

Stupid Robot Tricks: A Behavior-Based Distributed Algorithm
Library for Programming Swarms of Robots

by

James D. McLurkin

M.S., Electrical Engineering
University of California, Berkeley, 1999

S.B., Electrical Engineering

Massachusetts Institute of Technology, 1995

Submitted to the Department of Electrical Engineering and Computer Science in Partial
Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 2004

© 2004 James D. McLurkin, All rights Reserved

The author hereby grants to MIT permission to reproduce

and to distribute publicly paper and electronic
copies of this thesis document in whole or in part.

Signature of
Author...

Department of Electrical Engineering and Computer Science
May 20th, 2004

Certified
by...

Leslie P. Kaelbling
Research Director, Computer Science and Artificial Intelligence Laboratory

Department of Electrical Engineering and Computer Science
Thesis Supervisor

Certified
by...

Dr. David Barrett
Director of Research, iRobot Corporation

Thesis Supervisor

Accepted
by...

Arthur C. Smith
Chairman, Department Committee on Graduate Students

Stupid Robot Tricks: A Behavior-Based Distributed Algorithm
Library for Programming Swarms of Robots

by

James D. McLurkin

Submitted to the Department of Electrical Engineering and Computer Science
 on May 7th, 2004, in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Abstract
As robots become ubiquitous, multiple robots dedicated to a single task will

become commonplace. Groups of robots can solve problems in fundamentally different
ways than individuals while achieving higher levels of performance, but present unique
challenges for programming and coordination. This work presents a set of
communication techniques and a library of behaviors useful for programming large
groups, or swarms, of robots to work together.

The gradient-flood communications algorithms presented are resilient to the
constantly changing network topology of the Swarm. They provide real-time
information that is used to communicate data and to guide robots around the physical
environment. Special attention is paid to ensure orderly removal of messages.

Decomposing swarm actions into individual behaviors is a daunting task.
Complex and subtle local interactions among individuals produce global behaviors,
sometimes unexpectedly so. The behavior library presented provides group behavior
“building blocks” that interact in predictable manner and can be combined to build
complex applications. The underlying distributed algorithms are scaleable, robust, and
self-stabilizing.

The library of behaviors is designed with an eye towards practical applications,
such as exploration, searching, and coordinated motion. All algorithms have been
developed and tested on a swarm of 100 physical robots. Data is presented on algorithm
correctness and efficiency.

 Thesis Supervisor: Leslie P. Kaelbling
 Professor of Computer Science and Engineering, MIT
 Research Director, Computer Science and Artificial Intelligence Lab

 Thesis Supervisor: Dr. David Barrett
 Director of Research, iRobot Corporation

Acknowledgments

“It takes a village to write a thesis”
Ancient African-American Proverb1

(In order of appearance)

iRobot has been a great place to work and grow over the past five years. Thank

you all for the help and support and patience. Dr. Douglas Gage from DARPA, who has
been more than just a program manager. He also shares the dream of "Zillions and
zillions of robots". Mike Ciholas was instrumental in getting the first 12-robot swarm up
and running. David Sotkowitz, my “spiritual programming guide” improved my coding
style tremendously. Jim Frankel, the long-haired engineer responsible for most of the
SwarmBot design, and I are alike in so many ways, it always made coming to work fun.
He has been a great ally and friend over the years. Ed Williams solved all the hard
problems on the robot design. Steve Lacker (the slacker) started us towards production
with an inspired mechanical design. Chi Won pulled more all-nighters than anyone ever
should to put the robot into production. The Swarm Build Day Crew built 100 robots in
6 hours! Jennifer Smith has been the “other half” of the iRobot Swarm project for three
years now, and was responsible for much of the infrastructure the algorithms are built
upon. The UROP Heros, Shuang You, and Yuran Yu, who replied to my 11th hour
requests for help and saved the day.

This work was supported by DARPA IPTO under contracts SPAWAR N66001-
99-C-8513 and SMDC DASG60-02-C-0028.

And finally, Dara Bourne, who has provided support in quantities sufficient to

brace the Hoover Dam. This work would have not had been possible without her.
Thank you Dara.

1 Well, maybe not that ancient…

This document is possible because I have had the fortune to work with a long

string of wonderful advisors. I dedicate this thesis to them

Mr. Eugene Warasilla 1988-1990
"Ya know, that reminds me of a story..."

Thank you for starting me on this journey.

Dr. Anita Flynn 1991-1995
"Make it happen."

Thank you for being able to simultaneously hold the carrot, wield the
prod, and dispense good advice.

Prof. Rodney Brooks 1995-1997
"Fast Cheap and Waaay Out of Control"

Thank you for showing me how crazy people can change the world.

Prof. Kristofer Pister 1997-1999
"Will you quit wasting your time and make a difference out there?!”

Thank you for demonstrating how exceptionally talented engineers solve
problems.

Dr. Polly Pook 1999-2002
"You can call me many things, but don’t call me Ma’am”

Thank you for believing that I could bring the Swarm to reality.

Prof. Leslie Kaelbling 2001-Present
“That’s nice. Where’s the data?”

Thank you for showing me how to act like a scientist.

Contents

Chapter 1. Introduction... 15
1.1 Ants, Bees, and other Related Work.. 16

1.1.1 Related Work... 17
1.2 The SwarmBot.. 19

1.2.1 Sensors.. 19
1.2.2 ISIS Communication System... 20

1.3 SwarmOS.. 21
1.4 Hands-Off Operation: HIVE™ and the Robot Ecology™ 21
1.5 Assumptions, Design Goals, and Conventions... 22

1.5.1 Assumptions... 22
1.5.2 Design Goals... 23
1.5.3 Conventions.. 25

Chapter 2. Neighbors and Communications... 26
2.1 The Swarm Neighbor System... 26

2.1.1 Neighbor Packet Types.. 26
2.1.2 Periodic Neighbor Transmit Cycle... 27
2.1.3 NeighborOps... 29

Chapter 3. Gradient Message Propagation .. 30
3.1 Gradient Propagation... 32

3.1.1 Normal Gradients... 33
3.1.2 Gradients with Lateral Inhibition.. 36

3.2 Gradient Clean-up.. 38
3.2.1 Message Clean-up... 40
3.2.2 Time-stamp Clean-up... 42
3.2.3 Combination Clean-up... 45

3.3 Summary... 45
Chapter 4. The Swarm Behavior Library... 46

4.1 Behavior Operations... 47
4.2 Types of Behaviors ... 48

4.2.1 Functional Behavior Groupings... 48
4.2.2 Metrics.. 50
4.2.3 Experimental Setup.. 50

4.3 Primitive Behaviors.. 51
4.3.1 moveArc ... 51
4.3.2 moveStop and moveForward ... 51
4.3.3 moveByRemoteControl.. 51
4.3.4 bumpMove.. 52

4.4 Pair Behaviors .. 52

4.4.1 orientToRobot.. 52
4.4.2 matchHeadingToRobot.. 53
4.4.3 followRobot .. 55
4.4.4 avoidRobot... 57
4.4.5 orientForOrbit.. 58
4.4.6 orbitRobot .. 60

4.5 Group Behaviors... 62
4.5.1 avoidManyRobots... 62
4.5.2 disperseFromSource.. 64
4.5.3 disperseFromLeaves ... 66
4.5.4 diperseUniformly.. 69
4.5.5 followTheLeader... 74
4.5.6 orbitGroup.. 77
4.5.7 navigateGradient.. 80
4.5.8 clusterOnSource.. 83
4.5.9 clusterIntoGroups... 86
4.5.10 detectEdges .. 89

4.6 Summary... 91
Chapter 5. Applications and Demonstrations... 93

5.1 Surround Object ... 93
5.2 The MegaDemo... 94
5.3 Lemmings.. 95
5.4 The Swarm Choir ... 97
5.5 Directed Dispersion... 98
5.6 Summary..102

Chapter 6. Conclusions and Future Work.. 103
6.1 Limitations...103
6.2 Future Work..104
6.3 Final Remarks..104

Appendices 106
A1. neighborOps Examples ..106
A2. Experimental Data – Robot Path Traces..109

References 123

Figures

Figure 1: The iRobot Swarm has over 100 robots.. 15
Figure 2: Insect communities are superb examples of distributed autonomous systems. 16
Figure 3: This diagram shows the interactions that honey bees use to determine foraging

recruitment.. 17
Figure 4: The iRobot SwarmBot™ is been designed for embodied distributed algorithm

development. ... 19
Figure 5: The iRobot ISIS™ system allows each robot to communicate with its neighbors

and determine their range, bearing, and orientation...................................... 20
Figure 6: The Robot Ecology™ provides resources for autonomous charging and

navigation.. 21
Figure 7: Diagram conventions used in the behavior descriptions................................... 25
Figure 8: A communications gradient is formed as messages are relayed from robot to

robot.. 32
Figure 9: The normal gradient compare function will tessellate the swarm into Voronoi

cells.. 34
Figure 10: Gradient messages are buffered for a short time... 35
Figure 11: Gradient latency data from propagation trials. .. 36
Figure 12: Sources of gradients with lateral inhibition override other sources................ 37
Figure 13: Gradients with lateral inhibition can be used to elect a leader...................... 38
Figure 13: Gradients with lateral inhibition can be used to elect a leader...................... 38
Figure 14: Gradient message clean up is as important as propagation............................ 39
Figure 15: The ideal gradient clean-up function... 39
Figure 16: Clean up messages can remove a gradient in the theoretical minimum time

bound... 40
Figure 18: Time Stamp Cleanup eliminates back-propagation of gradients. 43
Figure 19: Time-stamp cleanup data.. 45
Figure 20: The static function call tree of the Swarm Behavior Library......................... 48
Figure 21: State-of-the-art data collection hardware.. 50
Figure 22: The orientToRobot behavior – diagram... 52
Figure 23: The orientToRobot behavior – experimental resuls..................................... 53
Figure 24: The matchHeadingToRobot behavior when used with the ISIS beacon forms

a compass. ... 54
Figure 25: the matchHeadingToRobot behavior – video images.................................. 54
Figure 26: The matchHeadingToRobot behavior – experimental results..................... 55
Figure 27: The followRobot behavior – experimental results... 56
Figure 28: The avoidRobot behavior – experimental results.. 57
Figure 29: The orientForOrbit behavior - diagram.. 59
Figure 30: The orientForOrbit behavior – experimental results.................................... 60
Figure 31: The orbitRobot behavior - diagram... 60
Figure 32: The orbitRobot behavior – video captures.. 61

Figure 33: The orbitRobot behavior – experimental robot paths................................... 61
Figure 34: The orbitRobot behavior – experimental results... 62
Figure 35: The avoidManyRobots behavior - diagram.. 62
Figure 36: The avoidManyRobots behavior – experimental results 63
Figure 37: The disperseFromSource behavior – diagram.. 64
Figure 38: The disperseFromSource behavior – experimental results........................... 65
Figure 39: The disperseFromSource behavior – video images....................................... 65
Figure 40: The disperseFromLeaves behavior – diagram.. 67
Figure 41: The disperseFromLeaves behavior – experimental results........................... 68
Figure 42: The diperseUniformly behavior - velocity equations.................................... 70
Figure 43: The diperseUniformly behavior – video images.. 71
Figure 44: The diperseUniformly behavior uses an approximation to compute Voronoi

neighbors ... 72
Figure 45: The diperseUniformly behavior - experimental results 73
Figure 46: The diperseUniformly behavior – pictures ... 73
Figure 47: The followTheLeader behavior - diagram... 74
Figure 48: The followTheLeader behavior – video images... 76
Figure 49: The orbitGroup behavior produces the ... 78
Figure 50: The orbitGroup behavior – experimental results.. 80
Figure 51: The navigateGradient behavior - diagram... 81
Figure 52: The navigateGradient behavior – experimental results 82
Figure 53: The navigateGradient behavior – video images ... 82
Figure 54: The navigateGradient behavior – robot traces... 83
Figure 55: The clusterOnSource behavior – video images ... 83
Figure 56: The clusterOnSource behavior – diagram.. 84
Figure 57: the clusterOnSource behavior – robot path traces....................................... 85
Figure 58: The clusterOnSource behavior – path efficiency results............................... 85
Figure 59: The clusterOnSource behavior – packing efficiency results.......................... 86
Figure 60: The clusterIntoGroups behavior – video images.. 88
Figure 61: The clusterIntoGroups behavior – experimental results.............................. 89
Figure 62: The detectEdges behavior – diagram.. 90
Figure 63: The Surround Object Demo – video images.. 93
Figure 64: The MegaDemo Application.. 94
Figure 65: The Lemmings Language lets younger robotisists program the Swarm. 95
Figure 66: The inspiration for the Lemmings demo... 96
Figure 67: A solution program for a lemmings maze. .. 96
Figure 68: The Swarm Choir .. 97
Figure 69: Directed Dispersion frontier robots guide the swarm into unexplored areas.. 99
Figure 70: Directed Dispersion pictures...101
Figure 71: Dispersion efficiencies of five algorithms..101

Tables

Table 1: Gradient Message Struct Public Members (transmitted to neighboring robots)31
Table 2: Gradient Message Struct Private Members (not transmitted to neighboring

robots)... 31
Table 3: The behaviorOutput struct members... 47
Table 4: Follow the leader input parameters.. 74
Table 5: Follow the leader neighbor data byte variables... 74
Table 6: Summary of behavior performance... 91

Stupid Robot Tricks Introduction Page 15

Chapter 1.
Introduction

The most desirable applications for robots are jobs that are dangerous, dirty, or
dull. Many of these jobs lend themselves to being performed by groups of robots
working together rather than by single robots working alone. Some tasks can achieve
efficiency gains as a direct function of the number of robots applied. Other applications
can benefit even more, as radically different techniques can be employed to solve a
problem with ten thousand robots than with ten. As robots become more commonplace,
the shift to multiple-robot systems will become the rule, rather than the exception.
Engineering large multi-robot systems is unachievable without understanding the
complex relationship between individual actions and group behaviors.

Figure 1: The iRobot Swarm is composed of over 100 individual robots that work together to
accomplish group goals.

Stupid Robot Tricks Introduction Page 16

The goal of this work is to develop distributed algorithms for robotic swarms
composed of hundreds of individual robots. Ultimately, we want to be able to write
software for large numbers of robots at the group level. The software development
system would then compile these group programs into behaviors for individual robots to
run. Unfortunately, this top-down approach is a very challenging problem, so we are
approach swarm software design from a bottom-up perspective in this work. By
designing group-behavior building blocks that can be recombined and reused in many
different programs, we will have a swarm programming toolkit that can be used to
construct complex global behaviors.

1.1 Ants, Bees, and other Related Work
Biological inspiration is a common theme in robotics. The eusocial insect

communities of ants, bees, and termites provide a nearly inexhaustible supply of working
algorithms and proven system designs that can be applied to robotic swarms. This work
has been heavily influenced by natural systems, from sensor design to software
development and everything in between.

The hypothesis is that robots designed with sensors, actuators, and
communications that are similar to those of their natural counterparts will also have
similar constraints on how they perceive and interact with the world around them. If
the problems we want our robots to solve are similar to those solved by insects, and they
often are, then algorithms developed for insect survival can be used for inspirations,
design guides, and ultimately even for direct comparisons in performance.

These natural systems produce amazingly complex group behaviors from the
interactions of thousands, and in some cases millions, of individuals. Figure 3 shows a
model of honeybee foraging recruitment. The arrows represent information pathways
between forager bees who work outside the hive, food-storer (worker) bees that work
inside the hive, and other bees in the hive who observe the recruitment dance of the
returning foragers. This information pathway model is very much like a software

Figure 2: Insect communities are superb examples of distributed autonomous systems. The
picture to the left is two leaf cutter ant major workers (Atta sexdens) cooperating to cut through
a twig. On the right is the author’s colony of carpenter ants (Camponotus pennsylvanicus).

Stupid Robot Tricks Introduction Page 17

flowchart. With a
capable swarm of robots,
it would be possible to
model these interactions
and simulate honeybee
foraging behavior. This
could provide a starting
point for software design
on a team of search-and-
rescue robots.

Perhaps even
more importantly, the
differences between
natural and artificial
systems can be used to
learn more about both.
Man-made systems are
easy to modify and can
collect detailed
information about
internal state, but they
need to be built and
programmed before they
can be used. Functional
biological systems already
exist, but they are
difficult to modify and it
is almost impossible to
collect data about their
internal state. The duality of these two systems can lead to interesting collaborative
experiments. For example, a robotic system based on Figure 3 might work with the
removal of an information pathway, or require the addition of a new pathway. This
insight could be used by biologists to reinvestigate their models and plan future
experiments. This cycle of information exchange could lead to breakthroughs in both
fields.

1.1.1 Related Work

Fundamentals
There is a growing literature on distributed algorithms for groups of robots.

Much of the work starts with a behavior-based system [Brooks 1985, 1989], which might
include various high-level arbiters [Balch/Arkin 1999]. Our interest is focused on large-
scale communities with more than ten agents, such as those in [Mataricc 1994] and
[McLurkin 1995]. Some form of interrobot communication is required for distributed
algorithms. Infrared systems such as those in [McLurkin 1995] and in
[Hu/Kelly/Keating/Vinagre 1998] also provide special location information. The radio

Figure 3: This diagram shows the interactions that honey bees
use to determine foraging recruitment [49]. With the addition of
a few semicolons, this could be robot software. This represents
an exciting new area of research, where we can test biological
behavioral algorithms on physical robotic systems

Stupid Robot Tricks Introduction Page 18

system in [Mataricc 1994] provides a global positioning system using stationary beacons
as reference points.

An engineering issue that affects algorithm development is the use of unique IDs
on the members of the group. The set of algorithms that do not require unique IDs is a
proper subset of the total set. Insects do not seem to have global names, but can
discriminate between local neighbors. Some researchers [Balch/Arkin 1999], use globally
unique IDs, while others argue that local IDs are sufficient.

Algorithm Building Blocks
Much work has been done on motion in formation. Some assume a homogeneous

groups of robots, [Balch/Arkin 1999], [Hu/Kelly/Keating/Vinagre 1998], while others
assume a leader robot using a more traditional AI path planning algorithm, such as
[Desai/Kumar/Ostrowski 1999]. If you have a network of stationary agents, you can
“grow” shapes by running programs that make each node change their behaviors [Coore
1999] or even fold origami [Nagpal 2001]. Division of labor is an important part of a
multi-agent community. Some [Balch/Arkin 1999] refer to this as “Functional
Heterogeneity”, emphasizing the point the differences are only in the current behavior of
the agents, the hardware is the same. [Mataricc 1998] showed division of labor by robot
interactions, then [Schneider-Fontan/ Mataricc 1998] with position information. The
biology literature has many examples of division of labor, and computational models of
the process have been proposed by [Bonabeau/ Theraulaz/Schatz/Deneubourg 1999] and
[Bonabeau/Sobkowski/Theraulaz/Deneubourg 1999]. [Seeley 1995] synthesizes years of
work on the communications pathways inside a honeybee colony, and presents
computational models for task allocation. Learning is discussed by
[Hu/Kelly/Keating/Vinagre 1998] and [Mataricc 1998], and planning is discussed by
[Chun/Zheng/Chang 1999], but neither topics are of initial interest to the swarm project.
Storing algorithmic state in the physical world as a computational tool has been
discussed in [Russell 1995] and [Werger/Mataricc 1996]. The former used a chemical
trail, while the latter used the robots themselves as landmarks.

Applications
One of the best tasks for a distributed group of robots is search and mapping.

Distributed maps have been made by [Burgard/ Fox/Moors/Simmons/Thrun 2000] and
[Yamauchi 1998], both with different strategies for expanding the frontier of exploration.
The former explores in the areas of the best rewards, while the later utilizes a “frontier-
based” approach to seek out the boundaries between the explored and the unexplored. A
comparison between random search and coordinated search can be found in [Gage 1993].

Coordinated manipulation of the environment is another useful task. Pushing a
box across a room was explored by [Mataricc 1995] with legged robots and [Parker 1999]
with wheeled robots and her Alliance Architecture for interrobot coordination.
[Kube/Bonabeau 1999] also demonstrate an algorithm using wheeled robots, but offer a
offers a survey of the biological literature on cooperative transport as motivation for the
demonstration. Ant colony optimization has proven to be a useful algorithmic technique,
and [Botee/Bonabeau 1998] have explored improving it by using genetic algorithms for
parameter determination.

Centralized Programming
The ultimate goal it to be able to program distributed systems of many

individuals at the group level. [Brooks 1989] speaks of emergent behaviors from a group
of behaviors running on a single robot. [Mataricc 1994] extends this to multi robot

Stupid Robot Tricks Introduction Page 19

groups, with behaviors interacting across robot boundaries and more complex group
behaviors being constructed from simpler behavior primitives. [Coore 1999], [Abelson et
al. 1999], and [Nagpal 2001] demonstrate impressive programming systems that take
global input, operate in a distributed fashion, and produce global output. The former will
grow an arbitrary two dimensional shape, while the later generates origami! A topic
with little work, save [Gage 1995], is the management and development infrastructure for
a distributed system of physical agents.

1.2 The SwarmBot
The iRobot SwarmBot™2 shown in Figure 4 has been designed from the ground

up for development of distributed algorithms in large swarms. It has a 32-bit RISC
ARM Thumb microprocessor, a suite of sensors, good mobility3, and inter-robot
communication and localization. Each robot is 5” on a side, and the total swarm has
over 100 units.

1.2.1 Sensors

The SwarmBot has a large sensory suite, including bump sensors, light sensors, a
camera, drive-wheel encoders, and the ISIS™ infrared communication and location
system. An optional sensory board has been tested that provides a linear CCD and a
magnetic “food” sensor. All of the algorithms in this work use only the wheel encoders,
the bump sensor, and the ISIS communication system.

2 iRobot, ISIS, SwarmBot, SwarmOS, HIVE, and “Robot Ecology” are trademarks of iRobot, inc.
3 In laboratory environments: indoors, on low-pile carpet.

Figure 4:The iRobot SwarmBot™ is been designed for embodied distributed algorithm
development. Each robot contains a suite of sensors, inter-robot communication and localization,
and a 32-bit microprocessor.

Stupid Robot Tricks Introduction Page 20

Wheel Encoders
The SwarmBot has four wheels and uses skid-steering to turn. Slippage while

turning and the small size of the wheels introduces considerable odometry errors, making
dead-reckoning useful for only short distances.

Bump Sensor
The exterior shell of the SwarmBot is an articulated bump sensor. It can detect

deflections in the horizontal plane as well as rotations around the center of the robot.
This is the robot’s primary sensor for obstacle avoidance. Its design guarantees that
robots cannot become entangled in each other, but its squareish shape, while stylish, can
make it more difficult to negotiate tight spaces.

1.2.2 ISIS Communication System

The iRobot ISIS™ communication and robot location system allows each robot to
communicate with its neighbors and determine their range, bearing, and orientation.
Figure 5 shows the data made available by the system, and the definitions of range,
bearing and orientation. Each robot has an array of twelve IR emitters, grouped into
four quadrants. Data can be transmitted from these quadrants independently or in any
group. There are four receivers on each robot, which allow it to determine neighbor
positions by comparing the signal strengths of one message that is received on two
different receivers. Range and bearing are accurate to within 2 cm and 2° at 50 cm of
separation. Orientation of the transmitting robot can be computed directly with an
accuracy of 45° by observing which emitters the signals originate from. Orientation of
the sender measured from the receiver is the same angle as the bearing of the receiver
measured from the sender, which allows orientation to be computed using a reciprocal
technique that adds one neighbor cycle round-trip communications delay (250 ms, see
sec. 2.1.2) but increases the resolution to 2°.

Figure 5: The iRobot ISIS™ system allows each robot to communicate with its neighbors and
determine their range, bearing, and orientation. Range is measured from the center of one robot
to the center of another. Bearing and orientation are defined relative from one robot to another.
In these figures, the bearing and range of the top robots are measured from the bottom robots.
We use the term heading to define the orientation of the robot relative to a global external
reference frame.

Stupid Robot Tricks Introduction Page 21

The system has a maximum range of 3 meters, but is typically run at reduced
power levels to limit the effective range to about 1 meter. The variable power control
allows group experiments to be performed in small laboratory environments while
ensuring that any single robot can only communicate with a small number of neighbors.

The ISIS communications system runs at 125 kbps, but packet headers and DC-
balanced encoding reduce the throughput to 53.3 kbps with eight byte packets. A
FPGA handles all the encoding, transmitting, receiving, and decoding. Each packet has
a CRC to ensure data integrity and corrupt packets are detected and discarded by the
FPGA hardware. The higher-level communications layer must be able to recover from
these losses. Data integrity is quite good over point-to-point communications, with error
rates below 0.1%. Multiple transmitters in close proximity create the risk for collisions.
The collision problem is discussed in section 2.1.2 .

1.3 SwarmOS
The Swarm Operating System (SwarmOS™) provides an API for developers

writing applications for the SwarmBot. It was developed at iRobot [1] and controls low-
level SwarmBot I/O including: motor control, ISIS drivers, power management/charging,
sensor drivers, and remote downloading for wireless software updates. It incorporates
the ThreadX real-time kernel from Express Logic [2], which provides a multitasking
kernel with an API similar to POSIX. If supports threads, semaphores, mutexes,
message queues, and memory allocation. It is designed for embedded applications and
has real-time performance and a small memory footprint.

1.4 Hands-Off Operation: HIVE™ and the Robot
Ecology™
To work with a large swarm of robots effectively, the user cannot manually

program, charge, or even turn on all the robots. Software development, debugging, and
analysis must also be performed in a hands-free centralized fashion, without having to
physically interact with each robot. The Robot Ecology™ shown in Figure 6 provides
resources the robots need to keep themselves running, and the HIVE user interface
provides centralized command and control of the swarm. For large swarms, these are

Figure 6: Working with a large swarm of robots requires them to be as self-sufficient as possible.
The Robot Ecology™ provides resources for autonomous charging and navigation. Left: Chargers
allow robots to dock and recharge. Middle: Semi-automated testing Allows quick diagnosis of
problems. RIght: Long-range ISIS beacons aid navigation.

Stupid Robot Tricks Introduction Page 22

requirements, not luxuries.

1.5 Assumptions, Design Goals, and Conventions
Any scientific work would not be possible without a healthy set of assumptions to

reduce the problem to manageable size and a set of design goals to provide direction.
Diagrammatic conventions are described at the end of this section.

1.5.1 Assumptions

Local Communications
The assumption that all inter-robot communications are short range is the most

important one in this work. It has two important implications:
1. Robots can only communicate with a small subset of the total swarm.
2. There is a relationship between network connectivity and spatial location

The first implication is a powerful tool for ensuring the scalability of the
distributed algorithms used by the robots. Physical constraints place a strong upper
bound on the number of neighbors an individual robot can have: it is the number of
robots that you can pack into communications range. If you assume that robots limit
processing to only their local state (see design goal below), this places an upper bound on
the memory and processing requirements for each individual. This upper bound is a
function of neighbor count, not the total number of robots in the swarm, allowing the
swarm to grow and shrink while the demands on individual robots remain constant.

The second implication is that the number of hops a communications packet
must take to propagate from one robot to another is related to the physical distance
between them. The exact spatial relationship depends on the physical layer of the
communication network. The ISIS system uses infra-red light (line-of-sight) and has
been designed to provide a uniform, omni-directional transmission pattern. The
relationship between network connectivity and spatial location is used throughout this
work.

Reliable Lossy Communications
It is assumed that the FPGA firmware and SwarmOS will discard corrupt

communications packets, so any message received by the high-level algorithm is a valid
message. Additionally, the probability of a successful transmission of a message from
one robot to another is assumed to be random and independent of the success of any
previous transmission. This implies that there are no systematic errors, and the odds of
a single robot not receiving any communications decreases exponentially. However,
individual message losses are common and must be tolerated by the software.

Unique ID Numbers
It is possible to divide distributed algorithms into three sets based on the scope of

unique identification they require of the agents that run them: global IDs, local IDs, or
no IDs. Each set of algorithms is a proper subset of the one preceding it. In order to
facilitate development of the largest possible set of algorithms on the swarm, each robot
has a 64-bit ID chip, giving each member a globally unique ID.

At the lowest level, individual robots need locally unique IDs to disambiguate
communications from nearby neighbors. At the global level, the centralized controller

Stupid Robot Tricks Introduction Page 23

needs to be able to address each robot individually. Attempts have been made to
minimize the scope of unique IDs, but not to eliminate their use. From an engineered-
system point of view, the cost and size of ID chips, or a start-up procedure in which all
agents select globally unique IDs, is not a prohibitive assumption. This is a potential
departure from the natural inspiration, as it is not clear how insects identify their
nestmates, but it is probably not with a globally unique identifier. However, insects are
able to differentiate amongst neighbors in actions like sharing food and tandem following
[10], so locally unique identifiers seem reasonable.

Robust Low-Level Obstacle Avoidance
All the algorithms presented in this work assume that there is some kind of low-

level obstacle avoidance behavior that is always successful in guiding the robots away
from nearby obstacles. The SwarmBot uses its ISIS system and an array of bump
sensors to detect obstacles. The ISIS obstacle detection is not very reliable, but has a
range of 10-20 cm. The bump sensors require the robot to collide with an obstacle to
sense it, but are very reliable. Once an obstacle has been detected, we assume that the
obstacle avoidance behavior will be able to dislodge the robot. In practice, this behavior
is almost always successful, with only occasional rescue intervention required to free
trapped robots.

1.5.2 Design Goals

Scalability and Robustness
Scalability and robustness often travel hand-in-hand. A robust algorithm will

function correctly even if an arbitrary number of robots are removed from the swarm,
and a scalable algorithm will function correctly even if an arbitrary number of robots are
added to the swarm. In both cases, the swarm must adapt at a global level by
responding to its new size. Other changes in the environment, such as erroneous sensory
inputs or network failure, must be handled by the swarm as well. This requires that all
the distributed algorithms be self -stabilizing, meaning that you can start from any initial
state of sensory inputs and robot positions and the system will always converge onto the
desired final state. The only limitation we require is that the robots must all be part of
the same connected component.

At the local processing level, scalability also requires that algorithms do not scale
in running time or in memory space as a function of n , the total number of robots.
Most of the algorithms presented scale as a function of the number of neighbors each
robot has. The number of neighbors any one robot can communicate with is constrained
by the range and bandwidth of the ISIS communications system. Bandwidth is the
scarcer resource, limiting the number of neighbors to 20-30, depending on how many
messages are sent by the application software. These limits guarantee that neighbor
count cannot be a function of total swarm size.

However, making the communications range small increases the number of times
a message must be relayed to propagate from one end of the swarm to the other. The
swarm can be viewed as a network graph G with robots as vertices and neighbor
communication links as edges. The number of times the message must be relayed (the
number of “hops”) is equal to ()Gdiam , the diameter of graph G . Because ISIS is a
line-of-sight optical system, G will correlate strongly with the physical positions of the
robots. To compute ()Gdiam the exact physical placement of each robot must be

Stupid Robot Tricks Introduction Page 24

known. In most environments, the distribution of robots can be approximated with a
circle, and ()Gdiam will grow with order ()nO . Robots arranged in a long, skinny,
graph will take longer to propagate information, with the worst case being ()nO for a
line of robots. Lines of robots can be useful for communications relays, but uniformly
dispersed robots work well for most other applications.

Homogeneous Hardware and Software
There are many applications of swarms that would require systems of robots with

heterogeneous hardware. Some robots could have specialized sensors, some could carry
heavy objects, while others could have long-range communications hardware. However,
heterogeneous hardware increases design complexity and reduces system robustness.

It is much easier to design and maintain a swarm of homogeneous robots than of
heterogeneous ones. The fixed costs of design time, debugging procedures, and spare
parts are minimized when amortized across as large a population as possible.
Algorithmic robustness is easier to achieve when any robot can perform the role of any
other. With heterogeneous hardware, there must be sufficient numbers of each type to
ensure that failures can be tolerated. For these reasons, we impose the design constraint
of homogeneous hardware and software, but allow robots to changes tasks as needed.

Minimal Local State
Whenever possible, attempts are made to minimize the amount of state each

robot needs to maintain, and instead base most local decisions on the current state of
sensors and recent communications with neighbors. This is the essence of behavior-based
programming, which emphasizes robot control that is tightly coupled to sensory inputs.
One of the advantages of this approach is that software must be designed to determine
its context from external cues. This allows robots to join or leave the network
asynchronously, without having to be told what the rest of the swarm is doing, and with
minimal disturbance to the robots around them.

Frequent Communications and Sensing
Frequent communications goes hand-in-hand with maintaining minimal state. In

the Swarm, most information about neighbors and the environment has very short time-
outs, usually not greater than one second. The rate of communications and sensing must
be high enough to keep the robot up-to-date with the current world state. The cost is a
large amount of data retransmission, even for unchanging data. The benefit is large
design simplification in the rest of the system, as communications, algorithms, behaviors,
and neighbor position sensing all become less complex.

Minimal Tuning
Every attempt is made to minimize the number of parameters that require tuning

for environmental conditions such as density of robots, number of walls, communications
range, etc. Algorithms with sub-optimal performance but fewer “knobs” to turn are
preferable to those that can run faster, but require custom fitting for each application.
The goal is to make a tool-kit of general-purpose algorithms and behaviors that can be
combined and recombined easily to test new ideas.

Modest Local Processing Power
The desire to scale these algorithms to very large swarms of robots implies that

they will run on small, cheap microprocessors with limited computational power, at least
for the foreseeable future,. The algorithms have been designed to keep processing and
memory requirements low. Some of this comes for free by adhering to design principles

Stupid Robot Tricks Introduction Page 25

that ensure scalability – memory and processing requirements will only grow as a
function of neighbor count, not total number of robots. Other processing efficiencies
come from accepting solutions that are simple, but have some inherent inefficiencies,
such as the orbitGroup behavior from section 0 that guides robots along a suboptimal,
but easy to compute, path. The C programming language was used to produce small,
efficient machine code. Dynamic memory allocation was outlawed, and the use of
floating-point arithmetic was minimized. These procedures allowed the algorithms to
run on the prototype SwarmBots which had a 16 mHz 8-bit 6811 microprocessor with
32k of RAM4.

1.5.3 Conventions

Figure 7 shows the diagrammatic conventions used to describe the algorithms.
Graphical icons represent robots. The front of the robots has a slightly contoured
appearance, and the three colored lights are on the back. Robots represent vertices of
the network graph G, and the communication lines between them are the edges. The
hops for the gradient communication algorithms described in Chapter 3 are indicated by
a number preceded by the letter “h”.

4 This was before we got spoiled with the snazzy 32-bit systems in the current SwarmBot. The
core algorithms remain unchanged, but we surrounded them with MIDI file playback, a slick
VT100 terminal interface, and all kinds of other frivolous software. Engineers will be engineers…

Figure 7: Diagram conventions used in the behavior descriptions. “Upstream” neighbors are one
hop closer to the gradient source. “Downstream” neighbors are 1 hop further. It is not possible
for any robot to have a neighbor that has more than a one hop difference from itself.

Stupid Robot Tricks Neighbors and Communications Page 26

Chapter 2.
Neighbors and Communications

The Swarm Neighbor System is responsible for keeping track of neighboring
robots and any data they transmit locally to each other. The gradient communication
system is built on top of this infrastructure and allows communication messages to travel
further than one robot away. However, unlike a standard multi-hop communication
system, gradient communications also perform distributed computation as they travel
from robot to robot.

2.1 The Swarm Neighbor System
The ISIS infrared communications system is used for all inter-robot

communications. The Swarm Neighbor System API creates an easy-to-use abstraction
on top of the ISIS drivers, and enforces low-level communications constraints. The
application programmer is presented with a shared-memory model of neighbors, their
current positions, and their most recent communication messages. This section describes
the neighbor system, and some important low-level implementation details that affect
algorithm design.

2.1.1 Neighbor Packet Types

There are two types of messages in the neighbor system: neighbor messages and
gradient communication messages

Neighbor Messages
Neighbor messages are used to determine range, bearing, and orientation between

neighboring robots. The implementation details of the positioning system is not
important for understanding the algorithms presented, but some details are worth
noting. The resolution of the bearing and orientation is quite good, about 2° at 50 cm of
separation. This resolution is useful to avoid discontinuities in the inputs to the many
control loops that respond to bearing and orientation changes. The resolution of the
range information is about 2 cm at 50 cm of separation. However, the range
measurement can be quite noisy, and care must be taken to process the data to avoid
chatter in higher-level software.

Each neighbor message contains the sender’s robotID, low-level ISIS positioning
information, and an arbitrary number of bytes of general purpose data called neighbor
variables. Some uses of neighbor variables are to communicate current job, current
leader, relevant sensory data, etc. Neighbor variables are global variables that are
broadcast each neighbor cycle. In the pseudocode, the syntax is as follows:

Stupid Robot Tricks Neighbors and Communications Page 27

clusterIntoGroups(beh)〈groupGradientType〉
defineNbrVar 〈grouped〉

This function has as an input one normal variable, beh, and one neighbor
variable groupGradientType. It also “creates” a neighbor variable grouped with local
scope to this function. It can then read and write from these neighbor variables like any
other variable. In addition, it can read the state of any neighbor variable from any
current neighbor. The pseudocode to read the state of the grouped variable from
neighbor nbr and determine if it has the value True would be:

 if(nbr.grouped = True)

In actual code, all neighbor variables are passed in as pointers so the behavior functions
can be re-entrant, but this level of detail clouds the exposition of the algorithms.

The number of actual ISIS communication packets in each message increases as
the number of neighbor variables increases. It is important to minimize the number of
packets sent, as sending too many will degrade inter-robot communications. The
relationship between the number of packets sent and network degradation is discussed in
section 2.1.2 below.

Gradient Communication Messages
Gradient messages carry data and routing information that allows them to be

relayed from robot to robot. Each message contains the gradient type, the source
robotID, the sender’s robotID, the number of times this packet has been relayed
(communication “hops”), a time stamp, and three bytes of data. The details of how
these packets are relayed, what computation occurs at each step, and how the results are
used is an integral part of the distributed algorithms, and is discussed in detail below.

2.1.2 Periodic Neighbor Transmit Cycle

Synchronous System Model
The neighbor system strengthens the design goal of section 1.5.2 from frequent

communications to periodic communications. Since all the robots share the same
transmission period, every robot will receive messages from each of its neighbors only
once per period. This is not limited to neighboring robots, it is not possible for any
robot to receive more then one message from any other robot during one period, because
that would require the transmitting robot to have a shorter transmission period. This
makes the programming model for the swarm appear to be a synchronous distributed
system from each robot’s point of view. This greatly simplifies algorithm design and
validation, because it is possible to place an upper bound on the time at which you
should receive a message from a neighboring robot. These time bounds can then be
extended to include the entire swarm, permitting stronger conclusions and allowing some
classic distributed algorithms to be adapted to robotic applications.

Communications Throughput and Message Collisions
SwarmBots use the ISIS communication system to broadcast their externally

visible state omnidirectionally to all nearby robots. The ISIS system supports a Carrier
Sense, Multiple Access (CSMA) network, and robots do not transmit while they are

Stupid Robot Tricks Neighbors and Communications Page 28

receiving data. Robots maximize their ability to share the communication channel by
sending bursts of neighbor messages at periodic intervals.

Although every robot is transmitting messages in periodic bursts and the ISIS
system can sense when the channel is in use, there is no centralized controller assigning
time slices, so message collisions are still possible. This is very similar to the Aloha
protocol [6], which demonstrates a practical channel usage of about 50% of the channel
bandwidth. The inter-robot communications bandwidth is the most important design
constraint in the system.

As much of the motion of any robot is based on the positions of its neighbors, the
periodic retransmission rate needs to be fast enough to ensure that robots have up-to-
date positioning. However, care must be taken to not consume all of the available inter-
robot communications bandwidth. A periodic rate of 4 hz was selected somewhat
arbitrarily – it is fast enough to allow reasonably smooth real-time robot motions, while
putting only a moderate strain on channel bandwidth. This update rate must be taken
into consideration when designing servo loops based on neighbor position, as the robots
can sometimes move faster then their neighbor’s positions can be refreshed, which can
cause instability even with modest gains.

The ISIS communications system runs at 250 kbps, but packetization and DC-
balanced Manchester encoding reduce the throughput to 98.5 kbps for 64 bit packets, or
1538 packets/second. The 4 hz neighbor transmit cycles and the practical limit of the
Aloha-like protocol limit communications to 192 packets/neighbor cycle. These 192
packets must be shared amongst all neighboring robots. For example, if you expect each
robot to have 5 neighbors, then each robot can only transmit 38 packets per neighbor
cycle.

Another way to limit the inter-robot communications usage is to reduce the
number of neighbors each robot can detect. Since all neighbor communication packets
use the same physical medium, robots cannot selectively ignore communications packets
from specific neighbors. In order to limit the number of neighbors, the ISIS IR
communication system has the ability to change the transmit power via software. This
allows the software engineer to select a transmit power, based on the workspace the
Swarm is using, to provide a desired expected number of neighbors. Currently, this
transmit power is kept constant in each application, but more sophisticated software
could vary the power level dynamically as a robot’s local neighbor density varies.

Message Persistence
The ISIS communication system is reliable, but lossy. Often, the robots behavior

is closely coupled to the received messages from neighboring robots. Lost packets can
result in jerky motion and incorrect computations. In order to combat this, the most
recent messages from each robot are buffered for a short time. New messages override
the stored values. This “message persistence” provides some robustness to missed
packets, but also preserves stale data from robots that have moved out of
communication range. The number of cycles that messages are kept is a tunable
parameter, with smaller values being more desirable. A persistence of four cycles
produces acceptable results, based on subjective evaluation of the 100-robot swarm in
many different environments and robot densities.

Stupid Robot Tricks Neighbors and Communications Page 29

2.1.3 NeighborOps

The neighbor system populates a shared memory data structure with the most
current neighbor status. User programs can read this data directly, or use the
NeighborOps API for common operations. This collection of functions allows user
programs to collect neighbors with specified characteristics into sets, then operate on the
sets with standard operations. Functions can select neighbors based on range, robotID,
gradient messages, or any application-specific data, then use standard set operators such
as union and intersection to produce the desired set of neighbors.

NeighborOp Syntax
The general neighborOp function is:

 setOut ⇐ nbrOp(setIn, condition),

where setIn is the set of neighbors to operate on, and condition specifies which
neighbors to put into setOut . For example:

 nbrSet ⇐ nbrOp(nbrSetAll, nbr.range < d),

will find all neighbors with range < d. nbrSetAll is system variable that contains all
the current neighbors and nbr iterates over all elements in setIn. nbrSetAll can be
shortened to *.

Output from neighborOps can be combined using set notation. For example:

 nbrSet2 ⇐ nbrSet1 ∩ nbrOp(nbrSetAll, nbr.range < d),

will populate nbrSet2 with the intersection of nbrSet1 and all neighbors that are closer
than d. There are also specialized functions and return sets sorted by common
quantities. For example:

 setOut ⇐ nbrOp-closestN(setIn, n),
or
 setOut ⇐ nbrOp-furthestN(setIn, n),

will return the n closest or farthest neighbors from setIn. Many neighborOp functions
return a single neighbor:

 nbr ⇐ nbrOp-ID(setIn, robotID),
 nbr ⇐ nbrOp-lowestID(setIn, condition),
 nbr ⇐ nbrOp-closest(setIn, condition),
 nbr ⇐ nbrOp-farthest(setIn, condition),
 nbr ⇐ nbrOp-any(setIn, condition).

All of these will return either Null (∅), or the neighbor with the feature in question.
Appendix A1 contains the full C API for this system and some programming examples.

Stupid Robot Tricks Gradient Communications Page 30

Chapter 3.
Gradient Message Propagation

Gradient communication messages provide a structured way to spread
information throughout the swarm. [7] They can also perform useful distributed
computations as they propagate, such as nominating leaders (section 3.1.2) or counting
robots (section Error! Reference source not found.). In addition, the close
relationship between network connectivity and physical location allows robots to use the
gradients for long-range navigation (section 0).

We define:

n as the total number of robots.

nt as the period of the neighbor transmit cycle.

g the number of different types of gradient messages in the current application.
Different types of messages propagate independently. This will be explained in
more detail below.

p as the persistence time for gradient messages. The most recent message of each
type from each neighbor “persists” in the input buffer of the receiving robot for a
set number of neighbor cycles or until a newer message replaces it. There is a
separate buffer for each neighbor and each type of gradient.

inbrs as the set of neighbors that robot i can communicate with.

G as the graph created by combining all of the inbrs into a global data structure
with robots as vertices and communication links as edges. Note that G can
change every periodic neighbor transmit cycle.

There can be an arbitrary number of types of gradient messages, usually directly
related to application functions. For example, an exploration application might have one
gradient message type for scout robots, one type for robots acting as communication
links, and one type for navigation to the charging stations. In all examples in this work,
g is either constant or has an upper bound known at compile time. Each gradient type
propagates independently.

Depending on the distributed computation being performed, different types of
gradients are relayed slightly differently, but they all have some properties in common.
Each gradient has at least one distinguished source robot, but there can be many more.
In some applications, like the leader nomination example from section 3.1.2, every robot
is a source. The gradient communications messages originate from the source robot and
are relayed to its immediate neighbors. These neighbors become “one hop” robots, and
they relay the gradient message to their neighbors who become “two hop” robots. This

Stupid Robot Tricks Gradient Communications Page 31

process continues until the gradient reaches its maximum number of allowable hops or
the edge of the network.

Robots relay gradient messages during every periodic neighbor transmit cycle.
Therefore, the gradient tree is constantly being rebuilt, and is able to cope with the
radical network topology changes that occur on a swarm of moving robots. The
propagation time for a gradient message to disperse through the entire swarm with
perfect communications is no greater than:

() ntGdiam ⋅

where ()Gdiam is the diameter of the graph G . This assumes that each hop will take
the maximum time, nt . The expected hop latency between two unsynchronized robots
is 2

np
tt = . This is because a robot will receive a message uniformly at random

within its neighbor cycle, hold it, then retransmit it at the end of the neighbor cycle.
Because ISIS communications are lossy, there can be no upper bound on this
propagation time, the worst case being when all packets are lost between the source and
the other robots, resulting in no propagation.

Each robot maintains a global variable that stores current state for each gradient
type. In addition, the most recent message of each type from each neighbor is stored in
the neighbor information array. Because ISIS channels are lossy, all messages are
buffered for a short time to make the system robust to small numbers of message losses.
Each buffer is only one message deep, so any new communication will override the stored
value. If no new messages of that type from that neighbor arrive in p cycles, the
message buffer is cleared. A persistence value of 4 neighbor cycles works well in
practice.

Gradient messages are implemented as structs and have two types of members,
public and private:

type The type of gradient message

sourceID The robotID of the source of this gradient message.
senderID The robotID of the sender of this gradient message.

hops The number of times this message has been relayed. A value of
∞ indicates that this gradient has not been received during this
cycle and is inactive. Inactive gradients are not relayed during
the neighbor cycle

timeStamp A time stamp used for the clean up functions described in section
data0-2 Three general purpose data bytes. These can be used by the

user application or the processing function to spread information,
Table 1: Gradient Message Struct Public Members (transmitted to neighboring robots)

source This is a Boolean flag that indicates weather or not this robot is

a source of this gradient. It can only be set by the local robot.
timer A timer to keep track of neighbor cycles.

Table 2: Gradient Message Struct Private Members (not transmitted to neighboring robots)

The public members are broadcast to all neighbors during the communication
cycle. The private members are used by the transmitting robot for bookkeeping.

Stupid Robot Tricks Gradient Communications Page 32

Using Gradients in Pseudocode
The pseudocode in Chapter 4 references gradient

messages by using the gradient type as an index into an array
of gradients. The messages on the robot running the
pseudocode are stored in the array self.M[gType], and
messages from neighbors are stored in nbr.M[gType], where
nbr is a neighbor data structure.

To become a source for a gradient message, the syntax
is one of:

gradientSource(self.M[gType], Normal),
gradientSource(self.M[gType], LateralInhibition),
gradientSource(self.M[gType], Counting),

where gType is the type of gradient being sourced.
Gradients can be accessed using the neighbor ops

functions. Comparisons using the variables self.M[gType],
and nbr.M[gType], can be used in the standard neighborOp
function:

nbrSet ⇐ nbrOp(nbr.M[gType].hops < self.M[gType].hops)

This line will find all neighbors that sent a gradient message
of type gType with fewer hops than the message on the robot.
This is a common operation, and will find parents on the
gradient tree.

3.1 Gradient Propagation
Only one gradient message of each type is relayed

during the neighbor cycle. This bounds the maximum
number of gradient messages each robot will transmit per
cycle to g , and the maximum number any robot i will
receive per cycle is ()inbrsmaxg ⋅ . Most robots will receive
multiple gradient messages of the same type and must select,
combine, or otherwise process them in order to generate one
message to be relayed. This job is performed by the
processing function for that gradient type.

Each gradient type has one processing function, and
the same function can be used for multiple gradient types.
This function is called for each gradient type once every
neighbor cycle. The syntax is f(M, m) where M is a pointer
to a global gradient message variable and m is an array of all

Figure 8: A communications gradient is formed as messages are
relayed from robot to robot. The “h” numbers near each robot
indicate how many hops the gradient message has traveled from the
source.

Stupid Robot Tricks Gradient Communications Page 33

the gradient messages of that type received during the current neighbor cycle. The
function processes the received messages in m, then stores the results in M. After all the
messages for each gradient type have been processed, the results stored in the global
variables are transmitted. Care is taken in the system design to ensure that the gradient
processing thread is mutually exclusive to all other threads that modify the gradient
data. This prevents any thread from reading corrupt data. There are no constraints on
the type of function that is used as a processing function; any function that processes the
input and modifies the result can be used to process messages.

3.1.1 Normal Gradients

The most common processing function is processGradient. Its implementation
is simple: robots that receive multiple gradient messages of the same type keep the one
with the lowest hop count. This ensures that each robot keeps the message from a
neighbor that is closer to the source than it is, eliminating cycles and creating a breadth-
first tree on G that is rooted at the source robot.

processGradient(M, m)
1. if M.source = True
2. M.hops ⇐ 0
3. M.sourceID ⇐ MyRobotID
4. else
5. M.hops ⇐ ∞
6. for i ⇐ 1 to length(m)
7. if (m[i].hops + 1) < M.hops
8. M ⇐ m[i]
9. M.hops ⇐ m[i].hops + 1
10. endif
11. endfor
12. endif

This is essentially the same algorithm presented in [Lynch 1996, pp 60]. The

gradient messages “search” the graph, starting from the source. The M.source flag is
set and cleared by the user application, usually in response to some behavioral event.
Lines 1-2 initialize the source robot if needed. Lines 3-4 invalidate the current hop count
of the gradient variable for non–source robots. Lines 5-9 find the message with the
lowest hop count, taking care to add 1 to the values because the robot doing the
computation is one hop away from all its neighbors. This message will be from the
parent in the gradient tree. 5 At the conclusion of line 10, M.hops in robot i will contain
one of two values: ∞, or min(inbrs .hops)+1. If M.hops is ∞ this robot received no
messages this cycle. Otherwise, the values in M will be copied from the best mi, with
the hops in M adjusted. In particular, M.senderID is the parent of this robot in the
tree.

5 If there are multiple packets with the same hop count, then the robotID of the source and
finally the robotID of the sender is used as a tiebreaker. This deterministic tiebreaking procedure
reduces some chatter as robots will select the same neighbors to consider over multiple neighbor
cycles, regardless of the ordering in the data structure.

Stupid Robot Tricks Gradient Communications Page 34

Figure 8 is a step-by-step illustration of gradient propagation. The robot in the
upper-left hand corner of the pictures is the source of the gradient. This message is
broadcast omnidirectionally at the end of each neighbor cycle. Step 1 shows a robot
receiving the message from the source. In step 2, this robot rebroadcasts the gradient
message, and it is received by four robots – the three downstream robots and the source.
However, when the source robot processes this gradient message, the hop count indicates
that it traveled upstream, and the source discards it. This process continues for two
more steps until the entire swarm has received the gradient.

Every robot that is in the same connected component as the source receives at
least one gradient message from a neighbor that is closer to the source. Robots can use
any of these parent neighbors to route communication packets to the source robot.
Robots can also “route” themselves towards or away from the source by moving based
on the positions of the ir
parent or children neighbors.
This physical routing is the
basis for the
navigateGradient behavior
described in section 4.5.7.

There can be multiple
sources of the same gradient
type in the swarm. However,
since the processGradient
function will select the
message with the fewest
number of hops, a gradient
with multiple sources will
tessellate the swarm into
groups. The process of
selecting the source based on
hop count is a discretized
version of the closest-
neighbors algorithm that
produces a Voronoi
tessellation of a normal
graph. The top picture in
Figure 9 shows an example of
this tessellation in action, and
the bottom picture shows the
equivalent Voronoi
tessellation using the sources
as the vertices. Robots that
are equidistant to multiple
sources can randomly select a
message from the set of
closest sources, or use some
ordering of the sources to
select which message to relay.
In practice, using robotIDs is

Figure 9: The normal gradient compare function will
tessellate the swarm into Voronoi cells based on the number
of hops each robot is from the source. This can be a
convenient way to divide the robots into groups.

Stupid Robot Tricks Gradient Communications Page 35

an effective tie breaker, and reduces dithering between two sources. In the example in
Figure 9, the red source has the highest priority, then the green, followed by the yellow.

Normal Gradient Limitations
A classic distributed system has a static network and lossless communications.

The Swarm does not have these properties, the robot network is very dynamic and has
lossy communications. In addition, each message “persists” on the receiver for p
neighbor cycles. This persistence is designed to allow robots to be more robust to missed
packets, but if the network topology changes, robots will still retain copies of their old
neighbors for p – 1 cycles until their message persistence times out. Topology changes
can cause problems similar to the situation shown in Figure 10, as a robot moves from
one end of the network to the other. In this case, the communications can be disrupted
for up to ()Gdiamp ⋅ cycles before messages from the correct source propagate back
across the network. This type of failure can also be caused by communication links
failing, then reconnecting. For example, if the highlighted robot in Figure 10 is
sporadically connected to the bottom-left robot and the bottom-right robot.

Another problem is that if the source becomes inactive or is disconnected from
the network, messages will “back propagate” from children to parents, ruining the tree
structure of the breadth-first search.

The robots use the gradient tree structure for many different aspects of their
behaviors, including communication and navigation. It is important for this structure to
be constructed and deconstructed in an orderly fashion. The clean-up algorithms in
section 3.2 address these requirements.

Figure 10: Gradient messages are buffered for a short time to allow the swarm to be robust to
dropped packets. However, this buffering means that stored messages can be transferred between
different parts of the swarm as robots move around. This can cause robots to compute the
incorrect hops for a short time.

Stupid Robot Tricks Gradient Communications Page 36

Experimental Results
The data in Figure 11 shows

the arrival time of gradient
messages at distant robots. Each
time the message is relayed, it
incurrs an additional expected
latency if pt . Multiple runs were
combined to produce this composite
data set. The large data points are
average values for each hop. ISIS is
an infrared communication system,
so links are line-of-sight and the
diameter of G is dependent on the
topography of the environment.
With 100 robots the practical limit
on diameter is about 40, resulting in
an expected propagation time of
about 7 seconds based on the data
in Figure 11.

3.1.2 Gradients with
Lateral Inhibition

Symmetry breaking is a
common task in distributed
systems, as there are many
algorithms require one robot to be
distinguished from all others. For
example, in the followTheLeader
behavior from section 0, one robot
must be the leader. The counting
gradient in the next section requires
one robot to tally the total count.
Often it is not important exactly
which robot becomes the leader, so
long as there exists one robot that
is, and all the other robots know
that they are not.

A gradient with lateral
inhibition can accomplish this task. It propagates in much the same way as a normal
gradient, except the processing function gives preference to messages from the source
with the lowest robotID, even if the message has traveled more hops. This means that
the source of a message can be inhibited by another source with a lower robotID. Any
globally unique property can be used instead of robotID. After the propagation is
complete, the leader will be the one robot where the robotID of the source is equal to its
own robotID.

Gradient Message Latency vs. Hops from
Source (All messages)

0
250
500
750

1000
1250
1500
1750
2000

0 1 2 3 4 5 6 7
Hops

L
at

en
cy

 (
m

s)

Expected Latency
Latency

Average latency per hop = 172 ms

Gradient Message Latency vs. Hops from
Source (late messages removed)

0

250

500

750

1000

0 1 2 3 4 5 6 7
Hops

L
at

en
cy

 (
m

s)

Expected Latency
Latency

Average latency per hop = 125 ms

Figure 11: Gradient latency data from five
propagation trials on a uniformly dispersed swarm.
The size of the swarm ranged from 12-46, with an
average size of 33 robots. The maximum diameter of
the network is 7 hops. Top: Hop latency averaged
172 ms, 37% longer than E(tp) This is caused by lost
packets that are only received after retransmission,
and arrive late. Bottom: When late packets are
removed from the data, the average hop latency is
125 ms, which is equal to E(tp).

Stupid Robot Tricks Gradient Communications Page 37

processGradientLateralInhibition(M, m)
1. if M.source = True
2. M.hops ⇐ 0
3. M.sourceID ⇐ MyRobotID
4. else
5. M.hops ⇐ ∞
6. M.sourceID ⇐ ∞
7. endif
8. for i ⇐ 1 to length(m)
9. if m[i].sourceID < M.sourceID
10. M ⇐ m[i]
11. else
12. if (m[i].hops + 1) < M.hops
13. M ⇐ m[i]
14. M.hops ⇐ m[i].hops + 1
15. endif
16. endif
17. endfor

The algorithm is very similar to processGradient ,

with the addition of lines 9 and 10 which give the source
robotID priority over hops. Line 6 initializes the global M.
sourceID in case the previous source is no longer present.
Note that the M.source flag does not necessarily report if
this robot actually is a source or not, because it could be
inhibited by another source with a lower robotID. The only
way to know if you are an active source, and also the leader,
is to compare M.sourceID to the local robotID. If they
match, then this robot is the leader. However, if the two
lowest IDs are on opposite ends of the network, it could take
up to one gradient propagation time to determine this. Also
note that until the gradient completely propagates, other
robots will think that they are the leader. The multi-leader
error will only exist until the gradient finishes propagating,
but requires higher-level algorithms to be tolerant of this
behavior. This software assures that there will be at least
one leader, while a more sophisticated system of interlocking
might be able to guarantee that there will be at most one
leader.

The example in Figure 12 shows an example of leader
nomination using a gradient with lateral inhibition. The
hops from the source is indicated by h# and the source
robotID is indicated by s#. The messages from robot 3 are
drawn in dark green to make their propagation easier to
distinguish from other messages, which are drawn in light

Figure 12: Sources of gradients with lateral inhibition can override
other sources of the same type. The gradient message from the
source with the lowest RobotID will be relayed. After one gradient
propagation time, there will be only one source that is not inhibited.

Stupid Robot Tricks Gradient Communications Page 38

green. In Step 1, all the robots are sources, so the source robotID is the same as their
own robotID and the message hops are all 0. Step 2 shows the gradient after one
communications cycle, and the robots with lower IDs are starting to spread their
influence. The propagation is complete in step 4, and robot 3 has inhibited all the other
sources. It knows it is the leader, and the others know they are not. Note that if robot
3 is removed from the network, the gradient from robot 4 will then be allowed to spread
after the messages from robot 3 are removed from the network. See the next section
about gradient message clean-up.

Gradients with lateral inhibition do not tessellate the swarm like normal
gradients. Instead, one robot’s gradient propagates across the swarm, inhibiting all other
sources of this type of gradient. This is not always desirable, but applications can limit
the maximum number of hops these gradients can travel, or use a custom processing
function to limit processing to a particular subset of robots, for example only those with
a particular sensory input.

Experimental Results
Figure 13 shows the results of several trials of this algorithm. It takes one

propagation time for one leader to be elected and for all other robots to know it. This
average time to elect a leader is 4125 ms, which is very long compared to 1575 ms
predicted by the data in Figure 11. This network was denser and had several turns, so
packet collisions and bad links could have contributed to this error.

3.2 Gradient Clean-up
In a dynamic robot network, it is important for gradients to spread quickly and

in a controlled fashion, but it is equally important for them to decay in a controlled
fashion. Because the robots use the gradient trees for navigation, having them decay in
an uncontrolled fashion can cause robots to move in unexpected directions. Consider
Figure 14, which illustrates how a normal gradient that uses the processGradient

Number of Leaders vs. Time

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (ms)

N
um

be
r

of
 L

ea
de

rs Num of Leaders (L)

Correct (L = 1)

Figure 13: Gradients with lateral inhibition can be used to elect a leader among several robots.
The graph above shows the number of leaders vs. time for several trials of this algorithm. It
takes one propagation time for one leader to be elected and for all other robots to know it. In the
data above, the leader is elected in an average of 4125 ms, which is very long compared to 1575
ms predicted by the data in Figure 11. This network was denser and had several turns, so packet
collisions and bad links could have contributed to this error.

Stupid Robot Tricks Gradient Communications Page 39

processing function will decay if the source becomes inactive. Messages will be relayed
from robot to robot until they reach the maximum number of allowed hops. Note how
messages from the hop 1 robot back-propagated to the source after the source stopped
transmitting. This ruins the structure of the gradient tree and for large networks with
high hop limits, this kind of decay can take a long time, ()Gdiamtp n ⋅⋅ .

The ideal message clean-up is shown in Figure 15. This function takes the
minimum number of neighbor cycles to clean up, and the total clean-up time is

()Gdiamtn ⋅ .
There are two approaches to gradient clean-up described in this section, message

clean-up, which transmits explicit clean-up messages, and time-stamp cleanup, which
uses time stamps to eliminate back-propagation. Clean-up messages allow the gradient
to be cleaned in the smallest possible time, but require the source to actively start the
clean-up process, and require all other robots to relay clean-up messages. Timestamp
clean-up will function even if the source is removed or disconnected unexpectedly, but
takes longer to complete.

No Clean-up
Max Hops = 6

Source 1 Hop 2 Hops 3 Hops
0 0 1 2 3
1 2 1 2 3
3 2 3 2 3
4 4 3 4 3
5 4 5 4 5
6 6 5 6 5
7 6 - 6 -
8 - - - -

ti
m

e

Figure 14: Gradient message clean up is as important as propagation. The example network
shown at top will be used for all discussions in this section. The chart shows how the hop counts
decay after the source stops transmitting. Messages are only removed when they have been
relayed for the maximum number of hops, in this case 6. This destroys the structure of the
gradient tree because all robots will eventually relay a maximum-hop message. For large
networks with high hop limits, this decay can take a long time.

Ideal Clean-up

Source 1 Hop 2 Hops 3 Hops
0 0 1 2 3
1 - 1 2 3
3 - - 2 3
4 - - - 3
5 - - - -

ti
m

e

Figure 15: The ideal gradient clean-up function would be able to remove a gradient in minimum
time, without changing the hop values from the propagation. The minimum time is the same time
required for the message to propagate. Gradients would be removed in an orderly fashion, in
with robots removing messages in the reverse order they were received. The table above shows
an ideal clean-up for the network of robots in Figure 14.

Stupid Robot Tricks Gradient Communications Page 40

3.2.1 Message Clean-up

The source initiates a message clean-up when it transitions from being active to
inactive. The clean-up message serves to tell other robots that this source is no longer
active. Lets call this source robot a. When any robot receives a clean-up message, it
enters the clean-up state for source a for p + 1 neighbor cycles. While in this state, it
removes all gradient messages that have originated from source a, and does not use them
for computation or relay them to other neighbors. Instead, a clean-up message for
source a is transmitted for p + 1 neighbor cycles.

gradientCleanupMessage(M, m)
1. if M.cleanUpTimer > 0
2. removeMessages(m, M.cleanUpSourceID)
3. endif
4. for i ⇐ 1 to length(m)
5. if m[i].type = CleanupMessage
6. removeMessages(m, m[i].sourceID)
7. if M.cleanUpTimer = 0
8. M.cleanUpTimer ⇐ CleanupCycles
9. M.cleanUpSourceID ⇐ m[i].sourceID
10. endif
11. endif
12. endfor
13. if M.cleanUpTimer > 0
14. queueCleanUpMessage(M)
15. M.cleanUpTimer ⇐ M.cleanUpTimer - 1
16. endif

Line 1 checks to see if this robot is already in the clean up state. If so, the
removeMessages function removes any messages in the input array m that are from the
source stored in M.cleanUpSourceID. It also removes clean-up messages from

Message Clean-up
Max Hops = 6, Persistance = 3

Source 1 Hop 2 Hops 3 Hops
0 0 1 2 3
1 C 1 2 3
3 C C 2 3
4 C C C 3
5 C C C C
6 - C C C
7 - - C C
9 - - - C

10 - - - -

ti
m

e

Figure 16: Clean-up messages can remove a gradient in the minimum time. Clean-up messages
are transmitted for at least p + 1 cycles to reduce the possibility of back propagation. However,
the cleanup messages consume bandwidth, and prevent the source from re-starting the gradient
until the clean-up is complete. Also, if the source gets disconnected, or link-failure cycles occur in
the network, the orderly cleanup can be compromised and degenerate into the max hop count
cleanup from Figure 14.

Stupid Robot Tricks Gradient Communications Page 41

neighboring robots that refer to that source. Lines 4-11 go through the input array
looking for cleanup messages from other sources. If found, then all messages from that
source are removed. If this robot is not already in the clean-up state, it is put into that
state and the timer reset to CleanupCycles. This constant needs to be at least 1+p
cycles. Larger constants provide more resistance to cycles from topology changes (Like
the state error in Figure 10) and link failures, but prohibit the source from becoming
active for a longer time. The minimum of 2+p worked well in practice. Lines 13-16
transmit a cleanup message if the robot is in clean-up state.

Note that clean-up messages from multiple sources cannot be relayed. Only the
one source named in M is queued in the queueCleanUpMessage(M) function. This
can introduce errors because multiple clean-up “wave fronts” will collide and interfere
with each other, canceling parts of each other out. The only solution would be to relay
clean-up messages from multiple sources each neighbor cycle. But since each robot can
potentially be a source, and can begin cleanups asynchronously, this could lead to n
messages needing to be relayed each neighbor cycle, which would consume all the
available inter-robot communications bandwidth and violate our scalability design goals

In practice, this clean-up is of limited usefulness. Robots start and stop sourcing
gradients often, and the system sends many clean-up messages, in some cases nearly as
many as actual gradient messages. Communication errors are common, and complex
environments can temporary disconnect large sections of the swarm for short periods of
time. Since the source must actively initiate a clean-up, interruptions several hops away
cannot be regulated, and the gradient tree structure quickly erodes on those subtrees.

Experimental Results
Figure 17 shows experimental data for message clean-up. This is the combined

data from five separate trials. Message clean-up works well in stationary networks. Link
failure cycles are rare, and the clean up is quick. On networks with moving robots,
topology changes in conjunction with network failures can require clean-up times longer
than 2+p to be robust. The time stamp clean-up in the next section address these
issues.

Message Cleanup Latency vs. Hops from Source

0

1000

2000

3000

4000

0 1 2 3 4 5 6 7 8 9 10
Hops

L
at

en
cy

 (
m

s)

Ideal Latency

Latency

Figure 17: Message clean up data combined from five trials with 39 robots. The latency of 184
ms per hop is very similar to that of a gradient propagation, which had a latency of 172 ms/hop.
The five data points on the upper-right of the graph illustrate the dangers of cycles that can
persist for longer than the p + 2 clean-up cycles. In this trial, the message clean-up still stopped
the back-propagation of messages, but just barely.

Stupid Robot Tricks Gradient Communications Page 42

3.2.2 Time-stamp Clean-up

Time-stamp clean up corrects the limitations of the message cleanup, but at the
cost of a slower execution time. The source of a gradient maintains a time stamp
variable that it increments each neighbor cycle. When the source transmits the gradient
message, it puts its current time stamp in it. With perfect communications, each
message a robot receives from that source will have a time-stamp value greater than the
time-stamp of the last message received from that source. This invariant holds even
when the message has been relayed through multiple robots, as there will be an ever-
increasing chain of time-stamps leading back to the source. Robots can decide on the
validity of any new message by comparing its time-stamp to that of the most recent
received message. If the new time-stamp is greater than the most recent one then this
message has traveled in a direct path from the source and should be kept. Otherwise,
this message has been relayed from a sibling or child in the gradient tree and should be
discarded.

gradientCleanupTimeStamp(M, m)
1. if m.sourceID = MyRobotID
2. M.timeStamp ⇐ M.timeStamp + 1
3. endif
4. for i ⇐ 1 to length(m)
5. if ((m[i].sourceID = M.sourceID) and
 (m[i].hops ≥ M.hops) and
 (m[i].timeStamp ≤ M.timeStamp))
6. removeMessage(m[i])
7. endif
8. endfor

Lines 1-3 update the timestamp if this robot is the source of the gradient. Line 5

looks for any message that…
1. …is from the same source as the previous message of this type. Different sources

of the same gradient type do not coordinate with each other and will have
different time stamp values. Time stamps can only be compared when the
messages come from the same source. This can cause problems if two robots stop
sourcing at the same time, but the fix would violate scalability, as each robot
would need to keep a copy of the last timestamp received from all possible sources
of each gradient type. Since every robot can source a gradient, the upper bound
on state would be gn ⋅ , which is ()nO .

2. …has traveled as many or more hops from the source. Messages that have
traveled fewer hops than the last message you have received should never be
discarded.

3. …has a time stamp that is the same or lower than the one from the previous
message. Since the source is the only robot that can increment the timestamp,
and it does so each neighbor cycle, all other timestamp values in the network will
be less than the value on the source. Correct gradient propagation is from the
source towards the leaves. Therefore, each robot should receive messages with an
ever-increasing time stamp. If the timestamp is not greater than the one in the
previous message, then this message is not from a parent in the gradient tree and
should be discarded.

Stupid Robot Tricks Gradient Communications Page 43

If all these conditions are true, then this message has traveled backwards or laterally on
the existing gradient tree and should be discarded. This will eliminate back-propagation
if the source stops transmitting or becomes disconnected from the network. Figure 18
illustrates the number of cycles required to remove a message from the example network.
The persistence in this example is 3 neighbor cycles. When the source stops
transmitting, the timestamps will prevent the 1-hop robot from accepting any new
messages, but it will keep its most recent message for p cycles before removing it. This
process continues, until the gradient is completely removed from the network. Total
clean-up takes no more than ()Gdiamp ⋅ neighbor cycles.

Bounded Time Stamps
While this algorithm will accomplish the goal of eliminating back-propagation, it

uses unbounded time stamps. This is not practical on real systems, as even the largest
integers will overflow. However, using a bounded time-stamp presents challenges
because old time-stamp values must be reused. In order to know which messages to
discard and which to keep, each individual robot must be able to determine the lower
bound on the time stamp values that can exist in the network.

Because each gradient message can only travel a maximum number of hops
before it is automatically removed, there can be a maximum difference in time-stamps of

()hopsMax.Mp

between the most recent message transmitted by the source and the oldest message in
the network. This happens when a message is received by a robot, but is not
successfully retransmitted to any neighbors until the last persistence cycle, taking p
cycles to travel one hop.

The most recent message on each robot contains the hops from the source and
the timestamp of the source when that message was initially transmitted. This allows
each robot to independently compute the timestamp of the oldest message that can still
exist in the network from this source.

Eq 1 ()hops.MhopsMax.MptimeStamp.MStampoldestTime −−=

Time Stamp Clean-up
Max Hops = 6, Persistance = 3

Source 1 Hop 2 Hops 3 Hops
0 0 1 2 3
1 - 1 2 3
3 - 1 2 3
4 - 1 2 3
5 - - 2 3
6 - - 2 3
7 - - 2 3
8 - - - 3
9 - - - 3

10 - - - 3
11 - - - -

ti
m

e

Figure 18: Time Stamp Cleanup uses a nondecreasing timestamp to eliminate back-propagation of
gradients. It has the advantage of working if any part of the swarm becomes disconnected, but is
p times slower than message clean-up.

Stupid Robot Tricks Gradient Communications Page 44

where M is the most recent message received from this source and p is the message
persistence defined on page 30. Any messages with a time stamp lower than this value
will have already been removed due to excessive hops, therefore values lower than this
must be from new messages and should not be removed by the clean-up algorithm. We
can now “wrap” the continuum of time-stamp values using modulo arithmetic and use
values of finite size. In the code and explanations below, R is the base of the modulus.

gradientCleanupTimeStampMod(M, m)
1. if m.sourceID = MyRobotID
2. M.timeStamp ⇐ (M.timeStamp + 1) mod R
3. endif
4. for i ⇐ 1 to length(m)
5. if ((m[i].sourceID = M.sourceID) and
 (m[i].hops ≥ M.hops) and
 (M.timeStamp ≥ m[i].timeStamp ≥ M.timeStamp – (M.hopsMax - M.hops)))
6. removeMessage(m[i])
7. endif
8. endfor

In the Swarm, R is 256, which allows the time stamp to be encoded in one byte

of data. Care must be taken to ensure that () RmaxHops.Mp < , or else all messages
will be discarded. Another problem with using the modulus timestamp is that it could
add a start-up delay to gradient processing. If a robot is disconnected from a source for
a random amount of time, then reconnected, there is a probability

()
R

hopsMax.Mp
q =

that the message that the robot last received from the source will fall into the range
specified in line 5, the discard region. This robot would then discard all messages from
this source for at most ()hopsMax.Mp cycles, causing a delay before it started
processing new messages. The number of neighbor cycles on which the robot will discard
messages is not constant, but varies linearly within the discard region. The expected
delay in cycles is given by:

() ()

=

2
Hopsmax.Mp

qdelayE

substituting for q:

() ()
R

Hopsmax.Mp
delayE

2

22
=

The practical limit on maxHops in the current swarm is about 40, giving a value
for q of 62.5%, and an expected delay of 50 neighbor cycles, which is 12.5 seconds. This
is somewhat long, but most experiments do not require packets to travel 40 hops.
Reducing the max hops to 16 reduces the expected delay to 2 seconds, which is fine.

It takes at most p cycles for the time-stamp clean-up algorithm to propogate one
hop. The maximum clean-up time is given by:

Stupid Robot Tricks Gradient Communications Page 45

()()hopsMax.M,Gdiamminpttscu ⋅=

The decay of messages is now orderly and the tree is deconstructed in the opposite order
it was built. Robots that are dispersed remain in their positions. A useful side effect is
that if the source loses contact with the network briefly, for example, when rounding a
corner, the rest of the swarm starts an orderly clean up. When contact is reestablished,
the active gradient “catches up” to the decaying gradient, typically in a few hops.

Experimental Results
The data in Figure 19 shows the results of five time-stamp cleanup trials on a 39-

robot swarm. The key detail in the figure is that the distribution of clean-up times is
completely below the max latency line. This solid performance makes time-stamp clean-
up very useful in swarms of robots.

3.2.3 Combination Clean-up

It would be possible to combine message clean-up and time-stamp clean-up and
get the fast expected clean-up time of message cleanup, with the security of time-stamp
cleanup in the case of message failures.

3.3 Summary
The gradient messaging system forms the basis for almost all of the Swarms

communications. Frequent retransmission allows the structure of the gradients to be
robust to network topology changes, and clean-up algorithms preserve the structure of
the gradient tree as the messages are removed from the network.

be

Time-Stamp Cleanup Latency vs. Hops from Source

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 1 2 3 4 5 6 7 8 9 10
Hops

L
at

en
cy

 (
m

s)

Max Latency

Latency

Figure 19: Data collected from time-stamp clean-up trials on a 39-robot swarm. The max latency
line indicates the threshold between valid time-stamps and discard timestamps. In the swarm, p
is 4 and tn is 250 ms, which gives us a clean-up rate of 1 second/ hop. The clustering of data
points underneath the max latency line shows how robots further away from the source remove
their messages only after their parents have done so. The data in the lower right most likely is
from network errors that cause those robots to lose their gradient message and record a spurious
clean-up time.

Stupid Robot Tricks The Swarm Behavior Library Page 46

Chapter 4.
The Swarm Behavior Library

The ultimate goal for the Swarm project is to program group behaviors at the
group level. For example, to explore the planet Mars you would want to type a program
like this:

main(void)
{
 exploreMars();
}

We propose to break group behaviors into smaller behaviors that can be

combined to achieve a larger goal. Continuing our example:

exploreMars(void)
{
 while(True) {
 moveAwayFromTheLander ();
 moveAwayFromOtherRobots();
 moveIntoUnexploredTerritory();
 if(fossilSensor == Active) {
 callForHelp(sensorRobot);
 }
 if(martianSensor == Active) {
 callForHelp(ambassadorRobot);
 }
 }
}

The statements within the while loop run concurrently, allowing the robot to
respond to many different sensory conditions. This bottom-up solution provides some
abstractions for the programmer, but she still needs to be aware of how different
behaviors will interact, and the best ways to combine them to achieve the desired group
performance. Understanding these relationships is the key to programming distributed
systems. The behavior library presented in this chapter makes this task easier by
providing reusable, scaleable behaviors that produce predictable group actions.

Stupid Robot Tricks The Swarm Behavior Library Page 47

4.1 Behavior Operations
Behaviors are implemented as standard C functions that operate on a

behaviorOutput data structure. The output of a behavior is a command for each output
modality, contained within this data structure.

activationLevel One of BehaviorInactive, BehaviorActive
, or BehaviorDone. These indicate the state of activation
or completion of the behavior, and have the ordering of:
BehaviorActive > BehaviorDone > BehaviorInactive

translationalVelocity This is the translational velocity that this behavior will
request if it remains active

rotationalVelocity This is the rotational velocity that this behavior will request
if it remains active

LEDConfig This controls the blinking of the status LEDs
speed This is maximum speed (magnitude of rotV + transV)

allowed for this behavior. This is set by the calling function,
and is used to scale or limit the velocity outputs of the
behavior.

Table 3: The behaviorOutput struct members.

This reduces the task of behavior arbitration to selecting which of these data
structures will be used to control the robot. The architecture and philosophy is very
similar to the subsumption architecture described by Brooks in [5], in which behavior
operations are used instead of sensor data fusion.

The programmer's model is of multithreaded execution in which all the behaviors
are running concurrently. Behaviors are simply C functions, which allows the use of a
simple round-robin scheduler that periodically calls the main behavior function. Since
this is cooperative multitasking, behavior functions must be non-blocking and terminate
quickly.

The behavior system provides functions for operating on behavior outputs.
Ultimately, the main behavior function produces a single behavior output that is passed
to SwarmOS to drive the motors, behavior lights, and ISIS communication system.
There are two primary behavior operators:

subsumeBehaviorOutputs

behOut ⇐ subsumeBehaviorOutputs(behLow, behHigh)

This operator compares the activation level of the higher priority behavior,
behHigh, to that of the lower priority behavior, behLow. Table 3 shows the hierarchy
of activation levels. If the higher priority behavior has a higher activation level than the
lower priority behavior, its output will be returned by the function, otherwise, the
output of the lower priority behavior will be returned.

Stupid Robot Tricks The Swarm Behavior Library Page 48

sumBehaviorOutputs

behOut ⇐ sumBehaviorOutputs(beh1, beh2)

This operator combines beh1 with beh2. The velocities are summed, the
LEDOutputs are the union of the light patterns from beh1 and beh2, and the higher
activation level is passed to the output behavior.

4.2 Types of Behaviors
Figure 20 shows the static function-call tree of the behaviors presented below.

They have been grouped into several categories, based on their goals and type of
interactions with other robots. These categories are:

Demos
Demos are top-level behaviors or programs for demonstrating the swarm’s

capabilities to users, validating mission scenarios, and evaluating algorithm concepts.

Group Behaviors
These behaviors form the bulk of the behavior library. They are responsible for

guiding the actions of a single active robot based on the positions and current state of all
of its neighbors. The entire set of neighbors are the reference robots.

Pair Behaviors
Pair behaviors also direct the actions of a single active robot, but they use the

position and current state of only one neighbor that is the reference robot. Some pair
behaviors do not command any translational velocity. These are labeled as orientation
behaviors on the graph in Figure 20.

Primitive Behaviors
These low-level behaviors do not interact with other robots at all. They provide

low-level motion control and obstacle avoidance for an individual robot.

4.2.1 Functional Behavior Groupings

The Swarm Behavior Library can also be grouped based on functionality.
Applications and Demos have been omitted because they are not library behaviors.
Motion

moveArc
moveStop
moveForward
moveByRemoteControl
bumpMove

Orientation
orientForOrbit
orbitRobot
orientToRobot
matchHeadingToRobot
followRobot

Navigation
followTheLeader
orbitGroup
navigateGradient

Clustering
clusterOnSource
clusterWithBreadCrumbs
clusterIntoGroups

Dispersion
avoidRobot
avoidManyRobots
disperseFromSource
disperseFromLeaves
disperseUniformly

Utility
detectEdges

Figure 20 (Next Page): This graph shows the static function call tree of the Swarm Behavior
Library. Applications at the top, with more primitive behaviors appearing lower on the graph.

Stupid Robot Tricks The Swarm Behavior Library Page 49

Stupid Robot Tricks The Swarm Behavior Library Page 50

4.2.2 Metrics

Two key metrics are used to quantify most behaviors: correctness and path
efficiency. Correctness is a measure of how well a behavior is able to meet its specified
goals. For most behaviors, these goals involve physical positioning of the robots. In
these cases, the ratio of the shortest straight line path to the actual path is measured.

actualPath
thshortestPa

e =

The resulting path efficiency is independent of speed and robot size, and can be used to
compare performance across platforms, and even to biological systems.

4.2.3 Experimental Setup

All data was collected at the iRobot facility between January and May of 2004.
Unfortunately, the Swarm’s centralized data collection system was off-line for these
experiments, so the apparatus shown in Figure 21 was used instead. Sanford bullet-tip
flip-chart markers are preferred because of their resistance to bleed through to the other
side of the paper. This allowed each sheet to be used twice, greatly reducing setup time
for each experiment. A tape measure was used to measure linear distance, and a
Trymeter “Mini Measure Maxx” rolling odometer was used to trace the paths of the
robots. This is a very efficient measuring tool, and is precise enough to measure the
finest detail that the robots produced.

The mounting location for the markers introduced two sources of error. The
markers are attached to the rear of the robot, which causes them to draw an arc when
the robot rotates in place. Also, the weight and friction of the magic markers often
triggers the bump sensors. Attempts were made to eliminate paths from false bump
responses whenever possible.

Figure 21: The state-of-the-art data collection hardware shown above used to measure path
lengths on the swarm. Left: Each robot was instrumented with a magic marker. Right: The
author measuring the path of a robot. (He is in a much better mood now)

Stupid Robot Tricks The Swarm Behavior Library Page 51

4.3 Primitive Behaviors
These behaviors are at the lowest level of the behavior hierarchy. They do not

rely on interactions with nearby robots in their implementation.

4.3.1 moveArc

Moves the robot using a given translational velocity and rotational velocity. This
moves the robot such that its center follows an arc of radius

r

t
v
vb

r
2

=

where b is the lateral separation of the robot’s wheels, tv is the translational velocity
and rv is the rotational velocity. Positive translational velocities move the robot
forward and positive rotational velocities rotate it clockwise.

moveArc(beh, t, r)
1. beh.translationalVelocity = t
2. beh.rotationalVelocity = r

4.3.2 moveStop and moveForward

These behaviors are syntactic sugar for moveArc, but are convenient to use, and
allow the graph in Figure 20 to display behaviors that simply move forward or stop
without combining them with the edges to moveArc.

moveStop(beh)
1. moveArc(beh, 0, 0)

moveForward(beh)
1. moveArc(beh, beh.speed, 0)

4.3.3 moveByRemoteControl

Moves the robot under remote control, usually for demos. This behavior is used
to drive a single robot, while others operate autonomously around it. For example, the
MegaDemo application from section 5.2 uses one robot driven via remote control to
guide the behaviors of robots around it. Special hardware is required on the active robot
to receive the radio control signals.

Stupid Robot Tricks The Swarm Behavior Library Page 52

moveByRemoteControl(beh)
1. readRadioInputs(radio)
2. moveArc(beh, radio.translationalVelocity, radio.rotationalVelocity)

4.3.4 bumpMove

This is the primary obstacle avoidance behavior used by the swarm. When a
robot collides with an obstacle, this behavior becomes active and moves the robot away
from the obstacle. The action of this behavior is somewhat complex, and it is part of
almost every swarm program. In order to simplify the descriptions of the algorithms
presented we will assume that bumpMove is always running and that it is always
successful in navigating robots away from obstacles.

bumpMove(beh)
1. [move robot away from obstacles]

4.4 Pair Behaviors
These behaviors are the simplest behaviors for interacting with neighboring

robots. They move one robot, the active robot, in response to another, the reference
robot. They build upon the primitive behaviors.

4.4.1 orientToRobot

The orientToRobot behavior rotates the active robot to a heading relative to
the bearing the reference robot. The program specifies what bearing the active robot
should maintain relative to the reference robot. Some examples are shown in Figure 22.

Spec
• Rotate so that the target robot is at the desired bearing and maintain this orientation.
• Minimize error and rotate to the goal orientation without overshoot as fast as possible.

orientToRobot(beh, nbr, bearing)
1. beh.translationalVelocity = 0
2. beh.rotationalVelocity = ko * (nbr.bearing – bearing)

Figure 22: The orientToRobot behavior is a flexible way to orient an active robot with respect
to a reference robot. The active robot rotates to the desired orientation relative to the reference.

Stupid Robot Tricks The Swarm Behavior Library Page 53

The active robot computes the bearing of the reference robot using the ISIS
position system. The error between the actual position and desired is used as the input
to a proportional control loop which rotates the active robot towards the reference. The
gain term, ko, is selected to provide the fastest response without overshoot. The active
robot need not face the reference robot, for example, the active robot could maintain an
orientation such that the reference robot is located to its right hand side. This
orientation is shows on the left hand side of Figure 22.

The gain of the control loop is currently limited by the 4 hz neighbor update rate
and will become unstable if the active robot rotates too quickly and overshoots the
reference. This error occurs when the active robot rotates past the desired final heading,
then changes direction on the next ISIS cycle. The current motor control loop uses
velocity control; a position control loop for rotation could reduce this type of feedback
instability, and allow for control loops with higher gains.

Experimental Results
The reference and active robots were placed on an angleometer with a separation

distance of 50 cm. The ISIS system has symmetry every 45°, so results obtained with
input angles from 0-90 can be applied to the rest of the circle. The average error is 8.6 °
with a standard deviation of 5.6 °, which gives a behavior correctness of 98% over the
entire circle. This error is concentrated around 45°, which is one of the known
limitations of the ISIS location system.

4.4.2 matchHeadingToRobot

The matchHeadingToRobot behavior uses both the bearing and orientation of
the reference robot to direct the active robot to face in the same direction. It uses the
orientToRobot behavior and the following equation:

°+= 180ob

where:

orientToRobot: Measured
Angle vs. Desired Angle

0

15

30

45

60

75

90

0 15 30 45 60 75 90
Desired Angle (degrees)

M
ea

su
re

d
A

ng
le

 (
de

re
es

)

Figure 23: Left: The angleometer is used to collect data on inter-robot orientation. The reference
robot has its red light flashing, and the active robot has its green light on. The wire protruding
from the active robot sweeps across an angular scale. Right: The orientToRobot behavior has
high resolution, but a discontinuity around 45°. Average error is 8.6°, with a deviation of 5.6°
from the mean. Overall accuracy is 98% over 360°.

Stupid Robot Tricks The Swarm Behavior Library Page 54

b is the desired bearing input to the orientToRobot Behavior in degrees
o is the orientation of the reference robot in degrees

In the picture in Figure 25, the robot in the center is under remote control, and

all the other robots are matching their heading to it. This behavior is useful for making
formations of robots. When a long-range ISIS beacon is the heading reference, as shown
in Figure 29, this behavior can be used to move the robots along a global heading. The
picture shows the robots moving “north”, and as the beacon is rotated, they change their
direction accordingly. The beacons look symmetrical, but they are directional and have
a front. If the heading of the beacon is kept constant, the robots can use it like a
compass to determine their absolute heading. Multiple beacons can be used to cover the
entire workspace.

Spec
• Rotate such that orientation is the same as the target robot.
• Minimize error and move to the goal orientation as fast as possible without overshoot.

matchHeadingToRobot(beh, nbr)
1. orientToRobot(beh, nbr.orientation + 180)

Line 1 uses the orientToRobot behavior to rotate the active robot, and is
subject to the same dynamic constraints as that behavior. There are two types of
orientation information available: direct orientation that has no additional latency, but
only 45° of resolution, or reciprocal orientation that has 2° of resolution but incurs
another periodic neighbor cycle lag (see section 1.2.2). In practice, this behavior does
not require a fast response, so reciprocal orientation is used for its increased precision.

Figure 24: The pictures above show how a long-range ISIS beacon can be used with the
matchHeadingToRobot behavior to guide the robots in along global heading. The robots are
trying to move “north”. As the beacon is rotated, all the robots change their direction
accordingly. If the heading of the beacon is kept constant, the robots can use it like a compass to
determine their absolute heading. Multiple beacons can be used to cover the entire workspace.

Figure 25: The pictures above show the matchHeadingToRobot behavior in action. The robot
with the antenna is the reference robot, all other robots are active robots.

Stupid Robot Tricks The Swarm Behavior Library Page 55

Experimental Results
The errors in this behavior closely followed the errors in the orientToRobot

behavior. In the areas where ISIS positioning works well, this behavior has very high
accuracy.

4.4.3 followRobot

The followRobot behavior directs an active robot to follow a reference robot.
This is a fundamental behavior and is used in many behaviors, including
clusterOnSource and followTheLeader .

Spec
• Always be within a radius d of the reference robot.
• Always be facing the reference robot.
• The active robot should move along minimum shortest path to its final position at

constant velocity. The final position is any pose that satisfies the above two
constraints.

followRobot(beh, nbr, rd)
1. orientToRobot(beh, nbr.bearing, 0)
2. if nbr.range > rd
3. beh.translationalVelocity = kf * (rd - nbr.range)
4. endif

matchHeadingToRobot: Active
Heading vs. Reference Heading

0

15

30

45

60

75

90

0 15 30 45 60 75 90
Reference Angle (degrees)

A
ct

iv
e

A
ng

le
 (

de
gr

ee
s)

Figure 26: Left: The angleometer is used again to collect data on the matchHeadingToRobot
behavior. The reference robot has its red light flashing, and the active robot has its green light
on. Both reference and active robots have wire indicators. The reference robot is manually
rotated to the input angle, which is selected at random to avoid having the active robot rotate in
only one direction. Right: The matchHeadingToRobot behavior works well when ISIS works
well, but fails when ISIS fails. Average error is 11.1°, with a deviation of 12.1° around the mean.
Accuracy over the full 360° range is 97%.

Stupid Robot Tricks The Swarm Behavior Library Page 56

Line 1 uses the orientToRobot behavior to keep the active robot facing the
reference robot. No provision is made for cases where the orientation error is greater
than 90 degrees, it is assumed that the orientToRobot behavior will respond fast
enough to make this situation short-lived. Lines 2-4 form a control loop that is
responsible for maintaining the desired range to the reference robot. It can be expressed
with the following piecewise function:

() ()
()

<
≥−

=
da

daadf
t rr

rrrrk
v

0

where:

tv (beh.translationalVelocity) is the active robot’s commanded velocity,

dr (rd) is the desired range to the reference robot,

ar (nbr.range) is the actual range to the reference robot,

fk (kf) is the control loop proportional gain constant.

The top equation generates a proportional control loop to have the active robot maintain
the desired range from the reference robot. The bottom equation prevents the active
robot from moving in reverse if it is too close to the leader. Although this discontinuity
causes problems in the control loop, having robots moving in reverse while surrounded
by other robots can be more problematic.

The proportional control loop will leave a steady-state error in tracking the
reference robot that depends on how fast it is moving. If the reference robot is moving
at constant velocity, the active robot will follow with an error of:

k
v

rre ref
da =−=

To combat this, the controller has an integral term to reduce this steady-state
error. Piecewise control logic clears the integrator state when the active robot gets
within dr of the reference.

Seperation Distance vs. Time

0

20

40

60

80

100

Time

Se
pe

ra
ti

on
 D

is
ta

nc
e

Figure 27: Left: The followRobot behavior produces the traces above. The red robot is the
leader, and the green the follower. Each robot is programmed to “twitch” every two seconds so
that their separation distances can be compared from the traces. Right: The commanded
distance is 40 cm, and the average measured inter-robot separation is 39 cm, which yields a
accuracy of 97% and a path efficiency of 114%. Both of these metrics were distorted somewhat
because turns allow the follower to take “shortcuts” and round the corners on a shorter path than
the leader.

Stupid Robot Tricks The Swarm Behavior Library Page 57

Experimental Results
Figure 48 in the followTheLeader behavior section shows video clips of this

behavior in action. Figure 27 shows some traces from this behavior. The commanded
distance is 40 cm, and the average measured inter-robot separation is 39 cm, which
yields an accuracy of 97%. Path efficiency is 114%, but turns allow the follower to take
“shortcuts” and round the corners on a shorter path than the leader. This artificially
increases path efficiency and adds error to the separation distance measurement.
However, the follower never got separated from the leader. Using the “twitch” technique
caused problems in measurement, especially around turns where the twitches could be
easily obscured in the motions of the robot. A calibrated video imaging system would
provide more accurate results

4.4.4 avoidRobot

The avoidRobot behavior directs an active robot to move away from a reference
robot. This behavior is used for dispersion.

Spec
• The active robot should always be further than distance d from the reference robot
• The active robot should move along the shortest path to its final position at constant

velocity. The final position is any one that satisfies the above constraint.

avoidRobot(beh, nbr, d)
1. beh1 ⇐ EmptyBeh
2. beh2 ⇐ EmptyBeh
3. if nbr.range < d
4. orientToRobot(beh1, nbr.bearing, 180)
5. moveForward(beh2)
6. sumBehaviors(beh, beh1, beh2)
7. endif

This behavior is very similar to the followRobot behavior. Line 3 activates the

Rotation Angle vs. Path Effeciency

0%

20%

40%

60%

80%

100%

0 45 90 135 180

Rotation Angle

P
at

h
E

ff
ec

ie
nc

y

Figure 28: Left: The avoidRobot behavior produces the traces shown. The red robots were
started facing upper-left, and the green traces are from robots released facing the upper-right.
The summation of orientToRobot and moveForward produces the “J”-shaped traces shown.
Right: The data shows path efficiency declines as the rotation angle increases. Average path
efficiency is 69%, and average distance accuracy is 93%.

Stupid Robot Tricks The Swarm Behavior Library Page 58

behavior if the range condition is violated. Lines 4-5 use the orientToRobot behavior
to face the active robot away from the reference and the moveForward behavior to
move it forward. The two behaviors are combined in line 6, the net result being motion
away from the reference.

Experimental Results
The behavior moves the active robot away from the reference. The path

efficiency varies depending on the angle the active robot has to turn to get away from
the reference. The worst case scenario occurs when the active robot is facing the
reference robot and begins to avoid it. The active robot will move in a “J” pattern as
the orientToRobot behavior turns the robot while moveForward is active. This can
be seem in Figure 28.

This error can be reduced by implementing the behavior such that the active
robot only moves forward when it is facing away from the reference. However, it would
produce jerky robot motion and require a tuning parameter for the allowable bearings to
activate moveForward.

4.4.5 orientForOrbit

This behavior orients an active robot with respect to a reference robot such that
if the active robot were moving forward, it would move in a circular path around the
reference robot.

Spec
• Orient the active robot to move away from the reference robot if they are too close, to

move towards the reference robot if they are too far, and transition smoothly between
these two directions for an intermediate region.

orientForOrbit(beh, nbr, rd, orbitDir)
1. if nbr.range > rd + c
2. dir = 0
3. else if nbr.range < rd - c
4. dir = 180
5. else
6. if orbitDir = ClockWise
7. dir = 180 – nbr.range * (90 / c)
8. else
9. dir = 180 + nbr.range * (90 / c)
10. endif
11. endif
12. orientToRobot(beh, nbr.bearing, dir)

Stupid Robot Tricks The Swarm Behavior Library Page 59

The orientation direction from the orientForOrbit behavior is given by:

Eq 2

()
()
()

−<°

+≤≤−
°

−°

+>°

=

crr

crrcrr
c

crr

dir

d

dd

d

180

90
180

0

for a clockwise orbit and

Eq 3

()
()
()

−<°

+≤≤−
°

+°

+>°

=

crr

crrcrr
c

crr

dir

d

dd

d

180

90
180

0

for a counterclockwise orbit, where:
dir(dir) is the desired orientation of the active robot relative to the reference robot,
dr (rd) is the desired orbit radius,

r (nbr.range)is the actual radius (range) to the reference robot,
c (c) is a constant that determines the width of the transition region.

Most of the work is done in lines 6-10, which represent the middle cases in both
equations. When the distance between the active robot and the reference robot is
greater than the desired radius, the active robot turns towards the reference. If the
distance is less than the orbit radius, the active robot turns away. Lines 1-5 limit the
active robot to pointing directly at the reference robot or pointing directly away. Figure
29 shows the orientation for a clockwise orbit and the three different range zones
corresponding to the three cases in Eq 2. Selection of the constant c affects the size of
the transition zone between pointing towards and pointing away from the reference
robot.

Experimental Results
Figure 30 shows the results of testing the behavior. Qualitative performance is

good, the active robot will orient in such a way as to move away from the reference

Figure 29: The orientForOrbit behavior orients an active robot relative to a reference robot. If
the active robot is too close to the reference, the active robot turns away. If the active robot is
too far from the reference, it turns to face the reference. The orientation is used by the
orbitRobot behavior to guide the active robot in a circular path around the reference robot. The
arrows indicate the orientation of the active robot as a function of range.

Stupid Robot Tricks The Swarm Behavior Library Page 60

robot if too close, and move towards the reference if too far. Quantitative performance
beyond 50 cm was far from the ideal orientation. As the range approaches the limits of
the ISIS system, the range information has more errors. In addition, this behavior uses
orientToRobot , and will have errors from
that behavior as well.

4.4.6 orbitRobot

This behavior guides one robot
around another in a circular path. The
moving robot is the active robot, and the
robot at the center of the circular path is
the reference robot. This behavior is used in
the orbitGroup behavior, and for inter-
robot positioning.

Spec
• Move the active robot in a circular path of

radius d around the reference robot.

orbitRobot(beh, nbr, d, orbitDir)
1. beh1 ⇐ EmptyBeh
2. beh2 ⇐ EmptyBeh
3. orientForOrbit(beh1, nbr, d, orbitDir)
4. moveForward(beh2)
5. sumBehaviors(beh, beh1, beh2)

orientForOrbit(clockwise): Desired and Actual
Oriebtation vs. Reference Range

-45

0

45

90

135

180

0 20 40 60 80 100 120 140 160

Reference Range (cm)

A
ct

iv
e

A
ng

le
 (

de
gr

ee
s)

Desired Orientation Actual Orientation (strength = 1)
Actual Orientation (strength = 4) Actual Orientation (strength = 7)

Figure 30: The orientForOrbit behavior attempts to orient the robot in such a way that if it
were moving forward, it would move in a circle around the reference robot. The gray line shows
the desired orientation for an orbit of 45 cm, with 90° (reference robot to the right) occurring at
45 cm. The behavior works well at close ranges and around the orbit radius, but the performance
is poor further away. Fortunately, these types of errors will not adversely effect the qualitative
performance of the function, robots that are further away than the desired radius will orient
themselves to face the reference robot. The error is actualdesired − and the average is 28.5°,
with a standard deviation of 26.3°. Accuracy over the full 180° range is 84%.

Figure 31: This is a sketch of the
orbitRobot vector field. This vector field
is the sum of the velocity outputs of
orientForOrbit + moveForward produce
a velocity vector field with a stable limit
cycle at a radius d from the reference robot.
Robots that move along this field will orbit
the reference in approximately a circular
path..

Stupid Robot Tricks The Swarm Behavior Library Page 61

Lines 1-2 initialize temporary storage. Lines 3-4 run the two component
behaviors, and line 5 combines their outputs into one resultant behavior. The
orientForOrbit behavior combined with the moveForward behavior produce the two-
dimensional velocity vector field centered around the reference robot shown in Figure 31.
This field has a circular stable limit cycle, the circular path of radius r around the
reference robot. A robot placed anywhere in this vector field will converge to this limit
cycle.

This implementation has the advantage that the orbiting robots need to maintain
no state about their orbit, only the last measurement of range. If the reference robot
moves, this behavior will gracefully degrade into behaviors very similar to followRobot
or avoidRobot, depending on the new range. This gives the behaviors considerable
robustness to interference from other behaviors, obstacles, and communication errors. It
is very similar in spirit to the vehicles proposed by Braitenburg. [16]

Experimental Results
Figure 32 shows some images from a video clip, and figure Figure 33 shows the

traces left behind an orbiting robot. The stable limit cycle to attract a robot from any
x-y position relative to the reference is evident in the middle picture of Figure 33. In
addition, the active robot can be started at any orientation relative to the reference, and
will rotate towards the limit cycle, as shown in the right-hand image. Figure 34 shows a

Figure 32: These video clips show a group of robots orbiting a reference robot. The reference
robot is the one with the tall black antenna.

Figure 33: These traces show some results of orbitRobot behavior. All orbits are clockwise.
Left: A steady-state orbit is quite stable, but shows some systematic errors at certain locations.
Middle: The orbitRobot behavior uses a stable limit cycle to guide the active robot around the
reference. Right: This detail view shows the path of an active robot when released facing the
cardinal and intercardinal directions. The reference robot’s position is in the lower right corner.
The active robot quickly turns around and follows the trajectories back to the limit cycle.

Stupid Robot Tricks The Swarm Behavior Library Page 62

plot of the orbit radius vs. the angle. Overall, the orbiting is quite good, with an over all
accuracy of 93%. The stability given by the vector field approach makes it possible to
use this behavior in unstructured environments and with many robots nearby.

4.5 Group Behaviors

4.5.1 avoidManyRobots

The avoidManyRobots behavior directs a active robot to move away from a set
of reference robots. This behavior is used in the disperseFromSource and
disperseFromLeaves behaviors in the following sections.

Spec
• The active robot should always be

further than distance d from all
reference robots

• The active robot should move along
shortest path to its final position at
constant velocity. The final
position is any one that satisfies the
above constraint.

First we define a helper

function, computeAverageBearing:

Orbit Radius vs. Angle

0

10

20

30

40

50

60

0 90 180 270
Angle (degres)

O
rb

it
 R

ad
iu

s
(c

m
)

Figure 34: The orbit radius vs. angle is shown above. The error bars denote minimum and
maximum radii. The commanded radius is 45 cm, and the average measured radius is 48 cm.
The slight sinusoidal error in the data is most likely the result of not locating the exact center of
the reference robot after it was removed. Over the entire sample, the deviation from the mean is
2.8 cm and the accuracy is 93%.

Figure 35: The avoidManyRobots behavior moves
an active robot away from the average direction of
the reference robots.

Stupid Robot Tricks The Swarm Behavior Library Page 63

computeAverageBearing(nbrSet) returns b
1. for i ⇐ 1 to length(nbrSet)
2. v ⇐ v + unitVector(nbrSet[i].bearing)
3. endfor
4. b ⇐ arctan(v)

The variable v is a vector, and the function unitVector(θ) takes an angle as an
input and returns a unit vector rotated to the given angle. This function returns the
angle of that resultant vector.

avoidManyRobots(beh, nbrSet , d)
1. beh1 ⇐ EmptyBeh
2. beh2 ⇐ EmptyBeh
3. nbrSet ⇐ nbrOp(*, nbr.range < d)
4. if nbrSet ≠ ∅
5. b ⇐ computeAverageBearing(nbrSet)
6. rotateToAngle(beh1)
7. moveForward(beh2)
8. sumBehaviors(beh, beh1, beh2)
9. endif

This behavior is very similar to the avoidRobot behavior. Line 3 discards all
neighbors that are further than d from the active robot. Line 4 computes the average
bearing to this set of neighbors. Lines 5-7 rotate the active robot to the desired heading
while moving it forward.

This behavior has the same worst-case scenario as avoidRobot , when the active
robot is facing the reference robots and begins to avoid them. The active robot will
move in a “j” pattern as the rotateToAngle behavior turns the robot while
moveForward is active.

Experimental Results
 Figure 36 shows the data collected from this behavior. The optimal final

position can be computed based on the positions of the references and the starting
location of the active robot. The avoidManyRobots behavior has a final position

Dispersion Distance

0

20

40

60

80

1 11 21 31

Trials

D
is
ta

nc
e

(c
m

)

Actual
Dispersion

Desired
Dispersion

Rotation Angle vs. Path
Effeciency

0%
20%
40%
60%
80%

100%

0 45 90 135 180

Rotation Angle

P
at

h
E
ffe

ci
en

cy

Figure 36: The avoidManyRobots behavior has a final position accuracy of 76% and a path
efficiency of 68%. Left: The avoidManyRobots behavior achieves the desired separation
distance of 40 cm. Right: Like avoidRobot , the path efficiency decreases as the angle the active
robot has to rotate to move away fro the references increases.

Stupid Robot Tricks The Swarm Behavior Library Page 64

accuracy of 76% and a path efficiency of 68%. Like avoidRobot , the path efficiency
decreases as the angle the active robot has to rotate to move away from the references
increases.

4.5.2 disperseFromSource

Dispersion is a core behavior for swarms of robots, as the ability to spread
throughout an environment is often the primary reason to deploy a large number of
robots. There are three dispersion behaviors discussed in this work. The
disperseFromSource behavior moves the swarm away from a distinguished source
robot, which remains stationary. The disperseFromLeaves behavior moves the entire
swarm, including the source, away from leaf robots. In this behavior, the leaf robots
remain stationary. The disperseUniformly behavior moves all robots away from each
other in order to produce and maintain uniform dispersion. It uses environmental
boundary conditions to limit the final dispersion.

The goal of the disperseFromSource behavior is to expand the swarm radially
from a central location. This is useful for filling a large area quickly, or deploying from a
landing point.

Spec:
• The source robot should not move.
• All robots should be no closer than d to any other robot
• All non-source robots should move in a straight path at constant velocity to final

dispersed position.

Figure 37: These robots are dispersing from the source of a gradient communication using the
disperseFromSource behavior. The active robot moves away from all neighbors that are fewer
or equal hops from the source.

Stupid Robot Tricks The Swarm Behavior Library Page 65

disperseFromSource(beh, gType, d)
1. nbrSet ⇐ nbrOp(nbr.M[gType].hops ≤ self.M[gType].hops)
2. if nbrSet ≠ ∅
3. avoidManyRobots(beh, nbrSet, d)
4. endif

Closest Neighbor Distance
vs. Hops from Source

0

20

40

60

80

100

0 1 2 3 4
Hops from Source

D
is

ta
nc

e
(c

m
)

Distance at Each Hop

Average Distance

Desired Distance

Linear Distance vs. Path Length

0

50

100

150

200

0 50 100 150 200 250 300 350 400

Path Length (cm)

L
in

ea
r

D
is
ta

nc
e

(c
m

)

Linear Distance vs. Communication Hops

0

50

100

150

200

0 1 2 3 4

Hops

L
in

ea
r

D
is
ta

nc
e

(c
m

)

Figure 38: Data from multiple runs of disperseFromSource. Top Left: Traces from one run.
The final positions have been triangulated to compute closest neighbors. Top Right: The inter-
robot separation distances plotted vs. hops from source. The desired separation distance is 40cm,
the average separation is 57 cm, and the minimum is 40 cm. Of note is the large separations of
the 4-hop robots that are on the edge of the network. This is not present in
disperseFromLeaves Bottom Left: Linear distance does not correlate well with path length.
This is most likely due to the interference near the source. Bottom Right: Communication
hops does scale with linear distance, due to the line-of-sight IR communications system.

Figure 39: These video clips show the disperseFromSource behavior in action.

Stupid Robot Tricks The Swarm Behavior Library Page 66

Line 1 makes a set of all the robots that are at fewer or equal hops from the
source than the active robot. If this set is non-empty then line 3 moves the active robot
away from the average bearing to all of these robots. Figure 37 illustrates this process,
and shows one active robot dispersing from its neighbors. Usually, all robots except for
the source are also dispersing, and their motions sometimes interfere with each other,
especially if robots in the interior cannot satisfy the range constraints. This interference
will eventually push the robots on the perimeter outward, creating more space for the
interior robots.

The algorithm terminates when the avoidManyRobots behavior is inactive,
which implies that all the robots have met their distance constraints: each robot is
further than d from its parent or sibling neighbors. This means that 1-hop robots are
further than d from the source or any other 1-hop robot. By induction, all robots are
further than d from all their neighbors. It is very unlikely for gradient propagation to
have persistent hop errors in messages, which means that it is very unlikely that some
robot always moves in the incorrect direction.

This behavior does not close “holes” in a fully dispersed swarm, Once robots
have satisfied their range constraint, a void left by a removed robot will cause the
surrounding robots to acquire new neighbors, all of which must be further away than the
robot that was removed. The disperseUniformly behavior is the only dispersion
behavior presented here that can close voids.

Experimental Results
The resulting group behavior is effective: all the robots move away from the

source in a semi-orderly fashion, and then achieve the desired inter-robot separation
distance of d from all downstream and lateral neighbors. Over all runs, the minimum
inter-robot separation distance was 40cm. The average was 57 cm, which is to be
expected because there is no constraint on the maximum separation distance.
Essentia lly, any jostling, or sensor error will tend to only move the robots further away
from each other. The average path efficiency is 64%, and there is much interference
around the source as robots jostle to get into free space.

4.5.3 disperseFromLeaves

The goal of the disperseFromLeaves behavior is to expand the swarm, including
the source robot(s), away from the leaves of the gradient tree. This is useful for
exploring interior locations, including areas with constrictions and multiple paths. It can
also fill a large area quickly. An external behavior is responsible for selecting the source
robots.

Spec:
• The leaf robots should only move in response to other leaf robots.
• All robots should be no closer than d to any other robot.
• Move in a straight path at constant velocity to final dispersed position.

Stupid Robot Tricks The Swarm Behavior Library Page 67

disperseFromLeaves(beh, gType, d)
5. nbrSet ⇐ nbrOp(nbr.M[gType].hops ≥ self.M[gType].hops)
6. if nbrSet ≠ ∅
7. avoidManyRobots(beh, nbrSet, d)
8. endif

Line 1 makes a set of all the robots that are greater or equal hops from the
source. If this set is non-empty then line 3 moves the active robot away from the
average bearing to all of these robots. Figure 40 illustrates this process, and shows one
active robot dispersing from its neighbors. Usually, all robots except for the source are
also dispersing, and their motions sometimes interfere with each other, especially if
robots in the interior cannot satisfy their range constraints. This interference will
eventually push the robots on the perimeter outward, creating more space for the
interior robots.

The discussion parallels that of disperseFromSource. The algorithm terminates
when the avoidManyRobots behavior is inactive, which implies that all the robots have
met their distance constraints, and every robot is further then d from all of its
neighbors. Like disperseFromSource, this behavior does not close “holes” in a fully
dispersed swarm.

Care must be taken in source robot selection. If source robots are located in the
interior of the network, then as robots move away from the leaves, they will not have
anywhere to go. The worst case is when the source robot is at the center of the graph
and all the leaves are an equal number of hops away, there will be very little motion at

Figure 40: These robots are dispersing from the leaves of a gradient communication tree using the
disperseFromLeaves behavior. The active robot moves away from all neighbors that are
children or siblings in the gradient tree. This moves the active robot away from the leaves of the
tree and towards the source.

Stupid Robot Tricks The Swarm Behavior Library Page 68

all. The directedDispersion demo in section 5.5 uses edge robots (see detectEdges in
section 4.5.10) as sources.

Experimental Results
The resulting group behavior is effective as long as the correct robot is selected as

Linear Distance vs. Path Length

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500

Path Length (cm)

L
in

ea
r

D
is

ta
nc

e
(c

m
)

Linear Distance vs.
Communication Hops

0

50

100

150

200

0 1 2 3 4

Hops

L
in

ea
r

D
is

ta
nc

e
(c

m
)

Closest Neighbor Distance
vs. Hops from Source

0.0

20.0

40.0

60.0

80.0

0 1 2 3 4
Hops from Source

D
is
ta

nc
e

(c
m

)

Distance at Each Hop

Average Distance

Desired Distance

Figure 41: These traces show some results of the disperseFromLeaves behavior. After
dispersing, the average inter-robot separation was within 92% of the specified separation distance.
The path efficiency is 45%. Bottom Right: Note that the dispersion distances are much more
uniform than those of disperseFromSource.

Stupid Robot Tricks The Swarm Behavior Library Page 69

the source. Figure 41 shows data collected from experimental runs where the source was
a robot that is on the edge of the swarm.

Leaf robots can move in response to each other. This is required to satisfy the
dispersion distance constraint among leaf robots along the perimeter of the swarm, but
weakens the useful property of leaf robots staying where they are placed – sort of like
maximum extent markers. However, if leaf robots did not respond to each other, it
would be possible to have an arbitrary number of them piled into a corner, which is a
worse problem.

If there are multiple sources in the swarm, the Voronoi tessellation will allocate
robots to sources in such a way as to encourage a breadth-first search of the entire
workspace. The image in the bottom-left of Figure 41 illustrates this behavior. The
robots on the left side of the plot are in a corridor, and are not constrained to disperse at
the same rate as the robots in the open area to the right. However, because as each
source moves forward, it moves further from its leaves, and gives the other source the
opportunity to have robots move in its direction. This tends to balance the dispersion
from the intersection of the two gradients, which is in the lower left of the image. This
property is exploited in the Directed Dispersion application in section 5.5.

The path efficiency is 45%, which is comparable to disperseFromSource, and
there is also a tight correlation between linear distance and communication hops.
However, the correlation between linear distance and path length is worse, which can be
seen in the hectic nature of the traces. The accuracy of the inter-robot separation
distance from the desired separation is 92%, which is much higher than that of
disperseFromSource. One reason is that disperseFromSource “pushes” robots away
from the source and produces radially divergent paths. This tends to increase separation
distances between sibling robots as they get further from the source, as can be seen in
the upper right graph of Figure 38. The disperseFromLeaves behavior does not have
this property.

4.5.4 diperseUniformly

The diperseUniformly behavior spreads the robots uniformly throughout the
environment. Walls and maximum ISIS communication range are used as boundary
conditions to limit the final dispersion.

Spec:
• Fill the containing workspace with robots such that the variance of the inter-robot

separation distances is as small as possible.

diperseUniformly(beh)
1. nbrSet ⇐ nbrOp-closestN(nbrs, NumClosest)
2. beh.translationalVelocity = vTrans(nbrSet)
3. beh.rotationalVelocity = vRot(nbrSet)

Where vTrans() and vRot() are given by the velocity equations defined below.

()()∑
=

−
⋅

−=
c

1i
isafei

safe

max
trans range.nbrListrbearing.nbrListsin

rc
v

v

Stupid Robot Tricks The Swarm Behavior Library Page 70

()()∑
=

−
⋅

−=
c

i
isafei

safe

max
rot range.nbrListrbearing.nbrListcos

rc
v

v
1

where:
bearing.nbrList i and range.nbrList i are the bearing and range to ith neighbor in

the nbrList array.

safer is the maximum distance two robots can be separated by and still receive 80% of
the ISIS packets sent between them.

maxv , which is set to beh.speed, is the maximum speed output by this behavior.
c is equal to NumClosest, which is the number of closest neighbors to consider when

computing the dispersion vector. This is an approximation to finding Voronoi
neighbors and is described in detail below.

Each term in the summation is the contribution to the active robot’s velocity

vector from a single neighbor. This term is large if the neighbor is nearby, small if the
neighbor is distant, and zero if the neighbor is further away than safer . Figure 42 shows
a plot of the magnitude of the velocity contribution from one neighbor. The direction of
the velocity is away from each neighbor. The summation adds the contributions from
each neighbor, then scales the computation by the number of neighbors to produce a
final velocity vector.

The disperseUniformly behavior is essentially a relaxation algorithm; imagine
compressed springs placed between neighboring robots. This will tend to expand the
swarm to fill the available space, but once the space is occupied, robots will position
themselves to minimize the energy in the springs. Total group energy is minimized by
minimizing local contributions, which happens when all the inter-robot distances are
roughly equal. A thorough treatment of this technique is presented in [3]. Physical
walls and a maximum dispersion distance of safer are used as boundary conditions to
help prevent the swarm from spreading too thin and fracturing into multiple
disconnected components. Figure 46 and Figure 44c show the robots uniformly dispersed
in variously sized spaces.

The closest neighbors in a graph can be found by triangulation, and are also
called Voronoi neighbors, as they are neighbors of the adjoining Voronoi polygons of

irobot in the network graph G . Determining the set of Voronoi neighbors vnbrs
from the set of all neighbors, neighbors, in real-time, is computation-intensive, [4] so
an approximation is used. The closest neighbor to the robot will always be in the set

Figure 42: The diperseUniformly velocity equations command a velocity of vmax when the active
robot is close to a neighboring reference robot. The commanded velocity falls to zero when the
active robot is further than rsafe from the reference robot..

Stupid Robot Tricks The Swarm Behavior Library Page 71

vnbrs . However, avoiding a single robot results in hectic movement as small sensor
errors can cause the closest neighbor to change often. Increasing the number of
neighbors in the approximation can cancel some of the sensor noise, but can also include
many non-Voronoi neighbors and cause the dispersion errors shown in Figure 44a-h. If
all neighbors are used in the set, all the robots are forced against the walls.

The disperseUniformly behavior can close voids in the network, but only if the
environment is smaller than the maximum safe dispersion, which occurs when all robots
are at a range of safer from their neighbors.

Experimental Results
In practice, using the two closest neighbors worked the best. There are some

cases in which second-closest neighbor is not a Voronoi neighbor, caused when the
farther neighbor is “shadowed” by the closer neighbor. This case causes the robot to
move in the same direction it would if only avoiding one neighbor, which does not cause
errors, but does increase jitter. This “shadowing” effect is usually short lived, as the
robot will typically encounter another neighbor or obstacle quickly.

The behavior takes a long time to move the robots throughout their environment,
with an average path efficiency of no more than 6%. All the robots are in constant
motion, making their paths difficult to measure. An estimate based on a max velocity of
22 cm/s, and a longest path through the environment of 668 cm, and an average running
time of 10 minutes yielded this result. Attempts to accelerate the motion in general
cause excessive motion from interior robots. The motion is from neighbor position noise
which comes from both sensor errors, packet collisions, and the two-neighbor
approximation. Future work will be to compute more of the Voronoi neighbors and
compare performance.

In order to compute the correctness, the ideal inter-robot separation, opte , must
be computed. This can be computed by taking the total workspace area and computing
the maximum area that can be occupied by packed circles [9]. The diameter of the
circles is equal to opte :

Figure 43: These video clips show the disperseUniformly behavior in action. For the keen of eye,
robots that are near walls are flashing their blue light; robots in the interior are flashing their
green light.

Stupid Robot Tricks The Swarm Behavior Library Page 72

aa hpacking η=

Where a is the workspace area and hη is
32

π = 0.906899682...

Robots on the perimeter of the workspace will occupy
semicircles instead of circles, and this complicates using the packing
efficiency to simplify the problem. Another approach is to increase
the size of the workspace area as a function of the perimeter to allow
full circles to be used for robots on the edge. In order to do this
exactly, the final positions of each robot and the shape of the
perimeter must be known. We can approximate the increase of

edgea by adding a series of half -circles of radius 2opte around the
perimeter of the workspace. (Imagine a string of pearls with each
pearl cut in half)

()
2

2 2
opt

hc
e

a
π

=

opt
hc e

p
n =

8

pe
naa opt

hchcedge
π

==

where p is the perimeter of the workspace.
The area “occupied” by each robot is:

()
2

finishstart

edgepacking
robot nn

aa
a

+
+

=

where startn and finishn are the number of robots at the beginning
and end of each trial. This is not constant as robots must be

Figure 44: The diperseUniformly algorithm is designed to spread the robots
evenly. Instead of computing the closest neighbors (the neighbors of
adjoining Voronoi polygons) to determine which robots to avoid it avoids the
n closest neighbors, sorted by range. Figs. a-h show the results of avoiding an
increasing number of neighbors, with h showing the limit. Avoiding the two
closest neighbors worked best in practice.

Stupid Robot Tricks The Swarm Behavior Library Page 73

removed to recharge. We will replace this with n .

8n

pe

n
a

n
8

pe
a

a opth

opt
h

robot
π

+η=

π
+η

=

and from the area of the packing circles:

2
optrobot ea π=

The optimal edge length can then be computed:

0
n
a

e
n8
p

e h
opt

2
opt =

π
η−−

The net result is a quadratic for opte that can be solved in closed form or by numerical
methods. When optr is compared to the experimental data in Figure 45, the average
inter-robot separation distance is 90% of the best theoretical spacing.

Inter-Robot Spacing vs. Density

0

20
40

60

80

100

120

140

0 1 2 3 4 5

Density (robots/m2)

A
ve

ra
ge

 I
nt

er
-R

ob
ot

Sp

ac
in

g
(c

m
)

Average Edge
Length (cm)

Ideal Edge
Length (cm)

Figure 45: These traces show some results of the diperseUniformly behavior. After dispersing,
the average inter-robot separation was 90% of the theoretical optimum. The path efficiency of
this algorithm is low, as the robots are in constant motion, and was no higher than 6%.

Figure 46: The picture on the left is a dispersion into the small test space used for experiments.
The picture on the right shows robots dispersed in a very large room, note the person in the
upper-left corner.

Stupid Robot Tricks The Swarm Behavior Library Page 74

4.5.5 followTheLeader

The followTheLeader behavior dynamically constructs an ordered line of robots.
This line is suitable for leading a group of robots into an area. Another behavior is
required to control the leader.

Spec
• Form a graph of n robots using n-1 edges. (A line of robots)
• Maintain a specified maximum edge length for each edge in this graph.

Figure 47 shows a diagram of this behavior. The pseudocode for this algorithm is
somewhat long, and is shown on the next page. The application program passes in the
inputs described below:

beh The behavior output struct.
lengthInput The total length of the line. Only used by the line leader.

d The inter-robot dispersion distance.
lineLeader A Boolean. If true, sets this robot as the line leader.

Table 4: Follow the leader input parameters.

In addition, there are neighbor data variables that are required to form the line:

<leaderID> The robotID of the leader of the current robot
<followerID> The robotID of the follower of the current robot

<length> The length of the line
<order> The order of the current robot in the line

<lineLeaderID> The robotID of the line leader

Table 5: Follow the leader neighbor data byte variables.

Figure 47: The followTheLeader behavior constructs a line subgraph from the total group of
robots. There is one distinguished leader robot that is responsible for recruiting the first
follower. Each successive follower recruits another until the line is the desired length.

Stupid Robot Tricks The Swarm Behavior Library Page 75

followTheLeader(beh, lengthInput, d, lineLeader)
1. defineNbrVar 〈leaderID, followerID, length, order, lineLeaderID〉
2. if lineLeader = True
3. leaderID ⇐ ∅
4. length ⇐ lengthInput
5. order ⇐ 1
6. lineLeaderID ⇐ MyRobotID
7. else
8. leaderNbr ⇐ nbrOp-ID(*, nbr.followerID = MyRobotID)
9. if leaderNbr ≠ ∅
10. leaderID ⇐ leaderNbr.robotID
11. length ⇐ leaderNbr.length
12. order ⇐ leaderNbr.order + 1
13. lineLeaderID ⇐ leaderNbr.lineLeaderID
14. followRobot(beh, leaderNbr, d)
15. else
16. leaderNbr ⇐ nbrOp-ID(*, nbr.followerID = AnyRobotID)
17. if leaderNbr ≠ ∅
18. leaderID ⇐ leaderNbr.robotID
19. else
20. leaderID ⇐ ∅
21. endif
22. length ⇐ 0
23. order ⇐ 0
24. lineLeaderID ⇐ ∅
25. endif
26. endif

27. if length > order
28. if (followerID ≠ ∅) and (followerID ≠ AnyRobotID)
29. followerNbr ⇐ nbrOp-ID(*, followerID)
30. if (followerNbr ≠ ∅) and (followerNbr.leaderID = MyRobotID)
31. /* The previous follower is still there and following */
32. else
33. followerNbr ⇐ ∅
34. endif
35. endif

36. if (followerNbr = ∅)
37. followerNbr ⇐ nbrOp-Closest(*, nbr.leaderID = MyRobotID)
38. if followerNbr ≠ ∅
39. followerID ⇐ followerNbr.robotID
40. else
41. followerID ⇐ AnyRobotID
42. endif
43. endif
44. else
45. followerID ⇐ ∅
46. endif

Stupid Robot Tricks The Swarm Behavior Library Page 76

Each robot is responsible for recruiting the next robot in the line. This process

continues until it gets to the last robot, which does not recruit a follower. The
recruitment process is controlled by the set of neighbor variables described in Table 5.
The code is divided into two sections. The top section (lines 1-26) is responsible for
finding and following a leader robot, and is divided into three highlighted subsections.
The second section (lines 27-46) is responsible for recruiting a follower robot.

Section 1: Following a Leader
Line 1 creates the neighbor variables described in Table 5. Lines 3-6, the first

subsection (red highlight), are executed if this robot is the line leader. Line 3 invalidated
the leaderID, because this robot has no leader. Line 4 copies the lengthInput input
parameter into the length neighbor variable. Line 5 sets the order, and line 6 copies
this robot’s robotID into the lineLeaderID neighbor variable.

If this robot is not the line leader, then it looks for its leader, i.e. any nearby
robot that has its followerID variable set to the active robot’s robotID. Line 8 does this
comparison. If one is found, lines 10-14, the second subsection (green highlight), are
executed to update the active robot’s state in lines 10-13 and follow the leader in line 14.

If no leader is found, the third subsection (blue shading), looks for a neighbor
that is recruiting a follower. The neighbor advertises this by broadcasting
AnyRobotID in its followerID neighbor variable. If a neighbor is recruiting, then the
active robot copies that robot’s robotID into its leaderID neighbor variable. This will
be used in line 30 in the leader robot. If there is no neighbor recruiting, then line 20
clears the leaderID neighbor variable. In either case, there is no robot to follow and this
robot is not part of a line, so lines 22-24 reset all neighbor variables.

Figure 48: These video clips show the followTheLeader behavior in action. Constant
handshaking between successive robots keeps the line robust. If a robot does not respond,
another is recruited to take its place. The chain breaks in frame four, re-forms in frame five, and
is stable in the final frame.

Stupid Robot Tricks The Swarm Behavior Library Page 77

Section 2: Recruiting a Follower
The second section (lines 27-46) will recruit a follower robot if necessary. Line 27

checks to see if a follower is needed. If not, then line 45 invalidates the followerID
neighbor variable, which stops the recruitment process.

If a follower is needed, lines 28-30 check to see if the previous follower is still
visible and still reporting that the active robot is its leader. If not, line 33 invalidated
the followerNbr neighbor struct.

If followerNbr is null, either because it has never been set or because it has been
cleared in line 33, then this robot need to recruit a follower. Line 37 checks to see if any
neighbor has responded to a previous recruitment attempt. If so, then line 39 completes
the recruitment of this neighbor by setting the followerID neighbor variable. This will
interact with line 8 in the neighboring robot, and allow it to start following. If there
have been no responses to the recruitment, line 41 sets to the followerID to
AnyRobotID to try and recruit a follower.

Once the link is established, the leader and follower are handshaking

continuously with their followerID and leaderID neighbor variables. If the leader does
not see its follower, it will recruit another. This constant handshaking lets the line re-
form quickly if robots lose communications or encounter physical obstacles that
preventing them from following their leader.

Each recruitment takes three neighbor cycles. First the leader has to advertise
for a recruiter, that robot needs to respond, then the leader needs to acknowledge that
response before the follower starts following. The maximum time to propagate the
recruit packets from the line leader to the last robot is

ntlineLength3 ⋅⋅

Experimental Results
This behavior works well, and is quite a crowd pleaser. The constant

handshaking and re-recruiting makes the behavior robust in spite of communications
failures and physical obstacles. A variant of the algorithm where follower robots follow
any robot that is recruiting if they do not have a leader yet reduces the time to form the
line to ntlineLength ⋅ , but can cause interference if multiple robots respond to the same
leader.

4.5.6 orbitGroup

The orbitGroup behavior directs an active robot to move in a path around the
perimeter of a group of reference robots. This is useful for perimeter surveillance or
general-purpose group navigation.

Spec
• Move an active robot around a designated group of reference robots along a path offset

a distance d from the perimeter of the group. This path should be tight, tracking both
convex and concave curves of the group. It should be no closer than d and no further
than ()d22 from any reference robot.

• The active robot should move with constant velocity along this path.

Stupid Robot Tricks The Swarm Behavior Library Page 78

orbitGroup(beh, d, orbitDir)〈orbiter〉
1. if orbiter = True
2. nbr ⇐ nbrOp-Closest(*, nbr.orbiter = False)
3. orbitRobot(beh, nbr, d, orbitDir)
4. endif

Line 1 checks to see if the current robot is an active robot (orbiter = True) or a
reference robot. If the robot is active, line 2 finds the closest reference (non-orbiting)
robot. Line 3 uses orbitRobot to orbit this reference robot in the specified direction.
While the active robot moves around the network, the reference robot changes as the
active robot becomes closer to other neighbors. This results in the “puffy cloud path”
around the perimeter of the network shown in Figure 49. This path is similar to what
would be created by using the right hand rule to escape from a maze. This path is
different from the convex hull of the reference group, and will be the same only if there
are no concavities. Even if the reference group has concavities, the orbitGroup path is
bounded from outside by the convex hull.

Limitations
If an orbiter is started from the interior of the group, it might not ever be able to

move to the outside edge to start the group orbit. As it moves, its closest reference
robot might always be an interior robot, and the active robot would get stuck in an
internal limit cycle and never reach the perimeter. Some bootstrapping to guide the
active robot to the perimeter of the network by using a combination of edgeDetection
from section 4.5.10 and navigateGradient from section 4.5.7 could eliminate this
problem.

Because the active robot travels in a circular path around each pivot robot, the
path generated by the orbitGroup behavior is longer than the optimal path, but within
a multiplicative constant of 2π . Figure 50 shows the orbitGroup path and optimal
path for reference robots arranged in a straight line, a convex curve, and a concave

Figure 49: The orbitGroup behavior produces the “puffy cloud path” shown in blue above. The
red path is the optimal path around the perimeter of the network. The ratio between the two is
bounded by a constant factor.

Stupid Robot Tricks The Swarm Behavior Library Page 79

curve.
Case 1: Reference robots in straight line:

dsopt =

r
r2

d
arcsinr2spcp π≤

=

when r2d =

π
=

π
=η 2

r
r2

Case 2: Reference robots in convex curve of angle θ:

θ= rsopt

θ= rspcp

1=η

Case 3: Reference robots in concave curve of angle φ:

 φ

−=
2

sin2d2sopt

φ−

=

r2
d

arcsin4rspcp

max when 0=φ and r2d =

r2spcp π≤

r4d2sopt ==

π
=η 2

In all cases, the path from the orbitGroup behavior has a theoretical minimum

efficiency of
π
2 , or 63%.

Experimental Results
Figure 50 shows traces of three different orbits around a group of reference

robots, and the associated path data for each run. The measured path efficiency is 87%,
with an accuracy of 71%. The main source of error in the paths is when the active robot
needs to switch references. The neighbor cycle period is 250 ms. At an average speed of
21 cm/s, that is about 5 cm of lag before new position information is available from the
reference robots. The puffy cloud path already brings the active robot close to the

Stupid Robot Tricks The Swarm Behavior Library Page 80

references, this extra distance can bring the active robot too close and cause collisions.
This does not usually cause failure, because after the bumpMove behavior is finished,
the stability of the orbitRobot behavior puts the active robot back on the correct path.

One possible improvement would be to sum the vector fields produced by the
orbitRobot behavior. This would tend to smooth the paths in between robots, and add
some predictive ability for concave corners.

4.5.7 navigateGradient

The goal of this behavior is to provide a general-purpose navigation algorithm
capable of directing any robot to any other robot in the swarm. This “physical routing
protocol” is the foundation for many other behaviors. The approach is to use stationary
reference robots as navigational cues to direct the active robot towards the source of the
communications gradient. In some respects it is similar to clustering, except that only
the active robot moves toward the source.

Spec:
• Move to a position that is no greater than d from the source robot.

Orbit Radius - Convex Path

0

10

20

30

40

50

60

Path ==>

R
ad

iu
s
(c

m
)

Lap 1
Lap 2
Lap 3
Average
Desired

convex turns

Orbit Radius - Concave Path

0

10

20

30

40

50

60

Path ==>

R
ad

iu
s
(c

m
)

Lap 1
Lap 2
Lap 3
Average
Desired

concave turns

Orbit Radius - Concave-Convex Path

0

10

20

30

40

50

60

Path ==>

R
ad

iu
s
(c

m
)

Lap 1
Lap 2
Lap 3
Average
Desired

concave turn

Figure 50: Traces from three different paths using the orbitGroup behavior. The measured path

efficiency is 87%, with an accuracy of 71% Top Left: The traces. Top Right: The green run

has all convex turns. The robot tends to increase its orbiting radius during these turns. Bottom

Left: The blue run has all concave turns. The active robot does not switch references fast

enough to maintain he desired radius, and even has some collisions with reference robots.

Bottom Right: The red graph has five convex turns and one concave turn.

Stupid Robot Tricks The Swarm Behavior Library Page 81

• Move in a straight path at constant velocity to the final position

navigateGradient(beh, gType)
1. nbrSet ⇐ nbrOp(*, nbr.M[gType].hops < self.M[gType].hops)
2. nbrSetAvoid ⇐ nbrOp(*, nbr.M[gType].hops > 0)
3. if nbrSet ≠ {∅}
4. beh1 ⇐ EmptyBeh
5. beh2 ⇐ EmptyBeh
6. beh3 ⇐ EmptyBeh
7. b ⇐ computeAverageBearing(nbrSet)
8. rotateToAngle(beh1, b)
9. moveForward(beh2)
10. interstitialAvoid(beh3, nbrSetAvoid)
11. beh ⇐ sumBehaviors(beh1, beh2, beh3)
12. endif

This behavior assumes that a communication gradient of type gType is present.
The active robot runs the code above and navigates towards the source. All other robots
are references.

Line 1 creates a set of neighbors that are parents of the active robot on the
gradient tree. Line 2 creates a set of all neighbors that are not the source. These are
robots that should be avoided by the active robot as it makes its way to the source.
Line 3 checks to see if any parent robots exist. If so, line 7 computes the average
bearing to this set of neighbors, and line 8 rotates the active robot in that direction.
This is shown in left hand side of Figure 51. Line 10 uses a behavior called
interstitialAvoid that tries to move the active robot through gaps in the swarm in an
attempt to reduce the number of collisions. This behavior is not described in this work.
The outputs of these two behaviors plus moveForward from line 9 are summed in line

Figure 51: The navigateGradient behavior guides the active robot to the source of a gradient.

Stupid Robot Tricks The Swarm Behavior Library Page 82

11.
The characteristics of gradient communication guarantee that every robot that

receives a gradient message and is not a source will be in contact with at least one
parent neighbor. The line-of-sight local communication constraint of the ISIS system
ensures that an upstream robot will be physically closer to the source of the gradient.
Therefore, any active robot can construct a path to an upstream position, and by
induction, to the source. Any walls and obstacles that block communications will cause
the gradient messages to route around them in order to reach the active robot. This will
guide the active robot around these same obstacles on its way to the source. This can be
beneficial when the obstacles are real, but communications problems or voids in the
network will evoke the same response.

If the robot moves along this path at a constant velocity, it will reach the source
in time bounded below by

v
s

t =

where s is the best straight line path and v is the velocity of the robot.
Unfortunately, this lower time is difficult to achieve in practice. The actual time

is strongly affected by physical interference from neighboring robots and voids in the
network. The arrangement shown in the right hand side of Figure 51 displays both of
these problems. The optimal path is diagonally up and to the right, but the average of
the bearings of the active robot’s neighbors is straight up, towards the h1 reference

Linear Distance vs. Path Length

200

250

300

350

400

450

200 250 300 350 400 450 500 550 600 650

Path Length (cm)

L
in

ea
r

D
is
ta

nc
e

(c
m

)

Path Effeciency

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5

Trial

P
at

h
E

ffe
ci

en
cy

Figure 52: The navigateradient behavior shown a tight correlation between linear distance and
path length. Average path efficiency is 28%

Figure 53: These video clips show the navigateGradient behavior in action. The source robot is
wearing a small flag and is located in the bottom center of the images. The active robot is
highlighted in green.

Stupid Robot Tricks The Swarm Behavior Library Page 83

robot. In the worst-case scenario where the h1 reference robot is at the limit of its
communication range with the h0 robot, the active robot will not receive
communications from the h0 robot until it is in approximately the same location as the
h1 robot. This will cause a collision between the active robot and the h1 robot, further
diverting it from the optimal path.

Experimental Results
 In the video captures above, the robot highlighted in green is the source of the

communications gradient, and the robot highlighted in red is moving towards it. This
behavior is almost always successful in guiding the active robot to the reference.
However, the average path efficiency for the trials was 28%, with errors seemlying split
between collisions and network voids. A possible improvement to the navigation
algorithm could have reference robots transmit direction vectors to sources. This would
help to straighten out the active robot’s path in the presence of network voids, and could
help avert some collisions as well.

4.5.8 clusterOnSource

The goal of the clustering behavior is to move the swarm to a centralized location
in as small an area as possible. This behavior could be useful for moving large objects,
focusing sensors on a single stimulus, or simply collecting all the robots in one spot to
put them to bed for the evening.

Figure 54: These traces show the results of the navigateGradient behavior from different
starting locations. This behavior produced an average path efficiency of 28%.

Figure 55: These video clips show the clusterOnSource behavior in action.

Stupid Robot Tricks The Swarm Behavior Library Page 84

Specs:
• Form a single cluster of minimum size - all robots should be within a radius r from the

source, where optcopt rcrr <<

• Robots should move along minimum shortest path to final position at constant velocity

clusterOnSource(beh, gType, d)
1. nbr ⇐ nbrOp-Closest(*, nbr.M[gType].hops < self.M[gType].hops)
2. if nbr ≠ ∅
3. followRobot(nbr, d)
4. endif

Line 1 forms a set of parent neighbors in the gradient tree, then selects the
closest one. Line 3 moves the active robot towards the closest parent neighbor. This
implementation is simple, but effective. The active robot in Figure 56 has three
upstream neighbors, circled in green. It selects the closest of these, and then moves
towards it until it is within range d. By then, it will probably be able to communicate
with another robot that is closer to the source, and the process will repeat. The net
result is that the entire group of robots converges towards the source. Since the range of
the neighbors and the gradient hop counts are continuously updating, the behavior
remains effective in the face of the radically changing network topology that the
behavior causes.

Nothing in the
implementation guarantees
that robots will maintain
connectivity as they are
clustering. It is common for
robots to have
communications errors or
mobility obstructions that
prevent them from keeping
up with their parent
neighbors. When this
happens, the swarm splits
into two separate groups and
does not converge onto the
same source robot. The
addition of “flow control” to
this behavior to halt
upstream robots if
downstream neighbors fall
behind eliminates this
problem, and is employed in
the
clusterWithBreadCrumbs
behavior in the next section.

Figure 56: In order to cluster, all of the robots move towards
their closest upstream neighbor. The arrow pointing away
from the active robot indicates its path towards its reference
neighbor. The nearest neighbor is updated every
communications cycle.

Stupid Robot Tricks The Swarm Behavior Library Page 85

Experimental Results
Figure 57 shows the traces left by the robots during an execution of the

clusterOnSource behavior. Figure 58 shows data on the path efficiency. Figure 59
shows the final clustering, and the data collected on packing efficiency. To measure
packing efficiency, the convex hull of the final cluster was traced and compared to the

Figure 57: These traces show results of the clusterOnSource behavior. The outline of the source
robot is located in the center of the densely marked section.

Linear Distance vs. Path Length

0

50

100

150

200

0 50 100 150 200 250 300

Path Length (cm)

L
in

ea
r

D
is

ta
nc

e
(c

m
)

Path Efficiency Distribution

0

5

10

15

20

25

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Path Efficiency

Figure 58: The path length traveled during clustering correlates well with the linear distance
between the start and end points for each robot, although the average path efficiency was only
26%.

Stupid Robot Tricks The Swarm Behavior Library Page 86

ideal hull of an optimally packed hexagon. The packing efficiency is 59%, which is fairly
high, given the random nature of the robot motion when they are that closely packed.
In general, this behavior performs well, but often splits the swarm into multiple
disconnected components, even when clustering over short distances.

4.5.9 clusterIntoGroups

The clusterIntoGroups behavior implements a primitive form of division of
labor. It operates in two `steps; first, each robot selects a group to join, then the
behavior moves robots in the same groups together, while moving entire groups away
from each other. It is used in the Swarm Choir demo in section 5.4 to separate robots
based on the instrument they are playing.

Spec
• Form i groups, with each group containing exactly i

n or i
n robots. This

grouping should be maintained even as population size changes.
• The distance between any two robots in the same group should be less than the

distance between any two robots in different groups
• Robots should move along the shortest path to final position at constant velocity

Packing Effeciency

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8

Trial

E
ff
ec

ie
nc

y
(m

in
 a

re
a/

ar
ea

)

Figure 59: Packing efficiency is defined at minimum area / used area. Right: Optimal packing
efficiency is achieve when robots form a tightly packed hexagonal pattern. Middle: The convex
hulls formed by the clustering algorithm are shown as different colored outlines, and an optimal
circle of radius R is shown in gray. Left: The average packing efficiency of the clusterOnSource
behavior was 59%.

Stupid Robot Tricks The Swarm Behavior Library Page 87

clusterIntoGroups(beh)〈groupGradientType〉
1. defineNbrVar 〈grouped〉
2. gradientSource(self.M[groupGradientType], LateralInhibition)

3. if self.M[groupGradientType].sourceID = MyRobotID
4. grouped ⇐ True
5. else
6. groupLeaderNbr ⇐ nbrOp-any(*, nbr.M[groupGradientType].hops = 0)
7. if (groupLeaderNbr ≠ ∅) and (groupLeaderNbr.range < GroupedRange)
8. grouped ⇐ True
9. else
10. navigateGradient(beh, groupGradientType)
11. grouped ⇐ False
12. endif
13. endif

14. if grouped = True
15. nbrSetGrouped ⇐ nbrOp(*, nbr.grouped = True)
16. nbrSetInMyGroup ⇐ nbrOp(*, nbr.groupGradientType = groupGradientType)
17. nbrSetGroupedInOtherGroups ⇐ nbrSetGrouped – nbrSetInMyGroup
18. nbr ⇐ nbrOp-closest(nbrSetGroupedInOtherGroups, True)
19. avoidRobot(nbr)
20. endif

The neighbor variable input groupGradientType is the index of the group
gradient message that this robot will respond to. Each group has its own group
gradient, so this sets the group this robot is a member of. Line 1 creates a neighbor
variable grouped, that announces whether or not this robot is physically located near
the rest of its group. Line 2 sources a gradient with the index groupGradientType.
This gradient has lateral inhibition enabled, so it will only have one unsuppressed source
in the swarm. This unsuppressed source will be the group leader.

Lines 3-5 check to see if this robot is the unsuppressed source of the group
gradient. If so, then it is automatically clumped. Lines 6-8 check to see if this robot is
within a constant range from the group leader. If so, then it is grouped. If not, lines 10-
11 move the robot towards the group leader.

The last section of code moves groups away from each other. Line 14 checks to
see if this robot is grouped. If so, lines 15-18 find the closest neighbor that is also
grouped, but in a different group. Line 19 moves the robot away from this neighbor.
This takes advantage of the self -stabilizing nature of the grouping motion – if the motion
from the avoidRobot behavior accidentally moves this robot away from the group
leader, then its grouped status will change, and it will move back towards the leader. If
it moves back to exactly the same place, the process will repeat, but this is unlikely, as
randomness in the environment will cause a different result each time. Eventually, the
entire system will settle into a solution in which all robots have their conditions met and
are stationary.

Stupid Robot Tricks The Swarm Behavior Library Page 88

Limitations
This behavior falls short of the desired specification of groups being dynamic.

There is no machinery in the psuedocode to dynamically select or change groups. Once
a robot selects its group, it is in that group for the rest of the execution. This is the
only swarm behavior that is not self-stabilizing in this way.

The physical motion component of the behavior does not have this drawback.
Robots detect their group status and move appropriately, however, the maximum size of
each group is currently limited by the physical number of robots that can group around
the leader and satisfy the range comparison in line 6. In order to support groups of
arbitrary size this comparison would need to allow robots more than one hop away from
the leader to be considered grouped.

Experimental Results
Figure 60 shows clips from a video of the behavior in action. Figure 61 shows the

traces left after a run, and the average group and inter-group spacing. In general, the
algorithm works, but there is much wasted motion. The path efficiency is 14%, which is
much lower than other clustering algorithms, and lower than that of the
navigateGradient behavior that moves the robots towards their group leaders. There is
a great deal of inter-robot interference as robots move to their final positions.

The final groups are dependent on the initial positions of the group leaders. A
behavior to move these leaders towards the outside of the group would help with the
interference problem. A greater concern is that the group population is not dynamic,
and robots will not move to equalize group sizes

Figure 60: These video clips slow the clusterIntoGroups behavior in action. There are three
groups, red, green, and blue. Each group elects a leader, and robots use the navigateGradient
behavior to move towards the leader of each group. Once robots are grouped, entire groups move
away from other nearby groups.

Stupid Robot Tricks The Swarm Behavior Library Page 89

4.5.10 detectEdges

Determining which robots are on the edge of the network can have many useful
applications. It allows you to directly compute and measure the perimeter, which can be
uploaded to the user, or used for inter-swarm navigation. Tracking targets as they cross
edge robots can let a surveillance application know when targets that are being tracked
enter or leave the coverage area.

Spec
• Each robot determines independently whether or not it is are on the edge of the

network.
• Every robot in the convex hull of the graph should be in the set of edge robots.
• Concavities larger that the average inter-robot distance should be detected as edges

edgeDetection() returns Boolean
1. edgeNbrSet ⇐ nbrOp(*, True)
2. if ISISRadar.signal > VirtualNeighborRadarThreshold
3. edgeNbrSet ⇐ edgeNbrSet ∪ createVirtualNbr(ISISRadar.bearing)
4. endif

5. edgeNbrSet ⇐ sortNbrsByBearing(edgeNbrSet)
6. maxAngle ⇐ edgeNbrSet[1] + (360 - edgeNbrSet[length(edgeNbrs)])
7. for i ⇐ 2 to length(edgeNbrSet) – 1
8. a ⇐ edgeNbrSet[i] - edgeNbrSet[i - 1]
9. if a > maxAngle
10. maxAngle ⇐ a
11. endif
12. endfor

13. if maxAngle > EdgeAngle
14. return True
15. else
16. return False
17. endif

Inter-Robot Spacing and Inter-Group
Spacing

Green Group
Spacing

Blue Group
Spacing

Inter-Group
Spacing

Red Group
Spacing

0
20
40
60
80

100
120
140
160
180

Groups

A
ve

ra
ge

 I
nt

er
-R

ob
ot

Sp

ac
in

g
(c

m
)

Figure 61: Left: These traces show the results of the clusterIntoGroups behavior. Right: The
graph shows group spacing and inter-group spacing.

Stupid Robot Tricks The Swarm Behavior Library Page 90

Line 1 puts all the neighbors into a set. Lines 2-4 check to see ifthe active robot
is near a wall. If so, line 3 adds the wall to the edgeNbrSet as a virtual neighbor. The
need for this is described below. Lines 5-12 sort the set edgeNbrSet, then look for the
largest difference in bearing angles between any two neighbors. This “separation angle”
is stored in maxAngle. Lines 13-17 compare maxAngle to a threshold and return the
appropriate value.

An example of the inter-neighbor separation angle computation can be seen in
Figure 62. If the largest angle is greater that a constant threshold, EdgeAngle, then
the active robot will consider itself to be on the edge of the network. However, robots
near walls will have no neighbors where the walls are, which will cause them to become
edges. This is appropriate for some applications, but not for others. For example the
directed dispersion application in section 5.5 requires that robots near walls not declare
themselves to be edges6. The solution is in lines 2-4, which creates a “virtual neighbor”
in the direction of the closest wall. This breaks up the large empty space that the wall
would otherwise create, but still allows robots who are near walls to become edge robots
if they are at the front of a column of reference robots.

The parameter EdgeAngle must be tuned by the user to achieve good results.
A further complication is that the optimal calculation of an edge is highly subjective and
depends strongly on the density of the robots, the desired minimum feature size, and
specific environmental details. In particular, ideal concave edges are difficult to define,
and require the user to experiment with the application to determine what produces the
best result.

Experimental Results
 In practice, a value of 220 degrees was effective at eliminating most false

positives, while still providing edges for the frontiers needed in the directedDispersion
algorithm in section 5.5.

6 Jennifer Smith at iRobot is responsible for the observation of the problem and the solution.

Figure 62: Robots use the bearing differences between each of their neighbors to determine
weather or not they are on the edge of the network. Left: The separation angle θ2 is the largest,
but is insufficient to declare this robot to be on the edge. Right: With one neighbor removed,
the largest angle becomes θ1 + θ2. This angle is large enough to declare the active robot to be an
edge.

Stupid Robot Tricks The Swarm Behavior Library Page 91

4.6 Summary
The ISIS inter-robot communications is a good foundation for inter-robot

positioning and communications. The gradient messaging system provides an sound
abstraction upon which to build many different group behaviors. Behaviors use the
network formed by the gradients, which usually modify the network. The interesting
feedback between the network graph and the behaviors is exploited in many of these
behaviors. In order to predict what the behaviors will do, invariants must be found not
only across multiple executions, but also across all allowable sets of graphs.

Path Efficiency
Goal Correctness

/ Efficiency
orientToRobot - 98%

matchHeadingToRobot - 97%
followRobot 114% 97%
avoidRobot 69% 93%

orientForOrbit - 84%
orbitRobot 93% 93%

avoidManyRobots 68% 76%
disperseFromSource 64% 69%
disperseFromLeaves 45% 92%

disperseUniformly 6% 90%
orbitGroup 87% 71%

navigateGradient 28% 100%
clusterOnSource 26% 59%

clusterIntoGroups 14% 92%
Average 48% 83%

Deviation 32% 13%

Behavior Efficiency and Correctness

0%

25%

50%

75%

100%

orie
ntT

oR
obo

t

ma
tch

He
adi
ngT

oR
obo

t

foll
ow

Ro
bot

avo
idR

obo
t

orie
ntF

orO
rbit

orb
itR
obo

t

avo
idM

any
Ro
bot

s

disp
ers
eFr

om
So
urc

e

disp
erse

Fro
mL

eav
es

dis
per

seU
nifo

rm
ly

orb
itG

rou
p

nav
iga
teG

rad
ien
t

clu
ste
rO
nS
our

ce

clu
ste
rInt

oG
rou

ps

E
ff
ic

ie
nc

y
/

C
or

re
ct

ne
ss

Path Efficiency Goal Correctness / Efficiency

Table 6: Summary of behavior performance.

Stupid Robot Tricks The Swarm Behavior Library Page 92

The performance of most behaviors is good, with all better than 50% accurate.
This implies that given enough time, the swarm will tend to converge to the desired
result. This is one of the key advantages of distributed systems compared to centralized
systems. Even if individual agents do not perform correctly all the time, the system as a
whole can still converge onto the correct solution.

Stupid Robot Tricks Applications and Demonstrations Page 93

Chapter 5.
Applications and Demonstrations

The goal of the gradient communications system and the behavior library is to
provide a set of reusable algorithms and behaviors that can be used for any number of
applications. At the time of this writing, there have been many, four of which are
discussed below.

5.1 Surround Object
The ability to surround a phenomenon autonomously gives the swarm a way to

characterize the phenomenon, or protect it from intruders. This could be useful in
surrounding a chemical spill, or mapping out their environment.

Spec
• Form a perimeter of uniformly spaced robots around a designated object.
• Robots should move along the shortest path to final position at constant velocity

Implementation
The behavior starts when one robot finds the appropriate sensory stimulus in its

environment and becomes the source for the “object” gradient. In our example, the
bump sensors are used to detect the phenomena - any object that is not a robot is fit to
be surrounded. The stopOnBump behavior causes each robot to stop if it detects an
obstacle that is not a robot. The first robot becomes the source for the object gradient,
and uses one of the data fields to broadcast that it is robot number one in the perimeter.
It flashes its green light to indicate that it is the first robot in the chain.

Any other robot that can communicate with the first robot uses the orbitGroup
behavior until it also collides with an object that is not a robot. In the example shown
in Figure 63, the robots are orbiting counterclockwise. It becomes the second robot in
the perimeter, and flashes its yellow light. This process continues until an orbiting

Figure 63: The surround demo guides a group of robots to autonomously surround an object.

Stupid Robot Tricks Applications and Demonstrations Page 94

robot comes within one orbit radius of the first robot. This means that there is not
enough room for another orbiter, so this robot is now the last robot. It flashes its red
light to indicate that it is the last robot in the perimeter, and becomes a source for a
gradient that broadcasts the total number of robots in the perimeter. The perimeter can
be approximated by multiplying the total number of robots by the orbitGroup radius

This was an early demo application, and it was developed without the aid of the
countingGradients or the navigateGradient behavior, These more sophisticated
behaviors could increase the efficiency and robustness of this demo significantly by
providing reliable navigation to open perimeter points,
and by eliminating the need for robots to explicitly
count their way around the perimeter. This would
make it less brittle if a robot is removed from the
middle of the perimeter, after it has found the object.

5.2 The MegaDemo
The MegaDemo is a showcase for the swarm

behavior components. It is designed to be a human-
operated, visually interesting demo. One to three users
control distinguished robots via remote control – the
red leader, the yellow leader, and the green leader.
(Also called Rhindle, Yorgle, and Grundle,
respectively).

The leaders tessellate the swarm with normal
gradients as shown in Figure 9. Other robots, called
“minion robots”, pledge allegiance to the leader they
are closest to, and begin flashing the appropriate color
LED. Ties between hop counts are decided based on
leader color, with the ordering of red > green >
yellow. Robots that are not part of a leader’s
connected component go into an idle mode and stay
still.

The active behavior for each leader’s subgroup
is selected by the user with the remote control. There
are eight behaviors to choose from:

1. followTheLeader (parade length)
2. clusterOnGradientSource (separation distance)
3. disperseFromGradientSource (separation

distance)
4. intersticialNavigation
5. clusterIntoGroups (number of groups)
6. matchOrientation
7. orbitRobot (orbit radius)
8. groupPowerDown

Some behaviors have parameters that can be
dynamically tuned by the user during operation.
These are indicated in parenthesis after the behavior

Figure 64: The MegaDemo is an
interactive program that allows
one to three users to control the
swarm and display basic
behaviors. The top picture
shows the author at the helm,
(In the middle), and the bottom
is the crowd pleasing
followTheLeader behavior.

Stupid Robot Tricks Applications and Demonstrations Page 95

name. Each behavior is heralded by a distinguishing song from the group leader the first
time it is executes. After that, the entire group plays a note from the C Major scale that
indicates the selected behavior.

This program is kept up-to-date as new behaviors and distributed algorithms are
added to the Swarm’s repertoire. Having a direct human interaction with the demo is
useful for dynamically responding to environmental conditions or behavior requests, but
can confuse people into thinking that centralized control is the main goal of the research.

5.3 Lemmings
The Lemelson Center at the Smithsonian Museum of American History invited

the Swarm to participate in their “Toy Invention Festival”. Wanting to present a more
interactive exhibit than the MegaDemo, I designed the Lemmings program. The
namesake is a video game from the early ‘80s that challenged users to guide a group of
lovable, but cerebrally challenged, on-screen protagonists to escape from various mazes.
The concept translates well to the swarm, with the goal being to get a group of lovable,
but cerebrally challenged, robots to escape from a maze. In addition, the demo has to be
accessible to a broad audience, as young children would be the primary users.

Figure 65: The Lemmings Language lets younger robotisists program the Swarm. The goal is to
get a group robots to escape from a maze. The smaller programmers use the magnetic language
pieces shown in the left hand picture to pair behaviors with sensory inputs, which forms a
program for the Swarm. The larger programmer transcribes the code from the magnets, compiles
it, and downloads it to the swarm. The lemmings interpreter executes the first active behavior ,
starting from the top of the list, which creates a prioritization of behaviors – the top ones are
more important than those lower on the list. A good time is had by all!

Stupid Robot Tricks Applications and Demonstrations Page 96

There are three types of robots in the Lemmings game: the goal robot, beacon
robots, and lemming robots. The goal and beacon robots are marked by flags, and each
is the source for a corresponding gradient. The user programs the lemming robots with
a subset of the swarm behavior library. The set of behaviors and sensors used by the
demo is shown in Figure 68.

Smaller programmers use the magnetic language pieces shown in the right picture
of Figure 65 to pair behaviors with sensory inputs, which forms a program for the
Swarm. The larger programmer transcribes the code from the magnets, compiles it, and
downloads it to the swarm. The lemmings interpreter start from the top of the program
ad executes the first behavior that has an active sensor. This creates a prioritization of
behaviors – the top ones will override, or subsume, those that are lower on the list.

The right hand picture in Figure 66 shows an example Swarm lemmings maze.
One possible solution program for this maze is given in Figure 67. The avoid(bumps)
behavior is almost always the highest priority behavior, as obstacles can seldom be

Figure 66: The inspiration for the Lemmings demo is a video game from the early 80’s. .

/******** Include Files ********/
#include "swarmOS.h"
#include "neighborSystem.h"
#include "behaviorSystem.h"
#include "lemmings.h"

behaviorListStruct lemmingBehaviorProgram[] = {
 /* Put your software here, in order of priority. Highest priority is first. */
 avoid(bumps),
 moveTo(goalRobot),
 moveTo(goalGradient),
 orbitCounterClockwise(beaconRobot),
 moveForward(alwaysOn),
};

Figure 67: A sample program for the Lemmings demo. The prioritization of these behaviors
guides the robots around the beacon and towards the goal.

Stupid Robot Tricks Applications and Demonstrations Page 97

ignored. If a lemming robot can detect the goal robot with moveTo(goalRobot), it will
move towards it. Failing that, the moveTo(goalGradient) behaviors can provide some
longer-range navigation. The orbitCounterClockwise(beaconRobot) behavior will
slingshot the lemmings around the beacon robot and put them within range of the goal,
while the moveForward(alwaysOn) behavior will prevent the robots from standing
still.

Since its creation, the lemmings demo has been given almost ten times, to
audiences ranging in abilities from 4th grade to seasoned engineers. The problem-solving
techniques needed to understand how half-dozen robots can solve the problem challenges
different groups in different ways. Inexperienced programmers and children don’t
understand why avoid(bumps) should be the highest priority, while engineers claim
they can’t solve the problem without some kind of conditional operators. Overall, the
program has been very well received, and serves as a useful tool for introducing
distributed algorithms and behavior-based programming to children of all ages.

5.4 The Swarm Choir
There are many important and useful applications for swarms of autonomous

robots. Playing music in a robotic choir is not one of these applications, but serves as a
proving ground for a temporalSync algorithm that is not described in this work, and
the clusterIntoGroups behavior from section 4.5.9 . Developed for this demo, these two
behaviors can be used to construct more serious applications. Each SwarmBot has a 1.1
watt audio system capable of playing MIDI files, the behaviors coordinate the robots
motion and timing.

There are three phases to the demo. Currently, each step is mediated by a
human operator, but the algorithms and
behaviors will work without human intervention.

1. The robots are told what musical selection
they are going to play. Each robot picks an
instrument to play from ones used in the
piece of music.

2. A leader is elected using a gradient with
lateral inhibition. All other robot
synchronize with respect to this leader.
This allows them to play in time.

3. the clusterIntoGroups behavior moves
robots that are playing the same
instruments into groups. This creates a
pleasing visual and aural experience for the
user and the audience.

The net result is a swarm of robots
playing music together, spatially organized such
that robots playing the same instrument are near
each other, as shown in Figure 68. The static
nature of clusterIntoGroups is sub optimal for
this demo. Because group population ratios
cannot be specified and robots leave to go charge,

Figure 68: The Swarm Choir performs
at the iRobot Holiday party.

Stupid Robot Tricks Applications and Demonstrations Page 98

proper instrumentation cannot be specified or maintained. A more dynamic
clusterIntoGroups behavior would correct these problems.

5.5 Directed Dispersion
Almost every application for swarms of robots requires them to disperse

throughout their environment. Exploration, surveillance, and security applications all
require coverage of large areas. The directedDispersion algorithm is designed to
disperse a large swarm of robots into an enclosed space quickly and efficiently.

In order for a dispersion algorithm to be effective on a swarm of physical robots,
it must take into account engineering concerns: allowing for robot and communications
failures and maintaining network connectivity, especially between the swarm and the
chargers.

The goal of the directedDispersion algorithm is to spread robots throughout an
enclosed space quickly and uniformly, while keeping each robot connected to the network
and ensuring a gradient communications route back to the chargers. The dispersion is
accomplished by using two algorithms that alternate running on the swarm:
diperseUniformly and frontierGuidedDispersion, which is based on
disperseFromLeaves .

The diperseUniformly algorithm from section 4.5.4 is responsible for spreading
the robots evenly throughout their environment, using naturally occurring walls and the
maximum dispersion distance of safer as boundary conditions. The
frontierGuidedDispersion algorithm directs robots towards unexplored areas, and is
designed to perform well both in open environments and in environments with
constrictions and complex layouts.

Frontier Determination
Robots need to identify their positions in the graph as: frontier, wall, or interior.

"Frontier" robots are on the edge of explored space, and are used to guide the swarm into
new areas. "Wall" robots are those that detect an obstacle with the ISIS system. The
remainder are “interior” robots, as illustrated in Figure 69. The detectEdge algorithm
is used for part of this determination.

frontierDetermination() returns integer
1. if (detectEdge())
2. graphPosition ⇐ FrontierRobot
3. else if radar.range < WallRange
4. graphPosition ⇐ WallRobot
5. else
6. graphPosition ⇐ InteriorRobot
7. endif
8. return graphPosition

Frontier Communication and Swarm Motion

Stupid Robot Tricks Applications and Demonstrations Page 99

Once there are frontier robots active in the network, they source a gradient
message to inform the rest of the swarm. The gradient trees from these sources are used
to guide the swarm towards the frontier robots. Using clusterOnSource proved
ineffective, because any algorithm that is based on clustering robots over multiple hops
can cause newly discovered frontiers to pull robots away from previously explored areas.
This causes a frontier to re-appear at the old location and pull the swarm back, causing
oscillations, or fracturing the swarm and disconnecting robots from the chargers. In
addition, follow algorithms have to be written carefully to ensure a min-cut that is
greater than two. This redundancy in the communications is important to produce a
robust network.

The frontierGuidedDispersion algorithm uses the disperseFromLeaves
behavior to switch the focal point in gradient-based navigation from the source of the
gradient tree to the leaves. Robots move away from their children in the frontier tree
that are closer than safer . In order to build a reliable network, robots are not allowed to
move unless they are in contact with at least two children in the frontier tree to disperse
from. This increases the min-cut of the network to two while the robots are dispersing,
which is essential for reliable communications when gaps can be created by corners or
robots heading home to charge.

The properties of disperseFromLeaves behavior has the leaf robots remain
stationary while the rest of the swarm moves away from them. This ensures that robots
are left behind to provide a route to the chargers, and that once an area has been
explored, another frontier will not be able to pull the leaf robots or their parents out of
that area. Essentially, the leaves become “anchors” and then limit the dispersion of
robots away from them to a distance of safer .7 As robots move away from the leaves,
they move closer to their upstream robots, causing a chain reaction that eventually
moves all the robots towards the frontiers.

Multiple frontiers often form as the Swarm explores the environment. Their
gradients tessellate the swarm based on hop count as shown in Figure 9. This is useful
because progress of distant frontiers will be slowed as interior robots disperse towards
frontiers with smaller hop counts, allowing these closer frontiers to catch up. This tends
to make the swarm explore the entire building in a breadth-first fashion.

7 Another way to think about this is to imagine that any robot that is not maximally dispersed
from its children will head towards the frontier, causing its parent to move towards the frontier,
etc. This results in a “wave” of motion that the frontier “surfs” forward .

Figure 69: Frontier robots guide the swarm into unexplored areas. First, a robot nominates itself
as a frontier. Then a gradient propagates throughout the network, alerting all other robots that a
frontier has been found and forming a tree rooted at the frontier robot. All robots then move
away from their children in this tree. Leaves on the tree do not move, allowing previously
dispersed robots to remain stationary.

Stupid Robot Tricks Applications and Demonstrations Page 100

frontierGuidedDispersion(beh)
1. childNbrSet ⇐ nbrOp(nbr.M[FrontierGradientType].hops >
 self.M[FrontierGradientType].hops)
2. if size(childNbrList) > 2
3. disperseFromLeaves(beh, FrontierGradientType, Rsafe)
4. endif

Line 1 creates a set of robots that are children in the frontier gradient tree. If

there are more than two children robots, then this robot can disperse. This helps
provide a min-cut of the graph of no less than two, which is critical for network
robustness.

Putting it Together: directedDispersion
The frontierDetermination and frontierGuidedDispersion behaviors are

combined into directedDispersion:

directedDispersion(beh)
1. if frontierDetermination() = FrontierRobot
2. gradientSource(self.M[FrontierGradientType], Normal)
3. endif

4. if self.M[FrontierGradientType].isActive = True
5. frontierGuidedDispersion(beh)
6. else
7. disperseUniformly(beh)
8. endif

Line 1 determines the robots position in the network. If the robot is a frontier,
line 2 sources a frontier gradient. Line 4 checks to see if there is a gradient present in
the network. If so, then line 5 uses disperseFromLeaves to disperse the swarm into the
environment. If there is no frontier gradient, then line 7 uses disperseUniformly to
equalize the positions of the swarm.

The “pressure” from diperseUniformly tends to push robots into open spaces
and tight constrictions. Eventually, a frontier is formed and its gradient messages
activate the frontierGuidedDispersion behavior, which causes a directed dispersion
towards the frontiers. This behavior stays active until all frontiers encounter walls or
move to the interior of the swarm. Termination of the combined algorithm is defined
when the frontier behavior stays inactive for a specified amount of time. Unfortunately,
complex environments, sensor noise, and robots leaving to charge can make it difficult to
quantify this time. We use ten seconds for the experimental results.

Experimental Results
Fifty-six robots were used with a reduced ISIS communications power setting to

explore a small office-like environment with three goals placed as shown in Figure 70.
The swarm was released and times to reach the three goals and full dispersion were
recorded. Five algorithms were compared.

Stupid Robot Tricks Applications and Demonstrations Page 101

idealGasMotion: Robots move in straight lines unless they collide with each other or
with a wall. The network often breaks into disconnected components. Inter-robot
interference is a problem, with robots colliding often. There is no termination
condition, and dispersion is rarely uniform.

disperseFromSource: Described in section 0. Network connectivity is maintained
during the dispersion process if safedisperse rr ≤ . Uniform, complete coverage only
occurs if the environment area is known in advance and disperser is selected
accordingly, otherwise robots will either bunch up at boundaries or not fill the area.
However, the dispersion is very efficient, quickly reaching all goals and full
dispersion.

avoidClosestNeighbor: Robots move away from their closest neighbor at constant
velocity if disperserr < . Network connectivity can be maintained if safedisperse rr ≤ .
There is no termination condition. This is very similar to diperseUniformly, and
the results are also similar. Dispersion is uniform, but robots oscillate back and forth
between closest neighbors.

diperseUniformly: Described in section 4.5.4 . This algorithm runs slower than avoid-
closest-neighbor, but the motion is smoother. It has very uniform dispersion and
maintains network connectivity. Robots remain stationary after dispersion

directedDispersion: Described above. The robots rarely head in the wrong direction,
and effectively push frontiers to the boundaries. The algorithm terminates with
uniform coverage and robots remain fairly stationary after dispersion

Additional tests were conducted in a empty schoolhouse. A total of 108 robots

were able to effectively disperse into about 3000 ft2 of indoor space, locate an object of
interest, and lead a human to it. Multiple arrangements of rooms were tried, with
several constrictions, sharp turns, and large open areas. The robots ran almost
continuously for six hours, returning to charge when needed, and filling gaps in the

Figure 70: Left: The dispersion algorithms were tested in a small office-like environment. Goals
were placed at the locations shown, and robots were released from the area at the bottom.
Right: An example dispersion into the test space.

0.00

0.10

0.20

0.30

0.40

0.50

goal 1 goal 2 goal 3 full disperse
Location

N
or

m
al

iz
ed

 T
im

e
(E

ff
ec

ie
nc

y)

ideal-gas-motion

disperse-from-source

flow

avoid-closest-
neighbor
direcred-dispersion

Figure 71: Dispersion efficiencies of the five algorithms tested.

Stupid Robot Tricks Applications and Demonstrations Page 102

dispersion when required.

Conclusion
The directedDispersion behavior allows robots to explore large, complex, indoor

environments. Multiple frontiers create a structured communication network that the
robots can use for navigation into unexplored areas of the environment. Dispersion
tends to occur in a breadth-first fashion. Gradient message clean-up is important as
frontier gradient sources start and stop sourcing to maintain the structure of the
dispersion. Practical dispersion algorithms can be designed to meet efficiency,
robustness, scalability, and correctness constraints.

5.6 Summary
Many applications have been constructed from the Swarm Behavior Library.

The behaviors and design philosophy of developing and testing software on the robots
directly has proven to be an effective way to develop applications. The final state of
these applications is often the result of testing dozens of different behavior variations
and combinations. Although the system is still not as efficient as a software simulation,
this disadvantage is more than compensated by the richness of the “hardware
simulation” - real robots in actual environments.

This approach is expeditious and flexible, it is possible to combine behaviors
quickly and get predictable group actions. For example, the autonomous charging
behaviors (not described in detail here) use internal measurements on individual robots
to decide when to recharge, then each robot uses the navigationGradient behavior to
move towards the charging gradient and dock with their chargers. This runs in
conjunction with other behaviors, but does not affect the performance of the group as a
whole.

However, this approach provides the developer with only a veneer between the
desired application and the complex interactions of multiple robots. Behaviors running
simultaneously can have unpredictable interactions. Many of the applications developed
avoid this problem by forcing behaviors to be temporally mutually exclusive. For
example, the Megademo and directedDispersion applications use gradients to switch
between different modes of operation, preventing unexpected interactions. A more
sophisticated set of behaviors will probably not help alleviate this problem to any great
degree, a centralized development environment that understands the interactions
between behaviors and the user’s design goals will be required to achieve this goal.

Stupid Robot Tricks Conclusions and Future Work Page 103

Chapter 6.
Conclusions and Future Work

6.1 Limitations

Behavior-Based Control
The swarm algorithms exploit the advantages of behavior-based software – robots

pick up their stare from their neighbors and the environment, which allows them to
perform well in dynamic, unstructured environments, and allows the composition of the
swarm to change over time and not affect performance. However, the problems with
behavior-based control all apply: there is no planning to overcome future problems, no
learning from past errors, and no map or model of the world to reason from or share
with the user. Even a slightly pathological environment can defeat the entire swarm if
the programmer hasn’t added the requisite behaviors to handle the situation.

Development Environment
The iRobot Swarm provides excellent debugging feedback with a combination of

audio cues, large status lights on each robot, remote control and downloading, and low-
level debugging direct to the processor core. This development environment lowers the
barriers to experimenting with new software, it can be faster to write some test code and
download it to 30 robots than it is to reason through the algorithm carefully. While this
is certainly not the desired approach to development, it is important that the energy
barriers to working with the robots be kept as small as possible, in order to realize their
ability to ground the development in reality and find false assumptions.

However, the quantitative measurements presented here on path efficiency and
algorithm correctness required considerable effort to produce. The ideal swarm
infrastructure would collect and maintain data from each run, with minimal user
interaction. Every attempt was made to underestimate correctness and efficiency.

The Truth About Scalability
For practical reasons, scalability only works in one direction – down. It is

difficult to reason through all the interactions that multiple robots will have with each
other as their numbers scale from 10 to 40 to 100. An excellent example of this is the
disperseUniformly behavior. When used with around 20 robots, the areas explored are
small, ISIS power levers are small, and the behavior works well. When trying to explore
larger areas with 100 robots, the ISIS power levels must be increased, which leads to the
problems shown in Figure 44.

Software bugs scale non-favorably with increasing swarm sizes. A bug that
occurs in every 1 out of 100 runs of a single robot can be safely ignored. On a swarm of

Stupid Robot Tricks Conclusions and Future Work Page 104

100 robots, this bug will be occurring 100 times more frequently, i.e. on some robot all
the time, and can no longer be ignored. The bright side is that this gives you an
opportunity to find bugs 100 tines as fast, although the fact that this is a benefit is often
forgotten on the eve of a demo.

In general, there is some corner case, algorithmic oversight, or bug, that becomes
unignorable at the next scale level. Careful development and programming will catch
some of these, but research demands that we try ideas we have not yet implemented, so
this will always be a problem. Good simulations can help minimize unexpected actions,
but care must be taken in their use, as they often do not model the world completely.

6.2 Future Work
There is still a great unexplored research territory in distributed robotics. There

are many areas for improvement on the techniques presented here, notably in the areas
of path efficiency. In addition:

Counting Gradients
The counting gradient provides a lower bound on the number of robots in the

network, but performs poorly with unreliable communications. A possible fix would be
for each robot to keep a list of children and only count the results from new children
after they have been present for p neighbor cycles. This would guarantee that results
from the previous robot shave timed out.

Graph Center
Being able to computer the graph center in a distributed way would be useful in

many applications. Gradients spread through the swarm fastest when sources from a
robot in the center of the graph, and information can be extracted most effectively from
this same robot.

Dynamic Division of Labor
The clusterIntoGroups behavior is very primitive and is missing two key

attributes:
1. Robots should be able to adjust their group participation dynamically as needs

change.
2. Robots should not have to physically move to join their group, unless that is one of

the goals of forming a group.
These improvements would provide more useable dynamic task allocation for the

swarm.

Axioms for Swarm Programming
The ultimate goal is to be able to program group behaviors at the group level. A

Swarm Programming Language could discard the dependence on carefully engineered
behaviors and provide semantics appropriate for programming

This is difficult, as there is no set of axioms for programming groups of robots.

6.3 Final Remarks
The gradient communication algorithms and behavior library work well in many

applications. The gradient communications form a substrate for information sharing and

Stupid Robot Tricks Conclusions and Future Work Page 105

robot navigation. These algorithms were developed alongside some of the earliest
behaviors, and remained unchanged for nearly all future development. Currently, there
are many new algorithm ideas under development, none of which require upgrading the
communication infrastructure, making it the most reused part of this work.

In general, behaviors fit into three broad categories: navigation, clustering, and
dispersion. While this list is not exhaustive, it does support many applications. One of
the design goals was to construct a library of reusable behaviors with predictable group
results. The collection of behaviors presented here does accomplish this goal, although
care must be taken in behavior assembly, even in carefully structured environments like
the Lemmings demo. The Directed Dispersion Application uses disperseUniformly and
disperseFromLeaves in a piecewise fashion mediated by the detectEdges function and
the spread of a “frontier” gradient. While this does use multiple behaviors, they are
mutually exclusive, and therefore do not fully demonstrate the goals of recombination
and predictable interactions.

It is difficult to capture some of the design paradigms that are shared between
behaviors. The static function call tree in Figure 20 shows the hierarchy of behaviors
and illustrates some level of modularity and reuse. It does not show the sharing of ideas,
such as vector fields, between different behaviors. Re-using these concepts is important
for developing new software quickly. Overall, the algorithms work well, and can often
simply be “plugged in” to a piece of software when a particular type of motion or
communication is desired.

Stupid Robot Tricks Appendices Page 106

Appendices .

A1. neighborOps Examples
For example, the C source to collect the set of all the neighbors around the robot

looks like this:

neighborListStruct neighborList;

allNOp(&neighborList)

This populates the variable neighborList with all the neighbors of this robot. To
find the closest neighbor, another operator is applied to the list:

neighborStruct * neighborPtr;
neighborListStruct neighborList;

neighborPtr = closestNOp(allNOp(&neighborList));

The closestNOp function finds the closest neighbor in the list and returns a
pointer to a neighborStruct. To find the closest neighbor with the minimum hops of a
gradient communication message (A surprisingly common task) the code is as follows:

neighborStruct * neighborPtr;
neighborListStruct neighborList;

neighborPtr =
 closestNOp(
 withGradientMinHopsNOp(
 allNOp(&neighborList)
 , &myGradient)
);

The funky indentation is helpful to see which arguments are associated with

which function. The final example finds the closest neighbor with the minimum hops of
either myGradient or yourGradient.

neighborStruct * neighborPtr;
neighborListStruct neighborList1, neighborList2, neighborList3;

neighborPtr =
 closestNOp(
 unionNOp(&neighborList3,

Stupid Robot Tricks Appendices Page 107

 withGradientMinHopsNOp(
 allNOp(&neighborList1),
 &myGradient),
 withGradientMinHopsNOp(
 allNOp(&neighborList2),
 &yourGradient)
)
);

Rewritten without the indentation, we have:

neighborStruct * neighborPtr;
neighborListStruct neighborList1, neighborList2, neighborList3;

withGradientMinHopsNOp(allNOp(&neighborList1), &myGradient);
withGradientMinHopsNOp(allNOp(&neighborList2), &yourGradient);
unionNOp(&neighborList3, &neighborList1, &neighborList2);

neighborPtr = closestNOp(&neighborList3);

The complete list of neighborOps and a brief description of usage is given below.

Population
allNOp

Returns all the neighbors that this robot can detect. This is used to populate
an empty neighbor list with the current sensory data.

Set Operations
unionNOp

Performs a union of list1 with list2 and returns the result in list 3.
intersectionNOp

Performs an intersection of list1 with list2 and returns the result in list 3.
differenceNOp

Performs an asymmetric set difference of list1 with list2 and returns the
result in list 3. e.g. {a, b, c} - {b, c, d} = {a} while {b, c, d} - {a, b, c} = {d}

symetricDifferenceNOp

Performs a symmetric set difference of list1 with list2 and returns the result
in list 3. e.g. {a, b, c} -- {b, c, d} = {a, d} and {b, c, d} -- {a, b, c} = {d, d}

Single Neighbor Operations
neighborStruct * anyNOp

Returns a neighbor at random from the list.
neighborStruct * firstNOp

Returns the first neighbor from the list.
neighborStruct * secondNOp

Returns the second neighbor from the list.
neighborStruct * closestNOp

Returns the closest neighbor from the list.
neighborStruct * furthestNOp

Returns the furthest neighbor from the list.

Stupid Robot Tricks Appendices Page 108

Neighbor Properties
withIDNOp

Returns a neighbor with the specified robotID.
withHardwareTypeNOp

Returns neighbors of the specified hardware type. This is either SwarmBot,
charger, or beacon.
withJobNOp

Returns neighbors with the specified job.
withSubJobNOp

Returns neighbors with the specified subjob.
withJobModeNOp

Returns neighbors with the specified mode.
withJobDataNOp

Returns neighbors with the specified data.

NeighborListOperations
sortByRangeNOp

Re-sorts the neighbor list according to the each robots range.

Stupid Robot Tricks Appendices Page 109

A2. Experimental Data – Robot Path Traces

orbitRobot – Steady-state orbit, Bad orbit, Ugly flow field

Notes:

Stupid Robot Tricks Appendices Page 110

orbitRobot – Flow Field and Orientation Field

Stupid Robot Tricks Appendices Page 111

avoidManyRobots

Notes:

Stupid Robot Tricks Appendices Page 112

disperseFromSource - small

Notes:

Stupid Robot Tricks Appendices Page 113

disperseFromSource - large

Notes:

Stupid Robot Tricks Appendices Page 114

disperseFrounSource – source in corner, triangulated

Notes:

Stupid Robot Tricks Appendices Page 115

disperseFrounLeaves – open environment

Notes:

Stupid Robot Tricks Appendices Page 116

disperseFrounLeaves – open vs. constriction

Notes:

Stupid Robot Tricks Appendices Page 117

disperseUniformly

Notes:

Stupid Robot Tricks Appendices Page 118

orbitGroup

Notes:

Stupid Robot Tricks Appendices Page 119

navigateGradient

Notes:

Stupid Robot Tricks Appendices Page 120

clusterOnSource

Notes:

Stupid Robot Tricks Appendices Page 121

clusterOnSource – convex hulls

Notes:

Stupid Robot Tricks Appendices Page 122

clusterIntoGroups

Notes

Stupid Robot Tricks References Page 123

References .

[1] iRobot Corporation. 63 South Ave., Burlington, MA 01803. www.irobot.com

[2] Express Logic Corporation, 11423 West Bernardo Court, San Diego, CA. 92127,
www.expresslogic.com

[3] Cortes, J., S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile
sensing networks. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1327--1332, Arlington, VA, May 2002.

[4] Arya, S. and A. Vigneron. "Approximating a Voronoi Cell". HKUST Theoretical
Computer Science Center Research Report HKUST-TCSC-2003-10, Hong Kong
University of Science and Techology, available at
www.comp.nus.edu.sg/~antoine/avn.pdf, 2003.

[5] Brooks, R. "A robust layered control system for a mobile robot". In IEEE Journal of
Robotics and Automation, RA-2, pp.14-23, 1986.

[6] Abramson, N. "The Aloha System - Another Alternative for Computer
Communications". In Proc. Fall Joint Cornput. Conf., AFIPS Conf., page 37, 1970.

[7] Intanagonwiwat, C., R. Govindan and D. Estrin. Directed diffusion: A scalable and
robust communication paradigm for sensor networks. In Proc. Sixth Annual
International Conference on Mobile Computing and Networks, 2000.

[8] Payton, D., M. Daily, R. Estowski, M. Howard, and C. Lee. "Pheromone Robotics".
In Autonomous Robots, vol. 11, pp.319-324, 2001.

[9] Weisstein, Eric. "Circle Packing." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/CirclePacking.html

[10] Holldobler, Bert, E. O. Wilson, “The Ants”, The Belknap Press of Harvard
University Press, Cambridge, Massachusetts, 1990

[11] Holldobler, Bert and Edward O. Wilson, “Journey to the Ants”, The Belknap Press
of Harvard University Press, Cambridge, Massachusetts, 1994

[12] Heinrich, Bernd, “Bumblebee Economics”, Harvard University Press, Cambridge,
Massachusetts, 1981

[13] Cormen, Thomas H., Charles E. Leiserson and Ronald L. Rivest, “Introduction to
Algorithms”, The MIT Press, Cambridge, Massachusetts, 1990.

[14] Abelson, H., D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E.
Rauch, G. Sussman and R. Weiss. “Amorphous Computing”. MIT AI Memo 1665,
August 1999. http://www.swiss.ai.mit.edu/projects/amorphous/paperlisting.html

Stupid Robot Tricks References Page 124

[15] Coore, D.. “Botanical Computing: A developmental Approach to Generating
Interconnect Topologies on an Amorphous Computer”. MIT Ph.D. Thesis. February
1999

[16] Braitenberg, Valentino, “Vehicles: Experiments in Synthetic Psychology”, MIT
Press, Cambridge, Massachusetts, 1984

[17] Balch , Tucker and Ronald C. Arkin. “Behavior-based Formation Control for Multi-
robot Teams”. IEEE Transactions on Robotics and Automation. 1999.
http://www.cc.gatech.edu/aimosaic/robot-lab/mrl-online-publications.html

[18] Bonabeau, Eric, Andrej Sobkowski, Guy Theraulaz, Jean-Louis Deneubourg. [98-01-
004]. “Adaptive Task Allocation Inspired by a Model of Division of Labor in Social
Insects”. Bio Computation and Emergent Computing, edited by D. Lundh, B.
Olsson, and A. Narayanan, pp. 36--45, World Scientific, 1997.
http://www.santafe.edu/sfi/publications/working-papers.html

[19] Bonabeau, Eric, Guy Theraulaz, Bertrand Schatz, and Jean-Louis Deneubourg [99-
01-006] Response Threshold Model of Division of Labour in a Ponerine Ant. Santa
Fe Institute. http://www.santafe.edu/sfi/publications/working-papers.html

[20] Botee , Hozefa M. and Eric Bonabeau [99-01-009]Evolving Ant Colony
Optimization. Santa Fe Institute. http://www.santafe.edu/sfi/publications/working-
papers.html

[21] Brooks, Rodney. “A Robust Layered Control System for a Mobile Robot”. MIT
Artificial Intelligence Lab. A.I. Memo 864. September 1985

[22] Brooks, Rodney. “A Robot that Walks; Emergent Behaviors from a carefully
Evolved Neetwork”. MIT Artificial Intelligence Lab. A.I. Memo 1091. September
1989

[23] W. Burgard, D. Fox, and S. Thrun. Active Mobile Robot Localization , Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI'97),
Nagoya, Japan 1997. http://www.cs.bonn.edu/~wolfram/

[24] W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun. “Collaborative Multi-
Robot Exploration”. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), San Francisco, CA, 2000. IEEE.
http://citeseer.nj.nec.com/burgard00collaborative.html

[25] Chun, Li, Zhiqiang Zheng, and Wensen Chang. “A Decentralized Approach to the
Conflict-free Motion Planning for Multiple Mobile Robots”. Proceedings of the 1999
IEEE International Conference on Robotics and Automation. Detroit, Michigan.
May 1999. pp.1544-1549.

[26] Delgado, Jordi and Ricard V. Sole. [98-08-069]. Self -Synchronization and Task
Fulfilment in Social Insects. Santa Fe Institute.
http://www.santafe.edu/sfi/publications/working-papers.html

[27] Desai, Jaydev P., Vijay Kumar, and James P. Ostrowski. “Control Changes in
Formation for a Team of Mobile Robots.” Proceedings of the 1999 IEEE
International Conference on Robotics and Automation. Detroit, Michigan. May
1999. pp.1556-1561.

Stupid Robot Tricks References Page 125

[28] Dorigo M., V. Maniezzo & A. Colorni (1996). The Ant System: Optimization by a
Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26(1):29-41
http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html#Bib

[29] Dorigo M., G. Di Caro & L. M. Gambardella (1999). Ant Algorithms for Discrete
Optimization. Artificial Life, 5(2):137-172. Also available as Tech.Rep.IRIDIA/98-
10, Université Libre de Bruxelles, Belgium.
ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.23-alife99.pdf

[30] Gage, D.W., "Many-Robot MCM Search Systems," Proc. Autonomous Vehicles in
Mine Countermeasures Symposium, pp. 9.56-9.64, Monterey, CA, 4-7 April, 1995
http://www.nosc.mil/robots/pubs/PubsIdx.html

[31] Gage, D.W., "Development and Command-Control Tools for Many-Robot Systems,"
Proc. SPIE Microrobotics and Micromechanical Systems, Vol. 2593, pp. 121-129,
Philadelphia, PA, 23-24 October, 1995.
http://www.nosc.mil/robots/pubs/PubsIdx.html

[32] Gage, D.W., "How to Communicate with Zillions of Robots", Proceedings of SPIE
Mobile Robots VIII, Boston MA, 9-10 September 1993, volume 2058, pp 250-257.
http://www.nosc.mil/robots/pubs/PubsIdx.html

[33] Gage, D.W., "Randomized Search Strategies with Imperfect Sensors", Proceedings of
SPIE Mobile Robots VIII, Boston MA, 9-10 September 1993, volume 2058, pp 270-
279. http://www.nosc.mil/robots/pubs/PubsIdx.html.

[34] J-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An Experimental Comparison
of Localization Methods. International Conference on Intelligent Robots and
Systems (IROS 98), Victoria, Canada, October 1998.
http://www.cs.bonn.edu/~wolfram/

[35] H. Hu, I.D. Kelly D.A. Keating and D. Vinagre (1998) Coordination of multiple
mobile robots via communication. http://www.uwe.ac.uk/facults/eng/ias/iankelly/

[36] Jung, David and Alexander Zelinsky, Grounded Symbolic Communication Between
Heterogenoeus Cooperating Robots, Autonomous Robots journal, special issue on
Heterogeneous Multi-robot Systems, Kluwer Academic Publishers, Balch, Tucker
and Parker, Lynne E. (eds.), vol 8, no 3, pp269-292, June 2000

[37] Jung, David and Alexander Zelinsky, “Integrating Spatial and Topological
Navigation in a Behavior-Based Multi-Robot Application”, International Conference
on Intelligent Robots and Systems (IROS99), Kyongju, Korea, October, 1999.

[38] Jung, David and Alexander Zelinsky, An Architecture for Distributed Cooperative-
Planning in a Behaviour-based Multi-robot System, Journal of Robotics and
Autonomous Systems, 26: 149-174, 1999.

[39] Kube, C. Ronald, and Eric Bonabeau [99-01-008] Cooperative Transport By Ants
and Robots. http://www.santafe.edu/sfi/publications/working-papers.html

[40] Maja J Mataric, “Interaction and Intelligent Behavior”. A.I. Memo 1495. MIT
Ph.D. Thesis. May 1994

Stupid Robot Tricks References Page 126

[41] Maja J Mataric, Martin Nilsson and Kristian Simsarian, "Cooperative Multi-Robot
Box-Pushing" Proceedings, IROS-95, Pittsburgh, PA, 1995, 556-561. . http://www-
robotics.usc.edu/~maja/publications.html

[42] Maja J Mataric, "Using Communication to Reduce Locality in Distributed Multi-
Agent Learning", Journal of Experimental and Theoretical Artificial Intelligence,
special issue on Learning in DAI Systems, Gerhard Weiss, ed., 10(3), Jul-Sep, 1998,
357-369. http://www-robotics.usc.edu/~maja/publications.html

[43] McLurkin, James. “The Ants: A Community of Microrobots”. Massachusetts
Institute of Technology. Bachelor’s Thesis. June 1995

[44] McLurkin, James. “Algorithms for Distributed Sensor Networks”. University of
California Berkeley. Master’s Thesis. June 1999

[45] Nagpal, R. “Programmable Self -Assembly: Constructing Global Shape using
Biologically-inspired Local Interactions and Origami Mathematics” MIT Ph.D.
Thesis. June 2001

[46] Parker, Lynne. “Adaptive Heterogeneous Multi-Robot Teams”. Neurocomputing,
special issue of NEURAP '98: Neural Networks and Their Applications 1999, vol. 28,
pp. 75-92.

[47] Russell, R. Andrew. “Laying and Sensing Odor Markings as a Strategy for assisting
Mobile Robot Navigation Tasks” IEEE Robotics and Automation Magazine,
Setpember 1995 pp.3 -9

[48] Schneider-Fontan , Miguel and Maja J Mataric, "Territorial Multi-Robot Task
Division", IEEE Transactions on Robotics and Automation, 14(5), Oct 1998
http://www-robotics.usc.edu/~maja/publications.html.

[49] Seeley, Thomas D. “The Wisdom of the Hive” Harvard University Press.
Cambridge, Massachusetts. 1995

[50] Solé, Ricard V., Eric Bonabeau, Jordi Delgado, Pau Fernández and Jesus Marín
[99-10-074] Pattern Formation and Optimization in Army Ant Raids.
http://www.santafe.edu/sfi/publications/working-papers.html

[51] Werger , Barry Brian and Maja J Mataric, ‘Robotic "Food’ Chains: Externalization
of State and Program for Minimal-Agent Foraging" in Proceedings, From Animals
to Animats 4, Fourth International Conference on Simulation of Adaptive Behavior
(SAB-96), Pattie Maes, Maja Mataric, Jean-Arcady Meyer, Jordan Pollack, and
Stewart W. Wilson, eds, MIT Press/Bradford Books 1996, 625-634. http://www-
robotics.usc.edu/pub_autonomous.html

[52] Yamauchi, Brian. “Frontier-Based Exploration Using Multiple Robots” Proceedings
of Autonomous Agents 1998, Minneapolis, MN. pp 47-53.

[53] Gawlick, R, R. Segala, J. Soegaard-Andersen, and N. Lynch. Liveness in timed and
untimed systems. Technical Report MIT/LCS/TR-587, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, December
1993.

Stupid Robot Tricks References Page 127

