
3

0.
87

70
91

15
4.

69
7

20
00

4
n.

R
.

30
0

60
0

0.
62

58
29

17
3.

51
4

19
1.

71
1

1.
23

81
4

0.
94

04
55

10
1.

35
6

20
00

4
30

0
60

0
0.

91
10

07
15

3.
46

5
15

1.
68

6
1.

70
70

9
0.

92
53

42
15

7.
39

1
20

00
4

42
0

84
0

0.
93

73
89

19
7.

15
8

19
7.

38
9

1.
86

93
2

0.
93

15
88

15
5.

62
9

20
00

10
12

0
24

0
0.

71
31

12
71

.2
70

5
43

.1
21

9
1.

12
36

6
0.

87
58

83
15

4.
66

6
20

00
10

30
0

60
0

0.
94

49
74

14
3.

45
9

15
6.

10
1

1.
78

50
5

0.
89

98
75

15
3.

81
7

20
00

10
42

0
84

0
0.

97
72

52
17

1.
2

21
0.

80
8

1.
98

94
2

0.
89

59
12

14
8.

71
7

30
00

1
12

0
24

0
0.

65
20

67
72

.4
53

2
0

0.
63

21
8

0
13

3.
71

4
30

00
1

30
0

60
0

0.
73

44
34

19
5.

73
6

0
0.

71
69

5
0

15
6.

49
30

00
1

42
0

84
0

0.
74

43
33

25
1.

32
4

0
0.

72
77

27
0

16
0.

41
2

30
00

2
12

0
24

0
0.

79
41

54
69

.3
05

3
28

.0
65

9
0.

81
27

34
0.

79
83

71
12

7.
73

6
30

00
2

30
0

60
0

0.
92

94
43

15
8.

19
8

76
.3

42
7

1.
02

93
2

0.
90

31
25

13
9.

29
8

30
00

2
42

0
84

0
0.

94
21

51
19

1.
74

6
87

.6
79

8
1.

06
02

6
0.

91
31

34
14

0.
33

4
30

00
4

12
0

24
0

0.
82

92
84

68
.0

70
9

33
.1

62
0.

85
77

88
0.

80
63

76
12

4.
35

5
30

00
4

n.
R

.
30

0
60

0
0.

79
73

01
15

7.
16

8
16

1.
85

6
1.

00
19

2
0.

92
34

7
93

.0
81

8
30

00
4

30
0

60
0

0.
96

98
12

13
6.

94
4

11
2.

64
3

1.
14

42
6

0.
89

54
21

11
9.

01
9

30
00

4
42

0
84

0
0.

97
91

49
16

2.
45

13
7.

15
8

1.
20

08
6

0.
90

26
23

11
7.

99
6

30
00

10
12

0
24

0
0.

83
06

74
68

.0
00

8
33

.3
18

1
0.

85
93

27
0.

80
60

87
12

4.
14

7
30

00
10

30
0

60
0

0.
97

35
02

13
3.

96
12

7.
54

9
1.

17
84

8
0.

88
52

91
11

2.
41

1
30

00
10

42
0

84
0

0.
98

58
35

15
4.

01
3

16
4.

52
4

1.
26

65
3

0.
88

71
57

11
0.

05
3

VIII. ADDITIONAL EXPERIMENTAL FIGURES

Fig. 7. Occupancy rates, 1000 vehicles, capacity 1, ∆ = 120 s

Fig. 8. Occupancy rates, 1000 vehicles, capacity 1, ∆ = 300 s

Fig. 9. Occupancy rates, 1000 vehicles, capacity 1, ∆ = 420 s

Fig. 10. Occupancy rates, 1000 vehicles, capacity 2, ∆ = 120 s

Fig. 11. Occupancy rates, 1000 vehicles, capacity 2, ∆ = 300 s

Fig. 12. Occupancy rates, 1000 vehicles, capacity 2, ∆ = 420 s

Fig. 13. Occupancy rates, 1000 vehicles, capacity 4, ∆ = 120 s

Fig. 14. Occupancy rates, 1000 vehicles, capacity 4, ∆ = 300 s

Fig. 15. Occupancy rates, 1000 vehicles, capacity 4, ∆ = 420 s

Fig. 16. Occupancy rates, 1000 vehicles, capacity 10, ∆ = 120 s

Fig. 17. Occupancy rates, 1000 vehicles, capacity 10, ∆ = 300 s

Fig. 18. Occupancy rates, 1000 vehicles, capacity 10, ∆ = 420 s

Fig. 19. Occupancy rates, 2000 vehicles, capacity 1, ∆ = 120 s

Fig. 20. Occupancy rates, 2000 vehicles, capacity 1, ∆ = 300 s

Fig. 21. Occupancy rates, 2000 vehicles, capacity 1, ∆ = 420 s

Fig. 22. Occupancy rates, 2000 vehicles, capacity 2, ∆ = 120 s

Fig. 23. Occupancy rates, 2000 vehicles, capacity 2, ∆ = 300 s

Fig. 24. Occupancy rates, 2000 vehicles, capacity 2, ∆ = 420 s

Fig. 25. Occupancy rates, 2000 vehicles, capacity 4, ∆ = 120 s

Fig. 26. Occupancy rates, 2000 vehicles, capacity 4, ∆ = 300 s

Fig. 27. Occupancy rates, 2000 vehicles, capacity 4, ∆ = 420 s

Fig. 28. Occupancy rates, 2000 vehicles, capacity 10, ∆ = 120 s

Fig. 29. Occupancy rates, 2000 vehicles, capacity 10, ∆ = 300 s

Fig. 30. Occupancy rates, 2000 vehicles, capacity 10, ∆ = 420 s

Fig. 31. Occupancy rates, 3000 vehicles, capacity 1, ∆ = 120 s

Fig. 32. Occupancy rates, 3000 vehicles, capacity 1, ∆ = 300 s

Fig. 33. Occupancy rates, 3000 vehicles, capacity 1, ∆ = 420 s

Fig. 34. Occupancy rates, 3000 vehicles, capacity 2, ∆ = 120 s

Fig. 35. Occupancy rates, 3000 vehicles, capacity 2, ∆ = 300 s

Fig. 36. Occupancy rates, 3000 vehicles, capacity 2, ∆ = 420 s

Fig. 37. Occupancy rates, 3000 vehicles, capacity 4, ∆ = 120 s

Fig. 38. Occupancy rates, 3000 vehicles, capacity 4, ∆ = 300 s

Fig. 39. Occupancy rates, 3000 vehicles, capacity 4, ∆ = 420 s

Fig. 40. Occupancy rates, 3000 vehicles, capacity 10, ∆ = 120 s

Fig. 41. Occupancy rates, 3000 vehicles, capacity 10, ∆ = 300 s

Fig. 42. Occupancy rates, 3000 vehicles, capacity 10, ∆ = 420 s

REFERENCES

[1] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning Algorithms. 2:117–
139, 2009.

[2] F. Glover and M. Laguna. Tabu Search? Springer, 2013.
[3] K. Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic. European

Journal of Operational Research, 126(1):106–130, 2000.
[4] S. Ma, Y. Zheng, and O. Wolfson. T-share: A large scale dynamic taxi ridesharing service. Proceedings

of IEEE ICDE, 2013.
[5] D. Pham and D. Karaboga. Intelligent optimisation techniques: genetic algorithms, tabu search,

simulated annealing and neural networks. Springer Science & Business Media, 2012.
[6] P. Santi, G. Resta, M. Szell, S. Sobolvesky, S. Strogatz, and C. Ratti. Quantifying the benefits of

vehicle pooling with shareability networks. PNAS, 2014.

	Problem Statement
	Definitions
	Problem statement

	Method
	Overview
	Pairwise request-vehicle RV graph
	Request-trip-vehicle RTV graph
	Optimal assignment

	Optimal route for fixed vehicle and passengers
	Pairwise graph of vehicles and requests (RV-graph)
	Graph of candidate trips and pick-ups (RTV-graph)
	Optimal assignment of trips to vehicles
	Greedy assignment
	Variables
	Cost
	Constraints
	Assignment

	Theoretical Guarantees
	Complexity
	Anytime optimality and correctness
	Heuristics for real-time execution
	Parallelization

	Continuous application with incoming requests
	Rebalancing
	Robustness analysis
	Interval length
	Density of demand
	Influence of congestion

	Data
	Additional experimental figures

