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Summary. A distributed algorithm is presented that causes a netwbridmts to spread out
over an environment, while aggregating in areas of high@griaterest. The algorithm is a
discrete-time interpretation of a controller previousiyroduced by the authors. The algorith-
mic implications of implementing this controller on a phydi platform are discussed, and
results are presented for 16 robots in two experiments fdiisd that the algorithm performs
well despite the presence of real-world complications.

1 Introduction

Robot group control is a fundamental problem for many rafsogipplications rang-
ing from maintaining a desired formation, to achieving aidesnetwork connec-
tivity, to providing sensory coverage of an environment. &e interested in robot
group control strategies that are (1) fully decentralized distributed on the group,
(2) adaptive to changes in the environment and the grouppi@jably conver-
gent, and (4) experimentally feasible. In our previous widr&] we introduced a
consensus-based controller for sensory coverage thastiedirst three desiderata.
In this paper we discuss the algorithmic implications of iempenting this controller
on a physical platform consisting of arbitrarily large gpswf robots, and we present
results of two experiments with 16 robots.

Specifically, we consider a distributed algorithm that emues network of robots
to spread out over an environment, while aggregating insapéaigh sensory inter-
est. Itis known that a cost function representing the sgrist of a robot network is
locally minimized if each robot is positioned at the cerdrof its Voronoi cell [6, 7].

It is not easy to position a robot at its Voronoi centroid hessa (1) the centroid
moves as the robot moves, and (2) the robot cannot calcttatéionoi centroid
directly. Our algorithm uses consensus-based learningttmate the centroid on-
line. Then each robot “chases” its estimated centroid uinisl eventually reached.
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An overview of the algorithm is shown in Figure 1. Our alglnit could be used,
for example, in search and rescue missions, environmeiotaitaring and clean-up,
or automatic surveillance of rooms, buildings, or townse Bperimental results in
this work demonstrate a significant step toward these pa@pplications.

There has been considerable theoretical and experimeontlean multi-robot
senor coverage problems in the past. One body of this workiders how to plan
paths for groups of robots so that the sensor footprint oéastl one robot visits
every point in the environment. This body of work includesggies with ant-like
robots communicating through chemical trails [14], sig#&e that work on manifolds
[2], and strategies that adapt known coverage algorithmsifagle robots to the
multi-robot case [3, 8]. Voronoi tessellation have alsorbased to decompose the
environment into easy to cover regions in [1, 9]. A thorougtvey of this body of
work can be found in [5].

In contrast, the objective of coverage control in our workoiglisperse robots
over an environment to do environmental monitoring or sillarece. This notion of
coverage control has been explored with several approafthtesxample [4, 6, 11].
We focus primarily on the framework introduced in [6] whicbges the problem as
an optimization of a cost function that has been well-stddi¢he facility placement
literature [7]. However in [6] the robots are assumed to kit@fore hand the dis-
tribution of sensory information in the environment. In @lgorithm the robots are
not assumed to know anything about the distribution of sgnisdormation in the
environment. Instead, the robots learn the distributiogasfsory information while
performing coverage. Our coverage algorithm can be thoofgg proceeding in two
complementary spaces, as described graphically in Figulre dosition space, the
robots perform coverage, while in a high-dimensional patemspace, the robots
perform learning and consensus to collectively learn tisé&ridution of sensory in-
formation in the environment.

This paper presents new experimental results with our e@éstontrol algorithm
using a group of 16 SwarmBots. We introduce the algorithmfioren that is prac-
tical for implementation on robot platforms with potenigdimited computational
resources. The algorithm is shown to operate in realigti@sons in the presence of
noise on sensor measurements and actuator outputs andsyitbhaonous execu-
tion among the robots in the group. We enumerate these ccatiplis in detail and
discuss their apparent effect on the performance of theithgo Experimental re-
sults are analyzed with performance metrics to quantifypiréormance. In Section
2 we describe our algorithm and discuss complicationsingldab practical imple-
mentation. In Section 3 we give results of two experiments strow experimental
snapshots. Conclusions and discussion are in Section 4.

2 Technical Approach
We model the robots as points moving in a plane. Specificadlysider a group af

robots in a convex, bounded ar@c R?. An arbitrary point inQ is denotedy, the
position of thei'" robot is denotegh;, and the set of all robot positiof$s, ..., pn}
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Coverage in Position Space

Consensus in Parameter Space

Fig. 1. A schematic of the overall control scheme is shown. The at;, pj;, and py move

to cover the are®. Simultaneously, each robot adapts a parameter vegtd; (‘anda) to
make an estimate of the sensory environment. Neighboribgtsoaverage their parameter
vectors at each step, causing all parameters to convergeoimiaon vector.

is called the configuration of the network. Also, the set dfats that communicate
to roboti is denoted4{(t) and can change over time. Lgty, ...,V } be the Voronoi
partition of Q, for which the robot positions are the generator pointscBigally,
Vi={qeQllla—mpill <lla—pjll,Vj#i}.

Next, define the sensory functign Q — R, wherep(q) > 0Vq € Q. The sensory
function ¢(q) should be thought of as a weighting of importance dyekVe want
to have many robots wherg(q) is large, and few where it is small. The function
©(q) is not knownby the robots in the network, but the robots have sensors that
can measureg(p;) at the robot’s positiorp;. The precise definition of the sensory
function depends on the desired application. For exampiega human surveillance
application in which robots use audio sens@ig]) may be chosen to be the intensity
of the frequency range corresponding to the human voicen bpalication in which
a team of robots are used to clean up a chemical spill, an pppte choice for the
sensory function would be the concentration of the chenaigal function of position
in the environment.

2.1 Sensory Function Approximation

Since the robots do not knog(q), each one learns an approximationgfy) by
expressing it as a linear combination of a set of known basistfons (or features)
weighted by an unknown parameter vector. That is, rélsaipproximation of the
sensory function is given by

@(a,t) =2 (o) &), 1)

where the vector of basis functiog (q) : Q — R™M are fixed and are the same for all
robots, but each robot has a potentially different parametetors;(t) € R™ which



4 Mac Schwager, James McLurkin, Jean-Jacques E. SlotidDaniela Rus

changes in time. Figure 2 shows a graphical representatitirisofunction approx-
imation scheme. To learn the sensory functign) the robots tune their parameter
vectors; (t) to makeq (q,t) best matchp(q) given the measurements of their sensors.
The way this tuning is done will be described in Section 2.2.

(,51 = IC((”T&I:'

Fig. 2. The sensory function approximation is illustrated in thimmified 2-D schematic.
The true sensory function is representedd¢oyblue curve) and roboits approximation of
the sensory function ié} (orange curve). The vector-valued functiofi(q) is shown as 3
Gaussians (dotted curves), and the parameter vaatienotes the weighting of each Gaussian.

Approximating a function in terms of parameters in the forirfl) is standard
in many kinds of learning algorithms. In theory, the parasrieation is not limiting
since any function (with some smoothness requirements) avmwunded domain
can be approximated arbitrarily well by a set of basis fuori[12]. However, de-
signing a suitable set of basis functions requires apjicagpecific expertise. We
use Gaussian basis functions in our experiments, but thereariety of other basis
function families to chose from including, wavelets, sigdsp and splines. Gaussian
basis functions have a computational advantage over nmai-basis functions be-
cause they have nearly compact support. To compute the vhthe network at a
Iocation(ﬁ(q), or to tune the weights of the netwoak With new data, one has only
to consider Gaussians in a region around the point of interes

As described in Section 1, robots pursue the estimatedaidrdf their Voronoi
region. The estimated centroid of the Voronoi region is @smgetric center, weighted
by the sensory function approximation. We calculate therdie approximation of
the centroid oV by dividing it up into a set of grid squares. Let the set of eent
points of the grid squares b and each grid square has equal afep Then the
estimated centroi@y, of Vi, weighted byp(q), is given by

A Y v 9@ (a,)Ag
(:\/- t = A . 2
o Y qevi @(g,t)Aq @

whereq(q,t) is defined in (1).

2.2 Coverage Control Algorithm

The Coverage control algorithm has two components, cooredipg to the two
spaces described in Figure 1. In position space, the rohotue their estimated
centroids, given by
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pi(t+1) =Cy(t) 3)

In parameter space, the robots collaboratively learn thetfon ¢(q). They do this
by iteratively integrating the values @f( p;) which they measure with their sensors
into the quantity;(t). Simultaneously, they integrate the value of the basistfanc
vector at their positioo? (pi(t)) into the quantity\;(t). Specifically,

Ai(t+1) = Ai(t) + .2 (pi(t)) @(pi(t)) and, (4)
Ai(t+1) = Ai(t) + 2 (pi(t) 7 (pi(t)" (5)

The tuning of the parameter vec@(t) is greatly aided by forming a convex com-
bination with the parameter vectors of robots in the neiglded, which causes all
robots’ parameter vectors to approach a common value. hidhat we call con-
sensus learning. It has the effect of propagating everytimbensor measurements
around the network to be used by every other robot. Spedyfithé robot tunes its
parameter vector using

éipre(t) () V()‘l(t) Al(t)A'(t))'i_
Iy (&n)-aw). ©®)
T

wherey and( are positive gains. Then parameters are maintained aboeelafned
minimum positive valu@min € R, amin > 0, using

a(t+ 1) = max(éipre(t)a @min), (7)

where the mif, -) operates element-wise on the vedgy,(t).

Both terms in (6) have an intuitive interpretation. The ftestm changes the pa-
rameter vector to decrease the difference between thentws@asory function esti-
mate,(ﬁ(t), and all previous values of the sensory function measurtdtive robot’s
sensorsg(pi(1)) fort=0,1,...,t. The second term is the consensus coupling term,
which causes all of the robots’ parameters to reach a comiaoe WVe stress that a
distributed implementation requires that each robot adig@bwn parameter vector
using local information available to it. If one were intaez instead, in designing a
centralizedadaptation law, one could simply use a common parametepnvit is
adapted using the information from all robots. Our conss+imsed coverage algo-
rithm (as executed asynchronously by each robot) is writteékigorithm 1.

In summary, our coverage control algorithm integrates #mssr measurements
and robot trajectory intd; € R™andA; € R™ M, respectively. These are then used to
tune the parameter vectay(t), which is also combined with the neighbors’ param-
eter vectors. The parameter vector is used to calculatestisosy function estimate
@(q,t), which is used to calculate the estimated Voronoi centéq,{d which the
robot then moves toward.

The algorithm is a discrete-time interpretation of the cohntaw from [13],
which, under mild assumptions, was proved to cause robatsrteerge to the cen-
troids of their Voronoi cells. By implementing the contrégarithm on a group of
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Algorithm 1 Consensus-Based Coverage

Require: Each robot knows its positiop (t)

Require: Each robot can communicate with its Voronoi neighbors
Require: Each robot can compute its Voronoi c&f,

Require: Each robot can measug# p;) with its sensors

Initialize:
Ai(0) =0, 4i(0) =0, and&;(0) = [amin, - - amin] "
loop
Update:
Ai(t+1) = Ai(t) + 2 (pi(t)) @(pi(t))
Ai(t+1 )+ (pi(t) i(t)T

Projecta,’pre(t) to ensure parameters remain positive
a(t+1) = max(éipre(t)v min)

Compute the robot’s Voronoi regidn _
DiscretizeV; into grid squares with areAq and center pointg € V;
Compute the centroid estimate:

. Y qev; 90 (0,1)Aq

() = — =,
Gt Yqev A(a,)Aq
where  @(q,t) =7 (q)T&(t)

Drive to the estimated centrojul (t + 1) = Gy, (t)
end loop

robots, we introduce a number of complications not considiér [13], as described
in Table 1. The presence of noise in all measurement andtewiuzperations is a
significant change from the noiseless scenario considarfiBi. Noise on the po-
sition measurements of neighbors in particular seemed tolame source of error
in the computation of the centroid of the Voronoi regions.fitid that the algorithm
performs well despite the presence of these real-world tioatipns. The robust-
ness of the algorithm can be attributed to its closed-longire, which constantly
incorporates position updates and new sensor measureto@atsirally correct mis-
takes. Also, the consensus-learning law tends to smoothftbets of noise on the
sensory function measurements. This is because the panaveetors are iteratively
combined with neighbors’ parameter vectors, so inaccasditiat might otherwise
accumulate due to measurement errors are counteracteddsyireenent errors from
neighboring robots.
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Table 1. Algorithm 1 Vs. Controller from [13]

Algorithm 1 [Controller from [13]

e Discrete-time difference equations e Continuous-time differential equations
e Nonholonomic “unicycle” robot dynamig® Holonomic “integrator” robot dynamics
cause position errors and turning delays
e Asynchronous execution of instructions || e Synchronous evolution of equations

e Approximate Voronoi cells constructge Exact Voronoi cells computed from exact
from noisy measurements of neighbgpssitions of all Voronoi neighbors

within sensing range
¢ Discretized sums over the Voronoi cell ||e Exact integrals over the Voronoi cell

¢ Noisy measurement of global position | e Exact knowledge of global position

e Noisy actuators e Noiseless actuators

o Noisy measurement of sensory function||e Noiseless measurement of sensory function
e Basis function approximation cannot recp®-Basis function approximation can recon-
struct exact sensory function struct sensory function exactly with ideal pa-
rameter vector

3 Results and Experimental Snapshots

The algorithm was implemented using integer arithmetic natavork of 16 Swarm-
Bots [10] (Figure 3). Each SwarmBot used an on-board IR asydtesense rela-
tive neighbor positions (for computing its Voronoi cell)cato communicate its pa-
rameter vector for consensus learning. The robots movedsguare environment
2.44mx 2.44m. Each robot’s global position was measured by an eaerlcamera
and sent to it by radio. Each SwarmBot used a 40 MHz 32-bit ARMifib mi-
croprocessor, which provided enough processing powerdou our algorithm in
real-time. There was no centralized or off-line processing

We present the results of two experiments. In the first erpant in Section
3.1, the robots were given a noiseless measuremensiofaatedsensory function
@(pi)- This allows us to compare the performance of the algorithaknown ground
truth. Since the functiop(q) is known, we also know the true position errors of the
robots (the distances to their true centroids), as well adrtre parameter errors. In
the second experiment in Section 3.2, the robots use thedoand light sensors to
sense light intensity in the environment as a sensory fanchn this case we have no
ground truth value fop(q) so we can make no comparisons with ideal performance
metrics. Instead we verify that the algorithm exhibits ttedvior that one would
expect given the scenario.

3.1 Simulated Sensory Function

The simulated sensory functiop(q), was represented by two Gaussians, one in the
lower right of the environment and one in the upper left. Teéeaof basis functions

of the function approximation was chosen to be 9 Gaussiaasged in a grid over
the square environment. In particular, each of the nine @mrapts of. 7 (q) was
implemented as
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The SwarmBot

Charger Cont; Behavior LEDs (x3)

User Interface Switches Light Sensors (x4)
Expansion Port SwarmCam Emitters
JTAG Port Camera
230kbps Serial ports (x2)
ISIS Infra-Red 40 mhz ARM Processor
Tranceivers (x4) 648 KB RAM

3 MB Flash
200 kgate FPGA

Hard Power Switch

1.1 Watt Audio System

Bump Skirt/Sensors (x8 0.51 watt Drive Motors (x2)

Fig. 3. In our experiments, we used the iRobot SwarmBot platformvshabove.

1 ETAY4
2102 exp{ a % } ’ ®
whereoj = .37m. The 2.44nx 2.44m square was divided into an ever 3 grid and
eachp; was chosen so that one of the 9 Gaussians was centered atdtke i
each grid square. The parameters for the simulated senswctidn were chosen as
a=1[200 amin --- amn 2007, with ami, = 1 so that only the upper left and
lower right Gaussians contributed significantly to the eabf ¢(q), producing a
bimodal distribution.

Figure 4 shows the positions of 16 robots over the course ekperiment. The
algorithm caused the robots to group around the Gaussids pElae robots had no
prior knowledge of the number or location of the peaks. Féda(a) shows the dis-
tance to the centroid, averaged over all the robots. Thamtistto the true centroid
decreased over time to a steady value. The distance to tineaést centroid de-
creased to a value close to the pre-set dead zone of 5cm. griicsint noise in the
distance to the estimated centroid comes from the factlleatibots used their mea-
sured neighbor positions to compute their Voronoi cellse T sensing system used
to measure the neighbor positions had a considerable anobwmicertainty. This
caused the Voronoi cells to change rapidly, which in turnseauthe centroid esti-
mates to be noisy. The fact that the true distance to theaidrtecreased steadily is
evidence that the algorithm is robust to these significamtcas of error. Figure 5(b)
shows that the normed parameter error, averaged over dieafabots, decreased
over time, indicating that the robots were learning the ggniinction. Figure 5(c)
showsy 1 &(t)" 3c 4 (&i(t) —4(t)), representing the disagreement among the pa-
rameter vectors of different robots. The disagreementestaat zero because all pa-
rameters were intialized with the same valuagf,. The disagreementinitially grew,
then decreased as the robots’ parameters reached a conisensu

3.2 Measured Sensory Function

An experiment was also carried out using light intensityrdiae environment as the
sensory function. Two incandescent office lights were mlatehe lower left corner
of the environment, and the robots used on-board light ssrieaneasure the light
intensity. The same:33 grid of basis functions as in the first experiment was used. |



Title Suppressed Due to Excessive Length 9

2.44

0 1.22 2.44
meters

(b) Initial Config.

2.44

meters
(d) Trajectories
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10x speed

Fig. 4. Results for the algorithm are shown in video snapshots itettie€olumn (4(a), 4(c),
and 4(e)). The positions collected from the overhead carfueréhe same experiment are
plotted in the right column (4(b), 4(d), and 4(f)). The Gaassenters ofp(q) are marked by
red x’s.

this experiment there was no ground truth against which togaoe the performance
of the algorithm since we did not know the “true” light intéygunction over in the
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Fig. 5. The distance to the actual centroid, and the distance tcstiraaed centroid, averaged
over all the robots in the network are shown in 5(a). The norpeameter error averaged over
all robots is shown in 5(b). The plot in 5(c) shows a quangtyresenting the disagreement of
parameters among robots.

environment. We instead show that the algorithm causedetveank to do what one
would expect given thqualitativelight intensity distribution.

Firstly, we examine the configuration of the robots. Figurghdws snapshots
of the experiment taken from the overhead camera. Notidehlearobots collected
in higher density around the light sources while still cangithe environment. Fig.
8(a) shows that the distance to the robots’ estimated destdecreased, albeit with
a significant amount of noise due to uncertainty in the nedgplsition estimates, as
in the previous experiment. Figure 8(a) also shows themiistéo the estimated cen-
troid filtered so that the decreasing trend becomes moreetiéigure 8(b) shows
that, as in the previous experiment, disagreement betvwasd®n parameters initially
grew, then decreased as the robots tended toward consensus.

Secondly, we examine the function approximation that thet®learned in the
experiment. The robots learned a function with a large weigtar the position of
the light sources, as shown in Fig. 10. Again in Fig. 9 thedatgarameter for
each of the four robots shown is that corresponding to thes lfasction centered
nearest the position of the light sources. The other paenatjust to find the best
fit of the data within the parameterized space of functioreer& are two distinct
sources of possible function approximation error thatesiriem using actual sensor
measurements. Firstly, the robots’ light sensors haveengkich inherently effects
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Fig. 6. The parameter errors for each of the 9 parameters in thené&¢tpare shown for four
of the robots in the network. The errors for parameters 3 astarfed large and decayed to
nearly zero for all robots, indicating that the robots |earthe function as they moved around
the environment.

their ability to learn the underlying true light distribati. Secondly, it is unlikely that
any linear combination of the simple<3 grid of Gaussians could represent the true
light intensity over the environment. That is to say, theatstwere forced to find the
best fitto a function which was too complex to be represented witir flu@ction
approximation scheme. However, the function learning @doce seems to be robust
to both of these sources of error, as evidenced by the plétg)irl0 and 9.

4 Conclusions

In this paper, we modified a theoretically-proven controltg multi-robot cover-

age controller to enabled it to perform in real-time on a mialist platform. We

explored the assumptions of the theoretical controller degtribed an implemen-
tation which requires mapping continuous computationsdordte approximations.
The controller was adapted to the hardware platform availand was shown to
perform robustly despite the presence of sensor and awtuedise, and other real-
world complications. We presented the results of two expenits with 16 robots. In
the first experiment, the robots were given simulated sgrfsaction measurements
so that we could compare the results with a known ground.tiithtb results showed
that the algorithm performed as expected. In the secondiexpet, the robots used
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Fig. 7. Results for the algorithm are shown in video snapshots itettieolumn (7(a), 7(c),
and 7(e)). The positions collected from the overhead carfueréhe same experiment are
plotted in the right column (7(b), 7(d), and 7(f)). The rabased the light intensity measured
with on board light sensors as the sensory function.

measurements from light sensors as a sensory functionislexperiment there was
no known ground truth with which to compare, but the alganitappeared to be-
have correctly. We hope these results represent a sigrifteym toward the use of
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Fig. 8. The distance to the estimated centroid, averaged overealatots in the network is
shown in 8(a). Since measured light intensity was used, igtarcte to the “true” centroid
could not be calculated as in Fig. 5. Instead, we plot a fitteersion of the estimated cen-
troid which shows the decreasing trend. The plot in 8(b) shavguantity representing the
disagreement of parameters among robots.
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Fig. 9. The parameter values for each of the 9 parameters in thené@¢tp are shown for
four of the robots in the network. Since measured light isityrwas used, there is no notion
of ideal parameters, and therefore we cannot show paraeretes as in Fig. 6. The light was
positioned closest to the center of the basis function indwer left of the environment, and
the parameter for that basis function grew to be the largasstne would expect. The other
parameters also grew to fit the measured light intensity disasgossible.



14 Mac Schwager, James McLurkin, Jean-Jacques E. SlotidDaniela Rus

=
AN\
"N
AN

SRS
b N
S

0!
A WO
LK

%%

Fig. 10. The basis function approximation of the light intensity (@th surface) over the
area for one robot is shown superimposed over a trianguiarmiolation of the light intensity
measurements of all the robots (jagged surface). The ajppation is as close as possible to
the light measurements given the basis function pararnzatem.

multi-robot coverage control algorithms in practical ntoning and surveillance ap-
plications in the future.
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