
Distributed Coverage Control with Sensory
Feedback for Networked Robots

Mac Schwager, James McLurkin, and Daniela Rus
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Lab
Cambridge, MA 02139 USA

Email: schwager@mit.edu, jamesm@csail.mit.edu, and rus@csail.mit.edu

Abstract— This paper presents a control strategy that allows
a group of mobile robots to position themselves to optimize the
measurement of sensory information in the environment. The
robots use sensed information to estimate a function indicating
the relative importance of different areas in the environment.
Their estimate is then used to drive the network to a desir-
able placement configuration using a computationally simple
decentralized control law. We formulate the problem, provide
a practical control solution, and present the results of numerical
simulations. We then discuss experiments carried out on a swarm
of mobile robots.

I. INTRODUCTION

We consider the problem of controlling networked groups
of mobile robots in a decentralized fashion. Such mobile
sensor networks promise the ability to collect information over
distributed, large-scale domains with minimum infrastructure
maintenance. This technology will enable scientific studies on
geological and ecological scales previously beyond practical
reach, and provide tools for a host of security and surveillance
applications.

In this paper, we present a decentralized control law for
producing increased robot density in areas of high importance
and decreased density in areas of low importance. Specifically,
we consider a group of robots that is dispatched over a
bounded region of interest. The group’s task is to sample
a sensory function over the region. The sensory function
is a scalar function unknown to the robots that indicates
the relative importance of different areas in the region. Our
solution composes an approximation of this function from
sensory measurements. A decentralize control law then uses
this approximation, as well as neighbor positions, to drive the
robots to a configuration such that the sampling of the sensory
function is near-optimal. This enables the network to record
observations about the environment with varying resolution,
so that areas with high values of the sensory function receive
higher-density data observations than areas with low values.

A. Relationship to Prior Work

This problem belongs to the general category of coverage
problems. Various strategies have been introduced for control-
ling coverage with networked mobile robots, and our work
builds on several important results in this category. In [9],
mobile sensing agents are controlled using potential functions
for inter-agent interactions. Stability results are derived, but

(a) Numerical Simulation (b) Robot Swarm Experiment

Fig. 1. The control strategy was implemented in numerical simulation and
on a swarm of mobile robots.

the optimality of the network configuration is not addressed.
Similarly, in [2] an algorithm is proposed that allows for agents
to concentrate in areas of high event density while maintaining
area coverage constraints. The algorithm is proved to maintain
sensor coverage for a limited case without addressing optimal-
ity. Most relevant to this paper is a body of results reported in
[1], [5], and [4]. In this work decentralized control laws are
derived for positioning mobile sensor networks optimally with
respect to a known event probability density. This approach is
advantageous because it guarantees that the network (locally)
minimizes a cost function relevant to the coverage problem.
However, the control strategy requires that each agent have a
complete foreknowledge of the event probability density, thus
it is not reactive to the sensed environment.

Our control strategy is an extension to the one reported
in [5]. We re-interpret the problem in a non-probabilistic
framework, and derive a local control law which requires that
each agent can measure the value and gradient of a sensory
function. In contrast to [5], the robots do not require fore-
knowledge of this function. Instead, the robots approximate
the function from sensor measurements while maintaining or
seeking a near-optimal sensing configuration. Also in contrast
to [5], our function approximation yields a control law with
a computationally efficient closed form. This eliminates the
need for numerical integration of an arbitrary function over
a polygonal domain at every time step. The control law
results in near-optimal, as opposed to optimal, performance,
though the difference is shown to be negligible in practice. We
demonstrate the effectiveness and computational simplicity of

the algorithm in numerical simulations and in experiments on
swarms of 40-50 robots (see Figure 1).

II. PROBLEM FORMULATION

In this section, we build a function representing the sensing
cost associated with a network configuration. A network is said
to have optimal coverage if it minimizes this cost function over
the region of interest. Following standard results in the field
[5], we show that all configurations of a certain type, namely
centroidal Voronoi configurations, correspond to local minima
of the cost function.

The sensor network consists of a group of identical robots,
each with some degree of mobility and the capacity for
measuring a sensory function from the environment. The
sensory function indicates the relative importance of different
areas in the environment. It may be a quantity that is sensed
directly, such as temperature, or it may demand more elaborate
processing of sensory data, such as would be required to detect
the concentration of a chemical, or the intensity of sound of a
particular frequency.1 In addition, we assume that a robot can
measure the positions of its Voronoi neighbors relative to itself,
and that it can detect the boundaries of the region of interest.
We review the formalism introduced in [5] to rigorously model
the scenario described above.

Let there be n robots in a known, convex polytope Q ⊂ R
N .

An arbitrary point in Q is denoted q, the position of the ith

robot is denoted pi, and the set of all robot positions is denoted
P = {p1, ..., pn}. Let W = {W1, ...,Wn} be a partition of
Q such that one robot at position pi lies within each region
Wi. Define the sensory function, φ(q) : Q 7→ R+, as a scalar
function with continuous first derivatives over Q. The function
φ(q) is not known by the robots in the network.

Let the unreliability of the sensor measurement be defined
by a function f(x) which is strictly increasing. Specifically,
f(‖q−pi‖) describes how unreliable is the measurement of the
information at q by a sensor at pi (henceforth, ‖.‖ is used to
denote the `2-norm). This form of f(x) is physically appealing
since it is reasonable that sensing will become more unreliable
farther from the sensor.

We can formulate the cost incurred by one robot sensing
over one region Wi as

hi(pi,Wi) =

∫

Wi

f(‖q − pi‖)φ(q)dq.

Notice that unreliable sensing is expensive and high values of
φ(q) are also expensive. Summing over all robots, a function
representing the overall sensing cost of a given network
configuration can be written

H(P,W) =

n
∑

i=1

∫

Wi

f(‖q − pi‖)φ(q)dq. (1)

An optimal network configuration corresponds to a particular
pair (P,W) which minimizes (1).

1In contrast, Cortés et al [5] use a probability density function describing
the likelihood of an event occurring in a particular area.

To solve this minimization problem, we must introduce the
notion of a Voronoi partition. The Voronoi region, Vi, of a
given robot is the region of points that are closer to that robot
than to any other, that is

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖,∀j 6= i}.
The division of an area into such regions is called a Voronoi
partition, denoted V(P), and is a function of the robot posi-
tions. We will use the shorthand HV(P) = H(P,V(P)).

Because the function f(x) is strictly increasing, the Voronoi
partition, V , minimizes the cost function, H, for any fixed
configuration, P , of robots. This is clear since, for an arbitrary
point q ∈ Q, q ∈ Vi gives the smallest value of f(‖q − pi‖)
over i, and therefore the smallest contribution to H. Thus we
have

min
P,W

H = min
P

HV .

To find local minima of HV , we examine solutions to the
expression

∇HV = [· · · ∂HV

∂pi

T

· · ·]T = 0.

It is clear that each partial derivative must be zero for a local
minimum. Applying a multi-variable generalization of Leibniz
Rule,2 we can move the differentiation inside the integral sign
in (1) to get

∂HV

∂pi

=

∫

Vi

∂f(‖q − pi‖)
∂pi

φ(q)dq +

∑

j∈Ni

∫

∂Vj

f(‖q − pi‖)φ(q)
∂∂Vj

∂pi

njdq +

∫

∂Vi

f(‖q − pi‖)φ(q)
∂∂Vi

∂pi

nidq, (2)

where ∂Vi denotes the boundary of the region Vi, ni(q)
denotes the outward facing normal of ∂Vi, and Ni is the set of
indices of the neighbors of pi, excluding i itself. Note that all
the integrals in (2) are N × 1 vectors since ∂∂Vi

∂pi
is an N ×N

matrix and ni is an N × 1 vector. We assert that the last two
terms of (2), in fact, sum to zero. A proof can be outlined as
follows. Since pi only affects ∂Vj at the shared boundary of
Vj and Vi, we have that

∑

j∈Ni

∂∂Vj

∂pi

=
∂∂Vi

∂pi

.

Also, an inward normal, −ni, for Vi is equal to an outward
normal, nj , for any of its neighbors Vj , at the boundary which
they share. This leads to

∑

j∈Ni

∫

∂Vj

f(‖q − pi‖)φ(q)
∂∂Vj

∂pi

njdq =

−
∫

∂Vi

f(‖q − pi‖)φ(q)
∂∂Vi

∂pi

nidq,

2This procedure is known in fluid mechanics as the Reynolds Transport
Theorem.

giving the desired result.
Using this fact, (2) can simply be written

∂HV

∂pi

=

∫

Vi

∂f(‖q − pi‖)
∂pi

φ(q)dq.

We can evaluate the partial derivative of f(x) using the chain
rule, and move pi outside of the integral to give

∂HV

∂pi

= −
∫

Vi

q

‖q − pi‖
df(x)

dx

∣

∣

∣

∣

‖q−pi‖

φ(q)dq +

pi

∫

Vi

1

‖q − pi‖
df(x)

dx

∣

∣

∣

∣

‖q−pi‖

φ(q)dq (3)

Next we define two properties analogous to mass-moments
of rigid bodies. The mass of Vi is defined as

MVi
=

∫

Vi

1

‖q − pi‖
df(x)

dx

∣

∣

∣

∣

‖q−pi‖

φ(q)dq, (4)

and the centroid of Vi is defined as

CVi
=

1

MVi

∫

Vi

q

‖q − pi‖
df(x)

dx

∣

∣

∣

∣

‖q−pi‖

φ(q)dq. (5)

Note that f(x) strictly increasing and φ(q) strictly positive
imply both MVi

> 0 ∀ Vi 6= {∅} and CVi
∈ Vi\∂Vi (CVi

is in the interior of Vi). Thus MVi
and CVi

have properties
intrinsic to physical masses and centroids. Substituting these
quantities into (3) gives

∂HV

∂pi

= −MVi
(CVi

− pi). (6)

Equation (6) implies that local minima of HV , and therefore
H(P,W), correspond to the configurations, P , such that pi =
CVi

∀i, that is, each agent is located at the centroid of its
Voronoi region. We will denote the set of all such centroidal
Voronoi configurations as PC . Thus, the optimal coverage
task is to drive the group of robots to a centroidal Voronoi
configuration, P ∈ PC .

III. ESTIMATED ERROR FEEDBACK CONTROL

We will design a control law to take advantage of the
surprisingly simple result in (6). The control law will drive
the network to an estimated centroidal Voronoi configuration
using sensory data available to the robots to form an on-line
approximation of the centroids of their Voronoi regions.

Assume that the dynamics of each robot can be modeled by
the first-order equation

ṗi = ui, (7)

where ui is the control input. This might mean simply that a
low-level controller is in place to enforce first-order dynamics.
Next, prescribe the linear proportional control law

ui = k(ĈVi
− pi), (8)

where ĈVi
is an estimate of CVi

based on the information
available to robot i. To investigate the stability of such a
control law we propose to use HV(P) as a Lyapunov-like

function. Taking the time derivative of HV(P) along the
trajectories of (7) gives

ḢV =
∑

i

∂HV

∂pi

T

ṗi,

and using (6) and (8) we get

ḢV = −k

n
∑

i=1

MVi
eT
i êi, (9)

where ei = (CVi
− pi), and êi = (ĈVi

− pi). The actual error,
ei, is unknown. Notice, however, that if an estimate, êi, can be
found such that the inner product of the two errors is positive,
convergence of êi to zero will be guaranteed. Geometrically,
this means that the angle between êi and ei must remain less
than π/2 rad for all time. We use this insight to design a
centroid estimate, ĈV , using only sensed information local to
robot i.

Henceforth we will deal with the specific case in which
f(x) = 1/2x2. This causes the factor

1

‖q − pi‖
df(x)

dx

∣

∣

∣

∣

‖q−pi‖

to become unity, making the proceeding expressions more
transparent. The method presented, however, is valid for any
strictly increasing f(x) with smooth first derivatives.

A. Control Using Linear Approximations

Consider a situation in which the values of the sensory
function, φ(pi), and its gradient, ∇φ |pi

, are available con-
tinuously to robot i at its current position. In this case, the
available information motivates a linear estimate of CVi

over
the known region Vi. We define the linear approximation to
CVi

calculated from an agent at position pi as

ĈVi
=

1

M̂Vi

∫

V
+

i

qφ̂i(q)dq, (10)

where
M̂Vi

=

∫

V
+

i

φ̂i(q)dq, (11)

V +

i = Vi ∩ {q | φ̂i(q) ≥ 0}, and (12)

φ̂i(q) = φ(pi) + ∇φT |pi
(q − pi). (13)

The above formulation follows naturally from the definition
of CVi

and MVi
in (5) and (4). The integrals are taken over

V +

i to avoid calculating values of M̂Vi
≤ 0 and values of ĈVi

outside of the region Vi.
We can prove the stability of the proposed controller in the

case of linear φ(q). In this case the function φ(q) is fully
parameterized by its value and gradient as measured at any
point, therefore φ̂i(q) = φ(q). This special case becomes
mathematically equivalent to that treated in [5]. Then ĈVi

=
CVi

and from (9) we have that

ḢV = −k

n
∑

i=1

MVi
eT
i ei.

As was noted previously, MVi
> 0, therefore ḢV ≤ 0 ∀pi,

and ḢV = 0 iff pi = CVi
∀i. Additionally, PC is the largest

invariant set since, from (7) and (8), ṗi = 0 ∀i ↔ P ∈ PC .
Then by LaSalle’s theorem limt→∞ pi = CVi

∀i which implies
P → PC .

In the case of nonlinear φ(q), we observe that the control
law with a linear estimation causes the robots to converge to
the estimated centroid, ĈVi

, of their Voronoi region. We call
such configurations near-optimal. It is difficult to bound the
error between the estimated centroid and the actual centroid in
the general N -dimensional case above. It is however possible
to do so for 1-dimensional systems, where robots can move
along an arbitrary curvilinear segment in three-space (e.g. a
robot moving along a track.)

B. Efficient Computation of Integrals

We will use the convenient form of the centroid estimation
above to derive an analytical solution to the centroid integral.
The analytical expression will make the control law feasible
for robot platforms with limited computational resources. This
eliminates the need to descretize the Voronoi region and
approximate the M̂Vi

and ĈVi
integrals in a computationally-

expensive numerical procedure.
Since the estimated φ̂ is polynomial in q, we can use the

results from [3] to find the integrals for M̂Vi
and ĈVi

as
polynomials in the vertices of the Voronoi region Vi. First,
from (10), (11), and (13) we can divide the integral expression
for ĈVi

and M̂Vi
into monomial components to get

ĈVi
=

1

M̂Vi

(

φ(pi) −∇φT |pi
pi

)

∫

V
+

i

qdq +

1

M̂Vi

∫

V
+

i

qT qdq∇φ |pi
, (14)

where

M̂Vi
=

(

φ(pi) −∇φT |pi
pi

)

∫

V
+

i

dq +

∇φT |pi
pi

∫

V
+

i

qdq. (15)

These expressions can be simplified further by introducing the
constants c1 =

(

φ(pi) −∇φT |pi
pi

)

, and
[

c1 c2

]T
=

∇φ |pi
, and by defining a general integral of a monomial over

a polygon as

Iαβ

V
+

i

=

∫∫

V
+

i

xαyβdxdy, (16)

where q = [x y]T . Then we can write (14) and (15) as

ĈVi
=

c1

M̂Vi

[

I10

V
+

i

I01

V
+

i

]

+
1

M̂Vi

[

I20

V
+

i

I11

V
+

i

I11

V
+

i

I02

V
+

i

]

[

c2

c3

]

, (17)

where

M̂Vi
= I00

V
+

i

c1 +
[

I10

V
+

i

I01

V
+

i

]

[

c2

c3

]

. (18)

The solution of the integral in (16) is given in analytical form
by equation (4) from [3]. The cases specifically required for
the computation of (17) are simplified and enumerated below:

I00

V
+

i

=
1

2

m
∑

i=1

(yi+1 − yi)(xi+1 + xi),

I01

V
+

i

=
1

6

m
∑

i=1

[(xi − xi+1)(y
2
i+1 + yi+1yi + y2

i) +

3(xi+1y
2
i+1 − xiy

2
i)],

I10

V
+

i

=
1

6

m
∑

i=1

(yi+1 − yi)(x
2
i+1 + xi+1xi + x2

i),

I11

V
+

i

=
1

24

m
∑

i=1

[(yi+1 − yi)(2xi+1xi(yi+1 + yi) +

x2
i+1(3yi+1 + yi) + x2

i (yi+1 + 3yi))],

I02

V
+

i

=
1

12

m
∑

i=1

[(xi − xi+1)(y
3
i+1 + y2

i+1yi +

yi+1y
2
i + y3

i) + 4(xi+1y
3
i+1 − xiy

3
i)],

I20

V
+

i

=
1

12

m
∑

i=1

(yi+1 − yi)(x
3
i+1 + x2

i+1xi +

xi+1x
2
i + x3

i),

where m is the number of vertices, [xi yi]T , of V +

i , and
where the index m + 1 is interpreted as 1. The vertices must
be ordered counter-clockwise around the perimeter of V +

i .
The expression in (17) with the associated expressions for

the integral terms can be computed directly to give the actual
value of ĈVi

and M̂Vi
.

C. Practical Algorithms

A practical method for implementing the proposed control
law on a network of robots is detailed in Algorithm 1.
We assume that the robots have access to a procedure for
obtaining their own Voronoi region. Several such algorithms
exist, for example those given in [5], [6]. In our hardware
implementation, we use the Delaunay computation from [7]
and build Voronoi regions using knowledge of the Delaunay
neighbors.

This algorithm is decentralized, fully distributed, and re-
quires minimal communication between neighboring robots. It
can be used on teams of large robots, on teams of small robots
such as [8], or on mobile sensor network nodes with limited
computation and storage capabilities such as the mobile Mica
Motes described by [10].

IV. NUMERICAL SIMULATIONS

A. Implementation

Simulations were carried out in a Matlab environment. The
dynamics in (7) with the control law in (8) for a group of
robots were modeled as a system of coupled differential equa-
tions. Voronoi computation was carried out in a centralized
fashion using standard Matlab Voronoi functions. The centroid
was calculated using the analytical solution to the centroid

Algorithm 1 The Coverage Control Algorithm
Require: Each robot can compute its local Voronoi region
Require: Each robot’s sensor can measure φ(pi) and ∇φ |pi

Require: Each robot can sense the location of the boundary
of the space of interest, Q
loop

Measure coordinates of neighboring robots
Compute local Voronoi region, Vi

Measure φ(pi) and ∇φ |pi

Truncate Vi to get V +

i

Evaluate analytical expression in (17) to compute centroid
approximation, ĈVi

Apply control input ui = k(ĈVi
− pi)

end loop

integral given in (17). A custom, fixed-time-step numerical
solver was used to integrate the equations of motion of the
group of robots. The sensory function, φ(q), was built from
Gaussians. Specifically, two cases were investigated. For the
first case, the function was chosen as

φ(q) =
γ

σ
√

2π

(

e−
(q−µ1)2

2σ2 + e−
(q−µ2)2

2σ2

)

. (19)

A function with multiple maxima was used to illustrate the
robustness of the control scheme to complicated sensing
environments. For the second case, a single Gaussian was used
of the form

φ(q) =
γ

σ
√

2π
e−

(q−µ1)2

2σ2 . (20)

This φ(q) was chosen to gather statistical data about con-
vergence properties over a number of runs. The parameters
used for the Gaussian functions were γ = 1, σ = 1/

√
2,

µ1 = (.2, .2), and µ2 = (.8, .8). The control gain was k = 5,
the region Q was set to be a square of 1 meter on each side,
and q was a Cartesian point [x y]T ∈ Q.

B. Results

Figure 2 shows the results of a typical simulation run with
the φ(q) given by (19). The initial configuration of the network
is shown in Figure 2(a), the trajectories of the robots (dashed
lines) in Figure 2(b), and the final configuration in Figure 2(c).
The centers of the Gaussian functions, µ1 and µ2, are marked
with x’s. In Figure 2(d), the time evolution of the x and y
coordinates of one robot are shown. The performance of the
control scheme is clearly demonstrated in the simulation.

To assess convergence properties of the algorithm, statistical
results were compiled over a number of simulation runs with
random initial configurations using the φ(q) given by (20).
Three batch runs were executed: one batch of 1000 simulation
runs with 10 robots, one of 100 simulation runs with 100
robots, and one of 10 simulation runs with 1000 robots. Each
simulation run was said to converge if the mean normed error
of the group of robots was found to be less than 1 × 10−7m.
The mean and standard deviations of the convergence times
are shown in Table I.

(a) Initial Configuration (b) Robot Trajectories

(c) Final Configuration (d) Position of One Robot

Fig. 2. The initial configuration of the network is shown in 2(a), the
trajectories of the agents (dashed lines) in 2(b), and the final configuration
in 2(c). The Gaussian centers of φ(q) are marked by x’s. In 2(d), the time
evolution of the x and y coordinates of one agent are shown.

Mean (s) Standard Deviation (s)
10 Robots 1000 Trials 9.56 3.18
100 Robots 100 Trials 25.10 1.23
1000 Robots 10 Trials 19.33 2.14

TABLE I
MEAN AND STANDARD DEVIATION OF CONVERGENCE TIMES

The mean normed errors are shown in Figure 3 for all
simulation runs for each of the three batches. The plots are
given on semi-log axes to emphasize that after some time,
the convergence rate of the closed-loop system appears to be
nearly exponential.

It is interesting to note that, although covergence rates
decrease as the network size increases, the time to reach a
particular small error value does not necessarily increase, as
shown in Table I. One can interpret this effect as the result
of two opposing factors. With few robots, global movement
of the network can occur rapidly because the motion of one
robot quickly propagates to influence all of the others. This
propagation effect becomes more sluggish as the network size
increases. However, with a large number of robots, there is
a high likelihood that the initial position of any one robot is
close to its final position. Thus each robot has less distance to
cover. The push-and-pull of these two factors creates the effect
that is evidenced in the data. Notice also that the variance
appears to decrease with increasing network size. This is a
statistical side-effect. Because the plots show mean normed
error, a large network will be more likely to have a mean

(a) 10 Robots, 1000 Trials (b) 100 Robots, 100 Trials

(c) 1000 Robots, 10 Trials

Fig. 3. The trajectories of the mean normed error of the robots are shown
for 10, 100, and 1000 robots over 1000, 100, and 10 trials respectively. The
plots are on log-log axes to show the near exponential error decay.

close to the ensemble mean than a small network.
The final distribution of the robots with respect to distance

from the Gaussian center is shown for all three batches in
Figure (4). The densities appear more jagged for smaller
networks because there are fewer centroidal Voronoi config-
urations for smaller groups of robots. The densities are not
precisely Gaussian, nor are they meant to be. But there are high
concentrations of robots where the φ(q) is large, indicating an
area of sensory interest, and low concentrations where φ(q) is
small, where there is little sensory interest.

V. HARDWARE EXPERIMENTS

We implemented and tested the algorithm on a group of
mobile “SwarmBots.” A light source was used to create a
sensory function φ(q) of light intensity. The robots used
readings from light sensors and neighbor localization to carry
out Algorithm 1.

A. The Swarm Hardware

Each SwarmBot (Figure 5) is autonomous and is equipped
with bump sensors, light sensors, and an infra-red inter-
robot communication and localization system called ISIS. The
light sensors detect the sensory input. The ISIS inter-robot
localization system provides local neighbor positions used to
compute the Voronoi cells.

We limited the range of the localization system to one meter
to increase the diameter of the network and minimize the
number of inter-robot packet collisions. This algorithm uses no
communications other than the localization messages, allowing
us to test it with many robots in a small physical space.

(a) 10 Robots, 1000 Trials (b) 100 Robots, 100 Trials

(c) 1000 Robots, 10 Trials

Fig. 4. The steady state density of robots as a function of distance from the
Gaussian center are shown for the three batch runs.

Fig. 5. The iRobot SwarmBot is designed for distributed algorithm develop-
ment. Each SwarmBot has an infra-red localization and communication system
called ISIS which enables nearby robots to communicate and determine the
bearing, orientation, and range of their neighbors. An omni-directional bump
skirt provides low-level obstacle avoidance. A 40 MHz 32-bit ARM Thumb
microprocessor provides enough processing power for our algorithms.

B. Implementation of the Control Algorithm

The implementation of Algorithm 1 on the SwarmBot
system required several modifications. The robots had a lim-
ited communication range of radius one meter, therefore the
Delaunay neighbors computed by any robot were only those
Delaunay neighbors within the one meter disk of the robot.
These local Delaunay graphs might not be the same as their
global counterparts. We assumed that edges of greater than
length one meter are uncommon in the triangulated graphs we
consider and the effects of removing them have little impact

Single Neighbor On The Edge

r

r

r
r

Fig. 6. The method used for closing the unbounded Voronoi region of a
robot with 1 neighbor is shown on the left. The method for an unbounded
Voronoi region of a robot with any two consecutive neighbors separated by
more than π rad is shown on the right.

on the final result.3

In addition, Algorithm 1 requires that each robot can
detect and localize the boundaries of the region Q. This is
necessary to prevent the Voronoi region of any robot from
being unbounded. We did not implement boundary sensing
on the SwarmBot. Instead, we developed three heuristic rules
for truncating infinite Voronoi regions. Unbounded Voronoi
regions occur in three distinct cases for robots on the boundary
of the network. These are enumerated below along with the
associated truncation technique.

1) No Voronoi Neighbors: The centroid is computed to be
the robot’s current position, thus the robot does not move
until it acquires a neighbor.

2) One Voronoi Neighbor: A Voronoi region is constructed
from an isosceles triangle of constant size whose base
lies on the bisector between the two robots (see the left
of Figure 6).

3) Two Consecutive Voronoi Neighbors Separated by an
angle ≥ π: A line is added perpendicular to the bisector
of the infinite region at a constant distance from the
robot (see the right of Figure 6). The two intersection
points of this line with the unbounded Voronoi region
are taken as vertices of the truncated Voronoi region.

Also, the robots’ light sensors returned a bearing and
distance. This was not enough information to compute ∇φ |pi

directly. To overcome this problem, we fixed the magnitude of
∇φ |pi

and determined its direction from the sensory stimulus.
The signal strength φ(pi) was measured directly.

Finally, the SwarmBot had a low-level controller in place
which allowed the robot to move to a particular point relative
to its current position. We used this position control as a
substitute for velocity control. In particular, at each time
instant, the input to the position controller was given as the
estimated centroid value ĈVi

. This turned out not to be a

3A Voronoi based control scheme with limited range communication was
shown in [4] to have similar convergence properties as the case with unlimited
communication range.

difficulty since the low level control-loop was already well
suited for the experiments.

The computational and memory requirements for this algo-
rithm were small, and modification of the algorithm to run with
integer calculations was straightforward. On the 40MHz ARM
Thumb processors used in the SwarmBots, the memory usage
for all the steps outlined in Algorithm 1, including the special
cases discussed above, was 3949 bytes of code and 1284 bytes
of RAM. With 8 neighbors, one cycle of the algorithm ran at
70ms, fast enough for real-time position updates.

C. Experiments

We measured the performance of the algorithm in two
sets of experiments. For the first set of experiments, a factor
was introduced to chnage the robots’ final configuration. In
particular, if we define φ̃(pi) as the light intensity measured by
the robots’ light sensors at pi, we chose a DC offset, ΦOffset

to create a φ function φ = ΦOffset + φ̃. This had the effect
of reducing the influence of the measured light gradient. Thus
final robot density varied inversly with the value of ΦOffset.
Three runs were performed for each of six values of ΦOffset:
800, 400, 200, 100, 50, and 10. In each experimental run, 40-
50 robots were started uniformly dispersed in a dark, 8′ × 8′

workspace. A light source was placed at the middle of one of
the perimeter walls of the workspace. The robots were given
two minutes to reach a final configuration. Photographs of the
final robot configurations are shown for each ΦOffset value
in Figure 7, along with plots of the final robot densities as a
funtion of distance from the light source.

A second set of experiments was carried out to quantify
the actual error of the robots over the course of a single
run. Twenty robots were started consentrated in one corner
of the 8′ × 8′ workspace. The light intensity was controlled
to be as uniform as possible over the workspace. Special
stationary robots were evenly spaced along the perimeter of
the workspace, five along each wall. These were used to help
ensure that the voronoi regions of the active robots remained
bounded throughtout the experiment without having to use the
heuristics described above. The 20 active robots ran algorithm
1 for a total of 3 minutes. They were stopped at regular time
intervals throughout the 3 minutes, and their positions were
measured. The position measurements were used to compute,
off line, the error between each robot’s position and the
centroid of its Voronoi region. The time history of the mean
error measured in this way is shown in Figure 9. Note that the
error diminishes over time as would be expected.

VI. CONCLUSION

In this paper, a decentralized method for controlling cover-
age in mobile sensor networks was presented. The method is
related to one proposed in [5], and introduces an innovation
that allows for the network to adapt to unknown sensory
environments. An analytical expression for centroid calcu-
lations was derived to make the algorithm computationally
feasible on small robot platforms. The control scheme was
demonstrated in numerical simulation. The control scheme

Fig. 7. The upper row of images show the final positions of 40 robots using the proposed control law. The sensor offset, Φ, is labeled above each picture.
The graph below each image plots the normalized density of the robots as a function of their radius from the light source. A uniform density would appear
as a horizontal line with a value of one.

(a) Initial Configuration (b) Final Configuration

Fig. 8. The initial and final configurations for an experiment with 50 robots
is shown.

Fig. 9. The mean error between the robots’ positions and the centroids of
their Voronoi regions is shown as a function of time for an experiment with
20 robots. Because of sensor noise, we used a fixed error threshold of 0.075
m. Robots with desired positions within this distance remained stationary,
limiting the convergence of the mean error.

was also implemented on a SwarmBot platform using integer
calculations in a lean computing environment. The ability to
implement the control scheme on such a platform emphasizes
its practicality and minimalist nature. Robust performance was
demonstrated in a number of experimental trials.

Potential extensions to this control method are numerous.
For example, the approach in this work used minimal commu-
nication among robots, only requiring localization to produce
a Voronoi partition. Shared estimates of the sensory function

are possible if more communication overhead is allowed. For
example, each robot might estimate the sensory function from
a quadratic fit of its own and each of its Voronoi neighbors’
measured values of φ(q). Theoretical, numerical, and experi-
mental studies of this and other methods are ongoing.

ACKNOWLEDGMENT

This project was supported in part by the NSF, the MURI
SWARM project, and Boeing. We are grateful for the support
of all our sponsors.

REFERENCES

[1] F. Bullo and J. Cortés. Adaptive and distributed coordination algorithms
for mobile sensing networks. In V. Kumar, N. E. Leonard, and A. S.
Morse, editors, Cooperative Control. (Proceedings of the 2003 Block
Island Workshop on Cooperative Control), volume 309 of Lecture Notes
in Control and Information Sciences, pages 43–62. Springer Verlag, New
York, 2005.

[2] Z. Butler and D. Rus. Controlling mobile sensors for monitoring events
with coverage constraints. In Proceedings of IEEE International Con-
ference of Robotics and Automation, pages 1563–1573, New Orleans,
LA, April 2004.

[3] C. Cattani and A. Paoluzzi. Boundary integration over linear polyhedra.
Computer-Aided Design, 22(2):130–135, 1990.

[4] J. Cortés, S. Martı́nez, and F. Bullo. Spatially-distributed coverage
optimization and control with limited-range interactions. ESIAM:
Control, Optimisation and Calculus of Variations, 11:691–719, 2005.

[5] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo. Coverage control
for mobile sensing networks. IEEE Transactions on Robotics and
Automation, 20(2):243–255, April 2004.

[6] Qun Li and Daniela Rus. Navigation protocols in sensor networks. ACM
Transactions on Sensor Networks, 1(1):3–35, Aug. 2005.

[7] Xiang-Yang Li, Gruia Calinescu, and Peng-Jun Wang. Distributed
construction of a planar spanner and routing for ad hoc wireless
networks. In Proceedings of the IEEE INFOCOM, pages 1268–1277,
New York, NY, June 2002.

[8] James McLurkin. Stupid robot tricks: A behavior-based distributed
algorithm library for programming swarms of robots. Master’s thesis,
MIT, 2004.

[9] P. Ogren, E. Fiorelli, and N. E. Leonard. Cooperative control of
mobile sensor networks: Adaptive gradient climbing in a distributed
environment. IEEE Transactions on Automatic Control, 49(8):1292–
1302, August 2004.

[10] Gabriel T. Sibley, Mohammad H. Rahimi, and Gaurav S. Sukhatme.
Robomote: A tiny mobile robot platform for large-scale sensor networks.
In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2002.

