
Dynamic Task Assignment in Robot Swarms
James McLurkin

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Lab

Cambridge, MA 02139 USA
Email: jamesm@csail.mit.edu

Daniel Yamins
Harvard University

Department of Mathematics
Cambridge, MA 02138 USA

Email: yamins@fas.harvard.edu

Abstract— A large group of robots will often be partitioned
into subgroups, each subgroup performing a different task. This
paper presents four distributed algorithms for assigning swarms
of homogenous robots to subgroups to meet a specified global task
distribution. Algorithm Random-Choice selects tasks randomly,
but runs in constant time. Algorithm Extreme-Comm compiles
a complete inventory of all the robots on every robot, runs
quickly, but uses a great deal of communication. The Card-
Dealer’s algorithm assigns tasks to individual robots sequentially,
using minimal communications but a great deal of time. The Tree-
Recolor algorithm is a compromise between Extreme-Comm and
Card-Dealer’s, balancing communications use and running time.
The three deterministic algorithms drive the system towards the
desired assignment of subtasks with high accuracy. We implement
the algorithms on a group of 25 iRobot SwarmBots, and collect
and analyze performance data.

I. INTRODUCTION

The dynamic assignment of tasks in multi-robot systems has
many applications. When ants forage, different workers must
simultaneously scout food sources, lay trails, and transport
prey back to the nest [1]–[3]. In a search-and-rescue mission
of 40 robots, a preferred task assignment might be 30 robots
to explore the environment, 2 to mark resources, and 8 to
maintain a communications network [4], [6], [7]. This distribu-
tion, (75%, 5%, 20%), should be maintained as reinforcements
arrive, or robots leave to recharge their batteries. When an
entire subgroup is removed, the remaining robots should
reassign themselves to preserve the global distribution. The
system should also be responsive to new global distribution
inputs from a user or a task-allocation algorithm.

The task allocation problem in multi-robot systems therefore
has two components: 1) deciding how to divide a group
of robots into subgroups, with each subgroup performing a
separate task; and 2) achieving the desired subgroup assign-
ment in a distributed system. The first component consists
of determining an optimal number of subgroups into which to
divide the robot population, and an optimal distribution for the
relative sizes of these subgroups. The second consists in hav-
ing robots determine, through local interactions, which group
to join to achieve the desired global task distribution. This
paper addresses the second component, assuming a “black-
box” solution to the first. We describe four distributed dynamic
task assignment algorithms, analyze them mathematically, and
implement them in a swarm of 25 autonomous mobile robots.

All robots are given the target distribution by a centralized

Fig. 1. The iRobot Swarm is comprised of over 100 SwarmBots, charging
stations, and navigational beacons. Each SwarmBot measures 5” on a side
and has a suite of sensors, communications hardware, and human interface
devices. Hands-free operation is essential with this number of robots, and the
Swarm supports remote downloading and autonomous charging.

source in the form of a vector of normalized relative sub-
group sizes, e.g. the tuple (1/6, 1/3, 1/2) for a system with
three subgroups. The algorithms are designed to work on a
swarm of homogeneous robots, so any robot can perform any
task. The robots share limited information about their state
with their immediate neighbors and switch their tasks when
needed. The four algorithms span a spectrum of trade-offs
between temporal efficiency, communications complexity, and
accuracy.

Algorithm Random-Choice is the simplest solution: robots
choose a given task with probability equal to the relative size
of that task subgroup in the target distribution. This algorithm
requires no communication and completes immediately. How-
ever, there is a high probability that it will fail to achieve
the target distribution in small to medium-sized swarms (10-
50 robots). Algorithm Extreme-Comm is at the opposite end
of the spectrum. Each robot uses local interactions to build a
complete list of all other robots in the swarm, and uses this list
to determine its task. Though fast and accurate, the algorithm
requires a large amount of inter-robot communications. The
Card-Dealer’s algorithm uses minimal communications by
sequentializing the task-assignment problem into a series of
stages; its flaw, thereby, is its long execution time. Finally, the
Tree-Recolor algorithm is a compromise between Extreme-
Comm and Card-Dealer’s, balancing communications use

A : N u l l T a s k A l l o c a t i o n B : D e s i r e d T a s k A l l o c a t i o n C : I n c o r r e c t T a s k A l l o c a t i o n

Fig. 2. Illustration of task assignment for a group of 12 robots. The desired task assignment is given in percentages of red(dark grey), green(medium grey),
and blue(light grey), (1/6, 1/3, 1/2). In the left panel, none of the robots have selected a task. In the right panel, the task assignment is incorrect. A task
assignment algorithm will drive the system to the distribution illustrated in the center panel with 2 reds, 4 greens, and 6 blues. Note that robots with similar
tasks are placed near each other for illustrative purposes - this is neither a result of nor a requirement for algorithm execution.

and running time by using gradient trees. All of the algorithms
are robust to the removal or addition of robots at any time,
which is critical for implementation in any real multi-robot
system.

We implemented the algorithms on a group of iRobot
SwarmBots (Figure 1). The algorithms generally performed to
predicted levels of communications usage, temporal efficiency,
and assignment accuracy, but problems arose due to bandwidth
limitations in the communication hardware of the SwarmBot
system.

A. Related Work

The first stage of the task allocation problem – the determi-
nation of the optimal group structure and size distribution for a
variety of distribution problems – has been studied extensively
by Mataric and others [8], [9], [11]. The problem we study
here, that of achieving a target distribution, has been addressed
using probabilistic threshold models [12], [3], [13], [14]. But
these techniques do not provide precise and variable control
over global task distribution, and provide no guarantee for
success in small groups. Also, when the number of tasks
exceeds a small number (often 2 or 3), probabilistic threshold
methods often have multiple steady states which can trap
systems away from a desired task distribution [12]. What is
needed is an algorithm which deterministically drives the task
distribution to the desired global proportions, independent of
other system dynamics.

B. Problem Description

We model a swarm of n robots {xID|1 ≤ ID ≤
MaxRobots} for some large constant MaxRobots. Each
robot has a unique hard-coded identification number, a pro-
cessor, and enough memory to store state proportional to
n. Each robot has a communications system that enables it
to communicate with its neighbors, robots that are within a
circle of some fixed radius determined by the communica-
tions hardware. These communication neighborhoods define
a directed graph G whose nodes correspond to robots and
whose edges correspond to communications links between
neighboring robots. We require this graph to be connected at
all times. Each robot selects an integer task between 1 and m,
and a robot can change their task assignment at will.

Every robot has a local execution clock which regulates
algorithm execution and message broadcast, and every robot’s
execution clock increments at the same rate. This rate is much

slower than the robot’s actual processor clock, so events can
be modeled as occurring instantaneously on each “tick” of the
execution clock. Therefore, algorithms will be executed at the
same rate on each robot, even though no two robots are likely
to execute the same instruction simultaneously. Therefore, the
swarm as a whole has a well-defined execution cycle, the
period during which all robots have collected messages and
executed an algorithm exactly once, though different robots
will not be at the same point in the cycle at the same time.
We can therefore model the swarm as a synchronous dynamic
network; i.e., as if there were one global clock to which all
events synchronize, even when robots enter or depart. The
algorithms described in this paper do not depend on global
synchronization, only on the fact that duration of the execution
cycle is the same for all robots.

At any given moment t, the system possesses a task distri-
bution vector dv(t) = (n1/n, . . . , nm/n) in which ni is the
number of robots in task-group i.1 The global task assignment
problem is to find a distributed algorithm such that given a
target distribution vector p = (p1, . . . , pm), the distribution
dv(t) converges as close to p as possible. That is,

lim
t→∞

dv(t) = argminv{||v − p||2 for|v| = n}.

Additionally, we want the algorithm to be insensitive to arbi-
trary changes in the total number of robots n, or the topology
of graph G, as long as the network remains connected.

II. FOUR ALGORITHMS

A. The Random-Choice Algorithm

In the Random-Choice algorithm each robot draws a ran-
dom number x ∈ [0, 1] uniformly and bins it with respect to p:
if x ∈ [p1+. . .+pi−1, p1+. . .+pi] then the robot enters task-
group i. Its running time is O(1), depending only on the time
it takes to choose and bin x. No inter-robot communication is
required.

Let Xi be the random variable defined by the relative
percentage of robots in task i after n robots have chosen as
above, so that X = (X1, . . . , Xm) is a random m-dimensional
column vector whose entries sum to 1. The variable n · X is
distributed according to the (m− 1)-dimensional multinomial
distribution with sample size n and mean E[X] = n·p. Hence,
X itself is distributed according to a (m − 1)-dimensional

1Since n =
∑

C

i=1
ni, the elements of p sum to unity.

multinomial distribution in which the domain has been nor-
malized by n, the number of robots. X has expected value
E[X] = p and covariance matrix

Σp = E[(X − E[X])(X − E[X])T] =
1

n
(Dp − p · pT),

where pT is the transpose of p, a m-dimensional row-vector,
and Dp is the diagonal matrix whose i-th diagonal element is
pi. Hence, accuracy improves quickly as n increases. However,
in a group of 40 robots (a large number by today’s standards),
a task requiring 5% of the total robots stands a nearly 13%
chance of receiving no assignment. If this task is required
for the global application, the entire mission will fail. Many
practical systems are too small for such probabilistic methods
to be reliable.

However, Random-Choice is optimally accurate if inter-
robot communication is prohibited. One direction for im-
provement is represented by the probabilistic threshold mod-
els developed Deneubourg et al. and others [3], [12]–[14].
After initializing via the Random-Choice algorithm, each
robot would query its neighors’ task states: the further the
local distribution is from optimal, the more likely the robot
would change its task to rectify the imbalance. This kind
of algorithm will converge to a near-optimal distribution in
most circumstances. However, these algorithms still have a
non-trivial probability of failure for distributions with small
relative assignments, or in small-to-medium sized systems.
The threshold models are not usable in applications where
robots performing the same task need to be near each other.

B. The Extreme-Comm Algorithm

In the Extreme-Comm algorithm, each robot constructs a
list of the IDs of all the robots in the network. Each robot
selects its task based on its relative position in this list. The
algorithm runs quickly, but as its name suggests, it requires a
large amount of inter-robot communication.

At every execution cycle, each robot broadcasts a RobotID
message to its neighbors containing the tuple (MyID, times-
tamp) of its own ID and its current execution clock value.
During each cycle, the robot receives new RobotID messages
from its neighbors, and compiles them into a list. In the next
cycle, it rebroadcasts this list of messages, along with a new
RobotID message of its own with an updated timestamp.
The algorithm runs continuously, so that RobotID messages
from each robot propagate throughout the network. After
T = Diam(G) cycles, each robot will have an accurate list
of all the robots in G. A new robot added to the network will
propagate messages as above, and its presence will be known
to all other robots in at most T cycles. Once a messages has
been relayed, it is stored on a separate list for a “refractory
period” P before being deleted. The robot does not rebroadcast
messages from this list, or any copies of them received from
neighbors, a second time. If a robot is removed, its absence
will be noted within T execution cycles by all robots, since it
will no longer be present to propagate new copies of messages
bearing its ID.

Since each robot maintains a list of the IDs of all the other
robots in the network it can determine its relative position in
that list. Each robot then selects a task by taking its position in
the list and binning it with respect to p, just as in the Random-
Choice algorithm. Note that the algorithm does not require an
unbounded timestamp in the RobotID messages, and can use
one which resets to 0 after reaching some maximum value,
as long as the maximum value is larger than the refractory
period P . The largest value of P required is Diam(G), but P
can be made as short as 2 cycles, though smaller values make
the algorithm less robust to network topology changes. The
algorithm is self-stabilizing and converges deterministically to
the correct task distribution within T cycles of initialization
or T + P cycles of any perturbation.

The communications complexity per-robot per-cycle scales
as n, since each robot must send one RobotID message
for every robot in the network. The expected total number
of messages sent by all robots during convergence scales as
Diam(G)× n2, which could make this algorithm impractical
for a swarm with modest communication bandwidth. The
algorithm is also unattractive aesthetically because it collects
a large about of global information on each robot that it does
not use to solve the problem.

C. The Card-Dealer’s Algorithm

The Card-Dealer’s algorithm breaks the task assignment
problem into a series of stages. At each stage, a robot is “dealt”
a task as a function of the stage number, just as a card player
is dealt a card as a function of her position around a gaming
table. There are as many stages as robots in the system, and the
algorithm completes each stage before moving on to the next.
This causes the algorithm to run slowly. But unlike Extreme-
Comm, Card-Dealer’s never calculates or stores any global
quantities, thereby minimizing inter-robot communication and
memory requirements.

In every stage of the Card-Dealer’s algorithm, a “competi-
tive suppression” technique is used to identify the robot in the
network with smallest ID. Each robot broadcasts its own ID to
its neighbors repeatedly, unless it receives a similar broadcast
message indicating that a robot with smaller ID is present.
It then switches to rebroadcasting this smaller ID, until it
receives a message indicating that a robot with an even smaller
ID is present, at which point it switches to rebroadcasting
that ID instead. This procedure continues until, after at most
T = Diam(G) steps, the smallest ID in the network, say
LID1, has won out and is known to all robots. After waiting
for T cycles during which LID1 has remained stable, the robot
with this smallest ID, xLID1

, selects its task according to the
rule described below. This robot then declares the beginning of
stage 2. This begins another round of competitive suppression,
which identifies the second-smallest ID in the network. During
this period the first robot relays messages but does not actively
participate in the competitive suppression procedure. Once the
new minimum ID stabilizes, the selected robot xLID2

selects
its task, declares stage 3, and sets itself to be inactive. This
procedure continues until the robot with highest ID in the

network selects its task and becomes inactive. When no new
stage has been announced for more than T steps, all robots
reset the stage counter and reactivate. The whole procedure
repeats, running continuously, to allocate robots that have been
newly added to or removed from the network.

The Card-Dealer’s algorithm requires each robot to obtain
an estimate of the diameter of the network in order to know
how long to wait at each stage. This is to ensure that robots
wait long enough to identify the unique minimal ID at a given
stage before moving on. Description of a diameter estimation
algorithm is given in subsection II-E.

The order of task choice in the Card-Dealer’s algorithm is
based on the fact that any distribution p ∈ Qm possesses
a minimal representation, the sequence of integers v =
(v1, . . . , vm) of minimal sum V =

∑

i vi such that p = v/V .
The simplest ordering would be for the robot at stage s to
pick task i if s mod V is between v1 + . . . + vi−1 and
v1 + . . . + vi; this “bins” s with respect to the minimal
representation. If the size of the population n is divisible by
V , this achieves optimal accuracy. However, if n mod V 6= 0,
the last n mod V robots are part of an incomplete minimal
representation. Depending on the order in which the preceding
robots have been retasked, the resulting distribution may not be
a closest-possible approximation. Because the Card-Dealer’s
algorithm never calculates the total number of robots in the
system, it cannot explicitly take advantage of knowing n, and
therefore n mod V , to compensate.

However, a better ordering can be chosen, so that regard-
less of the value of n mod V , the resulting distribution is
optimal. The key fact is that the closest approximation to
a given p = (p1, . . . , pn) by an integer sequence of length
k, say, (p1,k, . . . , pn,k), is equal to the closest approximation
generated from (p1,k−1, . . . , pn,k−1) by adding 1 robot to one
of the task types. This can be seen by noting that

min∑

i
ni=k

{

∑m

1

(

pi −
ni

k

)2
}

= minj

{

(

pj −
pj,k−1(k−1)+1

k

)2

+
∑

i6=j

(

pi −
pi,k−1(k−1)

k

)2
}

.

If we let

j∗k = argminj

{

(

pj −
pj,k−1(k−1)+1

k

)2

+
∑

i6=j

(

pi −
pi,k−1(k−1)

k

)2
}

then the sequence sk = j∗k is the optimal sequence for each k.
Further analysis shows that j∗ can be evaluated via a simple
non-recursive procedure.

The Card-Dealer’s algorithm is self-stabilizing under
changes in the robot population. First, consider a robot xID

to be added in to the system at time t. This robot will be
active when added. If its ID is smaller than that of any of
the active robots, it will win the competitive suppression and
select its task in that stage. If not, then it will wait for its turn

as if it had been present since the beginning. Now consider a
robot xID that is removed from the network. If xID is still
active and there exists an active robot xID′ in the network with
ID′ < ID, then the algorithm will simply skip over the lack
of xID as if it never were present in the first place. If xID has
already selected its task, then the gap will be rectified after all
other robots have selected their tasks and the stage counter is
reset. The only case in which care must be taken is if xID is
the robot with smallest ID active in the network at that instant.
In this case, the network might already have propagated xID

as the lowest active robot, and other robots in the system will
have stored this as their value for the LID variable. If xID

is removed before retasking and sending the signal for the
next stage, then the algorithm will encounter a liveness fault,
because the system will not know to move on and identify
the robot with the next largest ID as a replacement for xID.
This problem is solved by adding a liveness-error check. If
the value that a robot stores in LID does not change for a
longer time than could arise if xLID were present, robots clear
LID, wait for 2Diam(G) cycles, and return to searching for
the robot with the lowest ID.

The Card-Dealer’s algorithm is as slow as the Extreme-
Comm algorithm is communications-intensive. The expected
running time scales as O(Diam(G) × n). However, the
per-robot per-cycle communications complexity is constant.
Hence, the total number of messages passed between all
robots during convergence scales as Diam(G)×n2, just as in
Extreme-Comm.

D. The Tree-Recolor Algorithm

The Tree-Recolor algorithm elects a robot by competitive
suppression as in the Card-Dealer’s algorithm, and uses
gradients to construct a spanning tree of the network with
that robot as root. By standard tree-summing algorithms, the
task distribution in each subtree is computed and propagated
up one level, so that the root eventually receives the global
distribution. The root uses this information to compute and
distribute “retasking” messages that cause robots below it
in the tree to switch to the correct task. The Tree-Recolor
algorithm uses gradient trees to balance communications usage
and running time.

A gradient is a multi-hop messaging procedure used in
many routing protocols to find optimal routes through ad hoc
networks [16]. A source robot creates a gradient message
that is broadcast to its neighbors. Each robot rebroadcasts
received gradient messages, which propagate through the net-
work. Whenever a non-source robot receives several gradient
messages in the same execution cycle, it relays the one with
the lowest hop-count, adding 1 to account for itself. This
constructs a tree on the graph G with the source robot as
root. Other robots have a parent and (possibly several) children
in this tree. The tree is continually rebuilt from the source
outward; if the source is removed, the gradient dies out in a
controlled fashion [6]. This dynamic maintenance is essential
for applications in swarms of mobile robots. Many elegant
algorithms are defined on trees, and by constructing a spanning

tree via gradients, the swarm is able to take advantage of all
these algorithms.

In Tree-Recolor, each robot begins as a source for the
gradient. The gradient propagation algorithm from above is
modified so that a message from a source with a lower ID
is selected for rebroadcast, even if it has a higher hop-count
than a message from another source. Messages from the same
source are evaluated as described above. This produces a
competitive suppression of higher source IDs (as in the Card-
Dealer’s algorithm), and the robot xmin with the minimal
ID in the network eventually wins out as the unique source,
becoming the root of a spanning tree T of G. Leaves, level
1 robots, send messages containing their task to their parents,
the level 2 robots. The level 2 robots sum these messages,
computing the number of children they have in each task.
They then pass this information up the gradient to their
parents, taking care to add 1 for their own task. This repeats
on each execution cycle at all levels of the tree, so that
the source receives an accurate picture of the current global
task distribution, as long as G remains stable for at least
T = 2×Depth(T) cycles. In addition, each robot learns what
level it is in the tree by taking the maximum of the levels of
its children, adding 1, and passing this up to its parent. The
source thus learns Depth(T) as well.

When the values of the distribution sums seen by the source
are stable for more than Diam(G) cycles, the source calculates
a “retasking-array” R, a matrix in which the (i, j)-th entry is
the number of robots in task-group i that should switch to task-
group j to achieve the goal distribution. The source changes
tasks itself, if appropriate, and then calculates and transmits
“subtree retasking arrays”, R1, . . . , Rk, one to each of its k
children. Care is taken to ensure that each of these arrays
contain no more retasking commands for a given task than
robots in that subtree. The children process their retasking
arrays, changing their own task if necessary, then calculate
and transmit subtree retasking arrays to their own children.
The retasking commands spread as a wavefront down the
tree. When they reach the leaves, the goal distribution is
achieved. The source waits T cycles before broadcasting a
new retasking array, ensuring that the previous arrays have
completed their propagation and the new task sums reflecting
the changes have accumulated back at the source. Transmitting
new retasking arrays earlier than this could cause the global
task assignment to become unstable, and goal distribution to
never to be achieved.

Since Depth(T) ≤ Diam(G), the run time of the Tree-
Recolor algorithm is O(Diam(G)), comparable to that of
the Extreme-Comm algorithm. However, the per-robot per-
cycle communications usage scales as O(km), where k is the
maximum allowed number of retasking messages transmitted
per cycle, plus one gradient message. This maximum is
determined by the hardware implementation. Communications
usage is significantly better than Extreme-Comm, as m, the
number of different tasks, is usually smaller than n. The total
number of messages passed throughout one full run of the
algorithm scales as O(m×n×Diam(G)) which is one factor

Fig. 4. The iRobot SwarmBot is designed for in vivo distributed algorithm
development. Each SwarmBot has four IR transceivers, one in each corner,
allowing nearby robots to communicate and determine the bearing, orientation,
and range of their neighbors. An omnidirectional bump skirt provides robust
low-level obstacle avoidance. The 40 MHz 32-bit microprocessor provides
more than enough processing power for our algorithms.

less in n than the previous two algorithms.

E. Diameter Estimation

The Card-Dealer’s and Tree-Recolor algorithms need to
synchronize robot state transitions to within a diameter period
across the network. To achieve this, they must estimate the
worst-case time that a message needs to propagate throughout
the network. This is determined by the diameter Diam(G),
the maximum distance between any two nodes in G.

The diameter can be estimated by starting a gradient tree
from any node a ∈ G, and noting that Diam(G) ≤ 2D
where D is the depth of the gradient tree. The Card-Dealer’s
algorithm runs a diameter estimation algorithm from the robot
in the system with smallest ID. Maximum depth estimates are
propagated up the tree to the root, which then broadcasts the
global maximum to the rest of the robots via the gradient.2

The Tree-Recolor algorithm exactly replicates this calculation
when it determines the tree depth as described above.

III. IMPLEMENTATION

A. Hardware Description

We implemented the algorithms on a group of iRobot
SwarmBots. Each SwarmBot (Figure 4) is mobile and contains
a suite of sensors, inter-robot communication and localization,
and a microprocessor.

Each robot transmits its public state at the end of every
execution cycle. The time for each cycle is the same for
all robots, which ensures that each robot will receive only
one set of messages from each of its neighbors during any
cycle, enforcing the synchronicity model from section B.
The cycle period is 250 ms, short enough for smooth robot
motion control based on neighbor positions, but long enough to
preserve communications bandwidth. The link layer protocol
is similar to the Aloha [17] protocol, in that each robot

2When the algorithm initializes, before identifying LID1, each robot uses
MaxRobots as its (over-)estimate for the tree diameter.

Algorithm running time Per Robot Comm. Rate Total Comm. Error Variance
Random-Choice O(1) 0 0 O(1/n)
Extreme-Comm O(Diam(G)) O(n) O(n2Diam(G)) 0
Card-Dealer’s O(n × Diam(G) O(1) O(n2Diam(G)) 0
Tree-Recolor O(Diam(G)) O(m) O(nmDiam(G)) 0

Fig. 3. Comparison of the asymptotic theoretical upper bounds on the four algorithms’ running time, communications usage, and accuracy. The notation n,
m, and G respectively denote the total number of robots in the network, the number of tasks in the goal distribution, and the network graph. Running time is
defined as the number of execution cycles between stabilization of the robot population and stabilization of the final task distribution. The per-robot per-cycle
communications rate is defined as the number of messages sent by a single robot in a single execution cycle. (There are four execution cycles per second.)
The total communications burden on the network is defined to be the sum over all robots of the per-cycle per-robot communications rate until the algorithm
converges. Accuracy is measured by the variance of the theoretical error distribution between final stabilized state and actual target distribution.

transmits with minimal 3 checking to prevent collisions with
a neighboring robot’s transmission. Care must be taken to
not saturate the communications channel, as this can cause
network “crystallization” and catastrophic communication fail-
ures. With 10 neighbors, each robot has sufficient bandwidth
to receive about 18 messages per neighbor per cycle, a very
tight constraint.

Each SwarmBot is adorned with large red, green, and blue
“Behavior LEDs” and has a MIDI audio system. We use these
lights and sounds to monitor the internal state of the robots.
In particular, the task a robot has selected is represented by
illuminating one of these LEDs, so we limited our experiments
to three task groups – red, green and blue – to allow the use
of a standard video camera for data collection.

B. Experiments

We conducted three sets of experiments to measure each al-
gorithm’s assignment accuracy and convergence time, running
time as a function of total number of robots, and stability to
external disturbances.

Convergence and Accuracy: The first experiment was
designed to measure convergence time and accuracy. Conver-
gence error is defined as the distance from the current distribu-
tion vector and a fixed goal distribution p = (1/6, 1/3, 1/2):
e = ||dv(t) − p||2. The results are shown in Figure 5. All
three algorithms were highly accurate, with Extreme-Comm
and Card-Dealer’s producing final assignments with no er-
rors. The Extreme-Comm algorithm converged the fastest,
but Card-Dealer’s outperformed Tree-Recolor on average,
ignoring the theoretical results that predict otherwise. The
Card-Dealer’s algorithm uses little communications, and ran
exceptionally well on the Swarm. But, even for this small
swarm, the average convergence time was 53 seconds, making
this algorithm impractical for large swarms. The Tree-Recolor
algorithm relies on gradient trees to propagate partial sums
of the current distribution back to the root robot. Messages
dropped during this process were common, which caused
incorrect summations, leading to an incorrect distribution ac-
cumulating at the root, and then incorrect retasking arrays sent
back down the tree. Some of the experimental runs showed the
promise of the Tree-Recolor algorithm, with the correct as-
signment being achieved in two retasking cycles (21 seconds),

3If a robot is receiving a message, it will wait to transmit, but will not adjust
the transmit time for the next neighbor cycle. This ensures synchronicity, but
can cause repeated collisions when the robots are stationary.

only twice the minimum running time. There are techniques in
the literature to help stabilize the tree computations (taking the
max over windows of time, encoding packet routing history to
deal with topology changes [15], etc.), some of which might
bring the convergence time closer to the theoretical limits. It
is interesting to note that Extreme-Comm and Tree-Recolor
both measure the current distribution and use feedback to
converge monotonically toward the goal, while Card-Dealer’s
makes uninformed task assignments at each round, causing the
global error to increase while running.

Running Time: The second experiment measured the con-
vergence time as a function of the number of robots in the
network. We progressed from 4 to 25 robots, which is close
to the bandwidth limit for Extreme-Comm. We arranged
the robots so that the diameter of the network was known
a priori and the minimum running time could be computed
directly. For each group size, several runs from a random initial
distribution to an assignment of p = (1/6, 1/3, 1/2) were
timed. The execution cycle of 250 ms and the algorithm design
were used to compute a lower bound on the running time, but
actual running time depended on communications errors, as
lost messages impeded performance. This can be modeled by
extending the execution cycle and calculating expected running
times. The expected execution cycle is ∼ 37% longer than the
minimum [6]. The results are shown in Figure 6.

The Extreme-Comm algorithm performed well, but as the
communications burden increased, the measured running times
moved further from the expected running times, possibly
because the communications usage was outside of the usage
patterns used to characterize the system. The Card-Dealer’s
algorithm ran perfectly each time, generating data with almost
no variance. Again, the Tree-Recolor algorithm ran slower
than expected, with a large variance in convergence time. The
source of errors was the same as the previous experiment -
incorrect sums caused by fragile gradient trees.

Disturbance Rejection and Self-Stabilization: The third set
of experiments measured the disturbance rejection properties
of the three algorithms. Four disturbances were introduced in
sequence: 1. Initial transition from p = null to p = (1, 0, 0),
2. transition from p = (1, 0, 0) to p = (0, 1/2, 1/2), 3.
transition from n = 24 to n = 12 while keeping p constant, 4.
transition from n = 12 to n = 24 while keeping p constant.
A centralized radio network was used to broadcast the new
distribution and population commands to a group of 24 robots.
Figure 7 shows the results, with grey lines indicating when

Fig. 5. The convergence properties were measured by running each algorithm 8 times on a group of 18 robots, and measuring the normalized error as a
function of time. In all runs, the robots started from an random initial assignment, and converged towards p = (1/6, 1/3, 1/2). The Extreme-Comm and
Card-Dealer’s algorithms’ temporal performance was close to the theoretical limits, and both converged to the correct distribution in all runs with no error.
The Tree-Recolor algorithm struggled with communication errors which extended its running time well beyond the theory, but it still converged to the desired
distribution.

Fig. 6. The running time of all three algorithms scale with the total number of robots in the network. This graph shows time plotted against the number of
robots on log-log axes. Configurations containing between 4 and 25 robots were tested. Solid lines show the predicted running time with no communications
errors, dashed lines show the expected running time with typical errors. Dots are data points from individual experiments. The Card-Dealer’s and Extreme-
Comm algorithms performance was close to the expected running time, while the Tree-Recolor algorithm was far from expected. This was caused by incorrect
summation information propagating back to the root of the gradient tree, making the subsequent retasking commands incorrect.

each of the disturbances occurred.

The Extreme-Comm algorithm should have easily handled
all of these disturbances. Unfortunately, problems with the
robots’ radios corrupted many of the data sets. Attempts were
made to separate errors caused by the experimental setup from
errors caused by inter-robot communications, but unexplained
variances are still present. The distribution change at t = 5
occurs very quickly, because each robot has already compiled
the list of all the other robots, and can select a new task in O(1)
time. Removing half of the robots produced a plateau in the
error from t = 10 to t = 12.5 because the timestamp in each
RobotID message must become invalid before that message
can be removed from a list of robots. This is in contrast to
the next disturbance at t = 20 when the 12 robots are turned
back on. The algorithm adds robots as new messages arrive,
quickly driving the error towards zero.

Because the Card-Dealer’s algorithm does not measure the

current distribution, its worst case response to each disturbance
is the same: 2 × n × Diam(G). The initial assignment and
the distribution change show that Card-Dealer’s only changes
the task of one robot at a time. The small error after the
population change from 24 to 12 robots is misleading, as
removing random robots did not have a large effect on the
global distribution, but caused Card-Dealer’s to change the
tasks on many of the remaining robots.

The Tree-Recolor algorithm was hindered by the same ex-
perimental setup as Extreme-Comm as well as the gradient-
tree summation errors mentioned earlier. As before, there was
a large variance on convergence time, pointing to room for
improvement.

IV. CONCLUSION AND FUTURE WORK

The four solutions presented here exhibit different scaling
properties and communications requirements. All four could
find a place in the distributed algorithm designer’s toolbox

Fig. 7. All of the algorithms are self-stabilizing when subject to external disturbances. This trio of graphs displays the recovery of the algorithms when
subject to four different external disturbances; the initial convergence, a goal distribution change, removal of half of the robots, and replacement of the removed
robots. Normalized error is plotted against time in all graphs, but the absolute times in each graph are different. Eight runs of Extreme-Comm produced
the data on top. The algorithm performed well, but the data is partially corrupted by errors in our experimental setup. Some of this can be seen after t =
16, as the error begins to rise, even though there is no disturbance (compare with Fig. 5). The plot of Card-Dealer’s shows the algorithm’s steady progress.
Multiple runs produced identical results, so only one example is shown here. The magnitude of the error after the first population change is small, but many
robots needed to switch tasks, which can be very disruptive. The Tree-Recolor algorithm was hindered by the same experimental setup as Extreme-Comm
as well as the gradient-tree summation errors mentioned in the text. It converged accurately, but not rapidly.

for practical dynamic task assignment. A useful enhancement
would be the ability to specify absolute requirements on the
minimum or maximum number of robots assigned to a task.
One of the most intriguing research directions suggested by
these algorithms is exploration of resource trade-offs that are
minimized by the most efficient algorithms, and are bounded
below by some “conserved quantity” associated with the
dynamic task assignment problem. Another important question
is to understand how to combine results from this work with
approaches to locally determining the optimal task distribution.
Future work could follow up on this theoretical question, in
addition to implementing and optimizing specific solutions.

ACKNOWLEDGEMENTS

Support for J. McLurkin provided in part by Boeing
and DARPA IPTO under contracts DASG60-02-C-0028 and
N66001-99-C-8513. Support for D. Yamins provided in part by
a National Science Foundation Graduate Research Fellowship.
The authors would like to thank L. Kaelbling, D. Rus, and D.
Bourne for invaluable help during the preparation of this paper.

REFERENCES

[1] S Camazine, et al. Self-Organizing Biological Systems Princeton Univ.
Press, 2001.

[2] E.O. Wilson and G. Oster. Caste in Social Insects. Princeton Univ. Press,
1979.

[3] M Dorigo et al. New Ideas in Optimization ACM Dig. Lib. 1999
[4] P Ogren, E Fiorelli, NE Leonard. Formations with a Mission, Proc.

MTNS, 2002.
[5] WJ Butera, Progamming a Paintable Computer, Ph.D. Thesis MIT 2002.
[6] J McLurkin, Stupid Robot Tricks: A Behavior-Based Distributed Algo-

rithm Library for Programming Swarms of Robots, S.M Thesis. MIT
2004.

[7] JM Kahn et al., Next Century Challenges: Mobile Networking for “Smart-
Dust”, Proc. 5th ACM/IEEE CMCN. 1999.

[8] MJ Mataric, GS Sukhatme, EH Ostergaard. Distributed Multi-robot Task
Allocation for Emergency Handling, Autonomous Robots 14, 2003.

[9] BP Gerkey, MJ Mataric. Multi-robot Task Allocation: Analyzing the
Complexity and Optimality of Key Architectures, Int’l J. of Robotics
Research 23 (9), 2004.

[10] O. Shehory, S. Kraus. Methods for Task Allocation via Agent Coalition
Formation, Artificial Intelligence 101, 1998.

[11] J. Valk and C. Witteveen. Lecture Notes in AI 52417, 2002.
[12] E Bonabeau, G Theraulaz, JL Deneubourg. Quantitative Study of the

Fixed Threshold Model for the Regulation of Division of Labour in Insect
Societies, Bull. Math. Bio, 60, 1998.

[13] MJB Krieger, JB Billeter, L Keller. Ant-like Task Allocation and Re-
cruitment in Cooperative Robots, Nature 406 (31) 2000.

[14] S Nouyan. Agent-Based Approach to Dynamic Task Allocation , ANTS
2002 (Lec. Notes in CS 2463), 2002.

[15] S Nath, PB Gibbons, S Seshan, Z Anderson. Synopsis Diffusion for
Robust Aggregation in Sensor Networks, ACM SenSys 2004.

[16] C Intanagonwiwat, R Govindan, D Estrin. Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks, Proc. 6th
Ann. Conf. on Mobile Computing and Networks, 2000.

[17] N Abramson, The Aloha System – Another Alternative for Computer
Communications, Proc. Fall Joint Comput. Conf., AFIPS Conf., 1970.

