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Abstract
When dealing with dynamic, untrusted content, such as on the
Web, software behavior must be sandboxed, typically through use
of a language like JavaScript. However, even for such specially-
designed languages, it is difficult to ensure the safety of highly-
optimized, dynamic language runtimes which, for efficiency, rely
on advanced techniques such as Just-In-Time (JIT) compilation,
large libraries of native-code support routines, and intricate
mechanisms for multi-threading and garbage collection. Each new
runtime provides a new potential attack surface and this security
risk raises a barrier to the adoption of new languages for creating
untrusted content.

Removing this limitation, this paper introduces general mech-
anisms for safely and efficiently sandboxing software, such as
dynamic language runtimes, that make use of advanced, low-
level techniques like runtime code modification. Our language-
independent sandboxing builds on Software-based Fault Isolation
(SFI), a traditionally static technique. We provide a more flexible
form of SFI by adding new constraints and mechanisms that allow
safety to be guaranteed despite runtime code modifications.

We have added our extensions to both the x86-32 and
x86-64 variants of a production-quality, SFI-based sandboxing
platform; on those two architectures SFI mechanisms face different
challenges. We have also ported two representative language
platforms to our extended sandbox: the Mono common language
runtime and the V8 JavaScript engine. In detailed evaluations,
we find that sandboxing slowdown varies between different
benchmarks, languages, and hardware platforms. Overheads are
generally moderate and they are close to zero for some important
benchmark/platform combinations.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection

General Terms Languages, Security
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1. Introduction
The safe confinement of software behavior, or sandboxing, is a
key requirement in many contexts. On the Web, sandboxing is
especially important since Web applications are a form of highly-
dynamic, untrusted software, and non-isolated Web software, such
as browser plugins and ActiveX controls, have been, and remain,
a leading source of security vulnerabilities [6, 17]. As a result,
Web applications are mostly written in one of a handful of high-
level, dynamic programming languages specifically designed for
untrusted content—most commonly JavaScript [16].

Software safety is in tension with efficiency: even languages like
Java and JavaScript are executed not through simple interpretation,
but on top of highly-efficient runtime platforms. The safety of those
language platforms depends on large amounts of trusted (possibly
flawed) native code—implementing extensive libraries, as well as
advanced mechanisms like runtime code generation and garbage
collection [3, 33]. Thus, each such language adds new potential
means of attack, as evidenced by the frequent exploits of Web-
based languages [13, 55].

Fortunately, as we show in this paper, sandboxing can be
language independent, provide strong safety guarantees, low
overhead, and do this without restricting language choice or lan-
guage implementation options. The entirety of dynamic software
execution can be sandboxed, including the language platform,
even if it uses just-in-time compilation, runtime code modification,
or large bodies of legacy code. Despite being comprehensive,
such sandboxing need induce only moderate slowdowns. As
shown by our experimental results, in many important cases
sandboxing may incur no overhead. Such language-independent
sandboxing promises more technology options for untrusted
content development—in particular, on the Web.

Our language-independent sandboxing is not based on hardware
protection domains, such as the common process abstraction.
These offer neither high assurance nor universal applicability,
particularly in cases where a fine granularity of protection domains
is desired. Their use is intricate and error-prone, leading to non-
portable implementations and partial protection [4, 20, 54]. Also,
the performance impact of hardware context switching can severely
limit applicability [19].

Instead, our work is based on Software-based Fault Isolation



(SFI) [53], which provides high-assurance safety guarantees and
is largely independent of the operating system and other system-
level details. SFI relies on machine code verification through
static analysis and, to date, has not been applicable to sandboxing
software that modify machine code at runtime. Removing this
obstacle, we present extensions to SFI techniques that allow
efficient, safe sandboxing of mechanisms such as just-in-time code
generation and runtime code modification. Key to our extensions
are new safety constraints on the structure of machine code that
apply, inductively, even across code modification.

We have implemented our extensions in the context of the
Native Client open-source project: a production-quality SFI-based
sandbox [44, 56]. Our extended sandbox provides efficient ways
to add, modify, and delete code. It transparently allows safe reuse
of code memory without race conditions and without suspending
threads, even on hardware-threaded, concurrent systems. Our
extensions add little overhead, partly because our new safety
constraints are not onerous, but also because they are verified only
when code is modified, not when code is used.

We have ported two popular, representative JIT-compiled
language systems to our sandbox: the Mono CLR runtime [41],
which supports C#, and the V8 JavaScript engine [27]. V8
motivated our work. Its speed compared to previous JavaScript
engines clearly demonstrates the advantages of runtime code
generation over even highly-optimized interpretation. Our design
was further influenced by V8’s use of code rewriting for inline code
caches—and the 12x slowdown that we saw V8 incur when we
disabled its code cache mechanisms.

Porting Mono and V8 consisted primarily of changing them
to output verifiably-safe code, and inductively maintaining safety
across modifications to that code. We targeted two commodity
hardware platforms: the x86-32 and x86-64 instruction set architec-
tures (ISAs) [25, 28]. These two ISAs have significantly different
characteristics for the purposes of Native Client sandboxing. On
x86-32, hardware segments allow low runtime overheads and
simplified implementation of our extensions. On x86-64, extensive
use is made of inline code that performs runtime sandboxing, and
this both reduces performance and complicates porting efforts.

We found that the Mono and V8 platforms, and their x86-32
and x86-64 variants, spanned a wide range in terms of the porting
effort required and the sandboxing slowdown incurred. At one end,
Mono-32, porting effort was low and the measured overhead is near
negligible. At the other extreme, V8-64, porting took a few weeks
and sandboxing slowdown is between 51% and 60% on average,
but 196% in one benchmark (due to a porting shortcut, as explained
in Section 4). Notably, in all cases sandboxing overhead was much
lower than what might be expected of a highly-efficient interpreter,
where even favorable workloads incur factors of overhead [21, 43].

1.1 Contributions
This paper makes the following contributions:

• A set of locally-verifiable machine code constraints that allow
safe, SFI-based sandboxing even of runtime code modification.

• A technique for safe runtime modification of machine code
on commodity hardware, despite the simultaneous execution of
that code on other processors by untrusted user threads.

• A technique for the safe deletion of code memory, and its reuse
for new instructions, despite potentially concurrent execution of
untrusted user threads in that code memory.

• Implementation of our language-independent sandbox for x86-
32 and x86-64, as well as ports of the V8 and Mono runtimes,
allowing software to embed languages like JavaScript and C#
as untrusted components.

• Experience showing that it can be straightforward to port mod-
ern, advanced language runtimes to execute within language-
independent sandboxing.

• Experimental results showing that, while overhead varies
between platforms, sandboxing overhead is generally modest,
and that a sandboxed advanced language runtime incurs far less
overhead than the published slowdown of using interpretation.

• A somewhat surprising optimization technique relying on
careful selection of even unexecuted NOP instructions.

To create safe, low-overhead runtime code-modification mech-
anisms that were easy to use, we had to simultaneously satisfy a
great number of constraints. These include the constraints imposed
by the NaCl SFI sandbox, the concrete properties of the NaCl
runtime system and the operating systems and hardware CPUs
it runs upon, as well as the practical characteristics of language
platform implementations. While the primitives introduced are
straightforward, the intricacy of the underlying mechanisms—
and the lack of similar mechanisms in previous SFI systems—is
evidence of the difficulty in creating their implementation.

1.2 Motivating Application
Our work has been motivated by the tantalizing possibility of
language-independent software development of safe, untrusted
Web applications. The foundation for our implementation, Native
Client has been integrated with the Chrome Web browser, where
it provides access to JavaScript Web interfaces [44, 56]. Our
extended sandboxing allows safe execution of ported language
runtimes, and their native libraries, even when they make use of
advanced code modification techniques for efficiency. Contrast this
with today’s reality, where rich, interactive Web clients must be
written in JavaScript, either from scratch, or via source-to-source
translation, with resulting difficulties and inefficiencies [9, 26].
(The alternatives are neither practical nor appealing: asking users to
install Web browser plugins for new languages, or using partially-
deployed languages like Java.) Adding our extended sandbox to a
Web browser could enable writing a Web page in any language, as
long as that language runtime is downloaded as part of the page.

1.3 Outline
The remainder of this paper is organized as follows. Section 2
provides background on SFI and the Native Client sandbox.
Section 3 covers the design and implementation of our sandboxing
extensions. Section 4 describes our experience porting language
runtimes to our extended sandbox. Section 5 shows experimental
results, examines the sources of overhead, and explains optimiza-
tion via NOP instruction selection. Finally, Sections 6 and 7
describe related work and draw conclusions.

2. Background
This work builds on the Native Client open-source project [44, 56]
commonly abbreviated “NaCl” when used as an adjective. The
NaCl sandbox uses Software-based Fault Isolation (SFI) [32, 53]
to restrict what instructions can be executed, in what sequence, and
constrain the memory addresses used by instructions. SFI provides
high-assurance safety guarantees by combining static analysis with
software guards: short, inline instruction sequences that perform
runtime safety checks or sandboxing operations. In this, SFI is
similar to language-runtime mechanisms ranging from dynamic
array-bounds checks [39] to concurrency controls such as software-
transactional memory [48].

SFI allows the creation of statically verifiable machine code:
code that, through static analysis, can be independently verified
to permit only constrained executions, irrespective of how it was
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Figure 1. Overview of abstract NaCl machine code, with each
fixed-width (32 byte) row denoting a NaCl instruction bundle
starting at an aligned address. Vertical lines show instruction
boundaries, while shaded regions show NOP padding; dashed
arrows indicate permitted direct and indirect control flow. Two
NaCl pseudo instructions are shown as gradient-shaded boxes.

created (e.g., through compilation from a high-level language).
As with Java bytecode verification [30], SFI establishes safety
primarily by checking simple, local properties of code, where
those properties, in aggregate, imply global execution invariants.
To ensure that safety holds for all possible execution paths, SFI
restricts both direct and indirect control transfers, implementing a
form of control-flow integrity [1]. SFI must, in particular, prevent
control flow from circumventing inline software guards—as this
would allow unconstrained execution, including control transfers
to disallowed instructions.

On top of its SFI sandboxing, Native Client provides a
production-quality, fully-functional platform for the safe execution
of untrusted, multi-threaded user-level machine code. Native Client
is designed to minimize the overhead of safety: even untrusted,
hand-optimized media codecs can be executed at near full speed,
since SFI allows safe use of hand-written assembly and model-
specific instructions, such as the MMX and SSE extensions on x86.
The NaCl platform also provides a programming model for high-
level languages using ILP32 (32-bit Integers, Longs and Pointers)
primitive types and a portable subset of POSIX-like system calls.

Native Client implements a relatively simple variant of SFI,
fundamentally based on reliable disassembly: the use of alignment
and other machine-code constraints to ensure runtime-reachable
instructions can be statically identified. Unlike in more complex
SFI implementations [20], each NaCl software guard is combined
into a pseudo instruction with an adjacent, potentially-unsafe
instruction, making each guard constrain the behavior of only a
single instruction. As in PittSFIeld [32], NaCl machine code is
structured as aligned instruction bundles of fixed size (32 bytes).
NOP padding is used to ensure that no instruction overlaps the
boundary of such an aligned instruction bundle. Control-flow
instructions must target valid code, and all computed control
transfers must target the start of a instruction bundle. Indirect jumps
are allowed only via a pseudo-instruction that aligns the target
address, and NOP padding is used to ensure CALL instructions
appear only at the end of instruction bundles, so that return
addresses are always aligned. In addition, NaCl execution is
constrained to a single, contiguous code region, with access to
a restricted set of NaCl platform support routines, and memory
access is limited to a single, contiguous region of untrusted data
memory, which also contains the stacks for threads.

Figure 1 gives an overview of the structure of NaCl machine
code for an abstract ISA, showing the details of one NaCl code
region, comprising five NaCl instruction bundles. Native Client
independently verifies the safety of each such code region, one at a

time; in our extended sandboxing, this is the region being added or
modified. For the first instruction, a direct jump forward by 38 bytes
(or 0x26), NaCl verification establishes that the target is a valid
instruction boundary within the code region. The two remaining
instructions are NaCl pseudo instructions that use the register R
to write to memory at address R and call the function at address
R. For these pseudo instructions, NaCl verification establishes the
correctness of the software guards used to sandbox the register R.
For CALL instructions, both their target address and the pushed
return address must be the start of an aligned instruction bundle.
NaCl verification also imposes many structural constraints on
machine code; for instance, direct jumps may not target the inner
boundaries of pseudo instructions. NOP padding may need to be
used to ensure proper alignment and, as clearly shown in Figure 1,
large amounts of such padding may be required, especially around
CALL instructions.

Native Client additionally prohibits use of the x86 RET opcode.
Returns should be implemented with a POP/JMP sequence.
Checking the return address in a register avoids a potential time-
of-check/time-of-use race if it were checked on the stack.

Native Client supports three architectures, x86-32, x86-64, and
ARM. Like other SFI systems, Native Client also makes use of
operating-system and hardware support where appropriate, e.g., to
ensure that data is not executable, and that code is not writable and
is loaded at the correct address. In particular, on the 32-bit x86
platform, Native Client relies on hardware segments, not software
guards, to constrain reads and writes to data memory, as well as
code execution. However, the baseline overhead of Native Client
will vary with each platform: on ARM and 64-bit x86, bounded
segments aren’t available, and software guards must be used for
each computed access to memory.

Our work in this paper extends SFI techniques to be applicable
to runtime code generation and modification through the addition
of new, inductively-maintained safety constraints on the structure
of machine code. Our motivation is primarily performance:
compared to a JIT-compiled runtime, even the most highly-
optimized interpreter on its most favorable workload is likely
to be twice as slow [21, 43]. Optimized JIT compilation also
makes use of runtime code modification—for instance, to allow
machine-code constants to be modified to point to new code
emitted by the JIT compiler, or to make more extensive updates,
such as to the V8 code caches. Instead of modifying immediate
constants in machine code, JIT compilers can emit code based on
additional levels of indirection; however, such indirection comes
at significant performance cost, by pulling in additional cache
lines and increasing the rate of memory accesses. Furthermore,
language runtimes often make use of runtime code generation or
modification for various purposes other than performance, ranging
from debugging and profiling, through various instrumentation, to
specific mechanisms such as runtime barriers [2, 10, 23, 29, 38].
Even though this paper focuses on JIT compilation, flexibility is
another motivation for our work.

3. Core Mechanisms: Design and Implementation
This section describes the design and implementation of our
extensions to Native Client to support runtime code modification.
After outlining our extensions to the Native Client system call
interface, we then describe the implementation in detail, and how it
supports dynamic code creation, modification, and deletion.

3.1 Programming Interface
Table 1 lists the interfaces added to the trusted runtime of Native
Client to support dynamic code manipulation. NaCl machine code
comprises one or more code regions. Our extensions allow the
addition and deletion of code regions, as well as the modification



int nacl_dyncode_create(void* target ,
void* src ,
size_t size);

int nacl_dyncode_modify(void* target ,
void* src ,
size_t size);

int nacl_dyncode_delete(void* target ,
size_t size);

Table 1. The interfaces to our NaCl extensions for dynamically
adding and deleting code regions, and modifying the instructions
within a code region.

of code within a region. All code regions reside within the same
single, contiguous address range of executable memory, whose
size is set at link time. Executable memory can be modified only
through the trusted interfaces, not directly from NaCl code.

As an example of using our interfaces, consider the JIT
compilation of a single function. The JIT compiler, running as
untrusted NaCl code, generates machine-code in a temporary
buffer in data memory. To install the code, the JIT invokes
nacl dyncode create, transferring control into the NaCl trusted
runtime. This runtime validates the code and installs it in executable
memory, described in detail below.

After creation, the JIT may wish to modify the code, for
example, to update a pointer address stored in an immediate
pointer. The trusted nacl dyncode modify interface supports
these modifications.

If at some point the code is no longer needed, it can be deleted
and the memory reused using nacl dyncode delete. As Native
Client supports concurrent untrusted user threads, the runtime must
verify that no threads are executing in the code before it can be
safely reused. As nacl dyncode delete does not block, it will
return an error code if it cannot verify that all threads have left the
deleted region. Section 3.5 describes the implementation in detail.

3.2 Dynamic Code Creation
Supporting dynamic creation of code required only simple ex-
tensions to Native Client. Our implementation leverages existing
NaCl verification outlined in Section 2. Code creation involves the
following operations:

1. The target code address is verified to be in NaCl executable
memory, and aligned to an instruction bundle boundary.

2. To avoid a time-of-test/time-of-use race condition, the code is
copied to the private memory of the trusted NaCl runtime.

3. The code is verified using the standard NaCl validator.

4. The target address range in NaCl executable memory is checked
to be unused and also reserved, in one atomic operation.

5. The code is safely copied to the target address.

Each NaCl code region is verified independently, and all control
flow between code regions, whether direct or computed, must target
the start of a NaCl instruction bundle. For this, NaCl verification
relies on a property of HLT instructions: in Native Client, executing
a HLT (the “halt” instruction) results in the immediate, permanent
termination of all NaCl execution threads. To ensure safety, unused
executable NaCl memory is filled with HLT instructions. For safe
copying of verified code regions, the first byte of each instruction
bundle is written as a HLT instruction until all other code bytes
have been copied. Then the first byte of each instruction bundle is
written with the intended value.

3.3 NaCl Verification of Runtime Code Modifications
Practical sandboxing of dynamic language runtimes requires
our extended Native Client platform to support runtime code
modification. With our design, verification overhead is proportional
to the number of changed instructions. Verification requires
inspection only of modified instruction bundles and of instruction
bundles targeted by direct control-flow transfers from modified
instructions. Table 2 lists the complete set of code safety constraints
necessary for NaCl verification of dynamically-modified code.
These constraints imply immutability of the instruction boundaries
and the NaCl guard instructions in the modified code. They
maintain the NaCl safety guarantees across code modification,
since they preserve all properties established by runtime guards,
as well as the structural properties of NaCl machine code.

These immutability properties restrict the set of allowed
code modifications, notably on platforms with variable-length
instructions like x86-32. For example, the constraints would
prevent two short, adjacent instructions from being overwritten
with a single larger instruction, unless the entire code region is
deleted first. In practice we have not found these restrictions to
be onerous, as demonstrated by our porting work described in
Section 4, Immutability also helps prevent race conditions: our
safety guarantees hold even in the presence of concurrent, untrusted
threads that are executing the code under modification, as long as
individual instructions are updated atomically.

3.4 Atomic Modification of Machine-Code Instructions
If a thread uses nacl dyncode modify to modify an instruction,
then concurrent threads should execute either the old or new
instructions, but no other instructions.

It is difficult to provide atomicity without a cost to efficiency,
especially on multi-core or otherwise hardware-threaded systems.
Runtime code modification is relatively uncommon; when used, it
is usually performed in a synchronous fashion, via the operating
system or a trusted language runtime. Therefore, CPU designers
have had few incentives to provide reliable, simple primitives that
allow code modification to appear atomic across concurrently-
executing hardware threads. Indeed, in order to support mech-
anisms such as instruction prefetch buffers, AMD and Intel
processor documentation outlines a special memory model for
updates to concurrently-executing machine-code memory [25, 28].

On multicore and multiprocessor systems, a naive implemen-
tation of runtime code modification can lead to the execution
of corrupted instructions. To understand the possibility of such
instruction stream corruption, we ran highly-concurrent code
modification experiments, using straightforward code modification.
We found that corruption was indeed possible on all processors
that we tested; Sundaresan et al. made similar observations in their
development of a Java JIT compiler [49].

Fortunately, with careful implementation, both AMD and Intel
processors can support safe “cross-modification” of hardware-
threaded machine code from user mode. On Intel processors,
regular atomic writes to memory can be used to reliably modify
machine-code instructions that fall entirely within a 16-byte
aligned region of code memory—although instructions that span
two such aligned memory regions cannot be updated atomically.
The same holds true for AMD processors, except that only
smaller, 8-byte code memory regions are supported. We confirmed
these properties through both our experiments and also through a
conservative reading of the relevant documentation [25, 28].

When instructions span these code memory alignment bound-
aries, they can still be modified without instruction-stream cor-
ruption, through a careful implementation and use of memory
synchronization barriers. We crafted such a code-modification
mechanism, and conservatively chose to always apply AMD’s



• NEW must satisfy all NaCl safety verification constraints, as
outlined in Section 2.

• Both NEW and OLD must start at the same address, be of equal
size, and lie within a single code region.

• Any direct control-transfer instructions in NEW must target valid
instruction boundaries in the same code region.

• NEW and OLD must start and end at instruction boundaries, and
all instruction boundaries between must be identical.

• No pseudo instructions are added or removed. NEW may not
introduce new pseudo instructions. All pseudo-instructions in
OLD must occur in NEW and have identical guard instructions.

Table 2. Constraints imposed on runtime code modifications
by our extended NaCl sandboxing, when machine code OLD is
replaced with machine code NEW.

8-byte alignment constraints, which ensures our implementation
executes correctly on both AMD and Intel processors.

The pseudo code in Figure 2 shows our mechanism for safe,
atomic instruction replacement. One instruction is copied at a time.
When possible, we copy an entire instruction with a single 8-
byte, aligned write to memory, using a “fast path” modification
sequence. This fast path performs a read-modify-write update of
the 8-byte, aligned block of of memory around the old instruction.
This block of code memory is read into a temporary variable, and
the old instruction bytes within it are replaced with those of the new
instruction; then the temporary variable is written using a single
aligned 8-byte store to code memory.

The above fast path mechanism cannot be used if the old
instruction straddles an 8-byte alignment boundary. In this case, our
implementation works as shown in Figure 2: we modify the target
instruction bytes in three steps, keeping a one-byte HLT as the
first byte of the instruction while the instruction is being modified.
We use serialization barriers to synchronize the instruction stream
and view of code memory for all hardware threads, including other
cores or processors [25, 28].

Considering all possible interleavings, it is easy to see why
the above code allows a series of machine-code instructions to be
atomically replaced with new, equal-size instructions:

• Before the first serialization barrier: The one-byte write will
be atomic; a concurrent thread will execute either the original
instruction or the HLT instruction.

• Between the serialization barriers: No threads can execute
the target instruction without executing the HLT instruction
encoded in its first byte.

• After the second serialization barrier: As the one-byte write will
be atomic, other threads will execute either the new instruction
or the HLT instruction.

Our technique relies on a serialization barrier primitive. The
common approach on x86 processors is to use a serializing kernel-
mode instruction (such as cpuid) on all hardware threads [25, 28],
requiring execution of kernel-mode code. As NaCl sandboxing is
user-mode only, we require a serialization barrier that can be trig-
gered from user-mode. Conveniently, certain system calls serialize
all processors as a side-effect. We used the mprotect system call,
triggering inter-processor interrupts of remote hardware threads for
a “TLB shoot-down”, serializing all processors.

Finally, as mentioned previously, any execution of a HLT
instruction will result in complete termination of all Native Client
threads. Therefore, no thread may ever attempt to execute NaCl
code memory while it is being updated: doing so may cause

// For an instruction pair OLDI and NEWI ,
// with both instructions of size N-1 bytes.
//
if (diff of (OLDI , NEWI) lies in aligned qword)
{

// Fast path: Read the aligned , 8-byte region
// around OLDI , then update with NEWI bytes.
//
atomic aligned qword write to update OLDI;

}
else
{

// Slow path: Three -part update sequence ,
// with two memory serialization barriers.
//
OLDI [0] = 0xf4; /* HLT instruction */

serialize (); /* barrier */

OLDI [1:N] = NEWI [1:N];

serialize (); /* barrier */

OLDI [0] = NEWI [0];
}

Figure 2. Pseudo code for instruction replacement in the presence
of untrusted concurrent hardware threads.

the thread to execute a HLT. Preventing concurrent execution
and modification of the same code is the responsibility of the
systems using our NaCl code-modification primitives. This is not
an onerous duty: language runtimes should already be taking such
measures to prevent instruction-stream corruption like that we have
seen in our experiments.

3.5 Dynamic Code Deletion
NaCl executable memory comprises a set of code regions, and a
dynamically-generated code region can be deleted to reclaim its
executable memory. Thereby, executable memory can be reused for
new machine code without the nacl dyncode modify constraint
of preserving instruction boundaries.

Safety dictates that it must not be possible for a sleeping
thread to wake up and find that it is executing in the middle
of an instruction, because the executable memory at the thread’s
instruction-pointer address has been reused for a new NaCl
code region. To prevent this, we utilize a thread “wind down”
mechanism: we note all running threads, mark the code region for
deletion, and do not allow the executable memory to be reused until
we’ve confirmed that no thread is executing in the code region to
be deleted. To confirm this is the case, we wait for each thread
to invoke the trusted Native Client runtime. Being in the trusted
runtime, we know a thread is not in the deleted region, and further,
that any attempt to resume execution in the deleted region, while
obviously incorrect, will also be safe with respect to instruction
boundaries as it will target the aligned start of an instruction bundle.

Concretely, our code deletion mechanism will:

1. Ensure that the code region was created dynamically.

2. To ensure that no new threads enter the code region, write a
HLT instruction at the start of each instruction bundle. Recall
that NaCl computed control flow and returns always target the
start of an instruction bundle.

3. Increment the global generation number, and record it in the
deletion generation for the code region to be deleted.

4. As each thread makes a call to the trusted NaCl service runtime,



LoC total LoC added/changed
V8-32 190526 1972 (1.04%)
V8-64 189969 5005 (2.63%)

Mono-32 386300 2469 (0.64%)
Mono-64 388123 3240 (0.83%)

Table 3. Changed lines of code for NaCl ports of V8 and Mono.

update that thread’s thread generation number.

5. The executable memory can be reused when all threads have a
generation number greater than or equal to that of the deleted
code region.

If only one thread is executing, then invoking our code
deletion mechanism will immediately perform all of the above.
With multiple threads, the first call to nacl dyncode delete
will return an error code EAGAIN. Re-invoking the interface
with the same arguments and seeing a success return code
indicates deletion is complete. The non-blocking property of the
nacl dyncode delete interface allows user threads to perform
useful work, while waiting for executable memory to become
reusable.

4. Experience Porting Language Runtimes
This section describes our experience porting both the V8
JavaScript engine [27] and the Mono Common Language Run-
time [41] to run inside our extended NaCl sandbox. Each
language platform makes use of JIT compilation and also makes
use of dynamic code modification techniques. After providing
background on each platform, we describe our porting experiences.
Because the x86-32 and x86-64 JIT compilers are substantially
different on both platforms, our work comprised porting and
debugging four distinct JIT implementations.

Table 3 provides data about code modifications required for our
sandboxed versions of V8 and Mono. Only about 1% or less of code
required changes, evidence of the relative simplicity of adapting a
JIT to support our language-independent sandboxing.

4.1 V8 JavaScript Engine
The V8 JavaScript engine [27] is used in the Chromium/Google
Chrome Web browser, in the Web browser on Android phones, and
in Palm WebOS. In addition to being JIT compiled, V8 achieves
a large performance benefit from inline caching, a technique first
introduced in an implementation of Smalltalk 80 [15]. Inline caches
store object properties such as member offsets directly in the
machine code of functions. The optimized machine code of each
inline cache first checks that object properties haven’t changed,
invalidating the cache; then, in the common case, object members
are accessed directly. Inline caches in V8 rely heavily on runtime
machine-code modification, making V8 a good stress test for our
language-independent sandboxing.

Inline caches are vital to the efficiency of the V8 engine, a
motivation for our support of runtime code modification. Disabling
V8 inline caches in an otherwise unmodified V8 x86-32 system
induces a 12.22x slowdown on the V8 Benchmark Suite. With our
sandboxing enabled, the slowdown is 14.08x. In both cases the
positive impact of inline caching is an order of magnitude higher,
on all platforms, than the slowdown induced by our language-
independent sandboxing.

4.2 Mono Common Language Runtime
Mono [41] is an open source, cross-platform implementation of
Microsoft’s .NET Framework. Mono provides both an offline

compiler that translates C# to Common Intermediate Language
(CIL) bytecode and a JIT compiler that reduces CIL bytecode to
a number of native targets including x86-32 and x86-64. Many
languages, including Microsoft Managed C++ and VB.NET have
CIL bytecode compilers. Mono also supports “Ahead-Of-Time”
(AOT) compilation of CIL bytecode, a useful facility when JIT
compilation is either not possible or not permitted.

4.3 Porting Experiences
A primary task in each of our four porting efforts was modifying
the JIT compiler to emit code that would satisfy NaCl code safety
verification. For this, only minimal, isolated modifications were
required, because NaCl verification is based on checking local
machine-code properties. We modified the instruction emission
phase of each JIT to satisfy the NaCl alignment constraints and to
emit NaCl pseudo instructions for memory references and indirect
control flow, as required.

Another task arose from a fundamental constraint imposed
by the Native Client platform: only machine-code instructions—
and no data—may reside in the NaCl executable memory address
range. We modified each of the four JITs to allocate their code,
and only their code, in NaCl code regions. For V8, this required
moving relocation records and other meta-data from executable
memory into appropriate data segments. We implemented similar
modifications for Mono, although in a few cases we worked around
the constraint by embedding data as immediate constants in a
non-executed, legal instruction. Such “data instructions” allow for
the creation of code that uses instruction-relative positioning for
data constants and still passes NaCl code safety verification. We
constructed these data instructions by prefixing a push immediate
opcode to the data that needed to be embedded in the code segment;
the resulting push instruction is never executed at runtime.

A number of implementation challenges were specific to x86-
64. The x86-64 implementation of Native Client uses the ILP32
data model, to facilitate source code portability between x86-32
and x86-64 sandboxes. This tends to conflict with the LP64 or
LLP64 data models assumed by the x86-64 implementations of
V8 and Mono. In particular, the language implementations assume
that a pointer and a register are the same size, which is false in
the x86-64 NaCl model. Our Mono and V8 ports took different
approaches to resolving these issues. For Mono we introduced an
explicit distinction between the register size and pointer size. This
approach supports the Mono requirement for C-style structures that
are accessed both from managed and unmanaged code. For V8,
pointers occupy four bytes on the heap, as per the ILP32 model, but
eight bytes on the stack. While this representation accommodates
the fact that x86-64 does not support four-byte push or pop
operations, it also requires numerous changes to code generation,
resulting in a significant, albeit straightforward, engineering effort.

The ILP32 data model also interferes with the optimized
representation of 32-bit integers in x86-64 V8. On x86-64, V8
encodes type information in the low-order bits of 64-bit registers
to differentiate between immediate 32-bit integer values and
pointers to boxed integer objects on the heap. For implementation
expediency, we modified the x86-64 version of V8 to use the
same integer representation as the x86-32 version. V8-32 uses the
least-significant bit of a 32-bit word to differentiate immediate and
pointers, storing integers larger than 31-bits as objects. This change
also required us to reimplement some arithmetic operations. The
difference in integer representations has performance implications
for code that operates with large integer values, since they are
stored as objects on the heap. This had a large impact on single
benchmarks in the SunSpider100 benchmarks, as discussed in
Section 5.
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x86-32 x86-64 x86-32 x86-64
Crypto 4380 4511 3910 (12%) 3176 (42%)

DeltaBlue 6555 5380 4921 (33%) 3825 (41%)

EarleyBoyer 20332 19370 15827 (28%) 13247 (46%)

RayTrace 9277 7979 5849 (59%) 4615 (73%)

RegExp 3367 3534 2660 (27%) 2035 (74%)

Richards 4911 4659 3864 (27%) 3217 (45%)

Splay 15305 14160 13098 (17%) 10188 (39%)

GMean 7528 7059 5868 (28%) 4683 (51%)

(a) Unsafe (b) Sandboxed

Figure 3. A chart of NaCl sandboxing slowdown (lower is better)
for the V8 JavaScript Benchmark Suite, relative to unmodified V8.
GMean is the geometric mean of the overheads of all benchmarks
in the suite. Also shown is a table of the chart’s underlying data: raw
benchmark scores (where higher is better) for native and sandboxed
execution, with sandboxing slowdown in parentheses.

5. Experimental Results and Optimizations
Results in this section are from a quad-core Intel Xeon X5550 Ne-
halem 2.67 GHz processor, except Table 6 as noted. Our test system
ran Ubuntu 10.04, kernel version 2.6.32. Performance results are an
average of 10 runs. The observed standard deviation ranged from
0 to 2.32%. We summarize performance measurements using the
geometric mean [22].

Our implementation extends the latest, up-to-date version of
Native Client, which, on x86-64, has added sandboxing of indirect
memory reads, as well as writes. Therefore, it is not surprising that
our extended NaCl sandboxing for x86-64 has higher measured
overheads than those reported in [44].

5.1 Sandboxing Overhead for V8 JavaScript and Mono C#
Figures 3 and 4 show the overheads for our sandboxed version
of V8 when running the V8 Benchmark Suite [27], version 6,
and the SunSpider Benchmark Suite [50], version 0.9.1. The
V8 Benchmark Suite is distributed with V8 and the SunSpider
Benchmark Suite is distributed with WebKit. The SunSpider suite
consists of very small microbenchmarks; therefore, we created and
used a variant, SunSpider100, where each benchmark is run 100
times, instead of once, to facilitate more accurate timing and to
emphasize steady state execution over startup delays. We measure
overhead relative to the V8 2.2.19 development version that we
forked to make our changes on June 21st, 2010.

In the V8 Benchmark Suite, RayTrace showed some of the
largest overheads. We investigated the cause of this slowdown
on V8-64 using PIN [31], a binary instrumentation tool, and
pfmon [52], a performance monitoring tool based on hardware
performance counters. Using PIN, we counted executed instruc-
tions for RayTrace, both with and without the sandbox. With

x86-32 x86-64 x86-32 x86-64
3D 3097 3434 4230 (37%) 5996 (75%)

Access 2867 3248 3815 (33%) 5296 (63%)

BitOps 2240 2047 2892 (29%) 3235 (58%)

ControlFlow 179 199 250 (40%) 318 (60%)

Crypto 1193 857 1812 (52%) 2538 (196%)

Date 2060 2236 2970 (44%) 3541 (58%)

Math 2310 2374 2639 (14%) 3295 (39%)

RegExp 1097 957 1359 (24%) 1057 (10%)

String 5147 5269 6325 (23%) 7186 (36%)

GMean 1693 1676 2241 (32%) 2689 (60%)

(a) Unsafe (b) Sandboxed

Figure 4. A chart of NaCl sandboxing slowdown (lower is
better) for the SunSpider100 JavaScript benchmarks, relative to
unmodified V8. Each bar represents a group of up to four
benchmarks. GMean is the geometric mean of all benchmark
overheads. Also shown is a table of the chart’s underlying data:
raw benchmark scores (here, lower scores are better) for native and
sandboxed execution, with sandboxing slowdown in parentheses.

NaCl sandboxing, RayTrace instruction counts on V8-64 grew to
a factor of 1.8x. The largest contributor is NOP padding to align
instruction bundles and CALL instructions, adding 39% of the new
instructions. The second largest source of additional instructions
is software guards for memory references, 38% of the total new
instruction. The remaining new instructions came from other
software guards and the Native Client runtime. To understand the
impact of branch and cache behavior, we used pfmon to measure
related hardware events during the RayTrace benchmark. NaCl
sandboxing requires the use of a software-guarded indirect jump,
instead of a RET instruction for function returns, which we thought
would likely increase branch mispredictions. Indeed, we observed
a 4x increase in the branch misprediction rate. Sandboxing also
increased V8-64 instruction cache pressure, with 2x change in L1
instruction cache misses and 2x change in instruction TLB misses.

The SunSpider100 suite showed similar average performance
overhead as the V8 Benchmark Suite, with 32% slowdown for
sandboxed V8-32 and 60% for V8-64, as compared to unmodified
V8. On x86-64, the crypto benchmarks were an outlier, with
over twice the overhead of any other benchmark. The crypto
benchmarks are composed of 3 smaller benchmarks: crypto-
aes, with 1.8x slowdown; crypto-md5, with 5.0x slowdown;
and crypto-sha1, with 3.9x slowdown. The second and third
benchmarks depend heavily on 32-bit integer arithmetic operations,
and implement these operations through nested use of very small
functions, resulting in multiple function invocations per arithmetic
operation. Therefore, for these benchmarks, branch misprediction
on function returns must be a large source of overhead.
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x86-32 x86-64 x86-32 x86-64
FFT 323 332 321 (1%) 281 (18%)

LU 668 763 665 (0%) 595 (28%)

MonteCarlo 109 126 97 (12%) 91 (38%)

SOR 886 892 893 (−1%) 863 (3%)

SparseMM 450 507 452 (−1%) 429 (18%)

GMean 393 429 384 (2%) 355 (21%)

(a) Unsafe (b) Sandboxed

Figure 5. A chart of NaCl sandboxing slowdown (lower is better)
for the SciMark C# Benchmark Suite, relative to unmodified Mono
JIT. GMean is a geometric mean of overheads of all benchmarks in
the suite. Also shown is a table of the chart’s underlying data: raw
benchmark scores (where higher is better) for native and sandboxed
execution, with sandboxing slowdown in parentheses.

However, the main source of overhead results from the change
in representation described in Section 4.3: our V8-64 port uses
the representation of small integers from V8-32, and therefore
stores integers larger than 231 as heap objects. We chose this
implementation for expediency, without realizing its effects. As
a result of our porting shortcut, half of the 32-bit arithmetic in
the crypto benchmarks will involve boxed heap objects, instead of
register values, and, compounding this overhead, NaCl sandboxing
on x86-64 requires use of a software guard for each indirect
access to heap memory. We could have supported the 64-bit integer
representation used in V8-64, since Native Client allows safe use
of handwritten machine code or assembly modules; we plan to do
so in a future version of our V8-64 port.

Turning to Mono, Figure 5 shows our NaCl sandbox overhead
for the SciMark C# Benchmark Suite. For x86-32 the mean
overhead was only 2%, while for x86-64 the overhead was 21%.
Overheads were higher on x86-64 because of the additional
software guards required for NaCl sandboxing of loads and stores.
The largest overheads were for the MonteCarlo benchmark, whose
kernel uses a tight inner loop that calls two small functions,
resulting in NOP padding and branch misprediction overheads.
While we haven’t yet studied all original causes of this slowdown,
we note it is consistent with measured performance of the x86-64
NaCl sandbox for C and C++ benchmarks [44].

5.2 Analysis of the Sources of Sandboxing Overhead
Table 4 shows the estimated breakdown of sandboxing overhead
for the V8 Benchmark Suite. This table was generated by disabling
NaCl sandboxing features one at a time. Since the performance
impact of these different changes may not be independent, this
breakdown serves only as an estimate. The largest estimated
slowdown is from NOPs inserted for CALL and instruction bundle
alignment. We estimate that fetch and execution penalties from

Source of overhead V8-32 V8-64

NOP padding to align bundles 4% 16%

NOP padding to align calls 19% 21%

Software guards for function returns 25% 22%

Software guards for indirect jumps and
indirect memory accesses1

17% 24%

Runtime validation of code modifications 2% 5%
1 Indirect memory accesses require software guards only on x86-64.

Table 4. Analysis of the sources of NaCl sandboxing slowdown,
measured using the V8 Benchmark Suite (Figure 3). These
measurements were generated by disabling NaCl sandboxing
features one at a time. Since the performance impact of these
features is not independent, these overheads are not additive.

these NOPs cause about half of the total slowdown. Return address
masking is the next largest source of slowdown. NaCl sandboxing
requires replacing RET instructions with a POP/JMP sequence. This
interferes with the return address prediction hardware in modern
processors. Other overheads (not listed) include invocations of the
trusted Native Client runtime, slower dynamic code generation,
copies required to modify code, and object layout changes required
to separate code and code-meta-data. These overheads are small
compared to those listed in Table 4.

5.3 Comparing Sandboxing and Language Overheads
Past, published measurements of SFI-based sandboxing slowdown
have considered only fully-optimized, ahead-of-time compiled
versions of C and C++ benchmarks like SPEC [20, 44, 46, 56].
However, the SciMark Benchmark Suite includes C as well as
C# implementations of its benchmarks. This allows us to examine
one data point for the relative cost of sandboxing native code vs.
JIT compiled code in a modern language runtime. To facilitate
this examination, we measured single-threaded SciMark execution,
since its C variant runs only single threaded.

Table 5 examines the performance of three variations of
SciMark, for both x86-32 and x86-64, executing both with and
without NaCl sandboxing. Native is the original C implementation
of SciMark; Mono AOT is the C# port, compiled ahead of time and
without dynamic code modification; last, Mono JIT is the C# port,
executed using JIT compilation. For x86-32, the NaCl sandboxing
slowdown ranges from 0 to 5%, for all implementations. For x86-
64, the slowdown ranges from 13% to 48%, and is lower for the C#
implementations than for C. Despite the higher relative sandboxing
overhead, the absolute performance is significantly better for the C
implementation. On x86-32, our language-independent sandboxing
of Mono has comparable relative overhead to that of conventionally
compiled C and C++ under Native Client [56]. For NaCl sandboxed
Mono-64, performance of benchmarks such as LU and SparseMM is
also consistent with NaCl overheads for other benchmarks whose
execution time is sensitive to path length and branch prediction
effects [44].

Notably, the JIT version of the C# port is actually faster than
the AOT version, especially on 64-bit platforms. The JIT compiler
has knowledge of the locations of most of the data and code in
the program when it compiles a method. This allows it to embed
direct calls and data references to these locations in the emitted
code. It can further optimize the code by backpatching existing
calls to new code as it is generated. By contrast the AOT compiler
uses indirection techniques such as tables of pointers, resulting in
slower execution. This JIT advantage still holds in the sandboxed
environment, even if offset slightly by the extra cost of NaCl safety
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x86-32 x86-64 x86-32 x86-64
Native (C) 717 868 729 (-2%) 586 (48%)

Mono AOT 383 360 365 ( 5%) 318 (13%)

Mono JIT 388 426 383 ( 1%) 350 (22%)

(a) Unsafe (b) Sandboxed

Table 5. Performance of SciMark C/C# Benchmark Suite com-
piled from native C code, with gcc 4.4.3, or with the Mono AOT
and JIT compilers for C#. Benchmarks were executed natively
and on the unmodified Mono CLR (Unsafe), as well as with
NaCl sandboxing. Numbers show benchmark scores, in megaflops
(higher is better), and also the NaCl sandboxing slowdown, as a
percentage (in parentheses).

constraints.
Overall, these measurements suggest that the relative cost of

language-independent NaCl sandboxing can be small compared to
the overhead of a dynamic language runtime. The performance
difference between the C and Mono benchmarks can be seen as
the cost of using a managed-language framework. For the native,
unsafe benchmark executions, the cost of executing with Mono
ranges from 84% to 141% overhead, while that overhead ranges
from 67% to 99% under sandboxed execution.

5.4 NOP Optimizations
We were motivated to optimize the execution of NOP padding,
because it is the single largest contributor to overall NaCl
sandboxing overhead. To our surprise, we found that choice of
NOP padding sequences had a large impact on performance, even
when the chosen NOPs were never executed at runtime. For the
V8 Benchmark Suite on x86-32, different NOP padding choices
reduced sandboxing overheads from a factor of 1.62x to 1.28x.

Figure 6 shows a sampling of the search space of possible NOP
paddings and the resulting performance on the V8 benchmark suite.
It shows three different strategies for generating NOPs:

• Shortest NOPs generates long sequences of the single-byte
NOP instruction (0x90).

• Longest NOPs uses a greedy algorithm to generate the longest
NOP instructions allowed. (Using the prefix/addressing mode
variations of the 0x0f1f multi-byte NOP opcode listed in the
AMD64 Optimization Guide [24].)

• Optimized NOPs uses a lookup table containing optimized NOP
sequences from 1 to 31 bytes in length. The table was generated
automatically, in about one minute, using a microbenchmark
that exhaustively searches the space of different combinations
of instructions that have no effect. The individual NOP
instructions are drawn from the many different inert variations
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Figure 6. Sandboxing slowdown (lower is better) for different
strategies of generating NOP padding for NaCl instruction
alignment. The slowdown is measured from the overall GMean of
the V8 Benchmark Suite executing on x86-32.

of the NOP, XCHG, MOV, and LEA opcodes, using different
registers and addressing modes.

Looking at the tables generated for optimized NOPs, the trend is
that variety improves performance: NOP padding sequences that
vary the opcodes and registers between all the different NOPs
execute much faster than NOP padding sequences that are more
homogeneous, e.g., repeating the same instruction over and over.
The fastest measured NOP sequences tend to contain one NOP of
each possible type. This is possibly a result of more possibilities
for instruction level parallelism when a mix of different NOP types
is issued on modern microarchitectures.

For long NOP padding, the fastest NOP sequences contain a
direct jump instruction that jumps to the end of the padding. Some-
what surprisingly, the choice of the unexecuted NOP instructions
immediately after the direct jump has an effect on performance,
despite being unreachable. We observed, on different architectures,
between a 1.5% and a 1.8% slowdown when we changed these
unreachable NOP instructions from optimized sequences of NOPs
to sequences of the shortest, single-byte NOPs. We assume that
those unexecuted NOP instructions impact some microarchitectural
bottleneck in instruction fetching and decoding.

NOP padding performance will vary with microarchitecture,
but optimized tables can be generated on each platform. Figure 6
shows the performance effects of different choices for directly
jumping to the end of NOP padding sequences on the overall score
of the V8 benchmark suite. The left side of the graph (“2” on
the x-axis) shows V8-32 performance measured when all NOP
padding sequences start with a direct jump (that jump occupies
two bytes). The right side of the graph (“32” on the x-axis) shows
performance when NOP padding never starts with a direct jump.
Notably, starting with a direct jump is not the fastest strategy for all
NOP padding lengths. For the optimized NOP selection strategy, a
direct jump is faster only when NOP padding is longer than about
24 bytes.

A related optimization is to avoid execution of padding before a
CALL instruction by using an explicit PUSH of the would-be return
address followed by a JMP to the function entrypoint address. This
optimization replaces a call of the form

1 ... padding ...
2 call FOO

with the sequence



x86-32 x86-64 x86-32 x86-64
Intel Xeon X5550
Nehalem 2.7GHz 7528 7059 5869 (28%) 4683 (51%)

Intel Core2 Quad
Q6600 2.4GHz 5612 5128 4535 (24%) 3296 (56%)

AMD Phenom II
X4 905E 2.5GHz 5030 4793 4026 (25%) 3390 (41%)

AMD Athlon
4450E 2.3GHz 3853 3447 2856 (35%) 2385 (45%)

AMD Opteron
8214 HE 2.2GHz 3633 3224 2701 (35%) 2226 (45%)

Intel Atom N450
1.7GHz 1395 1176 1041 (34%) 589 (100%)

(a) Unsafe (b) Sandboxed

Table 6. Performance scores (higher is better) on different
microarchitectures for the V8 Benchmark Suite running natively
(Unsafe) and in our language-independent sandbox. Sandboxing
slowdown is shown in in parentheses.

1 push retloc
2 jmp FOO
3 ... padding ...
4 retloc:

avoiding the need to execute the padding NOPs. This optimization
provides modest performance gains, of about 3 percent, and is
included in the measurements of Figure 6. Similar to direct jumps
over padding, this technique provides largest benefit when only
applied when skipping NOP padding sequences of length 20 bytes
or more.

5.5 Overhead Variability between CPU Architectures
Table 6 compares the overhead of our language-independent
sandboxing when running V8 benchmarks on several modern
processors, implementing different microarchitectures. For V8 on
x86-32 overheads are consistent, ranging from 28% to 34%. For
x86-64 overheads range from 41% to 56%, and the numbers seem
to suggest consistently less relative overhead on AMD processors
than on the fast Intel processors. The Intel Atom is a notable outlier,
with 100% sandboxing slowdown measured for V8-64. While we
haven’t yet fully explored the Atom’s outlier performance, we note
that these results match those previously reported for the x86-64
NaCl sandbox [44]. Interestingly, raw performance is better on x86-
32 for both the unsafe and sandboxed versions, most likely because
V8 has been more heavily optimized for x86-32.

5.6 Application to the new Crankshaft V8
Concurrently to our efforts described so far in porting a fork
of the V8 code base to Native Client, the developers of V8
substantially extended the V8 JavaScript platform to use highly-
dynamic, profile-driven optimizations. This “Crankshaft” version
of V8 has since been released as part of the Chrome Web browser
for the x86-32 architecture [34]. Crankshaft greatly improves the
performance of V8, through use of SSA-based optimizations,
loop-invariant code motion, better register allocation, and function
inlining. Also, Crankshaft allows fast, unboxed use of all small
integers less than 232 (cf. the old V8, as discussed on page 6).

To gain further insights into the applicability of our work, we
ported the x86-32 Crankshaft V8 (version 3.1.4) to use our code-
modification primitives. We were pleased to see that our existing
NaCl sandboxing port was insensitive to the higher-level changes
to V8, such as the mechanisms for SSA-based optimizations. Also,
the low-level x86-32 code-emission in the V8 backend remained
mostly unchanged, allowing us to reuse a majority of our earlier
porting work. All in all, we modified 3,483 lines in the x86-32
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Old V8 Crankshaft Crankshaft′

Crypto 3910 (12%) 12521 (14%) 12583 (14%)

DeltaBlue 4921 (33%) 13718 (20%) 14413 (14%)

EarleyBoyer 15827 (28%) 1030 (2095%) 17294 (31%)

RayTrace 5849 (59%) 8923 (29%) 8908 (30%)

RegExp 2660 (27%) 2274 (21%) 2298 (19%)

Richards 3864 (27%) 10862 (13%) 10955 (12%)

Splay 13098 (17%) 3704 (13%) 3699 (13%)

GMean 5868 (28%) 5459 (79%) 8250 (19%)

Figure 7. A chart showing NaCl sandboxing slowdown (lower is
better) for the old V8 and Crankshaft V8 platforms running the
V8 JavaScript Benchmark Suite. A table of the chart’s underlying
raw benchmark scores (where higher is better) for NaCl sandboxed
execution, with sandboxing slowdown in parentheses. Crankshaft′

denotes the NaCl-tuned version of Crankshaft.

Crankshaft V8 codebase (cf. Table 3).
We also made two small tweaks to our port, to tune Crankshaft’s

mechanisms to the characteristics of the NaCl sandbox. First, we
increased the threshold for the function-invocation count at which
Crankshaft will specialize a function to its arguments and modify
the function’s code. Thus, we reduced code modification rates to
account for the increased cost of code modification (V8 is tuned
for faster, single threaded code modification). Second, we saw that
a lot of NOP padding was needed to align indirect jump targets in
the middle of the code for general-purpose functions; specialized
functions jump to this code if they detect that their specialization
does not apply. To avoid the NOP overhead, we used a small
table of direct-jump trampolines, placed after the general-purpose
function code, to implement these calls.

We re-ran the benchmarking experiments on both versions of
our NaCl port of the Crankshaft V8 platform. The results can be
seen in Figure 7. After tuning, the absolute performance of the
NaCl sandboxed Crankshaft language runtime beats that of the
unmodified, unsafe x86-32 V8 version we used previously (see
Figure 3). It is particularly gratifying that in a span of a few months,
the original overhead of our language-independent sandboxing has
been more than offset by the independent optimization of the
language runtime.

As Figure 7 shows, the relative overhead of NaCl sandboxing
is also reduced by almost a third, going from 28% to 19% for the
tuned Crankshaft benchmarks. We believe this decrease in relative
overhead is primarily due to Crankshaft’s function inlining, which
reduces both NaCl NOP padding as well as function-return branch
mispredictions. The SunSpider100 benchmarks exhibited a similar
absolute performance improvement, and also saw sandboxing
slowdown fall from 32% to 24%.



6. Discussion and Related Work
In this paper, we have presented our techniques for safe runtime
code generation and modification using the terminology of the
Native Client platform upon which our implementation is based.
Even so, we are confident that our techniques apply more widely.
In particular, we believe that the safety constraints of Table 2
could be easily reformulated for other SFI-based platforms (e.g.,
XFI [20]), and still provide the immutability guarantees necessary
for safe runtime code modification. Our confidence derives from
the fundamental basis of our work, which lies not in NaCl-specific
properties, but in the use of local code inspection to inductively
establish global execution invariants—a common characteristic of
many execution monitoring mechanisms.

Our experience porting JIT-based runtime platforms to our
language-independent sandbox suggest that it is possible to
combine SFI-based sandboxing with dynamic code generation,
yielding a system that combines benefits from both techniques.
Although the performance impact of sandboxing is not negligible,
we believe the resulting system is still viable for a large set of
practical use cases, especially considering that some of the relevant
languages are still commonly implemented with interpreters. Some
will argue that a JIT-based language runtime is safe enough without
an SFI sandbox. We note that the verity of this statement relies on
the quality of the language implementation, including the language
runtime and any extensions.

In all cases, it can be expected that a fully-featured, advanced
language runtime will comprise a significant amount of complex,
trusted code—even when legacy libraries are not considered. Note
the total line counts for V8 and Mono in Table 3. Furthermore,
in cases where a language implementation is used as a scripting
engine for a larger system, such as a Web browser, it is often
desirable to sandbox the entire composed system [4, 42].

Like Native Client and other SFI-based mechanisms, our
language-independent sandboxing is designed to provide high-
assurance guarantees of clearly-defined safety properties, even in
the face of malicious software crafted by an adaptive attacker.
In comparison, many other software protection systems—such as
Nooks [51], to name just one—provide a weaker form of safety by
making only a best-effort attempt at containing faults.

Many software protection systems have been implemented
using a combination of static analysis of machine code and inline,
machine-code software guards that perform runtime checks or
sandboxing operations. The first use of these techniques may
have been in the late 60’s, to allow the kernel execution of
untrusted code in a profiling system for the SDS-940 [14]. Since
then, these techniques have been used in the original work on
SFI [53], subsequent SFI implementations such as MiSFIT [46],
SASI x86 [18], XFI [20], and PittSFIeld [32], and in a number
of other systems. Compared to Native Client, some of these
systems offer finer-granularity safety guarantees for certain aspects
of software execution—albeit typically at the cost of higher
enforcement overhead. For example, CFI [1] can guarantee that
machine-code execution follows a permitted control-flow graph,
XFI [20] can enforce integrity properties for the runtime stack, and
DFI [11] and its successors like BGI [12] can maintain data-flow
integrity properties for even values in heap memory. However, it
remains unclear if the techniques of these systems can be used to
implement a production-quality, practical execution platform like
Native Client, that is portable across both operating systems and
hardware architectures with good performance. Furthermore, we
know of no such system that provides safety guarantees in the face
of runtime code generation and modification.

Programming languages and runtime software mechanisms
are recognized as an effective approach to providing safety
guarantees and enforcing security policies. Software isolation on

the Burroughs B-5000 system depended on applications being
written in the Algol high-level language [5] and a similar approach
has been taken in later, experimental operating systems such as
SPIN [7].

Commonly, language-based isolation is enforced through exe-
cution on top of a virtual machine, which is implemented using
a trusted compiler or interpreter, and typically makes use of
extensive libraries of trusted support routines based on (legacy)
native code [45]. In comparison, approaches like Typed Assembly
Language (TAL) [35] and Proof-Carrying Code (PCC) [37] provide
guarantees about the machine code that is executed on actual
hardware machines. SFI, like TAL and PCC, has the attractive
characteristic of allowing independent, static safety verification
of the machine code to be executed; this not only decouples the
execution platform from the language toolchain, but also reduces
the size of the trusted computing base [40].

A long line of research aims to preserve the semantic properties
of high-level programming languages through translation to lower-
level languages. Typed assembly language derives from this field
and, in that context, Smith et al. have considered restricted forms
of runtime code generation [47]. Recently, this field has seen
great progress, starting with Xavier Leroy’s work on certifying
compilation from C-like languages to PowerPC machine code with
full, formal proofs of semantic preservation. This work has been
extended to handle incremental runtime code generation, and even
self-modifying code, first by Cai et al. [8] and then, most recently,
by Magnus O. Myrren [36]—in this later work formally certifying
the correctness of a JIT compiler from a small bytecode language
to x86 machine code. Our mechanisms also give strong safety
guarantees and use techniques amenable to formal verification [32].
However, our language-independent sandboxing does not aim to
preserve high-level language semantics, and the implementation of
our mechanisms is unencumbered by those semantics.

7. Conclusions
Through use of language-independent, software-based fault isola-
tion, it is possible to safely and efficiently sandbox programs that
make use of self-modifying machine code. It suffices to extend
traditional SFI techniques with a few new features, including
new safety constraints that apply inductively on the structure
of machine code, even across code modification. These new
safety features are not difficult to implement in practice, e.g., as
part of Native Client, an existing, production-quality SFI-based
sandboxing platform. It is also rather straightforward to port V8
and Mono, two disparate, modern JIT-compiled languages, to
run within a thus extended sandboxing platform. Such language-
independent sandboxing holds the promise of facilitating the
deployment of new language and technology options for the
development of untrusted software, in particular, on the Web.
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