
Measuring the Accuracy of Distributed
Algorithms on Multi-Robot Systems with
Dynamic Network Topologies

James McLurkin

Abstract Distributed algorithms running on multi-robot systems rely on ad-hoc net-
works to relay messages throughout the group. The propagation speed of these mes-
sages is large, but not infinite, and problems in algorithm execution can arise when
the robot speed is a large fraction of the message propagation speed. This implies
a robot “speed limit”, as any robot moving away from a message source faster than
the message speed will never receive new information, and no algorithm can func-
tion properly on it. In this work, we focus on measuring the accuracy of multi-robot
distributed algorithms. We define the Robot Speed Ratio (RSR) as the ratio of robot
speed to message speed. We express it in a form that is platform-independent and
captures the relationship between communications usage, robot mobility, and al-
gorithm accuracy, allowing for trade-offs between these quantities at design time.
Finally, we present results from experiments with 30 robots that characterize the ac-
curacy of preexisting distributed algorithms. In all cases, accuracy degrades as the
RSR increases.

1 Introduction and Related Work

Distributed algorithms running on multi-robot systems require inter-robot commu-
nication to share messages. Spanning tree construction is a popular form of broad-
cast communications in sensor networks [3] and multi-robot systems. This type of
communication generates a spanning tree rooted at a distinguished root node (or
robot) in the network. This technique is a practical way to propagate a global mes-
sage throughout the network; it is simple to implement, and messages propagate
rapidly, without cycles, and decay in an orderly fashion. Many multi-robot algo-
rithms rely on the resulting trees for communication and navigation [1, 7], but the
motion of mobile robots changes the underlying network topology, which neces-

James McLurkin
Massachusetts Institute of Technology, Cambridge, MA, e-mail: jamesm@csail.mit.edu

1

2 James McLurkin

sitates changes in the spanning tree structure. If the construction process cannot
maintain an accurate data structure in a mobile network, algorithms that rely on the
tree structure cannot operate properly.

In this paper1, we empirically measure the accuracy of several multi-robot dis-
tributed algorithms that rely on broadcast spanning trees. We test these algorithms
under different rates of network topology change. We quantify the rate of network
change with a dimensionless measure of robot speed appropriate for multi-robot
systems that rely on network communications. We find that the accuracy of these
algorithms decrease as the robot speed, and the rate of topology change, increases.

Convergecast is a common technique for accumulating global data onto a single
network node [8,9]. In our implementation, robots in the network use the broadcast
tree as a routing structure to route messages towards the root. Each robot aggregates
messages from its children in the tree, and this result is then propagated towards the
root. The aggregation step eliminates the need to route each message individually,
which significantly reduces the total communications required from O(n2) to O(n),
where n is the total number of robots. However, it requires a stable routing tree to
correctly propagate convergecast messages back towards the root.

There is much work describing navigation algorithms that use the broadcast tree
for physical routing [1, 7]. These algorithms guide a navigating robot towards the
root of the tree in a series of steps, by directing it towards its current parent in the
tree. A requirement of these navigation algorithms is a strong correlation between
the algorithmic tree structure and the physical tree structure. Our experiments with
dynamic networks test the limits of these types of algorithms.

2 Multi-Robot Computational Model

In this section we define a model of a multi-robot system. We limit our discussion
to the class of multi-robot applications that require highly mobile agents using local
inter-robot communication. We define the state of an individual robot, a, as the tuple
of its unique ID, its global pose, and its private and public variables. We define a
configuration, C, as the collection of states of all n robots in the network. Each robot
can communicate with neighbors within a fixed radius r. This produces a geometric
graph, G, in which each robot is a vertex and the communications links between
robots are edges. We assume that each robot has a sensor that can estimate the
pose of its neighbors relative to its own coordinate frame. We do not assume each
robot has access to its position in an external coordinate system. We do not address
power utilization or conservation in this work, instead assuming that the robots have
sufficient energy to allow unconstrained mobility and communication.

We assume that all the robots announce their public variables to their neighbors
periodically with a shared fixed period, τ , but with different individual offsets to pre-
vent message interference. This defines a local round of computation; a period of

1 This work funded by a grant from Boeing Corporation

Measuring Algorithm Accuracy in Dynamic Network Topologies 3

time in which each robot receives an announcement message from each of its neigh-
bors, processes these messages, and then transmits its own message. This creates a
global synchronizer, which allows us to model group-level algorithm execution as
proceeding in a series of discrete global rounds.

We define algorithm accuracy as a metric that ranges between [0,1] and quanti-
fies the quality of a configuration with respect to a particular algorithm A. A con-
figuration with an accuracy of 1 is an exemplar of the best possible performance of
algorithm A, while an accuracy of 0 is the worst possible performance. The accu-
racy metric is tailored to each algorithm and application, and must be included in
the algorithm specification.

3 The Robot Speed Ratio

In the previous section, we assumed that the robots broadcast messages to their
neighbors at regular intervals in order to maintain the network as they move. As
the robot’s speed increases, so will the rate of network topology change, so the fre-
quency of neighbor updates must also increase to maintain accurate connectivity
information. Since communications bandwidth is limited, there is a maximum up-
date rate, which correlates to some maximum robot speed. If the robots move faster
than this speed, the network can no longer be properly maintained, and the per-
formance of algorithms that rely on network communication will degrade. In this
section, we define a metric that captures the relationship between robot speed and
communications bandwidth. We want this metric to be dimensionless and able to be
estimated a priori from basic system parameters, so that it can be used as a design
tool for new systems and for algorithm performance comparisons across different
hardware platforms.

Our approach is to define the robot’s speed as a fraction of the maximum message
propagation speed, smessage. Given the actual robot speed, srobot , we define the robot
speed ratio, or RSR, as

RSR =
srobot

smessage
. (1)

The robot speed is measured directly, but the propagation speed of the message
through the network must consider buffering delays and channel capacity limits.
Any robot moving away from a source of information, such as the root of a broadcast
tree, with a RSR > 1 will not be able to receive new information from this source.
This effectively disconnects the network, making it impossible for any distributed
algorithm to run correctly. This is a conservative limit, as it only considers the speed
of a single robot. If the direction of motion is taken into account, motion towards
or parallel to the motion of the source might not be subject to this limit. But this
requires knowing the particular configuration and velocities for all the robots in
the network, making it impossible to compute before the algorithm execution. We
consider possible approaches to address this limitation in future work.

4 James McLurkin

To determine the robot speed ratio before execution, we need to estimate srobot
and smessage. We will assume the actual speed of the robots, srobot, does not deviate
far from the commanded speed, so we use the latter for our estimate. We can express
the message speed as smessage = dhop

thop
, where dhop is the average distance a message

travels away from the source per hop, and thop is the expected latency per hop. We
compute dhop by noting that the configuration graph G is an r-disk spanning sub-
graph of the fully connected graph, G f , which is formed by connecting all pairs of
robots. The average spanning ratio, k, is the average stretch of the distance between
any two pairs of robots a,b in graph G to the distance between the same two robots
in graph G f . If we let dab and d f

ab be the distance between robots a and b in graphs

G and G f respectively, we can write k = mean
(

dab

d f
ab

)
over all pairs a and b.

Using k, we express dhop as a fraction of the communications radius: dhop = r
k .

A network with a smaller spanning ratio supports paths that are closer in distance to
the Euclidean distance. In the ideal case of no stretch, k = 1 and dhop = r, but this
implies that a message can travel in a straight line, which is only possible with an
infinite density of robots. We can estimate k a priori if we know the density of robots
in the environment and the communication radius, r. For the configurations tested
in this work, the average number of neighbors of a robot, mavg ≈ 10 and r ≈ 1,
yielding k ≈ 1.4. See the reference by Kleinrock and Silvester [5] for a careful
analytic treatment of the calculation of dhop as a function of node degree.

The next step is to compute thop, the expected latency at each hop. We assume
that while each robot uses the same round duration, τ , they all have different offsets,
picked uniformly at random from 0≤ τoffset < τ . Therefore, the most delay between
receipt and retransmit of a message by any robot is τ , and the minimum is σ , where
σ is some small processing time. Rounding σ down to 0, we compute the expected
time delay at each node as thop = τ

2 . This gives us an expression for message speed

of: smessage = dhop
thop

= 2r
kτ

.
However, the round duration τ is bounded from below by the minimum commu-

nication requirements of the algorithm under consideration, A. Given the maximum
communication bandwidth of each robot, B, and an assumption on the maximum
number of neighbors for each robot, mmax, we can compute the minimum round
time for algorithm A’s communication requirements measured in bits/round, BA:
τmin = BA mmax

B . Note that this assumes that the physical communications medium is
shared between neighboring robots and is half-duplex. This assumption is true for
most of the radio and optical communications hardware used in a practical multi-
robot system.

Combining the above expressions for dhop, thop, and τ , we can express the mes-
sage speed and maximum robot speed ratio as:

smessage =
2rB

k mmax BA
, RSR =

srobot k mmax BA

2rB
(2)

The maximum RSR makes sense when we vary the parameters in the expression.
Increasing r, the communication range, allows the message to travel further with

Measuring Algorithm Accuracy in Dynamic Network Topologies 5

each hop. Increasing B, the bandwidth, decreasing BA, the algorithm’s required
bits per round, or reducing mmax, the number of neighbors, all allow the round, τ ,
to be shorter, which increases message speed. A smaller spanning ratio, k, gives
the message a straighter, more efficient path. The maximum number of neighbors,
mmax, can be estimated by knowing the workspace area and the number of robots,
and controlled at run-time with dispersion algorithms.

4 Experimental Setup

The SwarmBot [4] robot platform was used to validate algorithm performance. The
robots are fully autonomous, using local computation and sensor readings to run the
algorithms. Each robot has a 32-bit ARM processor running at 40mhz, a unique ID
chip, a bump sensor, and wheel encoders. Large top mounted LEDs on each robot
are used to inform the user of the robot’s status.

(a) A SwarmBot (b) The Swarm. (c) Hop distribution on
robots

Fig. 1 a. Each SwarmBot has an infra-red communication and localization system which enables
neighboring robots to communicate and determine their pose, {x,y,θ} relative to each other. The
three lights on top are the main user interface, and let a human determine the state of the robot
from a distance. The radio is used only for data collection and software downloads. b. There are
112 total robots in the Swarm, but a typical experiment uses only 25-35 at a time. c. Picture of the
robots constructing a broadcast spanning tree in the experimental workspace. Robots that are an
even number of hops from the root are flashing their blue light, those located an odd number of
hops are flashing their red light. The root is in the lower-left.

Each robot has an infra-red communication and localization system that allows
nearby robots to communicate and determine their pose, p = {x,y,θ} relative to
each other [10] . The system was run at its lowest power setting, which has a range
of about 1.0 meter. The lowest power setting is used to produce multi-hop networks
within the confines of our experimental workspace, which was an 2.43 m × 2.43 m
(8’ × 8’) square.

Ground truth was determined by a vision-based localization system. The system
was developed by Newton Labs [6], and tracks the position, {x,y}, of each robot.

6 James McLurkin

The system uses an IR emitter on the top of each robot that encodes 10 bits of data
per second per robot, allowing each robot to be uniquely identified and tracked.
Mean positioning error was 15.4 mm, which is adequate to use as ground truth in
our experiments. The system has an update rate of 1 hz, so we limited the maximum
speed of the robots in all experiments to 80 mm/s.

Each algorithm was run on 25-35 robots moving randomly around the environ-
ment. The motion behavior moves the robots in a straight lines until they contact an
obstacle, then uses the bump sensors to estimate the angle of incidence and “reflect”
the robot back into the environment. The behavior works well at keeping robots dis-
persed throughout the environment, and the uncorrelated random motion changes
the robot’s neighbors frequently, making it a good way to characterize how sensi-
tive an algorithm’s performance is to changing configurations.

We tested each algorithm in a static configuration and over a range of robot speed
ratios from 0.005 to 0.640. This range of speeds is best plotted on a logarithmic
axis, so we round the RSR of the static configurations up to 0.001 to plot on a
logarithmic scale with the rest of the results. Each algorithm was tested at each
speed long enough for multi-hop communications to complete and for performance
to stabilize. This was no less that 10 diam(G) rounds for the two communications
algorithms and from 5-10 successful completions of the navigation algorithm.

5 Communication and Navigation Algorithms

In multi-robot systems, broadcast trees [3] (or communication gradients) underpin
many other algorithms. Understanding how the performance of trees in dynamic
multi-robot networks affect higher-level algorithms is critical to building practi-
cal systems. In this section, we measure the performance of three algorithms: one
to estimate distance along broadcast tree paths, a convergecast algorithm that uses
broadcast trees to aggregate global quantities onto a single robot, and a navigation
algorithm that uses the broadcast tree as a physical navigation structure. [1, 2, 11].

5.1 Broadcast Tree Path Distance

One of the most basic uses of a broadcast tree is to propagate messages from the
root outwards. Because we assume each robot has a sensor to detect the positions
of its neighbors, it is possible for each robot to estimate the distance to the root by
summing the path length a message has traveled to reach it. Under good conditions,
the topology of the network will closely match the actual positions of the robots,
producing a distance estimate on each robot that is well-correlated to the actual
distance of that robot from the root. Figure 1c is a snapshot of the robots constructing
a broadcast tree. The root robot is at the lower left-hand corner of the picture, and
the parity of the hops from the root is illustrated with a red or blue light on the

Measuring Algorithm Accuracy in Dynamic Network Topologies 7

robot. This static configuration produced (fairly) concentric rings, as the correlation
between distance from the root and hops from the root is good.

The algorithm to compute the path distance to the root is as follows: We ex-
amine a particular robot a that is not the root of the tree. Robot a has k ≥ 1
neighbors that are closer to the root than it is. We gather these closer neighbors
into the set Pa, and use the position of each robot pi ∈ Pa. We add a public
variable, treeDistance, to the state of each robot. This variable is calculated as:
a.treeDistance = 1

k ∑
k
i=1 (ri.treeDistance+‖−→pi‖) . The treeDistance of the root is

0. The estimate of path distance to the root on robot a is d = a.treeDistance.
The path distance algorithm runs concurrently with the broadcast tree, and its

results are calculated as soon as a robot receives a broadcast tree message. There-
fore the total running time is O(diam(G)) rounds, and it uses O(m) computation
per round. The bits/round transmitted is O(1). The accuracy is the correlation co-
efficient computed between the actual and estimated path distances: ArootDistance =
corrcoef(d,dest), which returns a result in the range of [0,1]. We compute the algo-
rithm’s accuracy without compensating for k, the spanning ratio, as a robot’s local
measurement of density would introduce errors from edge effects, and a more global
estimate would require a more complex algorithm with additional communication.
This lack on compensation means that we can never expect to achieve an accuracy
of 1 because the spanning ratio in the network makes the measured paths longer
than the actual paths. In practice, this path-length error is moderate, but tolerable,
usually less than 20%.

Voids in the network will cause a larger stretch in the measured path length, as
the messages must route around such obstacles. In a convoluted, maze-like environ-
ment, the type of local communication and pose estimation system employed will
introduce more serious errors. We imagine two types of communication systems,
one that uses line-of-sight communication, and one that is able to communicate
through obstructions. Assuming the line-of-sight path between any two robots is
also navigable, this system will produce a distance estimate that reflects the path the
broadcast messages traveled, which is also the path a robot should follow to navi-
gate to the root. However, the geometric error between the navigable path and the
actual distance to the root can be large if the path is convoluted. Therefore, using this
distance estimate to produce a coordinate system [11] would produce poor results.
On the other hand, if robots can communicate and estimate local network geometry
without interference from obstacles, then the distance estimate might be close to the
Euclidean distance to the root, but the path might not be navigable.

Figure 2a shows plots of the root distance estimate vs. the Euclidean distance to
the root for a variety of RSRs. Note that these quantities are correlated at low RSRs,
and become increasingly uncorrelated at high RSRs. Figure 2b plots the accuracy
of the path distance estimate over increasing RSRs. Because the estimate is uncor-
rected with knowledge of the spanning ratio, this algorithm can never achieve an
accuracy of 1, as any path through the network will always be somewhat crooked.
As the RSR increases, the correlation between the robot’s distance estimate and the
actual distance decreases. The intuition is that robots moving at a high RSR can
travel a large distance in each round of computation, carrying their previous hop

8 James McLurkin

RSR = 0.003

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000

actual distance

es
ti

m
at

ed
 d

is
ta

nc
e

RSR = 0.0075

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000

actual distance

es
ti

m
at

ed
 d

is
ta

nc
e

RSR = 0.015

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500

actual distance

es
ti

m
at

ed
l d

is
ta

nc
e

RSR = 0.06

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000

actual distance
es

ti
m

at
ed

l d
is

ta
nc

e

RSR = 0.15

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000

actual distance

es
ti

m
at

ed
l d

is
ta

nc
e

RSR = 0.6

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000

actual distance

es
ti

m
at

ed
l d

is
ta

nc
e

(a) Broadcast tree path distance data for various RSRs.

root vector distance

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60

RSR

ac
cu

ra
cy

root vector distance

broadcast tree path distance

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.001 0.010 0.100 1.000

RSR

ac
cu

ra
cy

root vector distance
(b) Broadcast tree path distance accuracy vs.
RSR

convergecast summation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.10 0.20 0.30 0.40 0.50 0.60

RSR

ac
cu

ra
cy

convergecast summation

convergecast summation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.010 0.100 1.000

RSR

ac
cu

ra
cy

convergecast summation
(c) Convergecast summation accuracy vs. RSR

Fig. 2 a: The distance estimate is strongly correlated with the Euclidean distance in a static con-
figuration. The vertical lines in the plots were caused by a robot with faulty communications.b:
The accuracy of the distance estimate decreases as the RSR increases. c: Convergecast summation
requires a stable network to route messages back to the root, and its accuracy also declines rapidly
at high RSRs.

Measuring Algorithm Accuracy in Dynamic Network Topologies 9

counts and distance estimates with them. In turn, this affects neighbors in the next
round, ultimately producing an inaccurate estimate.

5.2 Convergecast Summation

A convergecast aggregates a global quantity q onto the root robot by using the tree
as a routing structure to propagate partial sums to the root. Convergecast requires
the tree to be stable while messages route back to the root, and we would expect its
performance to be sensitive to changing network topologies.

The algorithm adds a public variable, partialSum, to the state of each robot.
We examine a particular robot a with k ≥ 0 children, c1 . . .ck, in the broadcast
tree. Robot a computes its partial sum in each round by adding the value of
its quantity, qa, to the partial sum of each of its children: a.partialSum = qa +
∑

k
i=0 (ci.partialSum). The partial sum computed on robot a is stored in its public

variable, a.partialSum, making it accessible to all of its neighbors, in particular, its
parent. By this process, each robot in the tree computes the partial sum of q over
the subtree rooted at itself. The subtree rooted at the root robot is the entire tree,
and the partial sum computed by the root robot is the total sum of q over the entire
network. In our experiment, we choose to compute the total number of robots in the
configuration, so each robot sets their value of q = 1.

The algorithm has a running time of O(diam(G)) rounds. The convergecast algo-
rithm runs concurrently with the broadcast tree construction, but correct results only
reach the root robot after 2 depth(T) rounds after startup or any population change.
There is O(m) computation per round, and the bits/round transmitted is O(1). The
accuracy metric is defined in terms of the error in the value of q computed at the
root: Aconvergecast = 1− |qmeasured−qactual|

|qactual|
, bound to [0,1].

The accuracy of the convergecast summation algorithm is shown in Figure 2c.
The accuracy degrades quickly as the RSR increases. This is expected, because the
algorithm relies on a stable broadcast tree to relay partial sums through its neighbors
back towards the root robot.

Our accuracy metric does not take into account whether or not messages from
a particular convergecast were accumulated in the summation, i.e., did the mes-
sages converge onto the root “on time”. The broadcast and convergecast messages
are overlaid and pipelined and the algorithm does not preserve individual message
routes, as this would require transmitting O(n) bits/round from each robot. There-
fore, the root may be receiving messages from other convergecasts that are “early”
or “late”, depending on how the network is reconfigured by the robot’s motion. A
way to eliminate this error would be to tag each message with its initial round, and
maintain several parallel convergecast summations over multiple rounds. However,
we do not expect that this change would affect overall results appreciably.

10 James McLurkin

5.3 Broadcast Tree Navigation

The broadcast tree can be used to guide any robot in the configuration to the root by
using the other robots in the network as navigational aids. We assume that the path
between any two neighboring robots (robots that can communicate) is navigable.
Any robot can navigate to the root of the tree in a series of steps, by moving towards
its current parent in the tree. In the process of moving towards its current parent, it
will move to a new part of the network, and will select a new parent that is closer to
the root than its previous one. The cycle repeats until the navigating robot reaches
the root of the tree. See reference [10] for an empirical evaluation of this algorithm
and reference [7] for a more theoretical treatment.

In our implementation, the navigating robot a collects all k closer neighbors to
the root into the set Pa. The navigating robot computes the midpoints between all the
cyclically adjacent neighbors from Pa. Cyclically adjacent neighbors are two robots
that are adjacent in the angular ordering of neighbors. The navigating robot selects
the closest midpoint and moves towards it. Moving towards the midpoints between
neighbors helps to reduce collisions. The motion of the navigating robot will cause
its neighbors to change, and the set of neighbors in Pa is updated each round. If
|Pa|= 1, then the robot has only one closer neighbor (its parent), and moves directly
towards it. In this case, we rely on the low-level bump-sensing obstacle avoidance
behavior to guide the robot around its parent, or any other obstacle.

The key requirement for success is that the neighbors in Pa are actually closer
to the root along the navigable path. Figure 2b shows that the correlation between
the path distance estimate and the Euclidean distance degrades at high RSRs, so
we would expect the accuracy of this navigation algorithm to suffer as well. The
accuracy of this navigation algorithm is best captured by the path efficiency: the
ratio of the path actually traveled by the navigating robot to the shortest navigable
path possible. For a given start and goal location in the external coordinate frame, the
physical accuracy of the broadcast tree navigation algorithm is: Anavigation ≡

soptimal
srobot

.
Paths closer to the optimal are more efficient and judged to be more accurate. Paths
that are of infinite length, i.e. the navigating robot does not get to the goal position,
have an accuracy of 0.

Several example paths from experiments with RSR = 0 are shown in Figure 3a,
and the accuracy of the algorithm is shown in Figure 3b. The algorithm performs
well at low RSRs, but then fails completely at a RSR of 0.08 or above. This is con-
sistent with our intuition that navigation accuracy relies on the broadcast root vector
distance accuracy. When this requirement is not met, navigating robots cannot de-
termine the correct direction to drive in, and move around randomly because the
neighbors in Pa are not actually closer to the root.

Measuring Algorithm Accuracy in Dynamic Network Topologies 11

(a) Navigation Paths

broadcast tree navigation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.10 0.20 0.30 0.40 0.50 0.60

RSR

ac
cu

ra
cy

broadcast tree navigation

broadcast tree navigation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.010 0.100 1.000

RSR

ac
cu

ra
cy

broadcast tree navigation
(b) Navigation accuracy vs. RSR

Fig. 3 a. Example paths from the broadcast tree navigation algorithm at a RSR of 0. The broadcast
tree network is shown with grey edges. Note that it is not the minimal spanning tree, nor is it planar.
Using this tree directly for navigation would produce poor results. b. Broadcast tree navigation
accuracy vs. RSR. The algorithm did not function at a RSR of 0.08 or higher.

6 Conclusions and Future work

The accuracy of all of the algorithms decreased as the robot speed ratio increased.
In our experiments, a RSR of 0.005 allows good accuracy in all algorithms, a RSR
of 0.02 allows reasonable accuracy in simple algorithms, and all algorithms tested
are essentially useless at a RSR of 0.10 or higher. Intuitively, the network stability
required for each of these algorithms differs, with convergecast and navigation re-
quiring a more stable network than the broadcast tree path distance. Roughly speak-
ing, accuracy for algorithms with higher network stability requirements degrade
more rapidly as the robot speed ratio increases. However, quantitative comparisons
between accuracies is limited, because each accuracy metric is user-designed and
application-dependent. The accuracy metrics used in this work were all designed
towards quantifying the relationship between the broadcast tree computational data
structure and the broadcast tree network geometry. A different application using the
same algorithms might have different accuracy metrics.

While the RSR is a convenient way to estimate the relationship between mobility
and communications, it does not actually measure the changes in topology which
cause the accuracy degradation. There are many other metrics to capture topology
changes, including “network half life”; the amount of time until half of the popu-
lation has changed [12], and “network churn”; for example, taking into account the
the amount of time a node is in the network. Future work could develop a notion
of “neighbor half-life” which could directly capture the rate of topology change for
a given configuration control algorithm. However, it is not clear how to generalize
this to avoid having to calculate different rates of change for different algorithms.
Additionally, the RSR metric will only be proven useful after evaluation on different
hardware platforms.

12 James McLurkin

The data confirms the intuition that communications bandwidth, robot mobility,
and algorithm accuracy are interrelated. Given an accuracy vs. RSR plot for a partic-
ular algorithm, the designer can use the robot speed ratio in equation 2 to trade-off
between these three quantities at design time. This can be a useful tool for the de-
signer of multi-robot systems.

References

1. Maxim Batalin, Gaurav S. Sukhatme, and Myron Hattig. Mobile robot navigation using a
sensor network. pages 636–642, New Orleans, Louisiana, April 2004.

2. Qing Fang, Jie Gao, L.J. Guibas, V. de Silva, and Li Zhang. Glider: gradient landmark-based
distributed routing for sensor networks. In INFOCOM 2005. 24th Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings IEEE, volume 1, pages
339–350 vol. 1, 2005.

3. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust
communication paradigm for sensor networks.

4. iRobot. Swarmbot. In www.irobot.com, 2002.
5. L. Kleinrock and J. Silvester. Optimum transmission radii for packet radio networks or why

six is a magic number. Proceedings of the IEEE National Telecommunications Conference,
4:14.3, 1978.

6. Newton Labs. Model 9000 vision system. In www.newtonlabs.com/9000.htm, 2001.
7. Qun Li and Daniela Rus. Navigation protocols in sensor networks. ACM Trans. Sen. Netw.,

1:3–35, 2005.
8. S. Madden, J. Hellerstein, and W. Hong. Tinydb: In-network query processing in tinyos. Intel

Research, IRB-TR-02-014, October, 2002.
9. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an acquisitional query

processing system for sensor networks. ACM Transactions on Database Systems (TODS),
30:122–173, 2005.

10. James McLurkin. Stupid Robot Tricks: A Behavior-Based Distributed Algorithm Library for
Programming Swarms of Robots. PhD thesis, Massachusetts Institute of Technology, 2004.

11. R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from local
information on an ad hoc sensor network. Proc. of Information Processing in Sensor Networks
(IPSN), 2003.

12. Ting Yan, Tian He, and John A. Stankovic. Differentiated surveillance for sensor networks.
pages 51–62, Los Angeles, California, USA, 2003. ACM.

