
From Theory to Practice: Distributed Coverage
Control Experiments with Groups of Robots

Mac Schwager1, James McLurkin1, Jean-Jacques E. Slotine2, and Daniela Rus1

1 Computer Science and Artificial Intelligence Lab
MIT, Cambridge, MA 02139, USA
schwager@mit.edu,jamesm@csail.mit.edu,rus@csail.mit.edu

2 Nonlinear Systems Lab
MIT, Cambridge, MA 02139, USA
jjs@mit.edu

Summary. A distributed algorithm is presented that causes a network of robots to spread out
over an environment, while aggregating in areas of high sensory interest. The algorithm is a
discrete-time interpretation of a controller previously introduced by the authors. The algorith-
mic implications of implementing this controller on a physical platform are discussed, and
results are presented for 16 robots in two experiments. It isfound that the algorithm performs
well despite the presence of real-world complications.

1 Introduction

Robot group control is a fundamental problem for many robotics applications rang-
ing from maintaining a desired formation, to achieving a desired network connec-
tivity, to providing sensory coverage of an environment. Weare interested in robot
group control strategies that are (1) fully decentralized and distributed on the group,
(2) adaptive to changes in the environment and the group, (3)provably conver-
gent, and (4) experimentally feasible. In our previous work[13] we introduced a
consensus-based controller for sensory coverage that meets the first three desiderata.
In this paper we discuss the algorithmic implications of implementing this controller
on a physical platform consisting of arbitrarily large groups of robots, and we present
results of two experiments with 16 robots.

Specifically, we consider a distributed algorithm that causes a network of robots
to spread out over an environment, while aggregating in areas of high sensory inter-
est. It is known that a cost function representing the sensing cost of a robot network is
locally minimized if each robot is positioned at the centroid of its Voronoi cell [6,7].
It is not easy to position a robot at its Voronoi centroid because (1) the centroid
moves as the robot moves, and (2) the robot cannot calculate its Voronoi centroid
directly. Our algorithm uses consensus-based learning to estimate the centroid on-
line. Then each robot “chases” its estimated centroid untilit is eventually reached.

2 Mac Schwager, James McLurkin, Jean-Jacques E. Slotine, and Daniela Rus

An overview of the algorithm is shown in Figure 1. Our algorithm could be used,
for example, in search and rescue missions, environmental monitoring and clean-up,
or automatic surveillance of rooms, buildings, or towns. The experimental results in
this work demonstrate a significant step toward these practical applications.

There has been considerable theoretical and experimental work on multi-robot
senor coverage problems in the past. One body of this work considers how to plan
paths for groups of robots so that the sensor footprint of at least one robot visits
every point in the environment. This body of work includes strategies with ant-like
robots communicating through chemical trails [14], strategies that work on manifolds
[2], and strategies that adapt known coverage algorithms for single robots to the
multi-robot case [3, 8]. Voronoi tessellation have also been used to decompose the
environment into easy to cover regions in [1, 9]. A thorough survey of this body of
work can be found in [5].

In contrast, the objective of coverage control in our work isto disperse robots
over an environment to do environmental monitoring or surveillance. This notion of
coverage control has been explored with several approaches, for example [4, 6, 11].
We focus primarily on the framework introduced in [6] which poses the problem as
an optimization of a cost function that has been well-studied in the facility placement
literature [7]. However in [6] the robots are assumed to knowbefore hand the dis-
tribution of sensory information in the environment. In ouralgorithm the robots are
not assumed to know anything about the distribution of sensory information in the
environment. Instead, the robots learn the distribution ofsensory information while
performing coverage. Our coverage algorithm can be thoughtof as proceeding in two
complementary spaces, as described graphically in Figure 1. In position space, the
robots perform coverage, while in a high-dimensional parameter space, the robots
perform learning and consensus to collectively learn the distribution of sensory in-
formation in the environment.

This paper presents new experimental results with our coverage control algorithm
using a group of 16 SwarmBots. We introduce the algorithm in aform that is prac-
tical for implementation on robot platforms with potentially limited computational
resources. The algorithm is shown to operate in realistic situations in the presence of
noise on sensor measurements and actuator outputs and with asynchronous execu-
tion among the robots in the group. We enumerate these complications in detail and
discuss their apparent effect on the performance of the algorithm. Experimental re-
sults are analyzed with performance metrics to quantify theperformance. In Section
2 we describe our algorithm and discuss complications relating to practical imple-
mentation. In Section 3 we give results of two experiments and show experimental
snapshots. Conclusions and discussion are in Section 4.

2 Technical Approach

We model the robots as points moving in a plane. Specifically,consider a group ofn
robots in a convex, bounded areaQ⊂ R

2. An arbitrary point inQ is denotedq, the
position of theith robot is denotedpi , and the set of all robot positions{p1, ..., pn}

Title Suppressed Due to Excessive Length 3

Fig. 1. A schematic of the overall control scheme is shown. The robots atpi , p j , andpk move
to cover the areaQ. Simultaneously, each robot adapts a parameter vector (ˆai , â j , andâk) to
make an estimate of the sensory environment. Neighboring robots average their parameter
vectors at each step, causing all parameters to converge to acommon vector.

is called the configuration of the network. Also, the set of robots that communicate
to roboti is denotedNi(t) and can change over time. Let{V1, ...,Vn} be the Voronoi
partition of Q, for which the robot positions are the generator points. Specifically,
Vi = {q∈ Q | ‖q− pi‖ ≤ ‖q− p j‖,∀ j 6= i}.

Next, define the sensory functionφ : Q 7→R, whereφ(q) > 0∀q∈Q. The sensory
functionφ(q) should be thought of as a weighting of importance overQ. We want
to have many robots whereφ(q) is large, and few where it is small. The function
φ(q) is not knownby the robots in the network, but the robots have sensors that
can measureφ(pi) at the robot’s positionpi . The precise definition of the sensory
function depends on the desired application. For example, for a human surveillance
application in which robots use audio sensors,φ(q) may be chosen to be the intensity
of the frequency range corresponding to the human voice. In an application in which
a team of robots are used to clean up a chemical spill, an appropriate choice for the
sensory function would be the concentration of the chemicalas a function of position
in the environment.

2.1 Sensory Function Approximation

Since the robots do not knowφ(q), each one learns an approximation ofφ(q) by
expressing it as a linear combination of a set of known basis functions (or features)
weighted by an unknown parameter vector. That is, roboti’s approximation of the
sensory function is given by

φ̂i(q,t) = K (q)T âi(t), (1)

where the vector of basis functionsK (q) : Q 7→R
m are fixed and are the same for all

robots, but each robot has a potentially different parameter vectorâi(t) ∈ R
m which

4 Mac Schwager, James McLurkin, Jean-Jacques E. Slotine, and Daniela Rus

changes in time. Figure 2 shows a graphical representation of this function approx-
imation scheme. To learn the sensory functionφ(q) the robots tune their parameter
vectorâi(t) to makeφ̂i(q,t) best matchφ(q) given the measurements of their sensors.
The way this tuning is done will be described in Section 2.2.

Fig. 2. The sensory function approximation is illustrated in this simplified 2-D schematic.
The true sensory function is represented byφ (blue curve) and roboti’s approximation of
the sensory function iŝφi (orange curve). The vector-valued functionK (q) is shown as 3
Gaussians (dotted curves), and the parameter vector ˆai denotes the weighting of each Gaussian.

Approximating a function in terms of parameters in the form of (1) is standard
in many kinds of learning algorithms. In theory, the parameterization is not limiting
since any function (with some smoothness requirements) over a bounded domain
can be approximated arbitrarily well by a set of basis functions [12]. However, de-
signing a suitable set of basis functions requires application-specific expertise. We
use Gaussian basis functions in our experiments, but there is a variety of other basis
function families to chose from including, wavelets, sigmoids, and splines. Gaussian
basis functions have a computational advantage over non-local basis functions be-
cause they have nearly compact support. To compute the valueof the network at a
locationφ̂i(q), or to tune the weights of the network ˆai with new data, one has only
to consider Gaussians in a region around the point of interest.

As described in Section 1, robots pursue the estimated centroid of their Voronoi
region. The estimated centroid of the Voronoi region is its geometric center, weighted
by the sensory function approximation. We calculate the discrete approximation of
the centroid ofVi by dividing it up into a set of grid squares. Let the set of center
points of the grid squares bēVi and each grid square has equal area∆q. Then the
estimated centroid̂CVi of Vi , weighted byφ̂ (q), is given by

ĈVi (t) =
∑q∈V̄i

qφ̂i(q,t)∆q

∑q∈V̄i
φ̂i(q,t)∆q

, (2)

whereφ̂i(q,t) is defined in (1).

2.2 Coverage Control Algorithm

The Coverage control algorithm has two components, corresponding to the two
spaces described in Figure 1. In position space, the robots pursue their estimated
centroids, given by

Title Suppressed Due to Excessive Length 5

pi(t +1) = Cvi (t) (3)

In parameter space, the robots collaboratively learn the functionφ(q). They do this
by iteratively integrating the values ofφ(pi) which they measure with their sensors
into the quantityλi(t). Simultaneously, they integrate the value of the basis function
vector at their positionK (pi(t)) into the quantityΛi(t). Specifically,

λi(t +1) = λi(t)+K (pi(t))φ(pi(t)) and, (4)

Λi(t +1) = Λi(t)+K (pi(t))K (pi(t))
T
. (5)

The tuning of the parameter vector ˆai(t) is greatly aided by forming a convex com-
bination with the parameter vectors of robots in the neighbor set, which causes all
robots’ parameter vectors to approach a common value. This is what we call con-
sensus learning. It has the effect of propagating every robot’s sensor measurements
around the network to be used by every other robot. Specifically, the robot tunes its
parameter vector using

âipre(t) = âi(t)+ γ
(

λi(t)−Λi(t)âi(t)
)

+

ζ ∑
j∈Ni(t)

(

â j(t)− âi(t)
)

. (6)

whereγ andζ are positive gains. Then parameters are maintained above a predefined
minimum positive valueamin ∈ R, amin > 0, using

âi(t +1) = max(âipre(t),amin), (7)

where the min(·, ·) operates element-wise on the vector ˆaipre(t).
Both terms in (6) have an intuitive interpretation. The firstterm changes the pa-

rameter vector to decrease the difference between the current sensory function esti-
mate,φ̂ (t), and all previous values of the sensory function measured with the robot’s
sensors,φ(pi(τ)) for τ = 0,1, . . . ,t. The second term is the consensus coupling term,
which causes all of the robots’ parameters to reach a common value. We stress that a
distributed implementation requires that each robot adapts its own parameter vector
using local information available to it. If one were interested, instead, in designing a
centralizedadaptation law, one could simply use a common parameter vector that is
adapted using the information from all robots. Our consensus-based coverage algo-
rithm (as executed asynchronously by each robot) is writtenin Algorithm 1.

In summary, our coverage control algorithm integrates the sensor measurements
and robot trajectory intoλi ∈R

m andΛi ∈R
m×m, respectively. These are then used to

tune the parameter vector ˆai(t), which is also combined with the neighbors’ param-
eter vectors. The parameter vector is used to calculate the sensory function estimate
φ̂i(q,t), which is used to calculate the estimated Voronoi centroidĈVi , which the
robot then moves toward.

The algorithm is a discrete-time interpretation of the control law from [13],
which, under mild assumptions, was proved to cause robots toconverge to the cen-
troids of their Voronoi cells. By implementing the control algorithm on a group of

6 Mac Schwager, James McLurkin, Jean-Jacques E. Slotine, and Daniela Rus

Algorithm 1 Consensus-Based Coverage
Require: Each robot knows its positionpi(t)
Require: Each robot can communicate with its Voronoi neighbors
Require: Each robot can compute its Voronoi cell,Vi
Require: Each robot can measureφ(pi) with its sensors

Initialize:

Λi(0) = 0, λi(0) = 0, andâi(0) = [amin, . . . ,amin]
T

loop
Update:

λi(t +1) = λi(t)+K (pi(t))φ(pi(t))

Λi(t +1) = Λi(t)+K (pi(t))K (pi(t))
T

âipre(t) = âi(t)+ γ
(

λi(t)−Λi (t)âi(t)
)

+

ζ ∑
j∈Ni(t)

(

â j (t)− âi (t)
)

Projectâipre(t) to ensure parameters remain positive

âi(t +1) = max(âipre(t),amin)

Compute the robot’s Voronoi regionVi
DiscretizeVi into grid squares with area∆q and center pointsq∈ V̄i
Compute the centroid estimate:

ĈVi (t) =
∑q∈V̄i

qφ̂i(q,t)∆q

∑q∈V̄i
φ̂i(q,t)∆q

,

where φ̂i(q,t) = K (q)T âi(t)

Drive to the estimated centroidpi(t +1) = ĈVi (t)
end loop

robots, we introduce a number of complications not considered in [13], as described
in Table 1. The presence of noise in all measurement and actuation operations is a
significant change from the noiseless scenario considered in [13]. Noise on the po-
sition measurements of neighbors in particular seemed to bea large source of error
in the computation of the centroid of the Voronoi regions. Wefind that the algorithm
performs well despite the presence of these real-world complications. The robust-
ness of the algorithm can be attributed to its closed-loop structure, which constantly
incorporates position updates and new sensor measurementsto naturally correct mis-
takes. Also, the consensus-learning law tends to smooth theeffects of noise on the
sensory function measurements. This is because the parameter vectors are iteratively
combined with neighbors’ parameter vectors, so inaccuracies that might otherwise
accumulate due to measurement errors are counteracted by measurement errors from
neighboring robots.

Title Suppressed Due to Excessive Length 7

Table 1. Algorithm 1 Vs. Controller from [13]

Algorithm 1 Controller from [13]

• Discrete-time difference equations • Continuous-time differential equations
• Nonholonomic “unicycle” robot dynamics
cause position errors and turning delays

• Holonomic “integrator” robot dynamics

• Asynchronous execution of instructions • Synchronous evolution of equations
• Approximate Voronoi cells constructed
from noisy measurements of neighbors
within sensing range

• Exact Voronoi cells computed from exact
positions of all Voronoi neighbors

• Discretized sums over the Voronoi cell • Exact integrals over the Voronoi cell
• Noisy measurement of global position • Exact knowledge of global position
• Noisy actuators • Noiseless actuators
• Noisy measurement of sensory function • Noiseless measurement of sensory function
• Basis function approximation cannot recon-
struct exact sensory function

• Basis function approximation can recon-
struct sensory function exactly with ideal pa-
rameter vector

3 Results and Experimental Snapshots

The algorithm was implemented using integer arithmetic on anetwork of 16 Swarm-
Bots [10] (Figure 3). Each SwarmBot used an on-board IR system to sense rela-
tive neighbor positions (for computing its Voronoi cell) and to communicate its pa-
rameter vector for consensus learning. The robots moved in asquare environment
2.44m×2.44m. Each robot’s global position was measured by an overhead camera
and sent to it by radio. Each SwarmBot used a 40 MHz 32-bit ARM Thumb mi-
croprocessor, which provided enough processing power to execute our algorithm in
real-time. There was no centralized or off-line processing.

We present the results of two experiments. In the first experiment in Section
3.1, the robots were given a noiseless measurement of asimulatedsensory function
φ(pi). This allows us to compare the performance of the algorithm to a known ground
truth. Since the functionφ(q) is known, we also know the true position errors of the
robots (the distances to their true centroids), as well as the true parameter errors. In
the second experiment in Section 3.2, the robots use their on-board light sensors to
sense light intensity in the environment as a sensory function. In this case we have no
ground truth value forφ(q) so we can make no comparisons with ideal performance
metrics. Instead we verify that the algorithm exhibits the behavior that one would
expect given the scenario.

3.1 Simulated Sensory Function

The simulated sensory function,φ(q), was represented by two Gaussians, one in the
lower right of the environment and one in the upper left. The set of basis functions
of the function approximation was chosen to be 9 Gaussians arranged in a grid over
the square environment. In particular, each of the nine components ofK (q) was
implemented as

8 Mac Schwager, James McLurkin, Jean-Jacques E. Slotine, and Daniela Rus

Fig. 3. In our experiments, we used the iRobot SwarmBot platform shown above.

1
2πσ2 exp

{

−
(q− µ j)

2

2σ2
j

}

, (8)

whereσ j = .37m. The 2.44m×2.44m square was divided into an even 3×3 grid and
eachµ j was chosen so that one of the 9 Gaussians was centered at the middle of
each grid square. The parameters for the simulated sensory function were chosen as
a = [200 amin · · · amin 200]T, with amin = 1 so that only the upper left and
lower right Gaussians contributed significantly to the value of φ(q), producing a
bimodal distribution.

Figure 4 shows the positions of 16 robots over the course of anexperiment. The
algorithm caused the robots to group around the Gaussian peaks. The robots had no
prior knowledge of the number or location of the peaks. Figure 5(a) shows the dis-
tance to the centroid, averaged over all the robots. The distance to the true centroid
decreased over time to a steady value. The distance to the estimated centroid de-
creased to a value close to the pre-set dead zone of 5cm. The significant noise in the
distance to the estimated centroid comes from the fact that the robots used their mea-
sured neighbor positions to compute their Voronoi cells. The IR sensing system used
to measure the neighbor positions had a considerable amountof uncertainty. This
caused the Voronoi cells to change rapidly, which in turn caused the centroid esti-
mates to be noisy. The fact that the true distance to the centroid decreased steadily is
evidence that the algorithm is robust to these significant sources of error. Figure 5(b)
shows that the normed parameter error, averaged over all of the robots, decreased
over time, indicating that the robots were learning the sensory function. Figure 5(c)
shows∑n

i=1 âi(t)T ∑ j∈Ni
(âi(t)− â j(t)), representing the disagreement among the pa-

rameter vectors of different robots. The disagreement started at zero because all pa-
rameters were intialized with the same value ofamin. The disagreement initially grew,
then decreased as the robots’ parameters reached a consensus.

3.2 Measured Sensory Function

An experiment was also carried out using light intensity over the environment as the
sensory function. Two incandescent office lights were placed at the lower left corner
of the environment, and the robots used on-board light sensors to measure the light
intensity. The same 3×3 grid of basis functions as in the first experiment was used. In

Title Suppressed Due to Excessive Length 9

(a) Initial Snapshot

0 1.22 2.44
0

1.22

2.44

meters

m
et

er
s

(b) Initial Config.

(c) Middle Snapshot

0 1.22 2.44
0

1.22

2.44

meters

m
et

er
s

(d) Trajectories

(e) Final Snapshot

0 1.22 2.44
0

1.22

2.44

meters

m
et

er
s

(f) Final Config.

Fig. 4. Results for the algorithm are shown in video snapshots in theleft column (4(a), 4(c),
and 4(e)). The positions collected from the overhead camerafor the same experiment are
plotted in the right column (4(b), 4(d), and 4(f)). The Gaussian centers ofφ(q) are marked by
red x’s.

this experiment there was no ground truth against which to compare the performance
of the algorithm since we did not know the “true” light intensity function over in the

10 Mac Schwager, James McLurkin, Jean-Jacques E. Slotine, and Daniela Rus

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

Time (s)

M
ea

n
P

os
iti

on
 E

rr
or

 (
m

)

Estimated
Actual

(a) Mean Position Error

0 50 100 150 200
0

100

200

300

400

500

Time (s)

M
ea

n
N

or
m

ed
 P

ar
am

et
er

 E
rr

or

(b) Mean Parameter Error

0 50 100 150 200
0

1

2

3

4x 10
5

Time (s)

C
on

se
ns

us
 E

rr
or

(c) Consensus Error

Fig. 5. The distance to the actual centroid, and the distance to the estimated centroid, averaged
over all the robots in the network are shown in 5(a). The normed parameter error averaged over
all robots is shown in 5(b). The plot in 5(c) shows a quantity representing the disagreement of
parameters among robots.

environment. We instead show that the algorithm caused the network to do what one
would expect given thequalitativelight intensity distribution.

Firstly, we examine the configuration of the robots. Figure 7shows snapshots
of the experiment taken from the overhead camera. Notice that the robots collected
in higher density around the light sources while still covering the environment. Fig.
8(a) shows that the distance to the robots’ estimated centroids decreased, albeit with
a significant amount of noise due to uncertainty in the neighbor position estimates, as
in the previous experiment. Figure 8(a) also shows the distance to the estimated cen-
troid filtered so that the decreasing trend becomes more evident. Figure 8(b) shows
that, as in the previous experiment, disagreement between robot parameters initially
grew, then decreased as the robots tended toward consensus.

Secondly, we examine the function approximation that the robots learned in the
experiment. The robots learned a function with a large weight near the position of
the light sources, as shown in Fig. 10. Again in Fig. 9 the largest parameter for
each of the four robots shown is that corresponding to the basis function centered
nearest the position of the light sources. The other parameters adjust to find the best
fit of the data within the parameterized space of functions. There are two distinct
sources of possible function approximation error that arise from using actual sensor
measurements. Firstly, the robots’ light sensors have noise which inherently effects

Title Suppressed Due to Excessive Length 11

0 50 100 150 200
−200

−100

0

100

200

Time (s)

P
ar

am
 E

rr
or

s
fo

r
R

ob
ot

1

(a) Robot 1

0 50 100 150 200
−200

−100

0

100

200

Time (s)

P
ar

am
 E

rr
or

s
fo

r
R

ob
ot

 2

(b) Robot 2

0 50 100 150 200
−200

−100

0

100

200

Time (s)

P
ar

am
 E

rr
or

s
fo

r
R

ob
ot

 3

(c) Robot 3

0 50 100 150 200
−200

−100

0

100

200

Time (s)
P

ar
am

 E
rr

or
s

fo
r

R
ob

ot
 4

(d) Robot 4

Fig. 6. The parameter errors for each of the 9 parameters in the vector âi(t) are shown for four
of the robots in the network. The errors for parameters 3 and 7started large and decayed to
nearly zero for all robots, indicating that the robots learned the function as they moved around
the environment.

their ability to learn the underlying true light distribution. Secondly, it is unlikely that
any linear combination of the simple 3×3 grid of Gaussians could represent the true
light intensity over the environment. That is to say, the robots were forced to find the
best fitto a function which was too complex to be represented with their function
approximation scheme. However, the function learning procedure seems to be robust
to both of these sources of error, as evidenced by the plots inFig. 10 and 9.

4 Conclusions

In this paper, we modified a theoretically-proven controller for multi-robot cover-
age controller to enabled it to perform in real-time on a minimalist platform. We
explored the assumptions of the theoretical controller anddescribed an implemen-
tation which requires mapping continuous computations to discrete approximations.
The controller was adapted to the hardware platform available, and was shown to
perform robustly despite the presence of sensor and actualtor noise, and other real-
world complications. We presented the results of two experiments with 16 robots. In
the first experiment, the robots were given simulated sensory function measurements
so that we could compare the results with a known ground truth. The results showed
that the algorithm performed as expected. In the second experiment, the robots used

12 Mac Schwager, James McLurkin, Jean-Jacques E. Slotine, and Daniela Rus

(a) Initial Snapshot

0 1.22 2.44
0

1.22

2.44

meters

m
et

er
s

(b) Initial Config.

(c) Middle Snapshot

0 1.22 2.44
0

1.22

2.44

meters

m
et

er
s

(d) Trajectories

(e) Final Snapshot

0 1.22 2.44
0

1.22

2.44

meters

m
et

er
s

(f) Final Config.

Fig. 7. Results for the algorithm are shown in video snapshots in theleft column (7(a), 7(c),
and 7(e)). The positions collected from the overhead camerafor the same experiment are
plotted in the right column (7(b), 7(d), and 7(f)). The robots used the light intensity measured
with on board light sensors as the sensory function.

measurements from light sensors as a sensory function. In this experiment there was
no known ground truth with which to compare, but the algorithm appeared to be-
have correctly. We hope these results represent a significant step toward the use of

Title Suppressed Due to Excessive Length 13

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

Time (s)

M
ea

n
P

os
iti

on
 E

rr
or

 (
m

)

Estimated
Filtered

(a) Mean Position Error

0 50 100 150 200
0

2

4

6

8x 10
4

Time (s)

C
on

se
ns

us
 E

rr
or

(b) Consensus Error

Fig. 8. The distance to the estimated centroid, averaged over all the robots in the network is
shown in 8(a). Since measured light intensity was used, the distance to the “true” centroid
could not be calculated as in Fig. 5. Instead, we plot a filtered version of the estimated cen-
troid which shows the decreasing trend. The plot in 8(b) shows a quantity representing the
disagreement of parameters among robots.

0 50 100 150 200

0

20

40

60

80

100

Time (s)

P
ar

am
et

er
s

fo
r

R
ob

ot
1

(a) Robot 1

0 50 100 150 200

0

20

40

60

80

100

Time (s)

P
ar

am
 E

rr
or

s
fo

r
R

ob
ot

 2

(b) Robot 2

0 50 100 150 200

0

20

40

60

80

100

Time (s)

P
ar

am
et

er
s

fo
r

R
ob

ot
 3

(c) Robot 3

0 50 100 150 200

0

20

40

60

80

100

Time (s)

P
ar

am
et

er
s

fo
r

R
ob

ot
 4

(d) Robot 4

Fig. 9. The parameter values for each of the 9 parameters in the vector âi(t) are shown for
four of the robots in the network. Since measured light intensity was used, there is no notion
of ideal parameters, and therefore we cannot show parametererrors as in Fig. 6. The light was
positioned closest to the center of the basis function in thelower left of the environment, and
the parameter for that basis function grew to be the largest,as one would expect. The other
parameters also grew to fit the measured light intensity as well as possible.

14 Mac Schwager, James McLurkin, Jean-Jacques E. Slotine, and Daniela Rus

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

5

10

15

x 10
4

Fig. 10. The basis function approximation of the light intensity (smooth surface) over the
area for one robot is shown superimposed over a triangular interpolation of the light intensity
measurements of all the robots (jagged surface). The approximation is as close as possible to
the light measurements given the basis function parameterization.

multi-robot coverage control algorithms in practical monitoring and surveillance ap-
plications in the future.

5 ACKNOWLEDGMENTS

This work was supported in part by the MURI SWARMS project grant number
W911NF-05-1-0219,NSF grant numbers IIS-0513755, IIS-0426838,CNS-0520305,
CNS-0707601, and EFRI-0735953, and a Boeing Strategic University Initiative
grant. Computing hardware was donated by Intel. This work was done in the Dis-
tributed Robotics Laboratory at MIT.

References

1. E. Acar and H. Choset. Complete sensor-based coverage with extended-range detectors:
A hierarchical decomposition in terms of critical points and voronoi diagrams. InPro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1305 – 1311, October 2001.

2. P. Atkar, H. Choset, and A. Rizzi. Towards optimal coverage of 2-dimensional surfaces
embedded in R3: choice of start curve. InProceedings of International Conference on
Intelligent Robots and Systems, volume 4, pages 3581–3587, October 2003.

3. Z. J. Butler, A. A. Rizzi, and R. L. Hollis. Complete distributed coverage of rectilinear en-
vironments. InProceedings of the Workshop on the Algorithmic Foundationsof Robotics,
Hanover, NH, March 2000.

Title Suppressed Due to Excessive Length 15

4. Z. J. Butler and D. Rus. Controlling mobile sensors for monitoring events with coverage
constraints. InProceedings of IEEE International Conference of Robotics and Automa-
tion, pages 1563–1573, New Orleans, LA, April 2004.

5. H. Choset. Coverage for robotics—A survey of recent results. Annals of Mathematics
and Artificial Intelligence, 31:113–126, 2001.

6. J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo. Coverage control for mobile sensing
networks.IEEE Transactions on Robotics and Automation, 20(2):243–255, April 2004.

7. Z. Drezner.Facility Location: A Survey of Applications and Methods. Springer Series in
Operations Research. Springer-Verlag, New York, 1995.

8. D.T. Latimer IV, S. Srinivasa, V.L. Shue, S. Sonne adnd H. Choset, and A. Hurst. To-
wards sensor based coverage with robot teams. InProceedings of IEEE International
Conference on Robotics and Automation, volume 1, pages 961 – 967, May 2002.

9. D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida. Cooperative sweeping by multiple mobile
robots. InProceedings of IEEE International Conference on Robotics and Automation,
Minneapolis, Minnesota, 1996.

10. J. McLurkin. Stupid robot tricks: A behavior-based distributed algorithm library for pro-
gramming swarms of robots. Master’s thesis, MIT, 2004.

11. P. Ogren, E. Fiorelli, and N. E. Leonard. Cooperative control of mobile sensor networks:
Adaptive gradient climbing in a distributed environment.IEEE Transactions on Auto-
matic Control, 49(8):1292–1302, August 2004.

12. R. Sanner and J.J.E. Slotine. Gaussian networks for direct adaptive control.IEEE Trans-
actions on Neural Networks, 3(6), 1992.

13. M. Schwager, J. J. E. Slotine, and D. Rus. Consensus learning for distributed cover-
age control. InProceedings of International Conference on Robotics and Automation,
Pasadena, CA, May 2008.

14. I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Distributed covering by ant-robots
using evaporating traces.IEEE Transactions on Robotics and Automation, 15(5):918–
933, 1999.

