
The Ants: A Community of Microrobots
by

James McLurkin

Submitted to the Department of Electrical Engineering and Computer Science

on May 12, 1995, in partial fulfillment of the

requirements for the degree of

Bachelors of Science in Electrical Engineering

Abstract

As the field of robotics advances, new areas of research are
emerging. Two of these new fields are microrobotics and robotic
communities. The goal of my thesis is to explore both of these areas with
an example borrowed from nature -- the ant colony.

Ants have evolved into one of the most successful species on earth.
Two of the main reasons for this dominance are their small physical size
and their community organization. Using real ants as a guide, the robot
Ants have been designed with sensors and actuators analogous to their
natural counterparts. Their software is written with cooperation in mind,
aiming for community behaviors emerging from the interactions of many
individuals. Their cubic-inch size produces a robot that is relatively
inexpensive and practical to experiment with in a normal-size lab.

Natural ants use a multitude of different foraging techniques,
many of which involve synergistic cooperation among several individuals.
A synergistic interaction is one that produces a group that is greater
than the sum of its parts. In this thesis, I have taken the first steps
towards constructing a robotic community. Several autonomous
microrobots were built and simple cooperative software was
implemented.

Thesis Supervisor: Professor Rodney A. Brooks
Title: Associate Director, MIT Artificial Intelligence Lab

Table of Contents

Chapter I: Introduction 1
M icrorobots .. 2
Robotic Com m unities ... 3
"Natural Design" .. 4
The Current State .. 5

Chapter II: Hardware 7
M ain Hardware 7
Sensors 10
Motors 18
Miscellaneous Hardware 22
Future Sensors 23

Chapter III: Construction .. 26
3-D Circuit Boards 26
The Parts Hunt Continues ... 27
Ant Day! .. 28

Chapter IV: Software .. 30
Subsumption Architecture 30
Operating System .. 32
Example Antware .. 33

Chapter V. Community 36
Simple Communication 36
Future Ant Games 37
The Beginnings of an Ant Colony 38

Chapter VI: The Next Step 42
Looking back 42
Solving Problems 42
Applications .. 43
Looking Ahead 44

References 45
Appendix A: Schematic 46
Appendix B: Tag 47

Acknowledgments
Anita For being the bestest boss in the whole universe!!

Rod For letting me pursue my dreams in his lab, and even talking to
me once in a while.

Ann Fraser and the rest of the Biologists at Harvard for providing me
with not only assistance and ideas, but with real ants, some of
which are even still alive!

Chapter I: Introduction

They are everywhere. You can remember watching them, as a

child, fascinated by their constant activity, then deciding they were not

that interesting and squashing a few of them. They are ants, small, six-

legged arthropods with an amazingly complex society. They are one of

the most successful species of animals on the planet. There are

approximately 1,000,000 ants for each person on the earth, and if you

added up the total weight of ants, it would equal the total weight of

humans. Their amazing success can be attributed to two major reasons:

their small size allows them to infiltrate almost any environmental niche

and their community structure allows them dominate whatever area they

enter. Engineers have been drawing inspiration from nature for ages,

Figure 1: Weighing in at 1.3 oz, Anita is equipped with 2 bump
sensors, 4 light sensors, 4 infrared communications
receivers, 5 food sensors, a tilt sensor, a battery, a DC-DC
converter, a serial port, three motors, and a gripper.

1

this thesis continues in that tradition; the goal -- to build a microrobotic

community based on ants.

Microrobots

Microrobots enjoy many advantages due to their diminutive

dimensions. The most obvious is their ability to operate in environments

where other robots cannot fit because of their size. There are countless

applications for small robots, from spying to inspecting nuclear power

plants for coolant leaks in the pipes. The most fascinating potential

application so far has been suggested by surgeons, who want to use a

microrobot to perform endoscopic surgery. The future robotic surgeon

would enter through the rectum and move around the large intestine,

observing the colon and even removing polyps.

There are other advantages that come along with small size.

Materials and parts get "stronger" as their dimensions get smaller. The

mass of a robot is related to the cube of the linear dimensions. For

example, a cubic-inch microbot is 1,728 times less massive than a cubic-

foot robot. Since force = mass x acceleration, forces acting on the robot

also tend to follow the cube root of the linear dimensions because of the

mass term. However, the strength of most materials and structural

components is usually dependent on the part's cross sectional area,

which decreases as the square root of the linear dimensions. Therefore,

the forces acting on these parts gets smaller much faster that the

strength of the material, resulting in parts that are much stronger

relative to the forces applied. The force that electric motors can exert

does not fall as fast as the volume of the motor either, so it is possible to

achieve insect-like strength with relatively modest power requirements.

Obstacle detection and data transmission ranges decrease as well.

If the robots are to communicate with each other, 3 inches to a

2

microrobot would be equivalent to about 3 feet to a more conventional 1

foot tall robot. It is much easier to design communication and obstacle

detection systems that have such small range requirements. The

designer of normal size robots is usually struggling to increase the

working range of the components. However, with microrobots, the range

of transmitters sometimes has to be limited to provide adequate

operation. Limiting the range of a device is much easier that extending

it, and can produce more reliable transmission or detection.

The robots also become less expensive to build. The most

sophisticated microrobots we have made cost about $300 each in parts.

At that bargain-basement price it is economicly feasable to build a large

number to do experiments in cooperative robotics. In addition, unlike

normal sized robots, fifty microrobots will fit in a small lab, so the

researcher does not have to worry about the football team practicing next

to his or her experiment.

Robotic Communities

The study of collective behaviors and robotic communities are

fairly new areas of research in the fields of artificial intelligence and

robotics. As robots become more ubiquitous, cooperation among them

will become more important in order to perform complex tasks efficiently.

Because of their size, community is even more important for microrobots.

For many potential applications, one microrobot would take a very long

time to get the job done. On the other hand, a whole army of

microrobots working together towards one goal would be a formidable

work force. A community like this could incorporate synergistic

cooperation, which is when the net worth of the group is more than the

sum of the parts.

3

In addition to getting more work done, a community is more

reliable than a single robot. If any one robot fails to accomplish their

task, there are many others working alongside it. In order to design

these future robotic communities, we need to understand how

communities work. The main question: What is the underlying structure

for a community of simple autonomous agents with no central control?

Ants have evolved into what appears to be the best solution to this

problem, so they represent the ideal natural model. Any problem is

much easier to work through when you are given the solution at the

beginning.

"Natural Design"

The design of the robotic Ants was inspired by nature, hence the

moniker, "Natural Design". This is an idea with two parts, the first being

a design methodology, while the second is to base our expections on

observations from nature.

The "hardware" and "software" of natural ants are inseparable,

they have evolved together for hundreds of millions of years. In order to

build a robot like this, the hardware must be designed with the software

in mind, and the software must be written with the hardware in mind.

When the hardware is designed for one purpose, it can provide a

substantial amount of sensory filtering. For example, the food sensors

do nothing else but detect food. Therefore, the software does not need to

perform extensive processing on the data from these sensors, either they

detect food, or they do not. This is similar to how mant insect senses

operate. There is a very select stimulus that excites a purpose-built

sensor, eliminating the need for further processing. An example for the

opposite case would be to use a camera to find food. The output of the

camera has nothing to do with whether or not food is there, it reports the

4

Ill

intensity and luminance of incident light. The software then has to sort

through all this data to figure out if there is food present or not.

The second half of the Natural Design idea is that nature is not

perfect. When attempting to emulate a natural system, what you expect

might not always be what a correctly functioning system will produce.

The artificial standards that researchers judge their robots on must be

tempered with the ultimate standard, nature. For example, the Ants

have no way of ensuring that they drive in a straight line. Real ants do

not walk in straight lines, they are constantly bumping in to objects and

using information from their sensors to change their course.

Communications are not perfect, sensations are not perfect, the

environment is not perfect, the list goes on and on. In addition to not

expecting the robots to perform perfectly, they are not even programmed

to achieve such an unrealistic goal. When a real ant finds food, she then

goes back to the nest to report her find to her nestmates. Her way back

is far from the straight line that you might assume. She makes errors,

gets lost, finds the trail again, turns around, etc. She will eventually get

home, but over a very indirect course. Using that as an example, it

would be silly to expect a robot to be able to travel directly home after

finding food. If nature does not worry about problems like this, perhaps

there are design solutions where the engineer need not worry about it

either.

The Current State

Currently, we are able to build fairly sophisticated microrobots on

the cubic-inch scale. The current design has a microprocessor, 17

sensors, and 3 motors. In order to construct these microrobots, we have

developed a manufacturing process which enables us to build integrated

machines at the printed circuit board level. This new construction

5

technique allows us to build a large number of small, simple, and

inexpensive robots to explore new ideas in robotic communities. While

we are able to build microrobots with some level of proficiency, we have

only taken the first steps towards a solution to the larger problem of

community. In doing so, we have unearthed more questions than we

have answers.

6

Chapter II: Hardware
The hardware for the robot Ants was designed with their natural

counterparts in mind, which is graphically depicted in Table 1. The

treads allow the robots to move over many different types of terrain,

while the mandibles can grip anything that is about the size and shape of

a pea. The sensors give ant-like information to the microprocessor, while

the IR emitters emit robotic "scents" for communication.

Main Hardware

Power Supply:
The robots operate from a 2.4 volt Nickel-Cadmium rechargeable

battery. There is a MicroLinear ML4861-5 DC-DC converter that

produces 5 volts from the 2.4 volt battery voltage. This 5 volt supply is

Table 1: The robot Ants were designed to emulate their natural counterparts as
much as possible. This table shows how the functions of the robotic ants
compare to the analogous functions of natural ants.

Function Real Ant Robot

Locomotion Legs Treads
Communication Secretions, Touch IR Receivers, IR Beacon, Tag

LED

Finding Food Chemical Senses, Food Sensors, Bump Sensors
Sense Hairs, Eyes

Navigation Eyes, Antenna, Leg Bump Sensors, Trail finder
(Short Range) Senses
Navigation Scent Trails, Sun, Light Sensors, Compass, Trail
(Long Range) Eyes finder
Attack Mandibles, Stinger Tag LED

Food Transport Mandibles, Crop Mandible, Mandible sensors
Taste Antenna, Taste Mandible sensors, Food Sensors

sensors

Reproduction Reproductive organs Not modeled
Nest Building Mandibles, Legs Not modeled
Caring for Everything Not modeled
young/queen

7

used for the microprocessor and the sensors. The driving motors and the

mandible motor run directly off the battery voltage to minimize the load

on the DC-DC converter. Careful attention was given to power

consumption during the design to minimize the battery requirements.

The entire robot prototype pulls 150 mA of current from the 2.4 volt

battery when it is not moving and 230 mA when it is. The additional

current goes to the two driving motors, which use 40 mA each during

normal forward motion. This level of power consumption gives the robots

approximately 20 minutes of running time between charges.

Microprocessor:

The Ants are controlled by a Motorola 68HCll1E9 microcontroller.

This chip has a CPU, 512 bytes ot

EEPROM (Electrically Erasable

Programmable Read Only Memory),

256 bytes of RAM, and many input

and output ports all incorporated

into a very small package. 512 Bytes

of EEPROM is not enough for

complex software, so there is also an

external XiCor 6875 memory chip

that contains 8 kilobytes of
Figure 2: This 1" x 1.25" board contains

EEPROM. This chip uses two of the the microprocessor, the
memory, and eight sensors.

ports of the 681 1 to control it, but it It is also the backbone for the
mechanical structure of the

provides two of its own, so there is robot.

no net loss of input/output

capability. Both of these chips are about one square centimeter in size,

which allows them to placed back to back on a very small daughterboard

then soldered to the main processor board, as shown in Figure 2. The

8

daughterboard was designed to be pin and footprint compatible with

other 6811 processors, so it has the potential of being used in many

other designs. The high level of integration of microprocessor, memory,

and interface circuitry on these two chips allow a complete robot to be

built with a minimal of external electronic components.

The 68HC 1E9 is a member of Motorola's highly successful 6811

series of microcontrollers. It contains an 8-bit processor running at 2

MHz. Its instruction set is rich enough to make programming in

assembly language a viable option, without having that stone-tool and

animal-hide feeling that other processor's instruction sets can give

developers. However, where this chip really shines is in its interface and

interrupt hardware. There are 38 I/O pins, a serial port, 8 analog-to-

digital converter channels, and no less than 21 separate interrupt

vectors. All this support circuitry makes controlling hardware external to

the chip much easier.

The XiCor 6875's 8K of EEPROM memory must contain all the

software that the robots need to operate. The advantages of using this

particular chip is that it interfaces directly to the microprocessor, can be

reprogrammed without having to remove it from the robot, and replaces

the ports it uses for communicating to the 6811. However, 8K is a very

limited amount of programming space. Since the Ants have been

designed to operate in a community, another way to add complexity to

the system is to add more robots, not more code.

9

Ant Sensors
Food Sensors

Bump Sensors/
Food Sensors ,

Tilt Sensor

IR Beacon Emitter

Serial Port .

I N]I I

0 0 io

IR Tag Emitter

IR Detectors

Mandible Position
Sensors

Download
(On under

Port
side)

Light Sensors

Figure 3: The robot's sensors give it information similar to a real ant, except with much less detail.

Sensors

The Ants have many sensors that provide the processor with

information about the world around it. The diagram in Figure 3, along

with the two pictures in Figure 5 and Figure 4, show all of the robot's

sensors.

Bump Sensors

Light Sensors

These let the robot detect obstacles that are in front of

itself, walls, other Ants, food, etc.

These sensors detect ambient light levels. There are

four of them mounted in the front, back, and sides, so

10

. "-112 '14

t
RP ll

the robot can tell which direction the light is strongest
or weakest.

IR Beacon

Tag Emitter

IR Receivers

Food Sensors

This is an IR (Infrared) transmitter that transmits the
"mood" the Ant is in twice a second. The mood is
what the robot is doing at the time, looking for food,

being angry, carrying food, etc. Other Ants in close
proximity, about 6 inches, can receive this signal and

know roughly where the transmitting Ant is and what
mood she is in.

This emits a very low power, short range (about 1
inch) IR signal when the Ant bumps into something.
If the object bumped into is another Ant, that Ant will
receive the IR signal and know that it has been

"tagged". Depending on the program, when an Ant is

tagged it could be killed, get scared and run back
home, or just be "It".

These sensors detect the mood and tag signals. Each
Ant has four of these mounted on the front, back and
sides, so it can get an idea of which direction the
signal is coming from.

The food sensors use conductivity to detect the "food"
used by the robots. Each Ant has five food sensors,

bump sensors, IR receivers, and motor and IR beacon emitter.
light sensors.

11

1-^--�_�11111_ 11.1_....__ _..._ _

one on each jaw of the mandible, one in the middle of
the mandibles, and one built into the circuitry of each

bump sensor.

Tilt Sensor The tilt sensor is a mercury switch that will let the
robot know when it is on a level surface and when it
is not.

Mandible Position Sensors

These are simple contacts attached to the mandible
motor pulley that indicate the position of the

mandibles; open, closed, or indeterminate.

Recharge Connector
This consists of a small feeler on the bottom of the

robot and the bump sensors on the front. It will let

the Ant know when she has bumped into a recharge
port so she can charge up her batteries. This will

allow the Ants to operate for long periods of time
without constant human intervention for battery

changes or charges.

There are two sensors that are still on the drawing board, but

deserve mention here:

Compass

Trail marker

This is a micro-compass that will let the Ant know

what direction it is facing.

This is a small pen with disappearing ink mounted on
the back of the robot. The Ant will be able to raise

and lower the pen to leave ink trails. The ink
vanishes when it evaporates, so the trails will
disappear in time. This marker will allow for a more
accurate simulation of real ants, but is too far from
being implemented to think about in the behavior
algorithms now.

12

II

This complement of sensors will give the robotic Ants access to

similar information that a real ant has, but with much less detail. This

information will allow the robot to perform many of the important

functions of a real ant. Reproduction could be simulated by having

robots act like pupae, then after a certain amount of time, emerge and

function as members of the community. I have chosen not to model

reproduction in my current system because I am more interested in the

foraging and the external interactions between Ants. Adding

reproduction would also add many more levels of complexity to an

already complex system. (The first law of robotics: Keep it simple,

stupid.)

While reading the detailed sensor descriptions below, refer to the

pictures in Figure 3, Figure 4 and Figure 5. Technical readers may also

wish to refer to the schematic in Appendix A.

Bump Sensors

There are two bump sensors on each Ant. They are similar in

function to the whiskers on

mammals. These are very

simple sensors, made with

just two wires, as shown in

Figure 6. There is a long,

flexible wire that goes

through a small loop made

out of stiffer wire, like a

thread going through the eye

ot a needle. Undisturbed,
Figure 6: The long wire does not touch the side of

the loop during normal operation. the long wire, which is
However, when the wire bumps
something, it flexes and contacts the attached to an analog-to-
loop, which signals the processor.

13

digital input port of the 6811, does not touch the loop. The loop is

connected to the 2.4 volt battery with a 100 Q current-limiting resistor.

If the robot runs into something, the long wire flexes and makes contact

with one of the sides of the loop. Since the loop is connected to 2.4 volts,

this same voltage appears at the analog-to-digital input port, so the

processor can tell that there is a solid obstacle to the right or left of the

front of the robot. These sensors are easy to build and are very robust,

only requiring calibration after a major impact to the robot, such as

dropping it on the floor!

Food Sensors

There are five food sensors, two on each "jaw" of the mandibles,

one in the middle of the mandibles, and the other two serving double-

duty as bump sensors. They all work by conductivity. The ground from

the robot's battery is connected to the surface the Ants are running on by

a wiper at the rear of the robot. The surface is covered with aluminum

foil, and the food particles are balled-up pieces of brass foil. Therefore,

the floor is electricly grounded, and since the food is resting on the floor,

it is grounded as well. The two bump sensors are already hooked up to

an analog-to-digital input port of the 6811, so all the processor has to do

is check to see if they are grounded, which means that the sensor has

touched a piece of food. The food sensors in the mandibles are pulled up

to 5 volts by a 4.7 kQ resistor and connected to three general-purpose

digital input pins. They work the same way, when they touch a piece of

food, they are shorted to ground and the processor can detect the

presence of food.

The two food sensors in the left and right jaws of the mandibles

can also detect whether or not the robot has a good grip on a food

particle once she has attempted to pick it up. If the processor can pass a

14

current from the left mandible, through the food, to the right mandible,

that is a sign of a good grip. If the current does not flow, or the food is

still touching the ground, the software will re-open the mandibles and try

to pick the food up again.

Light Sensors

Each Ant has four light sensing photoresistors, one mounted on

each side of the robot. The circuitry that interfaces the sensor to the

processor is very simple. The photoresistor is in series with a 6.8 kQ

resistor, which creates a voltage divider between the 5 volt supply and

ground. As the resistance of the photoresistor changes, the voltage at

the node between the photoresistor and the 6.8 kQ resistor changes too.

This node is connected to one of the analog-to-digital (A/D) converter

ports of the 6811. Accuracy is limited to 5-6 bits because of power

supply fluctuations, but that is enough to get rough light measurements.

Even if the power supply voltage could be held to tighter tolerances, the

sensors manufacturing tolerances are not strict enough to warrant

precise measurements, and the software does not require such precision

anyway. Because manufacturing tolerances on these parts was very bad,

four photoresistors had to be matched to each other before they were

soldered down to the robot. This matching ensured that all four sides

would respond to light similarly.

Tilt Sensor

There is one tilt sensor on each Ant. It is simply a small mercury

switch that closes a contact when the robot is level. When the switch is

open, a 4.7 kQ pull-up resistor raises the voltage at the input to the 6811

to 5 volts. The switch is checked 50 times a second and the data is time

averaged to account for vibrations when the robot is moving.

15

Battery Voltage Sensor

The positive terminal of the 2.4 volt battery is connected to one of

the A/D ports of the 6811. This allows the processor to monitor the

battery voltage, which gives an indication to the amount of battery power

remaining. The software can then adjust the robot's activities

accordingly.

IR Receivers

This is the most complex group of sensors on the Ants, which is

understandable because it is responsible for the communications

between the robots. In order to make the explanation simpler, the

following text describes the process behind just one receiver, since all

four of them operate in the same manner. The IR receiver has a small

circuit built-in to detect a 38 kHz pulse burst that lasts for 600 Rs. The

circuit pulls its output low for about 800 us when it detects such a burst.

The processor is interrupted by an internal timer every 800 s,

regardless of what the receiver is doing. During this interrupt (the IR

IR transmission for the data 1010:
IR Sensor
Output 8 0W ,00u As

1 1 1 0 1 10 1 0 1 1 0 1 0 1 1 1

Processor Data/

The 6811 checks the sensors every 800 pls.
This IR stream gets captured as: 1101101011010111,
which is decoded as 1010 by the receive routine.

Errors can occour when the receiver falls out
of syncronization with the transmitter, when
noise gives a false signal, or when a pulse
goes undetected.

Transmission with detectable errors:

LLF LWI
Error Error

(Space Too Long) (Pulse too long)

Transmission with undetectable errors:

1 0 0 1
This pulse got shifted to the left and
chanaed the data from 1010 to 1001.

Figure 7: The IR transmission protocol can transmit a 4-bit message over a range of six
inches. Each Ant has receivers mounted on all four sides, which will enable the
receiving robot to determine the direction of the transmitting robot. This limited
bandwidth is adequate, as the robots will not have much to say. The
communications will consist only of their present mood: hungry, tired, angry, etc.

16

Y

interrupt) the 6811 reads the receiver output. This bit of data is shifted

into a 16-bit IR register, so the software has a record of the last 16 bits

received by each sensor. When the last four bits of the 16-bit data are

"0111", that means that the IR detector received a pulse 2400 gs ago and

nothing since. This could signal the end of a nibble of transmitted data.

When this happens, the program attempts to convert the stored 16-bit

data into a 4-bit nibble. This process is graphically illustrated in Figure

7.

The data format calls for one start pulse, then four more pulses

separated by spaces. An 800 gs space signifies a zero, while a 1600 gs

space is a one. A detectable error occurs if there are any spaces longer

that 1600 ps or any two pulses right next to each other. The conversion

process will stop if the routine finds any invalid data, which provides

some error detection. If the conversion is successful, the 4-bit data is

stored in one of four receive data registers and the receive data timer for

that register is started. Having four registers per side allows the robot to

store received data for four different robots. Each of the four registers

had a data timer associated with it. When the timer times out, the data

register is cleared. This gives the higher-level software up to date data all

the time, but does not require action as soon as the data is decoded,

which makes the programmer's life easier. The received data represents

the moods of surrounding Ants.

Under ideal conditions, each Ant should be able to receive and

decode data from four robots on each side, for a total of sixteen robots

around it simultaneously. In the real world, there are many sources for

possible errors; IR noise in the environment, power supply glitches,

robots moving out of range, or framing errors, just to name a few. When

there are many Ants in close proximity to each other, there is also the

problem of more than one transmitting at the same time. The

17

transmitters have a range of only about 6 inches, which was chosen to

limit the amount of extra IR noise in the environment. With all this going

on, the robots manage to receive and decode correct data about 50% of

the time, which sounds much worse than it actually is. Each robot

transmits their mood twice a second, so even if the robots miss half of

the transmissions, they still get a mood from the surrounding robots

about once a second, which is enough for the software work with.

Future software will incorporate more sophisticated timing and decoding

routines, which should improve communications dramatically.

Mandible Position Sensors

There are two mandible position sensors. One responds when the

mandibles are open, the other when they are closed. If neither sensor is

active, the mandibles are in an undefined state somewhere in between.

Both sensors are simple contact switches that get grounded by a contact

on the mandible motor pulley. By bending the wire that makes the

contact, the position of the mandibles when they are open and closed can

be adjusted.

Motors

Driving Motors

There are two driving motors on an Ant, one for each side of the

robot. The processor controls the motors with Motorola 1710 motor

controller chips and uses a pulse width modulation (PWM) control

routine to produce four different speeds: real slow, slow, fast and turbo.

18

Each motor drives a small gearbox,

which turns the wheel. Figure 8 shows a

picture of an Ant gearbox. The

components of the drive system are an

excellent example of one of the biggest

problems associated with microrobotics:

finding parts. The motors are vibration

motors from the silent alarms of broken

beepers. The gears come from Futaba
Figure 8: The gearboxes are

servo motors, the wheels and treads come made by soldering
small axles into

from Stock Drive Products, the axles come printed circuit boards.printed circuit boards.
Each Ant has three

from Small Parts Inc. and the plastic gearboxes, two forgearboxes, two for

retainers are made by hand. In order to driving motors, and
one to actuate the

build microrobots, one has to find sources mandibles.

of all these small parts, which can be literally anywhere: Motorola

catalogs, fabric outlets, or even toy stores! (My personal favorite.)

The gear box construction is where using the printed circuit

boards for structural elements really pays off. The gears need to be

within 0.002" of their correct spacing in order to mesh properly. The

tolerances on the circuit boards are within 0.001", so all the builder has

to do to ensure proper mesh is to make sure the axles are mounted

perpendicularly to the PC board.

The motors produce a considerable amount of power for their size.

The stall torque with a 59:1 ratio gearbox is about 1.75 oz-in. Since the

wheels have a 1/4 inch radius, the robot produces almost ten ounces of

pulling power (2 motors x 0.4 oz-in / 0.5 in), which is enough to propel it

over the roughest of terrain, even carpet. If the treads could get a grip on

a wall, the robots could crawl right up it, as they only weigh 1.3 oz. The

19

Approach Grip Lift
Figure 9: The mandibles in action.

gear ratio does not sacrifice forward speed, either. The robot cruises

along at 0.5 foot/sec. If it was human size, that would be 25 mph!

Mandible Motor

The mandibles allow the robots to manipulate their environment,

allowing them to pick up and carry objects the size of a pea. Figure 9

illustrates the series of motions required for the robot to pick up some

"Ant Food", which is really just a balled-up piece of brass foil wrapped

around a small ball bearing. The ability to modify the environment

opens up many interesting research possibilities.

There are three main parts of the mandible: the flexible frame, the

motor, and the string that connects the two. The motor, gearbox, and

motor controller are the same as in the driving motors, except the

components are mounted at the rear of the robot underneath the battery.

The connecting string is a thin piece of thread from a fabric store

downtown. (The parts hunt continues.)

20

Ill

The most important part of the mandible is the frame, a flexible

piece of printed circuit board material. The patterns for the mandible

sensors are etched onto the material. The flexible PCB material is then

cut and folded to produce two jaws and a central trunk, which can be

seen in Figure 10. The thread attaches at the base of the jaws and is

wrapped around a pulley attached to the mandible motor. When the

pulley turns, the thread pulls on the jaws, causing them to bend towards

each other. When they can no longer move, either from contacting

another object or each other, the main trunk flexes up, lifting whatever

the mandibles are holding. The spring constants of the jaws and trunk

are determined by the shape of the material cut out of the flexible printed

circuit material, and are chosen to ensure the mandibles grip before

lifting. The end result is a grab-and-lift motion from only one motor,

which makes the system smaller, simpler to design, and easier to build.

The motor has approximately five ounces of pulling power, which is more

than enough to lift anything the mandibles can grip.

The food is designed to prevent it from bouncing away when the

robot contacts it. It is made out of balled-up 0.001" thick brass foil with

a small ball bearing placed off-center inside the foil ball. Brass was

Figure 10:The flexible frame for the m
gripping the object. The sti
This design produces a grab-and-lift motion with just one actuator.

21

Grip Motion I

11-7

chosen because of it's point conductivity characteristics. The points of

contact between the playing surface and the foil and the food sensor and

the foil are very small, and brass foil worked better that aluminum foil

and was lighter that a solid steel ball. The off-center ball bearing inside

the food gives it a "weebelo effect"; the food always wants to orient itself

so that the ball bearing is as close to the ground as possible. This makes

it harder to roll, and less likely to escape the jaws of an approaching Ant.

Miscellaneous Hardware

Mood Lights
There are three LEDs mounted on the top of the robot: red, yellow,

and green. Each LED has three modes: on, off, and flashing. The

software changes the state of these indicators depending on what the

robot is doing at the time. This enables the researcher to tell at a glance

what mood the Ant is in and what she should be doing. The present

light pattern is stored in memory and the lights are updated twice a

second by the operating system.

Serial Port
Each Ant has two serial ports. There is a small serial connector

that is located at the back left side of the robot. This lets the robot run

under remote control or transmit data to a computer for debugging.

There is also a serial connector on the bottom of the robot, in the form of

four plates. These plates are connected to the pins the processor uses

for programming the 8K of EEPROM. When the robot is placed on a

matching programming base, the plates contact springs on the

programming base and the robot can be reprogrammed. This allows for

22

the quick programming of many robots without having to plug and

unplug connectors.

Future Sensors

Compass
The compass will allow the Ants to know which direction they are

heading. There are many small hall-effect sensors available on the

market, so designing a micro compass is a feasible possibility. There is

even a watch that has a digital compass built in, so all the intrepid parts-

hunter has to do is buy several of these watches to get a complete set of

hall-effect sensors and the associated decoding circuitry, all in a pre-

fabricated, miniature package!

Since the Ants will be operating in a controlled environment, it

would also be possible to cheat and create an artificial magnetic field

many times stronger than the earth's magnetic field. This way, we would

not have to worry about detecting the small magnetic field of the earth,

and it would save us from the magnetic interference that is present in

most labs. Making a strong field that covers a large area is a daunting

task, so instead, we would make a grid of magnetic fields. That way the

robots would not only get intermittent heading information, they would

also have an idea of where they were in the playing field by counting how

many grid lines they crossed. This pseudo-compass would be composed

of two hall-effect sensors connected to analog-to-digital channels of the

6811. Hall-effect sensors detect the strength of magnetic fields

perpendicular to the device, so with one, the robot will be able to detect

the sine of its angle relative to the direction of the magnetic field. With

another sensor mounted perpendicularly to the first, the sine and cosine

23

can be determined. With this information, the processor can compute

the heading of the robot relative to the applied magnetic field.

Trail Marker

The trail marker is the last major sense that occurs in natural ants

that is not emulated in the robots. Real ants are able to leave scent trails

to lead their nestmates to food sources and other places of interest.

When a forager finds a large food source, she drags the tip of her

abdomen on the ground on the way back to the nest, excreting a

chemical that other ants can smell. When she gets back to the nest,

other workers can follow the trail back to the food. This ability to lay

trails and recruit other workers makes ants more effective at efficiently

exploiting the resources they need to survive.

This sensor is still in the pre-design phase, but the main idea

being considered involves using disappearing ink to mark the trail and

line sensors mounted on the underside of the robot to find the trail.

Disappearing ink is visible when wet, but disappears as it dries. The

marker would be actuated with the mandible motor, so when the

mandible was pulled up further than normal, the marker would contact

the ground. This would leave a trail of ink wherever the Ant went. If the

ground is white and the ink is some dark color, the sensor required to

have other Ants find the trail is an optical emitter-reflector mounted on

the underside of the robot. A strong reflection indicates that the robot is

over the white background. When the reflection is weak, the reflector is

directly over a dark trail. With two sensors, one at the front left and one

at the front right, the robot can align the trail in between the two, so that

both are getting strong reflections. When the robot deviates from the

course of the trail, one of the sensors will get blocked, and the robot can

change her course to align with the trail again. This scheme also has the

24

advantage of leaving trails would also be visible to people. However,

designing a small, articulated pen will be a serious engineering

challenge.

25

Chapter III: Construction

3-D Circuit Boards

The Ants are built using an innovative three-dimensional printed

circuit board construction technique. Miniature circuit boards are

designed so that they can be soldered together to make structural as well

as electrical connections, as shown in Figure 12. Each Ant requires the

twelve circuit boards shown in Figure 11, populated with over 150

components. The boards are designed using Douglas CAD on a

Macintosh, which allows incremental design changes to be made easily to

existing layouts. When the layout is completed, there are two ways to

produce the boards, machining them in the lab or sending them out to

be manufactured.

For the prototypes, the boards were made in the lab with a T-Tech

computer-controlled PC board milling machine. With careful operation

and an abundance of patience, the T-Tech machine is capable of

producing small, precise boards quickly. The machine works by milling

Figure 1 l:Each Ant is constructed from 12 The gearbox boards are the twc
miniature circuit boards, which vertical boards with three large
make the electrical connections holes drilled through. This
as well as the mechanical integrated manufacturin~
structure. technique makes the Ants

possible.

26

I

F

away material from the surface of copper-clad printed circuit board (PC

board) in the negative of the desired pattern, "isolating" traces. Two

passes are needed, one rough pass with 0.020" isolations to protect

against shorts and a fine 0.010" pass to isolate the areas in fine detail.

Spacing tolerances can be held to within 0.001" and 5 mil traces are

possible, although we use 10 mil traces and spaces to facilitate ease of

manufacture. The machine also drills holes and cuts the board out,

producing a complete PC board in the lab in a small fraction of the time

and cost required to get the job done commercially. The boards for the

last prototype were made in about six hours.

Once the design is finalized, the use of this PC board construction

technique presents a unique opportunity for easy production, since the

exact same design can be sent to a commercial PC board fabrication

company. For the current crop of Ants, the cost of boards was

approximately $600, which was enough for 50 robots. This works out to

a price per robot of $12, which is by far the cheapest and easiest way to

built a large number of small robots.

The Parts Hunt Continues...

Once most of the bugs were worked out of the design, the next six

months were spent looking for, ordering, confirming, waiting for, re-

ordering, re-confirming, and re-waiting for parts. Most of the time this

process goes without many glitches, but sometimes you get truly

extraordinary events. For example, the 8k memory chips were ordered in

September, but it took the distributor six months to deliver on devices

with a 6 week lead time! The pinion gears for the motors are an even an

more impressive epic of parts-hunting. Attempts to order them from the

manufacturer or find them elsewhere proved miserably unsuccessful, so

27

an ex-visiting scientist bought $1100 worth of them in Japan and mailed

them to us in November. We're still waiting for that package...

Although that package never came, other parts were flowing in

from all over the country. Everything but the pinions. After many more

calls, we found an executive with enough clout to fax Japan directly and

get the parts for us. The price? 25t per pinion, so all those months of

work and wait amounted to $17.50! After all the ordering and waiting,

the grand total came to just over $6000, which is enough parts for

almost 30 Ants, but only twenty will be built, giving a cost per ant of

about $300.

Ant Day!

The ultimate plan called for 21 robots, which would make the Ant

Farm the largest robotic community ever. One person alone cannot build

21 robots, so that spurred the invention of a new holiday, Ant Day. For a

free lunch, students were coaxed into helping to build the robots. The

first shift started at 8:00 am and went until 12. Then the second shift

started, which was planned to end at 5, but went on until 10. That still

did not get all the robots built, so we did the same thing again the next

weekend. At the end of the second Ant Day, close to 30 people had put

in over 200 hours of work. An amazing amount of progress was made,

and the only tasks remaining were final assembly and testing.

There were two important lessons learned during these

construction marathons. The first verified Flynn's Law of time

management. It states: "Anything will take three times as long as you

think it will." In empirical form;

Tactual = 3. Tplanned

This holds true even if you multiply your original estimates by

three before you tell anybody, it still takes three times as long. Initially,

28

III

there was only going to be one Ant Day, but in the end it looked like

three would have been the correct number, which is exactly what Flynn's

law predicted.

The other important lessons were in production management and

task scheduling. Most of the production went fine, but on two occasions

where the critical path and bottleneck was not spotted in time. This

really threw a wrench in the works, but luckily both of the times it

happened it was already late in the evening and close to quitting time.

These are both very valuable skills and crucial to the successful

management of any project.

After all the dust had settled, there were six new robots, Anita,

Sandra, Kisha, Tracie, Niqi, and Hope. The robots are named after

women, since all worker ants are female. Six is a little shy of the overly-

optimistic 21 robot goal, but it is enough to take the first steps towards

building a robotic community.

29

IIll

Chapter IV: Software

Subsumption Architechure Program Example

Figure 13:The Ants are programmed with a variant of Subsumption Architecture. The
outputs from behaviors higher on the diagram can override, or subsume, the
outputs from the lower behaviors.

Subsumption Architecture

The Ants are programmed with a subset of Brooks' Subsumption

Architecture implemented in 6811 assembly language. [1] A program for

the Ants would consist of a group of behaviors, arranged in a hierarchy

as shown in Figure 13. A behavior is a small piece of code that acts like

a finite state machine. The behavior monitors the sensors, and outputs

a signal whenever a particular input condition is met. For example, the

MOVE-FROM-BUMPS behavior outputs motor commands when the bump

sensors detect an object in the robots path. The commands from this

behavior are designed to move the robot away from obstacles. Outputs

from behaviors higher on the hierarchy override, or subsume, outputs

from less important behaviors. This is an effective method of providing

30

the robot with a response for every possible sensory input, without

having to explicitly program for every condition. Summing the responses

of many behaviors is a much easier task that looking at all of the sensory

inputs and then trying to decide what to do. As a result, the robots can

to exhibit surprisingly complex actions with a very small amount of

software.

Behaviors have access to timers and shared memory registers. For

example, in the case of MOVE-FROM-BUMPS the output might be: "move

backwards-right for 1.5 seconds." Shared memory registers let the

behaviors communicate with each other. All the behaviors are

cooperatively multitasked, so from the programmer's perspective, they

can be thought of as running simultaneously. The behaviors from the

example in Figure 13 are basic and are used extensively in many more

complex programs, so they warrant further discussion.

MOVE - FORWARD

This behavior simply makes the Ant move forward.

MOVE-FROM-TILT

When the tilt sensor is activated, this routine backs the

robot up until it is on level ground again. Then it turns 180 °

and moves forward a little bit.

MOVE-TO-PHOTOS

This routine compares all the light sensors to their average

value and moves the Ant towards the one with the greatest

difference, which is the direction with the most light.

MOVE-TO- IR

This routine looks to see if any of the IR data registers

contain data. If so, the robot heads in that direction.

MOVE-FROM-BUMPS

31

This moves the robot away from an activated bump sensor.

If the robot has been bumping into several things in the past

few seconds, this routine slows the motors down and reads

the sensors continuously to make navigation out of tight

spaces possible.

MOVE -WITH-JOYSTICK

This behavior monitors the serial port to see if there is a

joystick plugged in. This allows the operator to move the

robot around and pick up things with the mandibles, which

is lots of fun for kids of all ages!

This implementation of subsumption on the Ants is not as flexible

as the original, as it only allows for the behaviors to be arranged in a

simple hierarchy. To augment the flexibility of the software, each

program can have many different hierarchies, or moods. The moods can

be changed from any behavior, but the software is more structured if

there are special mood changing behaviors that do nothing else but

monitor the sensors and the state of the robot and select the appropriate

mood. This extra degree of programming freedom allows for fairly

complex software to be encoded onto the robots, while still keeping the

use of memory to a minimum. The most complex software to date

contained nine moods and over 30 behaviors, yet only occupied about 1K

of memory space.

Operating System

All these behaviors run on top of the Ant operating system. The

operating system consists of four main parts, the subsumption loop, the

low-level subroutines, the timer interrupt handler, and the IR interrupt

handler. The subsumption loop cooperatively multitasks the behaviors,

32

Ill

which allows the programmer to model them as all processing

information simultaneously. Although cooperative multitasking is easy

to implement, the operating system is dependent on well-behaved

behaviors in order to switch tasks and prevent crashes. The low-level

routines provide support for the software, including the interface with

the sensors and actuators. The timer interrupt occurs 50 times a

second, and runs the PWM routine that controls the driving motors.

Every 25 timer interrupts, additional code, called the slow-timer-

routine is run. This code updates the mood lights and decrements the

counters that the operating system uses to time various functions. Every

800 gs the processor checks the IR receivers. This piece of code is called

the IR interrupt handler and was discussed in detail in the section on the

IR receivers on page 16. The operating system has been heavily

optimized for space and currently occupies less than 2K of memory.

Example Antware

The program given in Figure 13 is very simple, and does not

demonstrate of all the features of Antware. Tag is a better example, and

illustrates the basic process of getting the Ants to do something useful,

or at least entertaining. The code fragment below is the section where

the behavior hierarchy and moods are defined. The full printout can be

found in Appendix B.

33

startup-mood
not-it-mood
(!8 no-signal)
(!16 move-forward-slowly)
(!16 move-from-it)
(!16 move-from-tagged-ant)
(!16 move-from-bumps)
(!16 did-I-get-tagged?)
(!16 am-I-tilted?)
(!16 end)

it-mood
(!8 it-tag-signal)
(!16 move-forward-turbo)
(!16 move-to-not-it)
(!16 did-I-tag-somebody?)
(!16 move-from-bumps)
(!16 xmit-tag-if-bumping)
(!16 am-I-tilted?)
(!16 end)

flashing-green-light)
dont-subsume)
dont-subsume)
dont-subsume)
all-lights)
dont-subsume)

(!8 flashing-red-light)
(!8 dont-subsume)
(!8 dont-subsume)
(!8 dont-subsume)
(!8 red-light)
(!8 dont-subsume)

(!8
(!8
(!8
(!8
(!8
(!8

(!8
(!8
(!8
(!8
(!8
(!8

Tag has two moods which are labeled it-mood and not-it-mood,

which are in bold for readability. The label startup-mood tells the

operating system which mood to use when the robot is first turned on.

The first byte following the mood label is the tag signal. This tells the

operating system what IR signal to transmit from the tag emitter when

the Ant bumps into something. The not-it-mood transmits no-signal

when the robot bumps an object, while the it-mood transmits the it-tag-

signal. All IR signals are printed here in italics, also for readability.

The list following the tag signal is the structure of the behavior

hierarchy. Each entry has three items, the behavior name, the mood

light color, and the IR beacon signal. If a particular behavior is active, it

can override the mood light color and IR beacon signal of the lower

behaviors, or leave them intact with the item dont-subsume. For

example, the move-forward-slowly behavior flashes the green light.

But if the robot gets tagged, the did-I-get-tagged? behavior overrides

the lower behavior's outputs and turns on all the lights. The IR beacon

signal works in the same fashion.

34

not-it-signal)
don t-subsume)
dont-subsume)
dont-subsume)
got-tagged-signal)
don t-subsume)

it-signal)
don t-subsume)
dont-subsume)
don t -subsume)
don t-subsume)
dont-subsume)

Unlike the diagram in Figure 13 on page 30, the behaviors in the

real software are arranged with the least important at the top. So for the

not-it-mood, the robot will move-forward-slowly, until an output

from one of the more important behaviors subsumes that output. For

example, if the robot detects a signal from the Ant that is "It", the move-

from-it behavior directs the robot to a safer area of the game field. The

other behaviors work in the similar manner, doing more or less what

their names imply.

There are two mood-altering behaviors, am-I-tilted?, and did-

I-get-tagged?. The first of these, am-I-tilted?, monitors the tilt

sensor. If a tilt condition is detected, the robot switches moods. This

allows the researcher to decide which robot will be "It" and to correct for

a unsuccessful tag, which could result in two "It" robots. The second,

did-I-get-tagged?, monitors the IR receivers for the tag-signal. If that

is received, then this robot just got tagged by the Ant that is "It". The

behavior then becomes active and stuns the robot for several seconds so

the tagger can make her getaway.

Although simple, this software environment allows for systems

with many inter-robot interactions to be programmed easily and

efficiently. Whether or not it will stand up to the challenge of

programming a full-blown community remains to be seen.

35

Ill

Chapter V. Community

Simple Communication

The single most important attribute of any community is the ability

of its members to communicate with each other. Communication does

not need to be as complex as human language. Ants have survived for

150 million years using very simple communication, mostly by scent and

touch. In order for the robot Ants to form any type of community, their

ability to communicate in real-world situations needed to be tested and

debugged with simple multiple robot experiments.

The first of these tests was a game of Follow the Leader. One Ant

is the leader, and it transmits leader-signal from its IR beacon. Another

Ant is the first follower, and it looks for the leader-signal on its IR

receivers. When the follower receives that signal, she heads in the

direction of the leader and transmits the first-follower-signal from her IR

beacon. A third Ant is the second follower. The software for this robot is

the same as for the first follower, except it looks for the first-follower-

signal and transmits second-follow-signal. Ideally, this software would

produce a line of robots moving around their environment. In reality,

you get a bunch of robots bumping into each other and becoming

confused when errors occur in the IR transmissions. This may seem like

a failure, but the second half of the Natural Design idea is that nature is

not perfect. In this case, real ants do not follow scents perfectly and they

bump into each other all the time. Even if these robots could play a

perfect game of Follow the Leader, that would not be a predictor on

whether or not they would be good ants.

Follow the Leader exercises the IR beacon transmitter and the IR

receivers, but the tag emitter is not used. The best way to test the tag

36

emitter is to program the robots to play a game of Tag. One Ant would be

"It" and the others would be "Not it". The "It" Ant transmits it-signal from

its IR beacon emitter, while the "Not it" Ants transmit not-it-signal.

Whenever the Ant that is "It" detects a not-it-signal, it heads in that

direction. When the "It" robot bumps into anything, it will transmit tag-

signal through the tag emitter. If the obstacle is another robot, the robot

will receive the tag-signal in one of its IR receivers, and change its mood

to "It", which causes the IR beacon to transmit it-signal. When the

tagging robot receives it-signal in her IR receivers, she will change her

mood to "Not it" and run away. The initial tests with this software

illuminated the need for more elaborate IR signal decoding routines.

With the updated software, the robots were able to tag each other about

50% of the times they bumped into each other. This poor performance

can probably be attributed to the type of emitter that was chosen to be

the tag emitter. The current tag emitter transmits a narrow beam, which

can miss the IR receivers at close range. A wide-beam emitter would fix

that problem. Once a robot is tagged, they do a pretty good job of

transferring the "itness" from one to the other, which is successful about

75% of the time. Future IR decoding software should increase this

percentage.

Future Ant Games

Once the robots are finding and tagging each other with reasonable

proficiency, then the next step is for them to interact with each other to

reach a common goal, a process commonly known as cooperation. When

Tag is extended to include cooperation it becomes a new game, Manhunt.

In Manhunt, the robots are divided up into two teams. The goal is to tag

all the members of the opposing team. Each time a robot gets tagged,

she becomes a member of her tagger's team. Although this software is

37

not yet implemented, it would allow different strategies and levels of

inter-team cooperation to be tested against each other to see which

works better. Manhunt could also be extended and used to explore ideas

about predator-prey relations, an area with a developed theoretical

background.

Taking Manhunt one step further leads you to Capture the Flag,

which is also on the software drawing board. The goal in this game is to

capture the opposing team's "Flag", which is a piece of ant food. The

rules about tagging could be the same as in Manhunt, with tagged Ants

switching sides. Traditionally, the rules of Capture the Flag call for a

tagged player to be sent to "Jail", but they can be released at any time by

being tagged by a member of their own team. Another option is to have

the robots become stunned for a short period of time. When the flag is

found, the attacking Ants need to get the flag back to their base, while

the defending Ants need to try and stop them. This would be a very

sophisticated game, with many variations to explore and even more bugs

to be worked out!

The Beginnings of an Ant Colony

The ultimate goal is to enable the robots to act like real ants. Of

the many things ants do, foraging is arguably the best starting point for a

robotic community. First of all, most natural ants forage above ground,

so their activities can be readily monitored and recorded. Second, there

are many uses for robots that can forage as a community. Right now,

the Department of Defense is very interested in small robots that can

collect unexploded cluster bomblets. A group of robots that can forage

together like Ants might be the way to accomplish this.

The main feature of ant foraging that makes it so successful is that

they help each other all the time. When a worker ant finds a new food

38

Ill

Figure 1 4:When the Ant in the center Figure 1 5:And they will all come to ind
touches the food, she will signal some food too. Cooperation in
to her sisters... action!

source that she cannot carry back to the nest, she will lay a scent trail

from the food to the nest, so her nestmates can locate the resource

quickly and efficiently.

In order to experiment with foraging software with the robot Ants,

a larger ant farm had to be constructed. Previous experiments were

conducted in a small 3' x 3' playing area. However, to have six robots

moving as fast as the Ants move and not bumping into each other and

the walls constantly, a larger 4' x 8' arena was constructed. Natural ants

forage over amazingly large areas compared to their body size. An

analogous area for cubic-inch robots would take up most of the 9th floor

of the Artificial Intelligence Lab!

Cooperation among robot ants is accomplished using the IR

transmitters. When a robot finds food, she stops and transmits I-found-

food through her IR beacon emitter. Other robots in the vicinity that

detect this signal head towards her, transmitting I-see-a-robot-with-food

from their beacon emitters. Any robot that detects this secondary signal

heads towards it until they receive the primary signal, then they head

towards the first robot. In this manner, many robots can be vectored

towards a large food source quickly, as can be seen in Figure 14 and

Figure 15.

39

Ants in nature have evolved a bewildering variety of foraging

techniques. The three that have been tried with the robot Ants so far are

random foraging, swarm foraging, and radial foraging. The garden

variety ants that can be found in most areas usually practice some

variant of random foraging. The worker leaves the nest and heads off in

some random direction. During the course of the expedition, the worker

moves randomly until she finds a food source or gets tired. Random

foraging with robots starts with all the Ants on one side of the ant farm

and the food randomly distributed in the middle. The robots then move

around randomly bouncing off of walls and each other. Whenever they

bump into a piece of food, they stop and transmit I-found-food from their

IR beacons. Experiments were conducted to see whether or not

cooperation had an effect on the performance of the group. Performance

was measured by how long it took for the robots to find all the particles

of food. After several trials, it was clear that randomly bouncing off of

the walls and not communicating was just as effective as cooperative

communication.

Driver ants in Africa use a very different technique. They live in

colonies of up to 20 million workers. When they forage, they leave their

nest and head out along trails laid down by scouts. When they get away

from the nest, they start to spread out, catching anything and everything

in their path. They have been known to kill tethered horses, human

infants, and have even been used to execute criminals! The robots are

not nearly that fearsome, but they can still try and swarm. They were

programmed to head towards light and then heads towards each other.

They way, the group would all stay together and head in a similar

direction. In reality, they would just bunch up and get in each other's

way. This idea still needs more work, it is not very effective in its present

state.

40

III

Desert ants use yet another kind of foraging pattern. Workers

brave 140° mid-day heat to collect other arthropods that have dissected

in those temperatures. Each forager picks her own individual direction

and then she heads out, taking navigational cues from the sun.

However, these ants do not cooperate. If they cannot carry it back by

themselves, they just leave it there. On the robots, this type of foraging

was implemented with cooperation. Each Ant would pick a direction at

random, then start foraging. If they found food, they would turn and

head in the opposite direction while transmitting the way they were

heading when they found food. Other robots who received this

transmission would head in the communicated direction. After several

seconds of transmitting the position of food to their nestmates, they

would then turn around and look for more food in the same direction.

The ant farm was placed near a window in the lab, so that light from the

sun would illuminate the playing area. The software assumed the sun to

be in the east, and the robots used their four light sensors to navigate

around the environment. The ability of the robots to head in the correct

direction was surprisingly good, and the IR transmissions proved

effective. However, these talents were balanced by their complete

inability to stay away from the walls of the ant farm. They would pick a

direction to forage in, run into a wall, and refuse to leave! The main

cause of this was the lack of traction of the plastic treads, which can be

corrected with rubber compounds.

Overall, the robots work reasonably well, but there are still some

minor bugs to work out in the hardware. The software is far behind the

hardware and has a lot room for improvement.

41

Chapter VI: The Next Step

Looking back

The integrated electromechanical three-dimensional PC board

construction technique has proven to be cheap, easy, and reliable, which

makes fabricating a large number of microrobots a realistic option. The

hardware works reasonably well, with only a few problems remaining to

be solved. The robots run very reliably, even after dropping them! This

is very important for a successful community. With robots that break

down often, much of your time and energy is spent just keeping a

population ready for experimentation.

Solving Problems

There are a few problems with the hardware and several

enhancements that would augment the abilities of the robots. First of

all, the robots do not have working mandibles yet. There was just not

enough time during the term to install them on the new robots. We also

need more robots. A population of six robots is a start, but twenty would

allow us to explore complex social interactions. More robots might

provide a whole different level of community. Instead of having

individual Ant interacting with other Ants to form the structure, you

might have sub-groups interacting with other sub-groups. A larger

colony of robots would also require a larger Ant Farm to operate in. The

robots are equipped with tilt sensors and powerful motors, so the terrain

need not be a flat rectangle, but can be a varied and interesting

landscape.

Without question, the robots need more sensors. Their current

long-range navigational capabilities are very limited, as only the light

42

sensors can receive information from further that 6 inches away from the

robot. The compass and trail marker would open up many new

navigational possibilities, in addition to making the robots more

analogous to their natural counterparts.

The goal of building an artificial ant colony raises an important

question. How will you know when you get it right? Maybe just

observing behaviors is enough of a test. If they act like ants, then they

must be working correctly. However, a more rigorous approach to the

definition of community would be desirable. Again, a return to nature

might provide us with a good reference from which to judge our efforts.

Some criteria, like number of food particles gathered, or trip

effectiveness, or colony efficiency, probably are applicable to natural as

well as artificial ants, and could let us know how we measure up to the

systems we are trying to emulate.

Applications

Thinking of applications for microrobots, cooperating or operating

independently, is not difficult. In fact, it is difficult to think of

applications where smaller robots or robots that can work together would

not perform well. Cleaning, spying, foraging though pipes, or even

performing surgery are all potential applications, and the list goes on as

far as the imagination will take it. Maybe twenty years from now, you

will have a colony of microrobots living under your refrigerator. When

you turn the lights off, they will come out and pick up crumbs. Maybe

they will even have little lasers to exterminate at any non-robot life in

your kitchen!

43

Looking Ahead

The ultimate goal is to understand the underlying rules and

structure of a community of simple autonomous agents. One of the best

ways to do this is to continue to learn from the model, nature.

Myrmecology is the branch of entomology involved with the study of ants.

I have completed coursework on entomology at Harvard, and plan to

continue to expand my knowledge in both these areas with independent

reading, and hands-on research with live ants. It is not hard to argue

that the behaviors of ants are some of the best examples for a robotic

community.

The second goal is to push the limits of micro-robotic systems.

The current Ants have 17 sensors, 3 motors, a set of mandibles, and the

ability to communicate with other robots, which is an order of magnitude

more complicated that any other robot its size. This is the kind of

integration that will enable us to get complex, useful behaviors out of

microbots. This is also the kind of integration we would like to have on

the integrated-circuit level, which will be the next step to making robots

smaller.

Using nature as a guide, we hope to combine both of these ideas

into a working community of microbots. With a little luck and a lot of

hard work, maybe the Massachusetts Institute of Technology can be the

home of the world's next guests to the robotic picnic, the Ants.

44

III

References
[1] Rodney A. Brooks, "A Robust Layered Control System for a Mobile
Robot," IEEE Journal of Robotics and Automation, RA-2, pp. 14-23, April,
1986

45

Appendix A: Schematic

46

CU C.

C)

C)

4

i'n
.

,-; f

Cl

" 0

m

a
a: C

a o Ip,I'~~~~~~~~~~~~~~~
{; .O

. ~ Lo

> co+ ~ I I>4 1 1 m+ '

tny-~t~\r~t-~VVI~--~II) T1

U* LI 2~OC)

g X~~~~~~~~~~~E -, >
E fl, . 4--a) i

. +

o
ID
0

O3

C)1 = --
CC) I I >~1c H

I v

2 s - --

- " -++
coM 1

f) +

C v
o

I

I
E4C)

-r

-4
_ _
T

It
'I ,

-1

cJi4

0>7

,

a:

O~~~~ls~~ a
E I(4 r>n 4
) U . I U>

Ia >KCX>~a: ~ a To »

r E_
Or i OQ | til V) > I I

1L I l n | 11 111~~- ~ U)o

U o

-I

0>1i 4j YtllD :R1~[J U) I I

_ =-_ C~f~.,· Y I
+ j

.0
a:

l)

11I

E
IL?

c
-1,eH:

,u

4..

+- -]

a,
CC)

a C C
C3 ki W Ih
, e R' 'E.ID T* -'I M .

a a
+

LI)

1, -., = I
1 J4-

o

B

45
o

o .-

1- e

C, mr

_ Icslr r ca

CC) U) I . I .

In

I-
E

C.)

a.I : I I° k g I-1- 1
I I E D>

D+

+

- I0 4:'

(C) -)O>g
-w-

0

0
IL

I I

U

{L 1} D aQ <:N _ -{D

rm O W X X r _ r a _ r

0r ~ W r _ C <: sr _ O rD

o 0r a l< _ t

:> O cot Z>
2 ° co

U0o (.04. ZC)
<, r on 2 0r

wjr ao rn sO rD-

rr_3 lO N _s _rn

U.

LU

a

(

C

c:

___~~~

a�I3,

· {

-· ·
--- ~l

!, !.lr.

. i ..

mwc~ '

a 111

SZ
.Z
;Z- I EJ4i

_ --· 111111~~~~ -- - -- ----

I ,

I

I

Nu CO (D I
I

+ -

I E
I E

iz
)z

Lz
9Z

z

I
c

m
r Iz

r.T2 tO CO

I
I I r --L

'4 1-1. I ;�r-
3I s 1 1 1 .1 . ! / /

r-7--

a.-

:z_

. . I -O,, X

xn~nns~ns~~I

,,,,,,,,,,,.,,,,,

,,22 I

_

- -il,

I-F- -7

III

Appendix B: Tag

47

���11�1__1___�_____���I_-�__.-I_ -1___ _.__ __�--

III

Ant Farm:Users:james:Ants:Antware Ver 3.0:Tag from Thesis.Lisj/3/95 11:58:25 Page 1

;;; Tag - Ver 3.0
;;; James McLurkin
;;; Copyright, Massachusetts Institute of Technology, 1994

History

7/21/94 James: Created

End history

(def8kant ant

Variable definitions

(basic-ant-variables)
(allocate-data gottaggeddelay 1)
(allocate-data oldtilt 1)
(=c itsignal 1)
(=c notitsignal 3)
(=c ittagsignal 7)
(=c gottaggedsignal 5)

Main Loop

(basic-ant-startup)
(subsumption-loop)

Moods

star
noti

(1
(!

(!
(!
(1

tupmood
tmood
8 nosignal)
16 moveforwardslowly)
16 movefromnotit)
16 movefromit)
16 movefromtaggedant)
16 movefrombumps)
16 didIaettaaced?)

(!16 amItilted?)
(!16 end)

itmood
(!8 ittagsignal)
(!16 moveforwardturbo)
(!16 movetonotit)
(!16 didItagsomebody?)
(!16 movefrombumps)
(!16 xmittagifbumping)
(!16 amItilted?)
(!16 end)

(!8 flashinggreenlight) (!8 notitsignal)
(!8 dontsubsume) (!8 dontsubsume)
(!8 dontsubsume) (!8 dontsubsume)
(!8 dontsubsume) (!8 dontsubsume)
(!8 dontsubsume) (!8 dontsubsume)
(!8 (+ redlight greenlight yellowlight)) (!8 gottaggedsignal Ž

(!8 dontsubsume) (!8 dontsubsume)

(!8 flashingredlight) (!8 itsignal)
(!8 dontsubsume) (!8 dontsubsume)
(!8 dontsubsume) (!8 dontsubsume)
(!8 dontsubsume) (!8 dontsubsume)
(!8 redlight) (!8 dontsubsume)

(!8 dontsubsume) (!8 dontsubsume)

Tag Behaviors

didItagsomebody?
(ldaa (! gottaggedsignal))
(jsr findirsignal)
(beq ciftinosig)
(ldd (! notitmood))
(jsr changemood)
(jsr clearirregs)

ciftinosig
(rts)

'I,

',I; ;
. .

I

Ant Farm:Users:James:Ants:Antware Ver 3.0:Tag from Thesis.Lisr:/3/95 11:58:25 Page 2

didIgettagged?
(ldaa gottaggeddelay)
(beq lookfortagsignal)
(cmpa (! 1))
(bne sitthereaftertag)
(ldd (! itmood))
(jsr changemood)
(jsr clearirregs)
(clr gottaggeddelay)
(rts)

lookfortagsignal
(ldaa (! ittagsignal))
(jsr findirsignal)
(beq didIgettaggeddone)
(ldaa (! 8))
(staa gottaggeddelay)

sitthereaftertag
(ldaa (! mstop))
(jsr subsumemove)

didIgettaggeddone
(rts)

movetonotit
(ldaa (! notitsignal))
(ldy (! findfront-moveforward))
(jsr movetoirsignal)
(rts)

movefromit
(ldaa (! notitsignal))
(ldy (! findbutt-moveforward))
(jsr movetoirsignal)
(rts)

movefromnotit
(ldaa (! notitsignal))
(ldy (! findbutt-moveforward))
(jsr movetoirsignal)
(rts)

movefromtaggedant
(ldaa (! gottaggedsignal))
(ldy (! findbutt-moveforward))
(jsr movetoirsignal)
(rts)

amItilted?
(ldaa tilt)
(beq notilttag)
(ldaa oldtilt)
(bne notilttag)
(ldd mood)
(cpd (! notitmood))
(beq tiltedandnotit)
(ldd (! notitmood))
(bra tiltchangemood)

tiltedandnotit
(ldd (! itmood))

tiltchangemood
(jsr changemood)

notilttag
(ldaa tilt)

I '

·- rrzrr.rr�""~"""���-_��,rrHn�,,*�.i,.� �r�;-r��jr�s;?;i;ir�ir�;s·iaAlk;o�ir; ;i .ii..·.;ri.�,·.. i·�i.i;;ir ··

Ant Farm:Users:James:Ants:Antware Ver 3.0:Tag from Thesis.Lisp/3/95 11:58:25 Page 3

(staa oldtilt)
(rts)

;;; Everything Else

800uscounters
(basic800uscounters)

50hzcounters
(basic50hzcounters)

2hzcounters
(!8 gottaggeddelay) (basic2hzcounters)

(simple-behaviors)
(simple-serial)
(basic-ant-routines)
(interrupt-vectors :start start

:rti 50hzinterrupt
:serial serial-interrupt
:ocmpl ir-interrupt

;(assemble ant t)
(antdload ant)

���"-�--`�----'-�--------------��" �-'�-

111

